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1 Introduction

The existence of labour-saving (hereafter, LS) heuristics driving the rate and direction of
technological change is a documented pattern, since the inception of the First Industrial
Revolution. Reducing the time of operations during Taylorism, increasing the saturation
of takt-times during Toyotism, and speeding up processes and executions of functions
remotely tracking operators’ intervention nowadays, are the core drivers of mechanisation
and automation.

In the tradition of the economics of innovation, the First Industrial Revolution had been
a combination of time-saving heuristics, enabled by the mechanisation process, and the di-
vision of labour inside factories, together with the emergence of innovative artefacts. The
role played by time-saving heuristics in shaping the direction of mechanisation has been
emphasised by von Tunzelmann (1995) with reference to the cotton industry in the British
Industrial Revolution: the massive increase in labour productivity resulted from the use of
innovation and discovery through which a spinner was able to produce in a day as much
yarn as previously required by a full year of work, without mechanisation.1

On top of that, Freeman (2019) conceptualises the First Industrial Revolution as a
paradigmatic shift emerging from the combination of time-saving heuristics on the one
hand, and the new clear demarcation between working- and life-time for wage labour-
ers on the other hand, an attitude absent in the pre-industrial societies (Thompson, 1963),
allowing workers discipline and ensuring their participation to the productive activities,
e.g. by turning Monday into a working, rather than a drinking, day. As corroborating
evidence, using a detailed and quite granular report, the Hand and Machine Labor Study
commissioned by the Department of Labor in 1899 to detect the impact of mechanisation
on labour productivity, Atack et al. (2020) estimate that only one-third of the increase in
labour productivity (measured as time spent in a given operation) in the late nineteen
century was due to ‘inanimate power’, while the rest unexplained component remains
attributed to other factors, among which division of labour plays a prominent role.

Speeding up the production process clearly maps into the need of reducing the human
active participation to the process itself. Therefore, time-saving and LS heuristics have
been considered by economic historians as potential focussing devices (Rosenberg, 1976)
guiding the search process, however of a very particular type. In general, in the devel-
opment of a new artefact, inventors face technical trade-offs and bottlenecks which have
to be overridden. Search heuristics might have various nature and directions (Cohen et
al., 1996), going from the ‘make it smaller’ for microprocessors, to the ‘make it faster’
for aircraft, even to the ‘make it more exclusive’ for smartphones (e.g. Apple’s iPhone).
Indeed, focussing devices are rather heterogeneous among inventors, and as such they
locally guide the search and discovery process, defining the technological trajectory, inside
a given established paradigm (Dosi, 1982). This is not the case for LS heuristics which,
rather than local, appear as a generalised feature of the history of innovation and in gen-
eral of capitalism.

1The author refers in particular to Baines (1835).
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“In England, strikes have regularly given rise to the invention and application
of new machines. Machines were, it may be said, the weapon employed by
the capitalists to equal the result of specialised labour. The self-acting mule, the
greatest invention of modern industry put out of action the spinners who were
in revolt. If combinations and strikes had no other effect than of making the
efforts of mechanical genius react against them, they would still exercise an
immense influence on the development of the industry.”

[Marx (1955, p. 161); also cited in Rosenberg (1976, p. 118)]

Are these LS heuristics empirically detectable? Attempts to infer heuristics and know-
ledge bases appear e.g. in Castaldi et al. (2009) at the artefact level, focussing on the tank
technology and the evolution of its attributes over time, but also in Martinelli (2012), who
uses patent-citation networks to infer the emergence of new paradigms by changes in bot-
tlenecks and search heuristics, therefore at the so-called knowledge level. Recently, Taalbi
(2017), relying on specialistic trade journals, collected information about drivers of innov-
ative activities supposed to be relevant by innovators, and investigates eventual distinct
patterns across industry and over time.

Currently, heuristics are usually inferred by the technical engineering literature and re-
lated case-studies. However, patents and their textual content also provide a good source
of information to detect codified knowledge and the ensuing search heuristics. Relatedly,
the use of textual analysis techniques enables a comprehensive study of large scale textual
dataset. By looking at the textual contents of robotic patents over the last decade, Mon-
tobbio et al. (2020) are able to isolate those ones which clearly embed a LS trait. The iden-
tification of LS patents, done by natural language processing which includes probabilistic
topic modelling, lead to a clear definition of the set of technological artefacts behind LS
robotic patents published by the USPTO between 2009 and 2018. Two insightful excerpts
from LS patents follow:

“Automated systems, such as robotic systems, are used in a variety of indus-
tries to reduce labo[u]r costs and/or increase productivity. Additionally, the
use of human operators can involve increased cost relative to automated sys-
tems.” [US20170178485A1]

“The use of the technology [robots] results in improved management of in-
formation, services, and data, increased efficiency, significant reduction of
time, decreased manpower requirements, and substantial cost savings.”

[US20100223134A1]

After identifying patents explicitly containing LS heuristics, Montobbio et al. (2020) in-
fer the type of human activities that the technology contained in LS patents is intended
to replace, by capturing both the formal technological content of the invention using pat-
ent classification codes and the substantial purpose of broader robotic innovations, using
the vector of words which characterises each topic. Thanks to this twofold analysis, they
describe those fields and activities that are more exposed to LS innovations. LS patents
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appear to be concentrated in particular in the following fields: (i) Transport, Storage and
Packaging, (ii) Diagnosis and Therapy, (iii) Transmission of Digital Information, (iv) Op-
tical elements, (v) Chemical or Physical Laboratory Apparatus (measuring and testing in
chemistry), and (vi) Moving Parts.

The authors propose a taxonomy wherein it emerges that the typical tasks on which LS
research effort is focussed include (i) dexterity and manipulations, as in packing, storing,
conveying, and handling packages in the logistics industry; (ii) activities entailing social
intelligence, such as caretaking patients and the elders; (iii) activities requiring cognitive
intelligence and complex reasoning, e.g. the ability of predicting, learning, classifying and
evaluating, typical of high-level professional segments. Notably, the analysis shows that
the overall bundle of technologies behind LS heuristics is not simply related to robots
stricto sensu, but it encompasses a wider set of technologies, functions and operations. In
this respect, rather than interpreting the new wave of LS technologies as the next GPT (Tra-
jtenberg, 2019), to genuinely account for the unfolding of the latest wave LS technologies,
a ‘technological constellation’ perspective à la Freeman would be more informative.

In this paper we intend to move ahead by delving into the past, i.e. by adopting a ‘histor-
ical technological constellation perspective’ and looking at the emergence and evolution
of the bundle of technologies behind the current LS heuristics detected in robotic innov-
ations. Indeed, as we shall show, mechanisation and automation are not the result of a
single dominant product design, but rather of a bundle of technological artefacts, which
experience patterns of comovements, anti-comovements, explosion, and dissipation. Our
empirical investigation, which looks at historical patent data over the period 1836–2019
vindicates, first, the underlying technological complexity, in terms of bundles of output,
behind LS technologies; second, the increasing historical relevance of those technological
artefacts entailing mechanisation and automation; last, the absence of a neat recurrence of
periodic waves of innovations. In fact, although we identify the emergence of long waves
characterising part of these technological artefacts, they are hardly periodically recurrent.

Our findings clearly parallel the Schumpeterian reading of capitalist systems (Schum-
peter, 1939) which epitomises the perspective of long waves of technological innovations,
with phases of upswings and downswings, clustering of heterogeneous innovations and
patterns of interdependence among them, giving rise to upsurge and transformation, al-
ternated with phases of slackening and declines.

Building upon the Schumpeterian perspective, according to Freeman and Louçã (2001)
the history of modernisation is punctuated by distinct phases, characterised in terms of
dominant technological systems, or better techno-economic paradigms. They go beyond the
deterministic Kondratiev wave approach put forward by Schumpeter, and propose the no-
tion of ‘constellations of major technical innovations’, by far more complex than the pop-
ularised GPT version, entailing the diffusion of unique technologies, say steam, electricity,
ICTs, and now AI, which for their pervasiveness encompass all sectors of the economy,
and therefore turn out to entirely characterise the process of economic growth.

Differently, constellations pertain to the notion of autocatalytic mechanisms, entailing
development blocks of technological artefacts (Dahmén, 1988). Therefore, according to this
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perspective (Nuvolari, 2019), the development block underlying the British Industrial Re-
volution consisted of machinery, machine tools, steam engines, coal, and iron production
techniques, while the one underlying the Third Industrial Revolution consists of semicon-
ductors, computers, software, and networking equipment.

The periodic cycle approach proposed by Kondratiev, rephrased by Schumpeter, and
then endorsed by Perez (1983), has been challenged by the empirical literature and ques-
tioned particularly by Silverberg (2007), who highlights a series of drawbacks character-
ising the empirical detection of long cycles. The latter pertain, first, to the non-stationary
nature of long-term time series and, related, to the distortion imposed by making the series
stationary using whatever detrending technique; second, to the short time horizon char-
acterising the majority of the analyses, with many series lasting exactly fifty years, and
therefore over-imposing the Kondratiev wave; third, to the absence of a dataset for true
innovations; fourth, to arbitrary trimming of the dataset.

These drawbacks have been taken into account by Silverberg and Verspagen (2003),
who dismiss the long cycle perspective and opt for a more neutral detection of clustering
of innovations by fitting a Poisson model, under the hypothesis of absence of clustering,
versus a negative binomial model, allowing for clustered events, and therefore for a vari-
ance component. Although innovation clustering is verified, any periodic deterministic
cluster hardly emerges:

“Innovations may indeed cluster, but not in any deterministic sense, and their
pattern may shed light on a unified mechanism explaining a range of their
properties. Aggregate economic activity, simultaneously with certain patterns
of structural change, may obey certain laws that dialectically intertwine chance
and necessity and produce robust patterns, but ones that do not lend them-
selves to any very simple forecasting. It is on this note that I hope long waves
will long be with us as a field of scientific research.” [Silverberg (2007)]

In the following, we shall proceed by explicitly addressing the major drawbacks poin-
ted out by Silverberg (2007) by going beyond limited spectral analysis and filtering tech-
niques, and resorting to a non-stationary resilient methodology, namely wavelet analysis,
which will be performed upon a well defined set of technological innovations, i.e. patents
published since the 1790, and therefore also overcoming the shortness of the data struc-
ture, and avoiding to super-impose the long cycle identification. As said above, we focus
on a particular subset of the overall technological artefacts, namely those who have been
recognised to currently involve explicit LS heuristics.

Linking the evolutionary literature studying the employment impact of technical
change, theoretically discussing different compensation mechanisms balancing labour-
saving effects of innovation (Calvino and Virgillito, 2018; Dosi et al., 2019; Freeman and
Soete, 1987; Piva and Vivarelli, 2018; Simonetti et al., 2000; Vivarelli, 1995),2 the study of

2Many contributions are emerging in the recent years looking at the impact of automation adopting a neo-
classical perspective (Acemoglu and Restrepo, 2018, 2019, 2020; Graetz and Michaels, 2018) mostly relying
on sectoral and local labour market analysis. The evolutionary tradition distinguishing heterogeneous im-
pacts of embodied vs disembodied technical change upon employment has been explored in Barbieri et al.,
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knowledge bases embedded in technology (Dosi, 1988) and the emergence of long waves
or alternatively of clusters of innovations (Silverberg and Verspagen, 2003), our contri-
bution departs from the literature in terms of both the novelty of the empirical analysis,
by fully exploiting the long-run historical dimension of the USPTO dataset, still relatively
unexplored, the use of wavelet analysis to study patent data, and ultimately enriches our
understanding of the long run history of the constellations of artefacts behind current LS
robotic technologies. Indeed, in the wake of a purported Fourth Industrial Revolution3,
and of the over-abused statement ‘this time is different’, the understanding of the evolu-
tion of the bundle of technologies behind the current explicit LS robotic ones might allow
a thorough and deeper policy action to counteract labour shedding effects.

The paper is organised as follows: in Section 2 we identify the long-term evolution of the
constellation of technologies behind current LS innovations, we present their time trend
and clustering patterns. Section 3 detects the presence of temporal cycles in the data by
means of wavelet analysis and explores the extent to which the intensity of innovative
activity is correlated with business cycles and recessions. Finally Section 4 concludes by
outlining potential avenues of further research and useful policy implications.

2 Back to the past: labour-saving innovations since 1830s

The first step of our empirical investigation entails the determination of technological
classes which are recognised to currently present LS traits, with the aim at delving into
the past and tracing a historical account of their evolution. Our main source is Montobbio
et al. (2020), which investigates the presence of LS heuristics within a set of 29,789 robotic
patent applications published by the USPTO between 2009 and 2018 and quantitatively
identify, through a probabilistic topic model of their full-texts, the CPC (Cooperative Pat-
ent Classification) codes which bear the most relevance to underlying LS innovations. In
a nutshell, the prevalence of a LS trait is identified by means of a metric pointing at those
topics which are more prevalent in LS robotic patents vis-à-vis the population of generic
robotic patents. Topics are then matched to CPC codes. The metric used by Montobbio
et al. (2020), namely a topic relevance distribution, is also reported here in Fig. 1 for con-
venience (a more detailed technical summary of Montobbio et al., 2020 is also provided in
Appendix A).

In the present paper, we build upon their results by studying the long-term evolution in
the attribution by patent examiners of CPC codes linked to LS technology. Starting from
Table 1 in Montobbio et al. (2020), we restrict the analysis to the set of 3-digit CPC codes
which exhibit a weight of at least 10% (5th column) among topics with positive relevance
(Θ̃LS

k > 0) to LS patents (2nd column), as opposed to general robotic patents.4 We also in-
clude 4 CPC codes excluded from the said table in that they are widely pervasive of both

2018; Pellegrino et al., 2019; Van Roy et al., 2018 mostly adopting firm-level data with a panel structure, to
mention a few recent studies. More established notions of process vs product innovations are explored in
(Harrison et al., 2014; Lachenmaier and Rottmann, 2011; Van Reenen, 1997).

3For empirical evidence investigating current Industry 4.0 trends in the automotive industries see Cirillo
et al. (2020) and Moro et al. (2019)

4Codes which belong to CPC ‘raccord’ class Y are left full digit.
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k and ΘLS

k for robotic patents (blue, in descending
order) and their LS subset (orange). Source: Montobbio et al. (2020).

LS patents and general robotic patents (see Montobbio et al., 2020, footnote 14): these are
B25 (“Hand tools; Portable power-driven tools; Manipulators”), G01 (“Measuring; Test-
ing”), G05 (“Controlling; Regulating”), G06 (“Computing; Calculating; Counting”), and
Y10S901, which points to the “Robots” former USPC Class 901. We end up with a set of
15 CPC codes, outlined in Table 1 along with their official definition. In order to investig-
ate their historical use within patenting activity, we employ the Master Classification File
(MCF) for U.S. Patent Grants.5 The dataset reports, for each patent granted by the USPTO
since July 1790, the corresponding CPC classification. In fact, at the time of writing, some
records are missing, and usable data start in 1836. Our analysis is therefore restricted to
the period 1836–2019. Notably, titles, abstracts and full-texts of USPTO patents are avail-
able only since the 1970s; therefore, we resort to CPC codes rather than textual analysis in
order to elicit long-run information on LS technologies. By looking at Table 1, it is clear
that CPC codes characterising current LS robotic patents are quite diverse and range from
more obvious CPC codes, such as ‘Machine tools’ (B23) and ‘Hand tools’ (B25), to less so,
such as ‘Optics’ (G02) and ‘Medical of veterinary science’ (A61). Therefore, the so-called
constellation approach, as opposed to the GPT one, appears more appropriate to charac-
terise long-run automation trends. Hereafter, we will collectively refer to these CPC codes
as target CPCs, granted the degree of heterogeneity therein, but nonetheless conveying im-
portant information on the functions and activities involved by the underlying artefacts
and the related human functions. We now ask the question: how does patent intensity of
target CPCs evolve over time?

Fig. 2 shows the evolution in the assignment of target CPC codes by patent examiners
within each year in our time window. The vertical axis measures patent intensity in rel-
ative terms, i.e. it represents the number of times the underlying CPC has been assigned

5Available here: https://bulkdata.uspto.gov/data/patent/classification/cpc/
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CPC Definition

A61 Medical of veterinary science; Hygiene

B01 Physical or chemical processes or apparatus in
general

B23 Machine tools; Metal-working not otherwise
provided for

B25 Hand tools; Portable power-driven tools;
Manipulators

B62 Land vehicles for travelling otherwise than on rails

B65 Conveying; Packing, Storing; Handling thin or fila-
mentary material

C12 Biochemistry; Beer; Spirits; Wine; Vinegar; Microbio-
logy; Enzymology; Mutation or genetic engineering

G01 Measuring; Testing

G02 Optics

G05 Controlling; Regulating

G06 Computing; Calculating; Counting

H01 Basic electric elements

H04 Electric communication technique

Y10S901 Robots

Y10T436 Chemistry: analytical and immunological testing

Table 1: Target CPC codes definitions.
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divided by the overall number of assigned CPC codes in the same year, as follows:

patent intensity of code CPC in year t =
number of CPC assignments in year t
number of all assignments in year t

The vertical axis therefore measures the relative importance of target CPCs vis-à-vis the
rest of technological classes. Already at a first glance, a sizeable heterogeneity emerges
in their time evolution. Indeed, different CPC codes exhibit starkly different evolutions,
both in terms of shape and scale. A few codes have witnessed an overall steeply increasing
trend (A61, C12, G02, G06, H01, H04, Y10S901, Y10T436), suggesting a century-long ever grow-
ing commitment to innovative effort in the underlying fields, while the remaining display
a more ‘stationary’ or even decreasing dynamics. Exploding trends characterise techno-
logies related to computing, processing, and testing, namely pivotal functions at the core
of the Third Industrial Revolution. A more steady tendency is instead recorded for those
technologies related to codes B65 and G05, mostly characterising innovations dealing with
storage, packing, conveying, and regulating control processes. Patent intensity of these
technologies seem to be rather persistent over time, in a fashion more akin to enabling
technologies, processes, and methods, rather than products themselves. A decaying trend
is instead visible for codes B23, B25 and B62, mainly characterising the First and Second
industrial revolutions, such as innovation in the agricultural sectors (land vehicles) and
related to the mechanisation process in the assembly line, providing hand tools, manipu-
lators, and metal-working.

But how relevant are these target CPC codes when compared to the rest of innovative
efforts? In order to better grasp the relevance, in term of assignment frequency, of our
target codes vis-à-vis the rest of CPC codes, we divide our time window into five sub-
periods and look at the most common classification codes therein. Breakpoints are set at
1880, 1920, 1960, and 2000.

Fig. 3 reports the ranking of the top 10 CPC codes by assignment frequency in each
sub-period. Between 1836 and 1880 (panel (a)), innovative effort is primarily devoted to
advancements in the primary sector, as captured by CPC code A01 (“Agriculture; Forestry;
Animal husbandry; Hunting; Trapping; Fishing”), followed by engineering, after code
F16 (“Engineering elements and units; [. . . ]”). Between 1881 and 1920 (panel (b)), the pic-
ture witnesses a reversal, with engineering now prevailing over agriculture, as code F16

takes over A01 for first position. The rise of engineering also brings to the fore related ap-
plications to transportation, with codes B60 (“Vehicles in general”) and B61 (“Railways”)
ranking third and sixth, respectively. This trend intensifies in the next period, from 1921
to 1960 (panel (c)), in which agriculture disappears from the top 10 positions, and en-
gineering (F16) is now trailed by applications to the extraction and energy sector (C10,
“Petroleum, gas or coke industries; [. . . ]”). Towards the end of this period, in late 1940s
and 1950s, the transistor and its most used design, the MOSFET, are invented, boosting
electricity and electrical components to third position. The related CPC code, H01 (“Basic
electric elements”), becomes the most commonly assigned code ever since, ranking first in
the remaining two sub-periods (panels (d) and (e)).
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The transistor revolution opens up for advances in other fields, most notably biotech-
nology, which consistently ranks second from 1961 to date. What differentiates the 1961–
2000 period from the 2001–2019 period is a focus on chemistry in the former, with codes
C07 (“Organic chemistry”) and C08 (“Organic macromolecular compounds; [. . . ]”) ranking
third and fourth, respectively, and on ICT in the latter, witnessed by codes H04 (“Electric
communication technique”) and G06 (“Computing; Calculating; Counting”) in 4th and 5th
position, respectively.6 Moreover, the relative frequency scale (reported in the horizontal
axis) appears to double from one period to the next in the last two sub-periods: the most
common code accounts for≈ 4% of all assignments between 1921 and 1960, for≈ 8% of all
assignments between 1961 and 2000, and for≈ 16% between 2001 and 2019. This suggests
an increasing concentration of innovative activity within the underlying fields over time.

Fig. 3 also captures the overlap between out target CPC codes with respect to other
commonly assigned codes. It is immediate to notice that our target codes (highlighted in
blue, as opposed to general codes pictured in orange) become increasingly widespread
over time, with a remarkable thrust after World War II: half of the top 10 codes assigned
between 1961 and 2000 (panel (d)) and 7 after the turn of the Millennium (panel (e)) belong
to our list of potentially LS codes.

Finally, Fig. 3 highlights (in green) the degree of co-assignment of LS CPC codes with
other CPC codes at the single patent level. The CPC co-occurrence is informative of the de-
gree of technological complementarity and underlying technological complexity. Indeed,
over time, not only our target CPC codes increase in relevance, but exhibit a considerable
degree of complementarity with other technologies (C07, C08), meaning that potential LS
heuristics are also nested in conjunction with other non-explicitly LS CPC codes.

As already noted, the (relative) assignment frequency of different CPC codes follows
markedly distinct dynamics over time. A second look at Fig. 2 reveals three main evol-
ution patterns. CPC codes B23, B25, B62, and B65, whose (normalised) evolutions are re-
ported superimposed in Fig. 4(a) for the sake of clarity, are all characterised by an ‘early
peak’, in the sense that they reach their maximum frequency of assignment early in our
time window, no later than World War II, and exhibit a decreasing trend afterwards. Since
this cluster includes, among others, inventions such as power driven tools, manipulators,
and transport equipment, it is apparent that effort towards automation of machining tasks
chronologically precedes the ‘transistor revolution’ and the ensuing ‘IT revolution’.

Similarly, codes A61, C12, G02, G06, H01, and H04, pictured superimposed in Fig. 4(b),
all exhibit a monotone and steeply increasing trend. This suggests that the underlying
innovative effort, whose target fields range from bioscience to ICT, and which started to
gain momentum during the post-World War II economic boom, has yet to plateau.

Finally, codes B01, G01, and G05 form a third cluster, as the relevant assignment frequen-

6For the sake of completeness, other recurrent CPC codes across the five periods include: A47 (“Furniture;
Domestic articles or appliances; Coffee mills; Spicemills; Suction cleaners in general”), B29 (“Working of
plastics; Working of substances in a plastic state in general”), E05 (“Locks; Keys; Window or door fit-
tings; Safes”), Y10T24 (“Buckles, buttons, clasps, etc.”), Y10T74 (“Machine element or mechanism”), Y10T83
(“Cutting”), Y10T137 (“Fluid handling”).
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Figure 3: Overall CPC relevance over selected time window, and co-occurrences between
target and non-target CPC codes. Blue and orange bars measure the proportion
of, respectively, target and non-target CPC codes as a fraction of all CPC codes as-
signed in the underlying period. Green bars measure the degree of co-occurrence
of CPC target codes with specified non-target codes.
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Figure 4: Three clusters of innovative activity. All series are defined as in Fig. 2 and norm-
alised to span the unit interval.
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cies, pictured superimposed in Fig. 4(c), are overall increasing, but underlying technolo-
gies seem to plateau in the second half of the 20th century.

Since CPC codes Y10S901 and Y10T436 belong to the ‘raccord’ class Y10 “Technical sub-
jects covered by former USPC”, their in-hindsight re-assignment to older inventions be-
fore the CPC system was conceived is scattered and largely missing. For this reason, we
discard these codes for the remainder of the analysis. The aforementioned clustering exer-
cise is also supported by correlation analysis; a heatmap representation of the correlation
matrix between the relevant series is reported in Appendix B.

The evidence presented so far suggests, first, that given the emergence of strong het-
erogeneity among the underlying knowledge base encompassed by LS robotic artefacts,
robots and intelligent machines are somewhat more than a simple GPT; second, that the
time evolution of underlying CPC codes is rather distinctive; third, that clusters of innova-
tions, comovements and anti-comovements appear, corresponding to successive industrial
revolutions. This evidence is still however inconclusive about the emergence of recurrent
long waves of innovations or of rather erratic technological clustering. The next section
advances our understanding in this respect.

3 Regular waves or erratic constellations?

In this last step of the analysis, we investigate whether the assignment of our target CPC
codes exhibit oscillations over time, intended as repeated cycles of upswings and down-
swings or rather less regular innovation waves determined by comovements of some
bundle of innovations. Silverberg (2007) provides a synthetic reappraisal of the literat-
ure detecting long waves in innovation cycles. Two strands of literature still contend the
interpretation of waves in innovation, a debate partly hosted by the Cambridge Journal of
Economics in 1980s: on the one hand, the regular long waves perspective, following the
Kondratiev (1935) fifty years cycle, sustained by Mensch (1979), who reports innovation
clusters in recessionary phases, and only partly supported by Kleinknecht (1990); on the
other hand, an anti-regular cycle perspective which, although denying the pure random
walk hypothesis put forward by Solomou (1986), sustains the presence of long-cycles, al-
though irregular, regulated by socio-economic technical conditions (Clark et al., 1981).

Criticisms on the robustness of the findings entail both the nature of the data used to
measure innovative activities, wherein a lot of arbitrariness arises to account for basic
innovations (see the criticism to Mensch, 1979), and the use of short-time periods actu-
ally impeding the genuine detection of long waves. In the following, relying on a long
timespan dataset, collecting only potential breakthrough innovations, we attempt at over-
coming these criticisms.

3.1 Wavelet analysis

In order to detect the presence of long waves, signal processing is an appropriate tool of
investigation. Periodic oscillations are typically revealed by Fourier analysis: therein, the
Fourier transform decomposes a signal into its constituent frequencies, thereby translating
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Figure 5: Representation of a real-valued Morlet wavelet with ω0 = 6.

it from time domain to frequency domain. When applied to long time series, however, the
Fourier approach only captures periodic behaviours that are detectable throughout the
whole time frame with constant wavelength, while it fails to account for shorter periods of
wavy dynamics and oscillations with time-varying wavelength. In simple terms, with the
Fourier transform, the time information carried by the signal is lost. Moreover, the Fourier
transform is known to be unsuitable for analysing non-stationary time series presenting
irregular behaviours (Charpe et al., 2019; Gallegati, 2019).

In order to overcome this limitation, a 2-dimensional technique, which simultaneously
accounts for the time and frequency domain, is needed. Wavelet analysis decomposes
the original signal into a complete time-frequency representation, thereby retaining all the
relevant information carried by the signal (for an introduction with applications in eco-
nomics, see Aguiar-Conraria and Soares, 2014). Strictly speaking, the wavelet transform
corresponds to a convolution of a time function (the time series under analysis) and a set
of wavelets, namely wave-like functions satisfying certain properties and acting as the un-
derlying basis. A more formal definition of relevant concepts is provided in Appendix C.

We deem this method superior to the short-time Fourier transform, another widely used
2-dimensional technique which splits a time signal into short segments and then computes
the Fourier transform separately on each shorter segment, since the latter requires an addi-
tional tuning in the choice of the windowing function and related segment length, which
by construction is fixed and therefore bounds the frequency resolution from below. Un-
der the wavelet approach, instead, the time-frequency window is adaptive and local, and
strikes a better balance between time domain and frequency domain. When it comes to
the choice of the ‘mother’ wavelet function, we opt for the classical Morlet wavelet, de-
picted in Fig. 5 and formally defined in Appendix C. This is a common choice for generic
data which is not ex-ante known to display a certain shape (such as electrocardiogram, to
name one) and proves to have desirable properties, the explanation of which goes beyond
the scope of this paper.7

Fig. 6 shows the time-frequency representation of the wavelet power spectrum (also
known as the scaleogram) for each of our target CPC codes, obtained by applying the con-
tinuous wavelet transform to the original series (cf. Fig. 2). The vertical axis denotes the

7In particular, the Morlet wavelet has optimal joint time-frequency concentration and minimum possible
uncertainty of the corresponding Heisenberg box, compared with other wavelet functions (Theolis, 1964).
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Figure 6: Time-frequency representation of the wavelet power spectrum of target CPC
series. Warmer (colder) coloured pixels represent higher (lower) values of the
underlying coefficients. White contour lines denote significant areas at the 95%
confidence level, against the null hypothesis of a white-noise model. Black
points/lines represent local ridges of wavelet power.
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oscillation period in years (defined as the reciprocal of frequency) in logarithmic scale,
while the horizontal axis denotes the time location of the oscillation throughout our ref-
erence time frame. Warmer (respectively, colder) coloured pixels represent higher (lower)
values of the underlying coefficients, meaning a more (less) pronounced periodic beha-
viour at the corresponding time-frequency coordinates. Shaded regions at the beginning
and end of the period bound the so-called cone of influence, which excludes areas where
edge effects might bias the analysis (see e.g. Aguiar-Conraria and Soares, 2014). White
contour lines denote significant areas at the 95% confidence level, against the null hypo-
thesis of a white-noise model. Black points/lines represent local ridges of wavelet power.

With respect to our analysis, the scaleograms synthetically provide three types of in-
formation. First, the very existence of periodic behaviour in a 3-digit CPC, a rather coarse
level of aggregation, is informative of an underlying co-occurrence of LS technological
artefacts, e.g. heterogeneous innovations within each technological class, exhibiting syn-
chronised upsurges and subsequent declines (with colour temperature signalling the in-
tensity of this coordinated movement). Second, the clustering length of innovations, or
let us say, the innovation cycle, can be read in the vertical axis. The maximum oscillation
period is set to 64 years, in accordance with the long wave theory.8 Third, the timing of oc-
currence of any potential wave is presented in the horizontal axis, in order to identify the
underlying beginning and end dates. Therefore, predominant Kondratiev waves, if any,
will be displayed as warm coloured spots located at the top of the panel. In general, the
shorter the span of an innovation cycle, the lower a warm coloured spot will be located,
while the less intense the coordinated upswing and downswing, the colder its colour. Note
that the length of our dataset (184 years) is as such that we do not incur in false-positive
waves for the oldest innovations, while this might be the case for newer innovations. We
shall address this issue later on.

Three different patterns of periodic behaviour emerge. Starting with CPC code B01,
the warmer areas are concentrated both to the left- and right-hand sides of the quadrant,
divided by a colder central area. Therefore, two alternate phases of innovations cycles
are detectable: an early phase with waves ranging from 16 up to 32 years ending around
the 1900s and a second phase emerging around the 1920s, with longer periodic oscilla-
tions (warmer colours in the top-right corner). Additionally, shorter cycles, with lengths
between 2-16 years (so-called Kitchin and Juglar cycles) are present in the yearly phase up
to 1850 as well. This highlights the presence of innovative activities in “Physical or chem-
ical processes or apparatus in general” (take the case, for example, of the du Pont family)
which is known to mark the U.S. Industrial Revolution. The same pattern also character-
ises codes G01 and G05. Indeed, the latter CPC codes belong to the third innovation cluster,
labelled as plateaued technologies, with functions like testing, control, measuring, and
applications in physical or chemical processes. These technologies are indeed intimately
related to both the first U.S. Industrial Revolution, characterised by textile and railways,
and the third ICT phase.

8Also note that 64 years, which amounts to roughly one third of the overall length of our series, is a plausible
cut-off for identifying meaningful waves using wavelet decomposition.
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Long Kondratiev waves Dominant CPCs Coexisting CPCs

1780–1840: MECHANISATION AND TEXTILE B23 A61, C12, G02, G06

1840–1890: STEAM POWER AND RAILWAYS B01, G01, G05 B25, B62, B65

1890–1940: ELECTRICAL AND ENGINEERING H01, H04 B25, B62, B65

1940–1990: MASS PRODUCTION AND AUTOMOTIVE B25, B62, B65 G06, C12

1980–ongoing: ICT C12, G02, G06 G01, G05, H01,H04

Table 2: Correspondence between target CPC codes and technological systems identified
by Freeman and Louçã (2001).

The second type of behaviour is the one characterising codes B23, B25, B62, B65. These
codes belong to the second innovation cluster, labelled hump-shaped, or equivalently, sat-
urated technologies. Indeed the scaleogram shows a larger concentration of the signal
both in the bottom-left quadrant and/or in the middle area. The cluster is indeed hetero-
geneous, with e.g. machine tools and metal working (B23) which show a statistically sig-
nificant wave of approximately 16 years up to 1875, consistently with the mechanisation
and textile phase. Innovations regarding the mass production phase, involving the as-
sembly line and manual tools (conveying, packing, storing) in the automotive sector (B65)
show short-term investment cycles between 1925 and 1975, but also long-lasting Kuznets
cycles starting around 1850. Scaleograms are also useful for detecting transients in the
underlying frequencies. This is the case of CPC code B25, comprising hand tools and ma-
nipulators, starting with a long period component of around 60 years (warmer area in the
top-left corner) and then gaining frequency (and momentum) at the turn of the century,
giving rise to significant 30–35 year long waves characterising the dynamics of the first
three quarters of the century. This behaviour is also clearly visible to the naked eye in the
corresponding panel of Fig. 2.

The third type of behaviour characterises codes A61, C12, G02, G06, H01, and H04, all show-
ing warmer upper-right corners. Notably, they belong to our second cluster (ever increas-
ing assignment) whose series exhibit a steadily growing trend (cf. Fig. 4(b)). While this
cluster stands at the core of the ICT revolution, the wavelet transform is tricked into be-
lieving that the whole dynamics, and especially the steepest chunks therein, constitute an
increasing portion of a very long period oscillation. It is not surprising, therefore, that the
scaleograms all have their maximum coefficients concentrated in the upper-right corner.
Indeed, the ever increasing trend starting in the 1960s obscures previous dynamics.

In order to obtain a more telling picture, we compute the wavelet power spectrum on a
shorter segment of the original series, i.e. between 1836 (the beginning of our series) and
1950, corresponding to a period of more stationary dynamics, and consequently reducing
the maximum oscillation period to 32 years. The new scaleograms, shown in Fig. 7, appear
more insightful than their old counterpart, and highlight some early periodic behaviour
that was previously invisible. Significant 32-year waves, ending around 1875, characterise
codes A61, C12, G06, while lower cycles in the early phase also characterise G02.

Overall, our wavelet analysis is broadly in line with the long-wave perspective by Free-
man and Louçã (2001). Each periodic episode identified therein maps to some domin-
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Figure 7: Time-frequency representation of the wavelet power spectrum for series in the
2nd cluster. Warmer (colder) coloured pixels represent higher (lower) values of
the underlying coefficients. White contour lines denote significant areas at the
95% confidence level, against the null hypothesis of a white-noise model. Black
points/lines represent local ridges of wavelet power.

ant technological paradigms and key sectors of activity. As shown in Table 2, the target
CPC codes retrieved from currently LS robotic patents allow to properly characterise suc-
cessive waves of radical technological clustering. In this respect, our investigation offers
new methodological underpinnings to study the long-term history of technological de-
velopment, as such characterised by LS technologies, and related heuristics for its whole
unfolding.

However, our results partly dissent from the periodicity and exact timing approach.
Indeed, some dating discrepancies arise because of the covered period: since our dataset
is based on U.S. inventions starting in the 1830s, the very first mechanisation wave is only
partly captured.

Regarding remaining episodes, target CPC codes can be easily matched with dominant
sectors/operations/functions identified by Freeman and Louçã (2001) within each wave.
Nevertheless, first, we are not able to identify general Kondratiev waves lasting 50 or
more years for all technologies; second, there is no upswing or downswing phase neatly
distinguishing one wave from its predecessor or successor. If any, our results better fit with
the ‘periodicisation’ of the three industrial revolutions, of which we are able to capture the
declining phase of mechanisation, the upswing and downswing of steam power, and the
upsurge of electricity, chemical and computing.

Provided that the waves we identified are erratic, irregular in length, and mostly coex-
isting, not only with other technologies within each cluster, but also between clusters, as
shown by the presence of coexisting target CPC codes (cf. Table 2), we deem the more
nuanced development/system block approach put forward by Nuvolari (2019) more appro-
priate to interpret our findings. The latter integrates the long wave perspective with the
industrial revolutions dating, emphasising the autocatalytic processes behind these devel-
opment blocks.
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3.2 Comovements with GDP growth

Within the debate on the occurrence of long waves, a still unresolved issue pertains to the
source of their emergence. The perspective of Mensch (1979) on radical innovations, and
eventually resulting long waves, considers the latter to be more concentrated in periods
of recessions, representing a managerial and organisational response to reduced market
opportunities. If this is true for general innovations, the argument and related evidence
should be even stronger with reference to LS ones, which are by their inner heuristics
devoted to cost-cutting scopes and increased room for efficiency. Against the recession-
driven perspective, Clark et al. (1981) consider radical innovations appearing in a rather
heterogeneous unpredictable manner, both across sectors and time. Conversely, Keyne-
sian driven approaches postulate innovative ideas clustering during economic expansions,
because of markets opportunity and sales dynamics. A similar conclusion is reached in the
demand-pull approach proposed by Schmookler (1962), who records inventive activities
lagging behind sales dynamics.

In the following, we shall address the possible emergence of recession- or, alternatively,
expansion-driven innovative propensity towards LS technologies. We start by investig-
ating the relationship between our variable of interest, namely the family of target CPC
codes signalling more automation/mechanisation oriented innovations, and GDP growth.
Historical GDP data for the U.S. is retrieved from the Maddison Project Database, ver-
sion 20189 (Bolt et al., 2018). We distinguish LS innovative activity according to the three
clusters identified in Fig. 4; each cluster corresponds to the sum of its underlying normal-
ised series. Fig. 8 presents the relevant scatter plots, with GDP growth on the horizontal
axis and CPC assignment on the vertical axis. In all three cases there is no meaningful
correlation structure. However, it is possible to notice that highest levels of innovative
activity are typically reached during periods of moderate growth, below 5% year on year.
The absence of a clear correlation suggests that there is no such thing as an external push
towards automation and mechanisation, but rather that the latter belong to a natural tra-
jectory in the sense of Nelson and Winter (1982).

One may also argue that the absence of correlation derives from the inherent different
dynamics of GDP growth, exhibiting volatility clustering, and innovation propensity in
mechanisation/automation, none of whose clusters being stationary. Moreover, comove-
ments may occur at lower frequencies. To this purpose, we further apply a Christiano-
Fitzgerald (CF) band-pass filter (see Christiano and Fitzgerald, 2003) to all the involved
time series, with the aim at separating the cycle component from the trend component.
We parametrise the filter to retain oscillations with a minimum period of 30 years and a
maximum period of 120 years, in order to keep very long-term information about the sig-
nal. Far from willing to accurately date the five waves in Table 2 (as in Gallegati, 2019)10,
our aim is to spot the presence of any long-term comovement occurring between the two
aggregates, when only the long-term signal is retained.

Fig. 9 presents the CF-filtered series superimposed to original unfiltered data regarding

9https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2018
10Note that the number of waves is very sensible to the length of the cycle component.
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innovation clusters. Comovements strongly differ from cluster to cluster. Overall, while
the first and third clusters show a higher degree of lagged synchronisation, the second
one has a complete autonomous pattern with respect to aggregate economic perform-
ance. Regarding the first cluster, the so-called hump-shaped technologies, panel (a) shows
that long-term waves of economic growth generally precede mechanisation/automation
waves. This is particularly the case for the initial boom around 1850, for the Great Depres-
sion, and the post-war economic boom. Nonetheless, the overall lag between peaks and
troughs is rather long, at around ten years. A similar lagged comovement behaviour is
also present in panel (e), regarding the third cluster, the so-called plateaued technologies.
Again, whenever there are comovements, long lags emerge, and the GDP precedes the
innovative wave. Additionally, peaks and troughs exhibit rather differing amplitudes. A
clearly unrelated trend is the one in panel (c). The underlying cluster, characterised by
an ever-increasing trend, presents a dynamics which is hardly reconcilable with economic
activity in terms of amplitude, peaks and troughs. This cluster, which accounts for tech-
nologies linked to the electrification phase (first wave up to 1980s) and the following ICT
revolution (second wave starting in the eighties), is the still dominant paradigm, relatively
unaltered even after the Great Recession.

Given the lack of a unique comovement behaviour, we proceed by analysing (bivari-
ate) wavelet cross power spectra (formally defined in Appendix C), in order to refine our
visual inspection and detect otherwise under-looked patterns. The cross wavelet power
spectrum allows to capture the underlying covariance structure between two time series
in both time and frequency domains. With respect to the standard cross-correlation ana-
lysis, bivariate wavelet analysis permits the identification of not only leading and lagging
indicators, but also of phase differences occurring at changing frequencies. Panels (b), (d),
and (f) of Fig. 9 present the three power spectra computed on CF-filtered series. Arrows
pointing to the right (respectively, left) indicate that GDP growth and LS innovation are
in-phase (out of phase) at the respective time-frequency coordinates. Arrows pointing
up-right and down-left signal that GDP locally leads innovation, while arrows pointing
up-left and down-right suggest the opposite relation.

In all three cases, the cross wavelet power spectrum shows that the covariance is con-
centrated in periods between 32 and 64 years. Out-of-phase dynamics is present in the
first cluster (panel (b)), whereby, contrary to previous visual inspection, the left-upward
horizontal arrows concentrated around the 32-year period indicate innovative activities
leading GDP. The leading structure persists for about a century, starting approximately
in 1875 and ending in 1975. Considering that underlying CPC codes are primarily linked
to mechanisation and automation, the leading structure suggests that LS activities negat-
ively correlate with GDP growth in the long run (from thirty years onward). The leading
thirty-year structure of innovation can be detected in panel (a), noting that the first and
second blue peaks (whose horizontal distance equals the considered wavelength) precede
the second and third orange peaks, given that the first one lies outside the cone of in-
fluence. The same lagging structure characterises the other two blue peaks (third and
fourth) and the corresponding orange ones (fourth and fifth). With increasing wavelength
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Figure 8: Scatter plots of GDP growth against LS patent intensity by innovation cluster.

(e.g. between the first and third peak), the phase structure disappears as shown by vertical
arrows.

In-phase dynamics characterises both the second and third clusters with about 50-year
wavelength. With respect to the second cluster (panel (d)), the in-phase dynamics is driven
by the two subsequent troughs of GDP and innovative activities, while regarding the third
cluster (panel (f)), it is driven by the second and third blue peaks, which are almost syn-
chronised with the orange ones (second and third, and the fourth respectively). The 50-
year in-phase dynamics however coexists with multiple areas of absence of any phase-
structure, displayed along shorter and longer periods, as per the vertical arrows, in line
with our visual inspection of comovements.

Overall, our analysis confirms the Clark et al. (1981) perspective of an autonomous and
independent propensity to innovate in LS artefacts. In order to suitably detect synchron-
isation and phase structure one has to go beyond the simple time domain analysis and
investigate simultaneously the time-frequency domain. In the latter case, covariances
emerge but appear along different frequencies and corresponding wavelengths. Indeed,
deterministic patterns, such as invariant leading-lagging structures, are hardly detectable.

4 Discussion and conclusions

This paper, relying on a long-term, still relatively unexplored, dataset on U.S. patenting
activity, provides empirical evidence on the history of automation innovation, back since
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Figure 9: Long-term comovements between GDP growth and LS patent intensity by in-
novation cluster. CF-filtered series of GDP growth (orange) and patent intensity
(blue), and original patent intensity series (green) are pictured superimposed in
panels (a), (c), and (e) for the 1st, 2nd, and 3rd clusters, respectively. Wavelet
cross power spectra of CF-filtered GDP growth and patent intensity by cluster
are pictured in panel (b), (d), and (f) for the 1st, 2nd, and 3rd clusters, respect-
ively. Warmer (colder) coloured pixels represent higher (lower) values of the
underlying coefficients. White contour lines denote significant areas at the 95%
confidence level, against the null hypothesis of a white-noise model. Arrows
denote phase difference and lead/lag relationships.
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1830s. The labour-saving heuristics identified by Montobbio et al. (2020) via textual ana-
lysis on current robotic technologies allow to focus on a coherent set of technological CPC
classes, the historical evolution of which is analysed in terms of timing, clustering, peri-
odic behaviour, and comovements with GDP growth. The very fact that labour-saving
CPCs differ widely in their assignment dynamics challenges the so-called GPT approach
postulating a unique dominant technology, while it brings support to the idea of innova-
tion waves seen as technological constellations.

Our findings are as follows. First, mechanisation and automation, or equivalently
labour-saving heuristics, seem to constitute a “natural trajectory” (Nelson and Winter,
1982) in the evolution of the capitalist system, rather than a recurrent pattern. As op-
posed to socio-deterministic approaches linking the upsurge of automation to contingent
phases, the hypothesis of natural trajectory implies that innovative efforts in labour-saving
automation act as a background collective meta-heuristics, independent of local-focussing
devices operating at the individual or firm level. Nonetheless, this notion does not exclude
the formation of clustering patterns of innovation. Indeed, nothing pre-empts the coexist-
ence of a Marxian interpretation of technical change, intended to mechanise and substitute
labour to increase forms of control and appropriation over the production process by cap-
italists, by codifying into inanimate power previously non-codified knowledge, on the one
hand, and the endogenous emergence of innovative efforts concentrated over a set of tech-
nological artefacts, in the Schumpeterian sense, on the other. There exist periods of more
coordinated innovative effort resulting in upsurges and subsequent declines, highlight-
ing some degree of technological clustering. In particular, we detect the presence of three
technological clusters exhibiting distinct temporal patterns: from hump-shaped, to plat-
eaued, to ever-increasing dynamics. Overall, the tension between invariant patterns, as
expressed by socio-economic meta-routines granted by institutions and meta-institutions
(Dosi et al., 2020), and unfolding heterogeneities characterising historical episodes and
sectors of activity (Capone et al., 2019), remains largely unresolved in our interpretation
of the socio-economic fabric.

Second, in detecting the presence of periodic behaviour via wavelet analysis, we do not
confirm the presence of 50-year long Kondratiev waves. Indeed, we are not able to identify
in mechanisation and automation subsequent regular periodic waves, leading to new tech-
nological systems. However, the dominant CPC codes characterising erratic technological
constellations are in line with the technological system dating proposed by Freeman and
Louçã (2001). The two seemingly contrasting results are instead coherent with the sys-
tem block approach and the coexistence of both within-paradigm and between-paradigm
trajectories (Dosi, 1982).

Third, with respect to the existence of a relationship between economic performance
and innovative activity in mechanisation and automation, we hardly find any evidence
thereof. Neither recession-driven nor euphoria-driven innovations are found, given the
absence of correlation between GDP growth and patenting activity. When looking at
the long-term cycle component, innovation and GDP growth present delinked patterns
of waves, with heterogeneous troughs and peaks. Whenever comovements occur, waves
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in GDP growth seem to precede, rather than follow, technological innovations, although
the picture gets more nuanced when looking at both time and frequency domains together.
In this regard, any purported saturation of the technological frontier or of innovative ideas
are not detectable from the trends in innovation directed at the mechanisation and auto-
mation of tasks. Labour-saving efforts are there and involve a large set of technological
artefacts, producers, and sectors of activity (Montobbio et al., 2020). This occurs rather in-
dependently of economic cycles at the macro-level. Our results however are not intended
to deny the existence of local and discrete focussing devices or search heuristics which
guide the innovative process. For instance, recent micro-evidence highlights the role of
bottlenecks and opportunities shaping the innovation trajectory in Swedish manufactur-
ing (Taalbi, 2017). Indeed, technological trajectories remain locally bounded by technolo-
gical bottlenecks and market opportunities. Additionally, there might be other variables,
such as the degree of union power, wage levels, and conflictual attitudes against mechan-
isation/automation moves, in line with the socio-technical approach (Noble, 1986), which
might trigger the innovation dynamics. Conflictual claims about labour conditions might
however result also in new technology meant to increase ergonomics and safety condi-
tions in the workplace. The direction is therefore not univocal and the aforementioned
relationships may represent avenues of future research.

The main limitation of our results comes from the level of aggregation: indeed, 3-digit
CPC codes are rather heterogeneous and might also include labour-friendly innovations,
even in their conception phase. Additionally, whether an innovation is labour-saving or
labour-friendly is a question that pertains to the use of the artefact and its implementation
in the production and organisational processes occurring at the firm and sectoral level. In
the present paper, we look at the direction of innovative ideas, without reaching a conclus-
ive appraisal on the employment effect from their use. Finally, given the widely hetero-
geneous and complex nature of technology, our investigation focusses on labour-saving
innovations uniquely derived by current robotic artefacts, therefore potentially neglecting
other labour-saving innovations sprung by different artefacts, not specifically linked to ro-
botic automation. Future research would benefit from encompassing a wider investigation
across the whole set of patents.
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Appendix A

Technical summary of Montobbio et al. (2020)

The contribution consists of three methodological steps. First, patents which either dir-
ectly or indirectly relate to robotics technology are singled out. Second, a procedure is
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implemented in order to detect the underlying LS heuristics and pinpoint the set of ex-
plicitly LS patents. Finally, a probabilistic topic model is estimated in order to devise a
human-machine taxonomy.

Step 1 – Identification of robotic patents The analysis starts with the entire set of
3,557,435 patent applications published by the USPTO between 1st January 2009 and 31st
December 2018. Robotic patents are pinpointed therein according to two distinct criteria,
one based on the patent classification codes specified within applications, the other based
on textual keyword search. A patent is deemed ‘robotic’ if it obeys at least one of the cri-
teria. In particular, a robotic patent according to the first criterion (dubbed ‘CPC’) must
be assigned by patent examiners at least one of a set of 174 full-digit CPC codes which
reflect former U.S. Patent Classification (USPC) class 901 (“Robots”). Likewise, a robotic
patent according to the second criterion (dubbed ‘K10’) must contain the word ‘robot’ in
its full-text at least 10 times, including derivational and inflectional affixes. The first cri-
terion identifies 10,929 robotic patents, while the second criterion identifies another 18,860
(after discarding robotic patents according to the first criterion). The two criteria single
out a total of 29,789 robotic patents, i.e. approximately 0.84% of the original (universe)
population.

Step 2 – Identification of labour-saving patents Labour-saving patents constitute a sub-
set of robotic patents, identified by a multiple word co-occurrence query at the sentence
level. In particular, a patent is deemed labour-saving (after an additional manual valida-
tion step) if its full-text contains at least one sentence in which the verbal predicate, direct
object, and object attribute belong to the following lists:



‘reduc’

‘replac’

‘elimin’

‘save’

‘lower’

‘substitut’

‘autom’


︸ ︷︷ ︸

verbal predicate

×



‘labor’

‘worker’

‘human’

‘employe’

‘manpow’

‘job’


︸ ︷︷ ︸

direct object

×



‘cost’

‘expenditure’

‘expens’

‘hour’

‘intens’

‘task’

‘time’

‘skill’


︸ ︷︷ ︸

object a�ribute

.

In total, 1,276 labour-saving patents are found (approximately 4.3% of all robotic patents),
of which 461 (≈ 36.1%) belong to the CPC group and 815 (≈ 63.9%) belong to the K10 group.

Step 3 – Probabilistic topic model and human-machine taxonomy The set of labour-
saving patents is technologically characterised vis-à-vis the superset of robotic patents
by leveraging the latent semantic structure of the whole collection of patents’ full-texts.
The analysis proceeds along the following methodological workflow. First, a probabilistic
topic model is estimated on the whole population of robotic patents, which associates a
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distribution θd of membership over the K-dimensional set β of topics to each patent d.
Second, a distribution of CPC codes, according to the original attribution of codes to each
patent by the topic proportions θd found in the previous step, is associated to each topic βk.
Finally, the relevance of each topic to the whole population of robotic patents is compared
to the same relevance to the subset of labour-saving patents, in order to draw quantitative
conclusions on which technologies are relatively more and less relevant in characterising
the two sets of patents. The probabilistic topic model, asked to identify K = 20 topics,
returns each topic βk as a list of relevant keywords and a membership value θd,k of each
patent d to topic k. An aggregate measure of relevance of each topic k to an arbitrary
collection of patents D (e.g. the set of robotic patents or labour-saving patents) can be
defined as the simple average membership of all patents in the collection to topic k, as
follows:

ΘD
k :=

∑
d∈D

θd,k

|D| ∀ k = 1, . . . , K

When the underlying collection of patents D is the whole set of robotic patents, Θrob
k meas-

ures the relevance of each topic to robotic patents; analogously, when the underlying col-
lection of patents D is the subset of labour-saving patents, ΘLS

k measures the relevance
of each topic to labour-saving patents. Distributions Θrob

k and ΘLS
k are pictured in Fig. 1,

where topics are sorted by decreasing relevance to the robotic patents collection. Finally,
the relative synthetic measure Θ̃LS

k mentioned in section 2 is defined as

Θ̃LS
k :=

ΘLS
k

Θrob
k

∀ k = 1, . . . , K .

Appendix B

Correlation analysis

The following picture provides a heatmap representation of the correlation matrix of target
CPC intensity series (CPC codes Y10S901 and Y10T436 are discarded).
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At a first glance, it is immediate to spot a first cluster of codes, B23, B25, B62, and B65,
whose assignment dynamics negatively correlates (lighter pixels) with all the other codes.
At a second glance, a second cluster is present, with codes A61, C12, G02, G06, H01, and H04

exhibiting a highly positive correlation (darker pixels) with one another. The remaining
codes, B01, G01, and G05, form a third cluster, in that they display milder, near-zero cor-
relation coefficients with series of the second cluster, and negative correlation coefficients
with series of the first.

Appendix C

Wavelet analysis definitions

Consider the Hilbert space L2(R) of square-integrable functions. A function ψ(t) ∈ L2(R)

is called a mother wavelet if it satisfies the admissibility condition

∫ +∞

−∞

|Ψ(ω)|
|ω| dω < +∞ , (1)

where Ψ(ω) stands for the Fourier transform of ψ(t).11 Condition (1) implies that Ψ(ω)

vanishes when frequency ω equals zero:

|Ψ(ω)|
∣∣∣
ω=0

= 0 . (2)

11In practice, depending on the specific functional form of ψ(t), additional regularity conditions may be re-
quired to ensure sufficient decay, beyond square integrability.
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In other words, the wavelet must display a band-pass like spectrum. Moreover, condition
(1) also requires that the wavelet’s average value over time is zero:

∫ +∞

−∞
ψ(t)dt = 0 . (3)

Loosely speaking, eqs. (2) and (3) together establish that ψ(t) must wiggle up and down
over time, and therefore resembles a wave-like function.

The Morlet wavelet, used in the analysis of this paper and pictured in Fig. 5, is composed
of a complex exponential (carrier) multiplied by a Gaussian window (envelope):

ψω0(t) = π1/4
(

eiω0t − e−ω2
0/2
)

e−t2/2 .

It is possible to show that if ω0 ≥ 5, then ψω0(t) satisfies the admissibility condition (1). In
the present analysis, we set ω0 = 6.

A (generic) mother wavelet ψ(t) ‘gives birth’ to a family ψs,τ(t) of so-called child wave-
lets or wavelet daughters by means of scaling and translation operations

ψs,τ(t) =
1√

s
ψ

(
t− τ

s

)
, (4)

where s ∈ R+ denotes the scaling factor, which stretches/shrinks the mother wavelet, and
τ ∈ R denotes the translation parameter, which shifts the mother wavelet across time.

The continuous wavelet transform (CWT) of a function of time (or time series) f (t), with
respect to a mother wavelet ψ(t), is defined as

W f ,ψ(s, τ) =
1√
|s|

∫ +∞

−∞
f (t) ψ∗

(
t− τ

s

)
dt , (5)

where the ∗ superscript denotes complex conjugation. The CWT provides a representa-
tion of f (t) in terms of wavelet basis functions ψs,τ(t), by letting the scale and translation
parameters vary continuously. In other words, the CWT is a convolution of the signal f (t)
with the family of stretched and translated child wavelets defined in eq. (4).

Given eq. (5), the wavelet power spectrum, represented by a heatmap (scaleogram) in
Figs. 6 and 7, is computed as

WPS f ,ψ(s, τ) =
∣∣W f ,ψ(s, τ)

∣∣2 .

In the bivariate case, the cross wavelet transform of two signals f (t) and g(t) with re-
spect to a mother wavelet ψ(t) is defined as

W f ,g,ψ(s, τ) = W f ,ψ(s, τ) ·Wg,ψ(s, τ)∗ ,

while the cross power spectrum, pictured in panels (b), (d) and (f) of Fig. 9, is given by

XPS f ,g,ψ(s, τ) =
∣∣W f ,g,ψ(s, τ)

∣∣ .
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