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Abstract
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1 Introduction

Since the introduction of the common currency, the Eurozone has been characterized by a common

monetary policy authority and distinct �scal policy authorities. Hence, government bonds yields

are allowed to di�er to re�ect country-speci�c characteristics and �nancial traders can create port-

folios comprising the di�erent bonds. In this context, idiosyncratic shocks a�ect the composition

of optimal portfolios and, as a consequence, bond yields. This might give rise to asynchronous

yield movements, hindering the transmission mechanism of conventional monetary policy within

the union. The Great Recession and the subsequent European Debt Crisis have highlighted this

possibility, even endangering the stability of the whole European architecture. A precise assess-

ment of yields’ synchronization in the eurozone is therefore crucial for identifying periods in which

conventional monetary policies are ine�ective and unconventional ones required.

In this paper, we empirically investigate synchronization in government bonds’ yields by em-

ploying a rich dataset retrieved from the Bloomberg platform at daily frequency, covering the period

2003-2019, for all eurozone economies and for eleven di�erent bond’s maturities. We apply a novel

procedure based upon Random Matrix Theory (RMT, see e.g. Onatski, 2009, 2010) that allows us

to select the number of statistically signi�cant factors estimated via Principal Component Analysis

(PCA). Compared to traditional static factor analysis, our procedure does not require the introduc-

tion of penalty functions and/or ad-hoc truncation strategies to identify the number of signi�cant

factors (see e.g. Ludvigson and Ng, 2007; Guo et al., 2018). It only needs a comparison between

empirically estimated eigenvalues and a distribution of eigenvalues that is generated by a Gaussian

random model with only spurious correlations.

By employing the above procedure, we �rst characterize the Eurozone government bond yields

dynamics. In addition, we provide a formal interpretation of observed patterns based on portfolio

theory. We �nd that synchronization in yields is scarce at one-year maturity, as the most relevant

factor explains around 30% of the total variance, and it is not statistically signi�cant at speci�c time

windows. The corresponding eigenvector components are also heterogeneous over the whole 2003-

2019 period. The situation is di�erent for 5-years and 10-years government bond yields. One factor

explains between 75% and 80% of total variance of those yields until to 2008; around 40% between
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2008 and 2014; and about 60% from 2015 to 2019. The associated eigenvector components contribute

in equal amount to the dynamic of the �rst factor until 2008, indicating a strong synchronization

between 2003 and 2008. Starting from 2008, instead, the eigenvector components of some “core”

countries keep contributing to the dynamic of the �rst factor, while the eigenvector components of

a second group of countries (the “periphery”) contribute only to a low extent. Moreover, a second

factor becomes signi�cant during the crisis, accounting for a share between 20% to 30% of the total

variance. Its eigenvector components constantly di�er in sign across core- and peripheral countries.

Recent results in portfolio theory (see Avellaneda and Lee, 2010; Bouchaud and Potters, 2015)

show the equivalence between PCA-estimated factors and the relative variance of mutually inde-

pendent portfolios. Moreover, the components of eigenvectors associated to each factor correspond

to the weights of assets within one portfolio. On these grounds, �nding that eigenvector compo-

nents diverge in sign indicates the presence of optimal trading strategy wherein some bonds are

held on a long position while some others on a short one. These “divergence trades” (Avellaneda

and Lee, 2010) might cause signi�cant asymmetries in government bonds yields within a monetary

union and pose debt sustainability problems for some countries.

Our results deliver new insights for the Eurozone policy debate. It is well known that the het-

erogeneous response of di�erent countries’ yields to the same ECB interest rate policy is one of the

main fragilities for the Euro area. Our procedure allows one to quantify asynchronicity in yields’

movements and, being based on daily data, it can be useful to policy makers to quickly understand

whether a conventional policy can be e�ective or not. Under diverging government bond yields, in

fact, the conventional monetary policy results in asymmetric e�ects across the Eurozone and the

unconventional monetary policy should be used accordingly.

The paper is organized as follows. Section 2 summarizes results from previous studies that are

related to our work. The data are presented in Section 3, together with a preliminary statistical

descriptive analysis. Section 4 describes the econometric procedure we use in the paper. Baseline

results for one-year, �ve-years and ten-years yields are presented in Section 5. A series of robustness

checks, controlling for sample selection, model parameters, as well as non-Gaussian null models are

discussed in Section 6. Section 7 discusses the results and its policy implications. Section 8 concludes.
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2 Some methodological roots

Our work is related to two empirical research strands. First, we refer to the bulk of studies that have

investigated macroeconomic time series by using factor models and principal component analysis

(PCA). The work by Stock and Watson (2002) is among the �rst studies that estimates static factors

by means of PCA, showing that the obtained estimators are consistent and e�cient as the number

of time series and their length grow to in�nity.1 Several works have also proposed methods to se-

lect the number of factors. For instance Bai and Ng (2002, 2008) introduce factor selection based on

penalty functions, to consistently estimate the optimal number of factors that shall then be included

in a structural vector autoregressive model. Ludvigson and Ng (2010), estimate eight macroeconomic

factors and interpret them on the basis of the marginal R-squared obtained by regressing all the vari-

able of their dataset of the factors taken one at a time. Onatski (2010) and Kapetanios (2010) provide

an alternative selection criteria of factors, based upon applications of Random Matrix Theory (RMT).

In particular, Onatski (2010) shows that selection based on RMT performs better when the variance

attributed to the factors is small relatively to the variance caused by the idiosyncratic components.

Kapetanios (2010) relaxes some of the RMT assumptions and �nds that the method is still robust to

these violations. This suggests not only that RMT performs better, but also that its assumptions are

not necessarily stricter than the ones required by alternative static factors estimators.

PCA has also been extensively applied to portfolio analysis in �nance. For instance, Avellaneda

and Lee (2010) show the existence of a direct relation between optimal portfolio theory and principal

components. They compare the Sharpe-ratio performances of exchange traded funds (ETF) and port-

folios weighted by principal components – i.e. the so called eigenporfolios.2 The study is conducted

on the U.S. equity market from 1997 to 2007. The authors �nd that the portfolios that maximize

the Sharpe-ratio, are given by considering either �fteen exchange traded funds, or the �rst �fteen

principal components, or a variable number of principal components accounting for approximately

55% of the total variance.3 Following a similar approach, Guo et al. (2018) propose a selection criteria
1A notable application of static factors to the analysis of bond risk premia is the one by Cochrane and Piazzesi (2005).

They regress the excess one-year bond return on a factor constructed from a linear combination of �ve forward spreads
and �nd that a single factor predicts 1-year excess returns on 1-5 year maturity bonds with up to 43%.

2“An ETF is an investment vehicle, with a speci�c architecture that typically seeks to track the performance of a
speci�c index” (see Lettau and Madhavan, 2018).

3The article shows that a portfolio weighted by the exchange traded funds dominates the portfolio weighted by the
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to maximize Sharpe-ratio eigenportfolios. They use a LASSO-based factor selection, in which the

threshold for the truncation is computed by introducing a function for the maximum tolerance for

the relative approximation error in the estimation of the empirical correlation matrix.4

Second, our work is related to the large literature that has investigated interest rates convergence

by using various econometric procedures.5 Vajanne (2007) studies the integration of retail banking

rates in the Eurozone between 2003 and 2006 using a monthly data panel and adopts beta- and

gamma-convergence as measures of convergence. Its �ndings are in favor of some convergence,

notwithstanding important substantial cross-country di�erences. Furthermore, Arouri et al. (2013)

consider interbank interest rates for France, the UK, and the US between 2004 to 2010 and use the

Geweke Contemporaneous Feedback Measure (see Geweke, 1982) as a measure of convergence.6

Such a measure consists in a log-likelihood ratio test statistic, which tests whether a model with

interdependent interest rates is signi�cantly di�erent from a model wherein interest rates depends

only on their past values. The study �nds evidence of convergence among the countries examined,

with changes in US interest rates being slightly leading with respect to those in France and in the

UK. In addition, the work by Wälti (2011) estimates the e�ect of a common factor (capturing trade

and �nancial integration) on stock market returns cross-correlation.7 The work considers yearly

data for 15 developed countries from 1975 to 2006 and it shows that trade and �nancial integration

have a positive e�ect on stock market correlation. Nevertheless, for Eurozone members the above

e�ect is signi�cant only for countries that were already tightly connected before the introduction

principal components in some periods, while the opposite holds for some other periods. The performance of the two
types of portfolios is nonetheless comparable and the alternating dominance of one of the two is never striking. It can
be observed, accordingly, that portfolios weighted by principal components do not outperform alternative portfolios
strategies, but that principal components strategies are comparable and sometimes preferable in terms of Sharpe-ratio
maximization to alternative portfolio strategies.

4PCA has also been applied to the analysis of systemic risk in �nancial markets and to business cycle synchronization
(see Guerini et al., 2019). In particular, Billio et al. (2012) include principal components extracted from �nancial series
as measures of systemic risk and early warnings indicators. Kritzman et al. (2011) focus on the fraction of total variance
explained by the main factors, extracted from PCA, as an index of systemic risk.

5In this paper we focus on synchronization. While convergence is de�ned the tendency of di�erent series to reach
a unique value, synchronization only implies that the di�erent series are moving together, for instance increasing or
decreasing together, notwithstanding possible di�erences in absolute values. Synchronization might be seen in this
sense as a milder form of convergence.

6Data for France are European data from the ECB. In the study, therefore, France stands as a representative country
for the Eurozone in general.

7In his analysis, the common international factor consists of weekly averages of stock market indexes, the intensity
of trade is estimated using a gravity model, the �nancial integration is represented by a measure of foreign assets
that are domestically owned, and the exchange rate volatility, a dummy for being a member of the European Stability
Mechanism, and a dummy for being a member of the European Monetary Union account for the monetary integration.
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of the common currency. Finally, Dow et al. (2012) analyze convergence in interest rates across

Italian regions. The authors employ quarterly data on short- and long-term interest rates on loans

and deposit from 1998 to 2008. Methodologically, convergence is examined through di�erent unit

root tests, where some evidence of convergence is considered if the cointegration hypothesis is not

rejected.

We contribute to the above two streams of literature by performing an analysis of synchroniza-

tion in Eurozone government bond yields that combines PCA with a factors selection method based

on RMT. This combination allows one to precisely de�ne and to measure the degree of synchro-

nization in bond yields. Our procedure selects factors ex-ante on the basis of a comparison with

alternative null models rather than ex-post on the basis of ad-hoc selection criteria, and it quanti�es

co-movements among variables of interest by studying in detail the eigenvalues and eigenvectors

of correlation matrices. This is a signi�cant di�erence with respect to previous works (e.g. Bai and

Ng, 2002, 2008; Ludvigson and Ng, 2010) that have employed ex-post selection methods based on

factors’ forecasting performance. Our approach to factor selection is guided by the consideration

that a factor, when used as regressor in a forecasting model, might hypothetically turn out to be sig-

ni�cant even if the information it contains is indistinguishable from that obtained from a spurious

relationship obtainable with a �nite number of observations. In addition, the eigenvalues and the

eigenvectors selected through RMT provide a more precise and accurate information about synchro-

nization of bond yields compared to the information obtained from a mere comparison of correlation

coe�cients. This is because it is possible to theoretically interpret signi�cant eigenvalues as optimal

portfolios and the associated eigenvectors as the weights of the assets therein (see Avellaneda and

Lee, 2010).

3 Data description and preliminary analysis

We retrieve from the Bloomberg platform the time series of government bonds yields at daily fre-

quency for 11 Eurozone countries and at 11 maturities. Our data include time series of bonds with

maturity at 3 and 6 months as well as bonds at 1, 2, 3, 5, 7, 10, 15, 20, and 30 years maturity. The

selected Eurozone countries are Austria, Belgium, Finland, France, Greece, Germany, Ireland, Italy,

Netherlands, Portugal, and Spain. Luxembourg is missing because of data unavailability problems
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in the Bloomberg platform. All countries are member states of the Eurozone since its creation with

the exception of Greece, which joined the Euro area in 2001.8 The dataset covers the period from

2003-01-01 to 2019-02-21. We focus our analysis on government bond yields with 1-year, 5-years,

and 10-years maturities. These are available for all countries (with the exception of the Netherlands

for 1 year bonds) over the whole sample period. The other maturities are used as robustness check,

to complement our understanding of the problem (see Section 6.1).

We focus on nominal rather than real interest rates. There are several reasons underlying such

a choice. First, there is a time mismatch between the reactions of nominal interest rate and in�ation

rate to monetary policy shocks, with in�ation adjusting at a slower pace (Christiano et al., 1999).

Second, nominal interest rates are directly a�ected by monetary policy shocks, while in�ation de-

pends on a wider range of factors, also beyond monetary policy (see e.g. Reis and Watson, 2010;

Coibion and Gorodnichenko, 2015; Blanchard, 2016). Our core dataset comprises the time series for

three maturities of government bond yields for N = 11 countries and for T > 4000 periods (see

Appendix A.1 for further details).

Augmented Dickey-Fuller (ADF) tests for presence of unit roots suggest that all the time series in

our sample are at least I(1). Thus, before applying the RMT procedure, we perform a pre-whitening

of the data by taking a �rst di�erence transformation. The series resulting from each transformation

are all stationary and no structural break can be identi�ed.9

4 Methodology

Our econometric strategy to investigate synchronization in bond yields exploits Random matrix

theory (RMT) to select the number of statistically signi�cant principal components based on the
8For some maturities, we postpone the beginning of the series due to a lack of observations before speci�c dates. In

addition, not all bond maturities are available for all countries. See Appendix A.1 for a detailed description of these two
issues.

9We also performed a cointegration analysis (by employing Johansen’s procedure) to detect cointegration relation-
ships among government bond yields of di�erent countries at the same maturity. We also checked whether these rela-
tionships changed over time, by previously identifying relevant dates over which divide our time series on the basis of
clustered structural breaks analysis (K-Means Cluster Analysis and Ward Hierarchical Clustering). The results indicate
that the order of cointegration increased after 2008 for all the three yield maturities considered in our sample. We con-
clude that the number of common trends has increased after the strains of Great Recession and of the European Debt
crisis. However, this analysis does not allow us to interpret the cointegration relations as co-movements among time
series. Indeed, common trends are mere linear combinations of our non-stationary time series. They do not provide
information about whether the time series belonging to the same linear combination also evolve together. Nonetheless,
the increasing number of common trends suggests already a possible diverging dynamic in bond yields after 2008.
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comparison between the empirically estimated correlations of bond yields and the theoretical cor-

relations generated by a random normal model (Laloux et al., 1999, 2000).

4.1 Principal Component Analysis and Eigenportfolios

We perform a Principal Component Analysis (PCA) on overlapping rolling windows of our station-

ary time series. A rolling window X
N×K

is a section of lengthK < T of our dataset X
N×T

of stationary

time series. When moving from a rolling window to the next one observations are updated by a step

S, i.e. S observations are discarded at the beginning of the window and S observations are added

at the end.

Number of observations Window’s time span
22 Month
65 Quarter
130 Semester
261 Year
522 Two years
783 Three years

Table 1: Windows dimensions for daily Bloomberg time series of government yields.

By construction, the smaller is the window the more accurate is the tracking of synchronization.

At the same time, windows’ length should also be su�ciently large to ensure statistical signi�cance

of the correlation coe�cients to be computed and, since we employ daily data, to obtain results

which are not driven by daily outliers. We �x the length of each window to one semester (i.e.

130 daily observations) and the length of each step of the windows to one month (i.e. 22 daily

observations, see Table 1 for the number of observations for each window’s time span). As a result,

two subsequent rolling windows overlap for 5 months out of 6. Such a choice allows us to closely

track the evolution of the principal components and their dynamics over time, by replacing only few

information at each step. However, in Section 6.2 we also check the robustness of our main results

to several alternative values of the length and step parameters of the rolling windows.

For each window, we compute the matrix of Pearson’s correlation coe�cients of bond yields, E

as:

E =
1

K
X̃T X̃ (1)
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where X̃
N×K

is the demeaned and standardized version of X
N×K

and (·)T is the transpose operator.

The matrix E has size N ×N . Its element ei,j is the correlation coe�cient between the government

bonds yields of countries i and j in a speci�c window w ∈ {1, . . .W}. From this positive semi-

de�nite matrix it is possible to compute the eigenvalues, which are all non-negative and distinct,

and their associated eigenvectors. Each eigenvalue λi corresponds to a principal component, or a

factor, and it is a linear combination of the original series that explains a speci�c portion of the

variance contained in the data.

Furthermore, each eigenvalue has a precise �nancial interpretation. More precisely, consider a

portfolio Πi = X̃ui, where the normalized returns X̃ are weighted by a vector ui. The variance of

such a portfolio is equal to:

V ar(Πi) = V ar(X̃ui) = E[X̃ui]
2 =

1

K
uTi (X̃T X̃)ui (2)

By using the spectral decomposition we can write equation 1 as:

E = uiλiu
T
i (3)

and by substituting it into equation 2, it follows that

1

K
uTi (X̃T X̃)ui = uTi Eui = λi (4)

Equation 4 thus shows that each eigenvalue λi corresponds to the variance of returns - and thus

to the risk - of the eigenportfolio Πi, composed by the N di�erent government bonds. The weights

of each bond in the portfolio are returned by by the elements of the corresponding eigenvector

(see Bouchaud and Potters, 2015). In particular, a larger eigenvalue, corresponds to a higher risk

of the corresponding eigenportfolio. It follows that the eigenportolio associated with the dominant

eigenvalue of the correlation matrix is also the one that maximizes risk.10

10This portfolio is also known in the literature as the “market mode” portfolio (see Bouchaud and Potters, 2015).
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4.2 Random Matrix Theory and Factors Selection

Random Matrix Theory (RMT) allows one to select only the principal components that contain in-

formation that is not entirely reducible to spurious volatility.11 For spurious volatility here, we do

not refer to the correlation of two I(1) variables, but to the idea that even two stationary i.i.d vari-

ables with a �nite number of observations can display some degree of correlation. The important

question thus becomes how to distinguish whether the distribution of the observed empirical corre-

lations is di�erent from the one that would have observed for �nite i.i.d variables. RMT solves this

problem by comparing the empirical correlation matrix with the correlation matrix of a randomly

generated normal model.

Marčenko and Pastur (1967) theorem plays a central role in RMT. This theorem states that the

probability density function of the eigenvalues of a random correlation matrix derived from nor-

mal independent and identically distributed series, is distributed according to the Marčenko-Pastur

distribution (see Marčenko and Pastur, 1967; Laloux et al., 1999)).

Theorem - Marchenko-Pastur law. For N, T → ∞ and Q = T
N
→ a > 1, the density function of

the eigenvalues of Σ̂ is given by

ρΣ̂(λ) =


Q

2πσ2

√
(λrmt

max−λ)(λ−λrmt
min)

λ
for λ ∈ (λrmtmin, λ

rmt
max)

0 else
(5)

where λRMT
max/min = σ2

(
1±

√
1
Q

)2
are the upper/lower bounds of the eigenvalues associated with a

random matrix with the same variance σ2 and the same Q of the empirical observations.

Thus, any empirical eigenvalue lying within the boundaries of the theoretical Marčenko-Pastur

distribution explains a fraction of the variance that is comparable to the one generated by a purely

random model where correlations are only spurious. In contrast, eigenvalues lying outside such

boundaries contain some pure information about the underlying stochastic process governing co-

movements among the variables of interest. Since the Marčenko-Pastur law holds only under asymp-

totic assumptions, and our dataset is particularly limited in the country dimension (small N), we
11Since factor models can be estimated through principal components (Stock and Watson, 2002; Onatski, 2010), our

method can also be used for factor selection. The factor analysis is discussed in Appendix B.
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compute the Marčenko-Pastur boundaries using Monte Carlo simulations and we compare our em-

pirically estimated eigenvalues to the simulated ones. Furthermore, we carry out several robustness

checks on the Marčenko-Pastur boundaries (i) by applying a rotational random shu�ing procedure

to our time series in order to clean the results from the possible residual autocorrelations present in

the stationary time series (see Section 6.4); (ii) by adopting a heavy tails random i.i.d. modes which

that accounts also for the possibility of extreme values in the yields series (see Section 6.5).

5 Results

Let us now present the main results of our empirical analysis of government bond yields in the

Eurozone. We �rst present some statistics about the dynamics of bond yields correlation in our

sample (Section 5.1). These statistics deliver �rst insights about the nature of yields comovements

in the Euro Area. Yet, they are only an imperfect measure of yields synchronization because they

do not account for the presence of spurious correlation. In Section 5.2, we then present the results

obtained using our preferred measure of synchronization that combines PCA and RMT, and which

allows us to �lter out the spurious (noisy) information.

5.1 The network of government bond yields correlations

The empirical correlation matrix among government bond yields E that we analyze (See Equation

(1) above) is a combination of a non-spurious correlation component and of a spurious idiosyncratic

component – i.e. ei,j = ci,j + χi,j . Following Tumminello et al. (2010) and Diebold and Yılmaz

(2014), this matrix can be interpreted as a weighted undirected graph where the vertices represent

the stationary normalized yields and the link weights measure their correlations (see also Diebold

and Yılmaz, 2014).

Figure 1 visualizes the structure of some of the above-de�ned correlation networks (from 2008

to 2011) for bonds with 10 years maturity. The thickness of the links in the networks is proportional

to the magnitude of correlations. Negative correlations are depicted in red.

Overall, strong and positive correlations among all yields were present up until 2008. From

2009 onward, instead, average correlation in yields decreases and it becomes even negative in some

11



(a) 2008 (b) 2009

(c) 2010 (d) 2011

Figure 1: The structure of the bond yields correlation networks from 2008 to 2011. Government bonds with 10-years
maturity. The thickness of the links is proportional to the magnitude of the correlations. Positive correlations are light-
coloured (sky blue), negative correlation are dark-coloured (red). Countries: AT = Austria, BE = Belgium, FI = Finland,
FR = France, DE = Germany, GR = Greece, IR = Ireland, IT = Italy, NE = Netherlands, Pt = Portugal, SP = Spain.

cases. Two clusters of countries can be identi�ed in this period. A �rst group is composed by “core”

countries, and it mainly includes Northern countries like Germany, the Netherlands, Austria and

Finland. These countries have strong positive correlations among their yields. In contrast, the bond

yields of a second group countries (the “periphery”), including Greece, Ireland, Portugal, Spain and

Italy, displayed weak of even negative correlations with all the other yields. It must be stressed that

negative yields correlations disappeared after 2015 (not shown in �gure) and that the magnitude of

yields correlation generally increased, though not recovering the high levels displayed before 2008.12

We also quantify how much the structure of correlation networks has changed over time. For

this purpose, and following Münnix et al. (2012), we build a similarity index that measures how

much the correlation adjacency matrix E in a speci�c time window w1 is similar to the correlation
12This is especially the case for Greece, whose yields still display a weak correlation with yields of other countries in

the Eurozone.
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matrix of another window w2. This similarity index is de�ned as:

S(w1, w2) = 1− E|E(w1)− E(w2)| (6)

it represents the average Euclidean distance between two correlation matrices. The closer the index

is to one, the higher is the similarity between the network structures of two time windows. Figure 2

plots the evolution of the similarity index, normalized with respect to the �rst window, i.e. the one

of 2003, which we select as the reference window.13

The network of 1-year yields (Panel a Fig. 2) does not display much variation over time. The

similarity index is always very high, between 0.75 to 0.9. In contrast, the network similarity of 5-

years and 10-years bond yields (Panel b and c Fig. 2) decreased steadily since 2003 hitting the lowest

value of about 0.5 between 2011 and 2013. This is in accordance with the previous results about the

emergence of a core-periphery structure during the Great Recession and the European Debt Crisis.14

The above network representation could be a�ected by endogeneity problems (see e.g. Manski,

1993). For instance, the link between the yields of countries i and j might be a�ected by the fact

that they are in reality correlated with the yield of a third country m. To control for this problem,

we employ the club convergence procedure introduced by Phillips and Sul (2007).15 The procedure

was originally developed for low frequency data and the main technical issue concerns the selection

of the baseline period for the ordering of the time series. Our time series have more than 4000 daily

observations. Accordingly, the selection of clubs might be sensible to the selection of the reference

period. We tested the algorithm over di�erent daily selections. We �nd that two clubs of countries

are robustly present over the 2008-2012 period in line with the results discussed above. Nevertheless,

the composition of the two clubs is not constant across time.
13It shall be noticed that, even if two windows are similar to the �rst one, they might be very di�erent from one

another. What one can say is only that they have a similar number of weights with positive and negative links, not
whether the vertices of the networks of the two windows are correlated in a similar way in the two periods.

14The similarity index can additionally be used to measure the network turbulence – i.e. how fast changes in the
network structure occur. Thus, we also calculated the similarity index between each window and the windows of three,
six months and one year before. We �nd that the speed of the changes in the network structure increases before the
periods of crisis, i.e. around 2007, 2009, and 2017.

15For this purpose, we use the R package ConvergenceClubs developed by Sichera and Pizzuto (2019).
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Figure 2: The evolution of the similarity index for bond yields correlation networks at di�erent maturities.

5.2 Detecting signi�cant synchronization in government bond yields

In the previous section, we highlighted that the network of Eurozone government bond yields cor-

relations changed its structure during the 2003-2019 period, especially during the Great Recession

and the European Debt Crisis, which resulted into divergent bond yields dynamics and in the ap-
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pearance of a core-periphery structure in the network. We now move to a more systematic analysis

of bond yields synchronization by employing the methodology presented in Section 4.

Figure 3 shows the evolution of the eigenvalues λ(w) obtained from the spectral decomposition

of each window-speci�c correlation matrix E(w), where w ∈ {1, . . . ,W} represents a speci�c time

window. The three plots in the �gure refer to the di�erent maturities we consider (1 year and 5 and

10 years). Each plot also shows the di�erent boundaries resulting from our selection procedures

based on RMT, which allow one to detect signi�cant component. Finally, each plot also allows

one to compare the dynamics of eigenvalues with the timing of important events related to either

shocks (e.g. Lehman Brothers’ bankruptcy, which represents the start of Great Recession) or policy

announcements (e.g. the famous “Whatever it Takes” speech by the ECB president Mario Draghi in

July 2012 during the European Debt crisis) that have likely had an impact on bond yields (see also

Section 7 for a discussion of the policy implications of our results).

As explained in Section 4.1, the higher is the component, the higher is the fraction of the time-

series bond yields variance that it can explain. The fraction of explained variance by each principal

component is also called the absorption rate. These absorption rates are shown in Figure 4.16

The analysis of the plot in the top panel of Figure 3 indicates that only one non-spurious prin-

cipal component explains the dynamic of 1-year bond yields. Indeed, only the largest eigenvalue is

statistically signi�cant according to RMT bounds, and only at speci�c moments like the Great Reces-

sion of 2008-2010, and the Eurozone debt crisis (that started with the Greek government misreport

in 2009 and lasted at least until 2015).17 In addition, the dominant eigenvalue explains about 30% of

the total variance except during the Great Recession period, where the share of explained variance

is about 50%.

In contrast to 1-year bonds, the largest eigenvalue of 5-years and 10-years government bond

yields is always signi�cant (cf. Panels b and c of Figure 3). This �rst principal component accounts,

on average, for about 75% and 80% of the total variance before 2008, reaching a peak of more than 90%

in 2008. Nevertheless, the portion of variance explained by the dominant eigenvalue falls abruptly

after 2008 to recover only in 2014. A second principal component becomes statistically signi�cant
16The absorption rate of the ith component is formally de�ned as ARi = λi∑

j=1Jλj
, with i ∈ {1, . . . , J}. The

absorption rates of statistically signi�cant components according to RMT are shown in Figure 4.
17The misreport of public �nances data by the Greek government occurred in late 2009. However, it was o�cially

announced by the European Commission in January 2010. The plots in Figure 3 use the latter date.

15



Lehm
an B

rothers B
ankruptcy

G
reek G

overnm
ent M

isreport

W
hatever it takes

P
ublic sector purchase program

m
e

0.0

2.5

5.0

7.5

10.0

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Years

V
al

ue

(a) One year yields

Lehm
an B

rothers B
ankruptcy

G
reek G

overnm
ent M

isreport

W
hatever it takes

P
ublic sector purchase program

m
e

0

3

6

9

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Years

V
al

ue

(b) Five year yields

Lehm
an B

rothers B
ankruptcy

G
reek G

overnm
ent M

isreport

W
hatever it takes

P
ublic sector purchase program

m
e

0

3

6

9

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Years

V
al

ue

(c) Ten year yields

Figure 3: Eigenvalues evolution and multiple theoretical bounds.
Notes: the horizontal solid line indicates the Marčenko-Pastur theoretical upper bound; the horizontal dotted line indi-
cates the Monte Carlo simulated upper bound; the horizontal thinner dotted line indicates the rotational random shuf-
�ing upper bound. For both the Monte Carlo simulated model and the rotational random shu�ing, 300 Monte Carlo
simulations were run. Each window of the RMT exercise contains 130 time-observations with steps of 22-observations
each.
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Figure 4: Absorption ratios for signi�cant eigenvalues according to the RMT Marčenko-Pastur theoretical upper bound.
First largest eigenvalue in dark grey, second largest eigenvalue in grey (eigenvalues normalized between 0 and 1).

in that period, and it accounts for a share between 20% and 30% of the total variance.

Finding that one principal component explains a large fraction of the total variance of bond

yields is not enough to conclude that movements in those yields were synchronous. This is because

17



yields can contribute in di�erent - and possibly opposite - directions to a component dynamic. For

this reasons, we also investigate in detail the components of the eigenvectors associated to each

signi�cant eigenvalue.

As we mentioned in Section 4 our approach to bond yields synchronization also involves the

analysis of eigenvector components associated to each signi�cant eigenvalue. To this end, Figure 5

shows the evolution of the elements of the eigenvector associated to the largest eigenvalue of 1-year

bond yields. The dynamics of these eigenvector components is very fragmented. No group dynamics

can be detected and eigenvector elements evolve heterogeneously throughout the whole sample

period. We conclude that synchronization in short-term yields is much weaker than synchronization

in medium- and long-term yields.

Let us now consider the eigenvectors of bond yields at 5 and 10 years, which had at least one

component being signi�cant over the whole sample period. The bar plots in Figure 6 and Figure 7

show the evolution of the elements of the eigenvector associated to the largest eigenvalue of 5-year

and 10-year yields respectively between 2008 and 2014. Eigenvector elements are all very similar

until 2008, documenting a high level of synchronization in bond yields. The pattern changes dra-

matically afterwards, and eigenvector elements start to diverge since 2009. In this respect (and like

in 5.1) we can identify two groups of countries. The eigenvector components of a �rst group of core

countries (mainly corresponding to Northern economies in the Eurozone) all display high and posi-

tive values until 2014. In contrast, the values of the elements of the other group, the periphery (Italy,

Ireland, Spain Portugal, Greece), steadily decrease after 2009. Eigenvector elements even become

negative for some countries like Portugal at some speci�c windows. The above group dynamics in

bond yields is even more evident when we analyse the elements of the eigenvector associated to

the second principal component, which is signi�cant between 2008 and 2014 (see Figure 8 and Fig-

ure 9). In particular, the eigenvector elements corresponding to yields of Southern economies like

Greece, Portugal, Spain and Italy are all negative between 2011 and 2015. Interestingly, between

2011 and 2013 - i.e. in the midst of the European Debt Crisis - also eigenvector elements of French

and Austrian bond yields turn out the be negative.
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Figure 5: 1-year bonds. Yearly average of eigenvector elements associated to the �rst principal component. Countries:
AT = Austria, BE = Belgium, FI = Finland, FR = France, DE = Germany, GR = Greece, IR = Ireland, IT = Italy, NE =
Netherlands, Pt = Portugal, SP = Spain.
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Figure 6: 5-year bonds. Yearly average of of eigenvector elements associated to the �rst principal component. Countries:
AT = Austria, BE = Belgium, FI = Finland, FR = France, DE = Germany, GR = Greece, IR = Ireland, IT = Italy, NE =
Netherlands, Pt = Portugal, SP = Spain.
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Figure 7: 10-year bonds. Yearly average of eigenvector elements associated to the �rst principal component. Countries:
AT = Austria, BE = Belgium, FI = Finland, FR = France, DE = Germany, GR = Greece, IR = Ireland, IT = Italy, NE =
Netherlands, Pt = Portugal, SP = Spain.
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Figure 8: 5-year bonds. Yearly average of eigenvector elements associated to the second principal component. Only
years wherein the second principal component is signi�cant are displayed. Countries: AT = Austria, BE = Belgium, FI =
Finland, FR = France, DE = Germany, GR = Greece, IR = Ireland, IT = Italy, NE = Netherlands, Pt = Portugal, SP = Spain.
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Figure 9: 10-year bonds. Yearly average of of eigenvector elements associated to the second principal component. Only
years wherein the second principal component is signi�cant are displayed. Countries: AT = Austria, BE = Belgium, FI =
Finland, FR = France, DE = Germany, GR = Greece, IR = Ireland, IT = Italy, NE = Netherlands, Pt = Portugal, SP = Spain.

6 Robustness analyses

The results presented in the previous section indicate that movements in short-term government

bond yields are pretty much asynchronous in the Eurozone. Medium- and long-term yields were

instead very synchronized until the Great Recession hit in 2008 and began to move asynchronously

afterwards. This yields asynchronicity became dramatic between 2011 and 2014 with the emergence

of clear divide between Northern and Southern countries in the Eurozone.

Our evidence could however be biased by at least �ve problems. First, the patterns we uncov-

ered could be limited to the speci�c bond maturities we considered (1 year, and 5 and 10 years).

Bonds at alternative maturities could exhibit very di�erent dynamics from the one documented in

the previous section. Second, our results could be a�ected by the length and step used to build

rolling windows, as well as by the �ltering technique employed (�rst di�erencing). Third, statisti-

cal signi�cance of principal components could be biased by the presence of autocorrelation in the

�ltered series. Finally, statistical signi�cance of principal components could be biased upwardly if
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the distributions of the underlying time series is heavy-tailed. In the remainder of this section we

present the results of robustness checks that address all the above issues in detail.18

6.1 Alternative yield maturities

We perform the random matrix theory analysis on all types of bond yields available in the dataset

retrieved from the Bloomberg platform. We consider yields below 1-year maturity as short-term,

yields between 1-year and 10-years as medium-term; and yields above 10-years maturity as long-

term (Figure 10).19

The analysis of these more comprehensive datasets con�rms the main results presented in Sec-

tion 5. Synchronization of short-term yields is limited and the largest component is typically non-

signi�cant. Furthermore, synchronization is high for medium-term maturities until 2008, it sharply

falls between 2008 and 2014, to slowly recovers after 2015. However, in none of the medium-term

maturities considered the degree of synchronization (See Panels b and c of Figure 3, and Panel b of

Figure 10) recovered the pre-2008 levels. Finally, synchronization dynamics in longer-term yields

mimics the one observable for medium-term ones. However, we �nd that the degree of synchro-

nization between 2016 and 2018 of bonds with 15, 20 and 30 years of maturity is very similar to the

one observed in the 2006-2009 period. At such very long time-horizons yields synchronization has

fully regained the levels observed before the Great Recession.

6.2 Alternative rolling windows

Our econometric procedure for the analysis of synchronization involves determining rollling win-

dows wherein correlations across bond yields are calculated. We therefore investigate the robustness

of our results with respect to changes in the values of (i) the windows length K and (ii) the step pa-

rameter S de�ning such rolling windows (see Section 4 for more details) . In particular, we test all

the possible combinations of parameters such that K > S, and such that subsequent windows do

overlap for at least one observation. This sensitivity analysis also encompasses combinations of pa-
18In addition to the robustness checks addressing the above issues we also repeated the analysis by computing cross-

correlations using the Spearman rank correlation coe�cient rather than the Pearson coe�cient. This type of control
has also been used also in the literature on business cycles synchronization (see e.g. Belo, 2001). The results we obtain
match (qualitatively and quantitatively) those obtained by applying the Pearson correlation coe�cient.

19Data for maturities lower than 1-year and above 10-years begin only in 2008 and 2006 respectively.
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(c) Thirty year yields

Figure 10: Eigenvalue evolution for 3-month, 7-year, and 30-year yields.
Notes: the solid line indicates the Marčenko-Pastur theoretical bound, the dotted line indicates the simulated random
model, and the thin dotted line indicates the rotational bound. For both the simulated random model and rotational
random shu�ing, 300 Monte Carlo simulations have been run. The dimension of the windows of the random matrix
theory are 130 observations, step 22 observations.

rameters with apparently little interest. For instance, very large values of both the length and step

parameters deliver a too aggregate and static image of synchronization, and they are not usefult to

23



track synchronization through time. Accordingly, here we discuss only the results referring to alter-

natives with a plausible economic interpretation and selected according to a procedure minimizing

the share of non signi�cant correlation coe�cients ei,j along all the windows.

Maturity Length Step Average share of Maximum share of
non-signi�cant coe�cients non-signi�cant coe�cients

1-year 783 65 0.3401 0.7143
1-year 783 65 0.3401 0.7143
5-years 783 65 0.1640 0.4364
5-years 522 22 0.1591 0.4545
10-years 783 65 0.1070 0.4545
10-years 783 65 0.1071 0.4545

Table 2: Optimal combinations of parameters at the 1% level of signi�cance.

Table 2 shows the combinations of the length and step parameters that minimize the average

share of non-signi�cant coe�cients for the di�erent maturities considered in our main analysis. The

average percentage of non-signi�cant coe�cients at 5-years and 10-years yields is about 16% and

10% respectively. It increases to 30% for 1-year yields. In addition, in most cases shown in Table 2, the

optimal length of the window is the largest possible given the size of our sample: 783 observations

(i.e. windows of 3-year length). This is also a statistical artefact, since large windows have more

observations and lead to higher levels of signi�cance. The results of the synchronization analysis

using the windows parameters in Table 2, con�rm our main results (see Figure C.1 in Appendix C).

6.3 Alternative �ltering techniques

It is well known that econometric results are very sensitive to the �lter used to de-trend the data. For

instance, the �rst di�erencing �lter we use in our main analysis might generate spurious correlation

(see e.g. Uhlig, 2009). We therefore carry out a sensitivity analysis of our main results also by taking

second-order di�erences to eliminate residual spurious correlation. We then perform the PCA and

RMT analysis and we �nd that the results are comparable to those obtained by using the �rst di�er-

ence.20 Furthermore, Canova (1999); Baxter and King (1999) remarked that the �rst di�erence �lter

might overweight high frequency components in the time series. For this reason, we also perform a

further battery of sensitivity analysis on data transformed by using the bandpass �lter proposed in

Christiano and Fitzgerald (2003). We employ this bandpass �lter to select all the possible frequency
20For the sake of brevity, we do not report the results using second-order di�erences. However, they are available

from the authors upon request.
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bands combining a lower bound comprised in the interval {2, 22, 65, 130} and an upper bound in the

interval {22, 65, 130, 261}, while keeping the dimension of the windows �xed.21 We repeat our syn-

chronization analysis on all the foregoing frequency bands. Figure 11 shows the results about the

resulting dominant eigenvalue, whereas Figure C.2 in Appendix C tracks the evolution of the second

largest eigenvalue. The analysis of both principal components con�rms he main results discussed

in Section 5.2.

6.4 Controlling for autocorrelation in the data

Previous works using random matrix theory have shown that the empirical eigenvalue distribution

becomes fat-tailed when time series are autocorrelated (see Aoyama et al., 2017). A fat-tailed distri-

bution of eigenvalues implies that more principal components might turn signi�cant according to

the Marčenko-Pastur upper bound, even if these do not truly re�ect a higher explained variance of

the cross-correlations. To control for this problem, we perform a random rotational shu�ing Monte

Carlo exercise of the kind suggested by Aoyama et al. (2017) and Iyetomi et al. (2011). In particular

we let:

xn(ti)→


xn(tT−|i−τ |) if i ≤ τ

xn(t|i−τ |) if i > τ

(7)

where xn(ti) is the observation of the time series of the bond yields of the nth country at time ti

with i ∈ [1, T ], and τ is a random number drawn from the interval [1, T ]. The rotational random

shu�ing procedure divides the series in two parts: from 1 to τ and from τ + 1 to T . The two parts

are then switched. The procedure is identical to a shift of the series by a random number, where the

observations falling out of the length of the series are re-positioned at its beginning. Since every

series is rotated by a di�erent number, this rotation breaks the cross-correlation between the series,

while maintaining the auto-correlation within the series (the observations of the series do not change

order within the two parts).22 We perform multiple Monte Carlo iterations of the above rotational
21The window is kept as in the baseline analysis: six months window length (i.e 130 daily observations) and one

month step length (i.e 22 daily observations). The combinations of lower and upper bounds are such that 2-22 selects
only the frequencies between two days and one month, 2-65 between two days and one quarter, 65-261 between the
quarter and the year, and so on for every possible combination.

22Consider, for instance, a time series of T = 130 observations where we draw a random number τ = 54. The
observations from 55 to 130 take the positions from the |55 − 54| = 1st to the |130 − 54| = 76th. The observations
from 1 to 54 take the positions from the 130− |1− 54| = 77th to the 130− |54− 54| = 130th.
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Figure 11: Evolution of the largest eigenvalue under di�erent bandpass �lters. The line in bold is the time average
across the eigenvalues corresponding to the di�erent frequency bands.
Notes: the solid line indicates the Marčenko-Pastur theoretical bound, the dotted line indicates the simulated random
model, and the thin dotted line indicates the rotational bound. For both the simulated random model and rotational
random shu�ing, 300 Monte Carlo simulations have been run. The full dark blue line indicates the mean of the values
given by the di�erent frequencies selection. The selection of the frequencies is discussed in Section 6.2.
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shu�ing exercise within each rolling window. For each window, we then compute the average of

the maximum eigenvalues of the simulated series and the correspondent con�dence intervals. The

latter average constitutes a new upper bound that can be used to test the statistical signi�cance of

empirical eigenvalues. Eigenvalues lying above the random rotational shu�ing bound contain a

fraction of variance that is beyond the one explained by auto-correlation of the series and that it can

then only be related to systematic cross-correlation. Notice that such an upper bound is larger, and

thus more stringent, than the ones obtained through the procedure described in Section 4.

The upper bound stemming from above described procedure corresponds to the thin dotted lines

in Figure 3 and in Figure 11. Clearly, all the components that were signi�cant according to the stan-

dard RMT bounds, are also signi�cant according tot the upper bounds based on rotational random

shu�ing. Our main results are thus robust to this additional restrictive test. In particular, the lack

of synchronization for short term yields is even more evident, as the largest component becomes

signi�cant only in very few windows. In contrast, the largest component of medium- and long-term

yields is always above the new bound and is thus always signi�cant once we control for autocorre-

lation in the series. Finally, the signi�cance of the second largest component is somehow reduced

but not completely eliminated.

6.5 Controlling for heavy tails in the data

Besides the bias introduced by autocorrelation and discussed in the previous section, the presence

of outliers in the �ltered data might in general suggest that a Gaussian null model is not a correct

benchmark for the selection of signi�cant components. The work by Biroli et al. (2007) considers

the case where the distribution of the observations is heavy-tailed. It also proposes a procedure to

adapt the upper bounds of the Marčenko-Pastur law when the most extreme observation in a speci�c

window overcomes a threshold that depends on the number of series and on their length. More

precisely, let S be the maximum standardized yield (i.e. the most extreme value) in a speci�c window

of observations X . Then, assuming that the distribution of X follows a heavy-tailed distribution,
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the RMT adjusted upper bound for the eigenvalues λmax can be computed as follows:

λmax =


σ2
(

1 +
√

1
Q

)2
, if S ≤ (NT )

1
4

( 1
Q

+ S2

T
)(1 + T

S2 ), if S > (NT )
1
4

(8)

where Q = T/N and σ2 = 1 because series are standardized. Figure 12 shows the results of our ro-

bustness check on 10-year yields using the procedure in Biroli et al. (2007). The new adjusted bound

applies only for some windows in 2012. Even at this new level of signi�cance, the �rst component

remains strongly signi�cant whereas the second one loses signi�cance only in one window in 2012.

In the case of short-term yields the adjustment of the upper-bound applies for some windows during

the period 2011-2012 as well as in 2016. The result is that the largest component becomes even less

signi�cant. In the case of 5-years yields, the new restriction applies for some windows in 2010, 2014,

and 2017. The value of the new limit in some of the cases is signi�cantly high, and it is mostly ex-

plained by the extreme values that some yields, especially Greek ones, reached during that periods.

The periods of extreme values are nonetheless very limited and even the introduction of such high

limits does not undermine the validity of our main results.

7 Discussion and implications

The evidence we presented so far robustly indicates that synchronization is not a statistically signi�-

cant phenomenon for government bond yields in the Eurozone at short-term maturities. In contrast,

yields at medium- and long-term maturities were very much synchronized until the arrival of the

Great Recession and of the European Debt Crisis. The strains induced by these two crises generated

an abrupt fall in medium- and long-term yields synchronization. This is highlighted by the loss in

the share of the variance explained by the largest principal component and by the emergence of a

second signi�cant component during the period corresponding to the above two crises, i.e. between

2008 and 2014. Moreover, the elements of the eigenvectors associated with the above principal com-

ponents were very heterogeneous during the periods corresponding to the two crises. Some of these

eigenvector elements even took negative values during that period while other remained positive.

Synchronization in medium- and long-term yields increased again since 2015, however without fully
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(b) Eigenvalues with the heavy-tailed adjusted upper bound.

Figure 12: Heavy-tails random null model for yields with 10-years maturity.

recovering of the high levels observable before the Great Recession.

We can discuss the above patterns by using the �nancial interpretation of principal components

that we outlined in Section 4. In portfolio theory, the normalized elements of the eigenvector asso-

ciated to signi�cant eigenvalues represent the weights to be assigned to the di�erent bonds in one

portfolio, also called the eigenportfolio, with risk measured by the eigenvalue. In addition, positive

and negative eigenvector components identify, respectively, long and short positions on the speci�c

government bonds. Thus, if some di�erential between the eigenvector components exist, investors

update their positions by reallocating their wealth over the bonds. This operations sustain the price

of some bonds with respect to others. Speculation is feasible even if the components are of the same

sign (see Avellaneda and Lee, 2010).

On these grounds, our results show the presence of divergence trades and �ight-to-quality ef-
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fects that introduced asynchronicity in bond yields dynamics and that contributed to amplify the

sovereign debt crisis in the Eurozone. More precisely, the fact that two eigenvalues were signi�-

cant for bonds at 5 and 10 year maturities between 2008 and 2014 indicates that two eigenportfolios

were likely to be traded in that period. Both portfolios were characterized by long position with

respect to core Eurozone economies (Germany, France, Netherlands, Austria, Finland and Belgium)

and low exposition or even short positions with respect to the peripheral economies (Spain, Greece,

Portugal, Italy and Ireland). Moreover, at the peak of European Debt Crisis (i.e. between 2011 and

2013) the eigenportfolio with lower risk, i.e. the one associated with the second largest eigenvalue,

implied short positions on government bonds of all Eurozone countries but Germany, Netherlands

and Finland. Accordingly, in those periods government bonds of those countries became a safe asset

(see Caballero et al., 2017) over which strong long positions were taken.

The above documented dynamics of bond yields has several implications for the conduct of

policy in the Eurozone. As a matter of fact, yields asynchronicity hampers the e�ectiveness of

the common monetary policy via the interest rate channel. In particular, �nding that eigenvector

components of government bond principal components are heterogeneous and with di�ering signs,

indicates that common monetary policy actions by the European central bank a�ect asset returns in

di�erent fashion across di�erent countries. For interest rate policies to be e�ective in the Eurozone,

instead, government bond yields of the member states should move together, as if they were a unique

interest rate. Furthermore, government bonds are the main type of collateral used to secure loans

in interbank markets and their value directly impact on the ability of banks to collect liquidity.

In that respect, the Eurozone di�ers from other monetary unions, as several bonds are associated

with the same currency. As a result, if the dynamics of the interest rates on government bonds

di�er, liquidity is likely to move heterogeneously across Eurozone countries. Last but not least,

excessive divergence in government bond yields may map into divergent dynamics of government

debts within a monetary union, complicating �scal and monetary policy interactions in response to

economic shocks and even posing threats to the existence of the union itself.

The importance of government bond yields synchronicity for the functioning of Eurozone mon-

etary policy has also been acknowledged by members of the ECB board in the past (see e.g. Draghi,

2012; Cœuré, 2017). In addition, the presence of excessive divergence in sovereign bond premia
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has been used to support the implementation of unconventional monetary policies in the Eurozone.

With this perspective in mind, Figure 3 discussed in Section 5.2 reveals that the turning point in

bond yields synchronization coincides with the notorious “whatever it takes” statement by the ECB

President Mario Draghi on 26th July 2012. Synchronization gained momentum after the announce-

ment, as the variance explained by the �rst component (and measured by the value of the dominant

eigenvalue) rapidly increased, while the importance of the second principal component diminished.

These trends continued also after the start of the Public Security Purchase Program (PSPP), explic-

itly targeting the purchase of Eurozone government bonds in the secondary market (cf. Figure 3).

Nevertheless, the second component remained signi�cant in many windows also after the start of

the PSPP, with eigenvector elements of some countries still being negative (see Figures 8 and 9 as

well as Section 5.2). This suggests that divergence trades survived after the implementation of the

latter program. Clearly, the foregoing case study does not allow one to infer any causal impact of

unconventional monetary policies. Nonetheless, it suggests the presence of a relation between the

chronology of QE events and a signi�cant recovery of bond yields synchronization in the Eurozone.

Moreover, the fact that the statistical signi�cance of a second common factor persists also after bond

purchasing programme poses concerns about a possible return of diverging yields dynamics once

QE programs will be over.

8 Concluding remarks

We have employed a novel econometric procedure combining principal component analysis and

random matrix theory to detect signi�cant synchronization in the daily time series of Eurozone

government bond yields at di�erent maturities. We found that bond yields at short maturities are

in general poorly synchronized. In contrast, bond yields at medium and long term maturities were

highly synchronized until the onset of the Great Recession. This recession and the subsequent Eu-

ropean Debt Crisis resulted in a disruption of synchronization in the government bond yields of

Eurozone countries. This is evidenced by the loss in signi�cance of the �rst principal component

and by the emergence of a signi�cant second component. In addition, we �nd that in the afore-

mentioned periods the eigenvector elements associated with signi�cant components became highly

heterogeneous, and even displayed opposite signs across countries. We also provided a �nancial in-
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terpretation of our main results grounded on eigenportfolio theory (Avellaneda and Lee, 2010) and

we discussed how our evidence indicates that yields asynchronicity can be related to the presence

of divergence trades and �ight-to-quality e�ects. Finally, we showed that our results are robust to

the use of di�erent maturities, the use of alternative windows to compute principal components, the

use of di�erent �ltering techniques, the presence of autocorrelation and heavy-tails in the data.

Our study could be extended in several directions. First of all, we did not consider lagged cor-

relations. Such an extension is possible either by implementing additional static factor models

(Bouchaud and Potters, 2015) or by focusing directly on dynamic factor models. This second ex-

tension would allow one to precisely evaluate the pass-through of monetary policy across di�erent

yield maturities. Secondly, our study could be extended to encompass the main re�nancing opera-

tion rate (set by the central bank) and di�erent banks rates (the interbank market one as well as the

ones of loans). An enlarged dataset might also include data on real economic variables as well as

monetary ones in order to investigate synchronization between �nancial and real activities.
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Appendix A. Dataset

A.1 Description of the time series

Bloomberg ID Maturity Country Begin End
GTBEF3M Govt 3 months BE 2006-07-13 2019-02-19
GTFRF3M Govt 3 months FR 2006-07-13 2019-02-19
GTDEM3M Govt 3 months DE 2006-07-13 2019-02-19
GTGRD3M Govt 3 months GR 2007-10-22 2019-02-19
GTITL3M Govt 3 months IT 2006-07-13 2019-02-19
GTNLG3M Govt 3 months NE 2006-07-13 2019-02-19
GTPTE3M Govt 3 months PT 2011-08-08 2019-02-19
GTESP3M Govt 3 months SP 2006-07-13 2019-02-19

GTBEF6M Govt 6 months BE 2006-07-13 2019-02-18
GTFRF6M Govt 6 months FR 2006-07-13 2019-02-18
GTDEM6M Govt 6 months DE 2006-07-13 2019-02-18
GTGRD6M Govt 6 months GR 2007-10-22 2019-02-18
GTITL6M Govt 6 months IT 2006-07-13 2019-02-18
GTNLG6M Govt 6 months NE 2006-07-13 2019-02-18
GTPTE6M Govt 6 months PT 2011-08-08 2019-02-18
GTESP6M Govt 6 months SP 2006-07-13 2019-02-18

GTATS1Y Govt 1 year AT 2008-04-03 2019-02-21
GTBEF1Y Govt 1 year BE 2003-01-20 2019-02-21
GTFIM1Y Govt 1 year FI 2003-01-20 2019-02-21
GTFRF1Y Govt 1 year FR 2003-01-20 2019-02-21
GTDEM1Y Govt 1 year DE 2003-01-20 2019-02-21
GTGRD1Y Govt 1 year GR 2007-03-02 2019-02-21
GTIEP1Y Govt 1 year IR 2003-01-20 2019-02-21
GTITL1Y Govt 1 year IT 2003-01-20 2019-02-21
GTPTE1Y Govt 1 year PT 2003-01-20 2019-02-21
GTESP1Y Govt 1 year SP 2011-08-08 2019-02-21

Table A.1: Short term daily data. Source: Bloomberg. Countries: AT = Austria, BE = Belgium, FI = Finland, FR = France,
DE = Germany, GR = Greece, IR = Ireland, IT = Italy, NE = Netherlands, Pt = Portugal, SP = Spain.
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Bloomberg ID Maturity Country Begin End
GTATS2Y Govt 2 years AT 1999-11-02 2019-03-06
GTBEF2Y Govt 2 years BE 1999-11-02 2019-03-06
GTFIM2Y Govt 2 years FI 1999-11-02 2019-03-06
GTFRF2Y Govt 2 years FR 1999-11-02 2019-03-06
GTDEM2Y Govt 2 years DE 1999-11-02 2019-03-06
GTITL2Y Govt 2 years IT 1999-11-02 2019-03-06
GTPTE2Y Govt 2 years PT 1999-11-02 2019-03-06
GTESP2Y Govt 2 years SP 1999-11-02 2019-03-06

GTATS3Y Govt 3 years AT 1999-11-02 2019-02-21
GTBEF3Y Govt 3 years BE 1999-11-02 2019-02-21
GTFIM3Y Govt 3 years FI 1999-11-02 2019-02-21
GTFRF3Y Govt 3 years FR 1999-11-02 2019-02-21
GTDEM3Y Govt 3 years DE 1999-11-02 2019-02-21
GTGRD3Y Govt 3 years GR 2007-03-01 2019-02-21
GTIEP3Y Govt 3 years IR 1999-11-02 2019-02-21
GTNLG3Y Govt 3 years NE 1999-11-02 2019-02-21
GTPTE3Y Govt 3 years PT 1999-11-02 2019-02-21
GTESP3Y Govt 3 years SP 1999-11-02 2019-02-21

GTATS5Y Govt 5 years AT 1999-11-02 2019-02-21
GTBEF5Y Govt 5 years BE 1999-11-02 2019-02-21
GTFIM5Y Govt 5 years FI 2007-10-12 2019-02-21
GTFRF5Y Govt 5 years FR 1999-11-02 2019-02-21
GTDEM5Y Govt 5 years DE 1999-11-02 2019-02-21
GTGRD5Y Govt 5 years GR 2007-03-02 2019-02-21
GTIEP5Y Govt 5 years IR 1999-11-02 2019-02-21
GTITL5Y Govt 5 years IT 1999-11-02 2019-02-21
GTNLG5Y Govt 5 years NE 1999-11-02 2019-02-21
GTPTE5Y Govt 5 years PT 1999-11-02 2019-02-21
GTESP5Y Govt 5 years SP 1999-11-02 2019-02-21

GTATS7Y Govt 7 years AT 2003-11-06 2019-03-06
GTBEF7Y Govt 7 years BE 2003-11-06 2019-03-06
GTFIM7Y Govt 7 years FI 2003-11-06 2019-03-06
GTFRF7Y Govt 7 years FR 2003-11-06 2019-03-06
GTDEM7Y Govt 7 years DE 2003-11-06 2019-03-06
GTGRD7Y Govt 7 years GR 2007-03-02 2019-03-06
GTIEP7Y Govt 7 years IR 2003-11-06 2019-03-06
GTITL7Y Govt 7 years IT 2003-11-06 2019-03-06
GTPTE7Y Govt 7 years PT 2003-11-06 2019-03-06
GTESP7Y Govt 7 years SP 2003-11-06 2019-03-06

Table A.2: Medium term daily data. Source: Bloomberg. Countries: AT = Austria, BE = Belgium, FI = Finland, FR =
France, DE = Germany, GR = Greece, IR = Ireland, IT = Italy, NE = Netherlands, Pt = Portugal, SP = Spain.
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Bloomberg ID Maturity Country Begin End
GTATS10Y Govt 10 years AT 1999-11-02 2019-02-18
GTBEF10Y Govt 10 years BE 1999-11-02 2019-02-18
GTFIM10Y Govt 10 years FI 1999-11-02 2019-02-18
GTFRF10Y Govt 10 years FR 1999-11-02 2019-02-18
GTDEM10Y Govt 10 years DE 1999-11-02 2019-02-18
GTGRD10Y Govt 10 years GR 2007-03-02 2019-02-18
GTIEP10Y Govt 10 years IR 1999-11-02 2019-02-18
GTITL10Y Govt 10 years IT 1999-11-02 2019-02-18
GTNLG10Y Govt 10 years NE 1999-11-02 2019-02-18
GTPTE10Y Govt 10 years PT 1999-11-02 2019-02-18
GTESP10Y Govt 10 years SP 1999-11-02 2019-02-18

GTATS15Y Govt 15 years AT 2002-10-18 2019-03-06
GTBEF15Y Govt 15 years BE 2002-10-18 2019-03-06
GTFIM15Y Govt 15 years FI 2002-10-18 2019-03-06
GTFRF15Y Govt 15 years FR 2002-10-18 2019-03-06
GTDEM15Y Govt 15 years DE 2002-10-18 2019-03-06
GTGRD15Y Govt 15 years GR 2007-03-02 2019-03-06
GTIEP15Y Govt 15 years IR 2002-10-18 2019-03-06
GTITL15Y Govt 15 years IT 2002-10-18 2019-03-06
GTNLG15Y Govt 15 years NE 2002-10-18 2019-03-06
GTPTE15Y Govt 15 years PT 2002-10-18 2019-03-06
GTESP15Y Govt 15 years SP 2002-10-18 2019-03-06

GTATS20Y Govt 20 years AT 2005-05-19 2019-03-06
GTBEF20Y Govt 20 years BE 2005-05-19 2019-03-06
GTFRF20Y Govt 20 years FR 2005-05-19 2019-03-06
GTDEM20Y Govt 20 years DE 2005-05-19 2019-03-06
GTGRD20Y Govt 20 years GR 2012-03-13 2019-03-06
GTIEP20Y Govt 20 years IR 2005-05-19 2019-03-06
GTITL20Y Govt 20 years IT 2005-05-19 2019-03-06
GTPTE20Y Govt 20 years PT 2014-01-17 2019-03-06
GTESP20Y Govt 20 years SP 2005-05-20 2019-03-06

GTATS30Y Govt 30 years AT 2006-03-16 2019-03-06
GTBEF30Y Govt 30 years BE 2006-03-16 2019-03-06
GTFIM30Y Govt 30 years FR 2012-06-29 2019-03-06
GTFRF30Y Govt 30 years DE 2006-03-16 2019-03-06
GTDEM30Y Govt 30 years GR 2006-03-16 2019-03-06
GTIEP30Y Govt 30 years IR 2015-02-04 2019-03-06
GTITL30Y Govt 30 years IT 2006-03-16 2019-03-06
GTNLG30Y Govt 30 years NE 2006-03-16 2019-03-06
GTPTE30Y Govt 30 years PT 2006-03-16 2019-03-06
GTESP30Y Govt 30 years SP 2006-03-16 2019-03-06

Table A.3: Long term daily data. Source: Bloomberg. Countries: AT = Austria, BE = Belgium, FI = Finland, FR = France,
DE = Germany, GR = Greece, IR = Ireland, IT = Italy, NE = Netherlands, Pt = Portugal, SP = Spain.
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Appendix B. Factor analysis

Our main procedure based on the detection of statistically signi�cant principal components has
strong relations with static factor models (Stock and Watson, 2002; Onatski, 2010). The reason is
that static factors are typically estimated by using principal component analysis. In this appendix
we complement our main analysis by estimating factors and by tracking their evolution over time.
More precisely, a static factor model decomposes each time series in a component driven by few
common factors and an idiosyncratic component (see e.g. Stock and Watson, 2002):

Xt = BFt + et (B.1)

where X
N×T

is the matrix of the time series, B
N×N

is the matrix of the loadings of each factor, F
N×T

is
the matrix of the factors, and e

1×T
is the vector of the idiosyncratic components.

The matrices B and F are estimated via the PCA described in section 4.1 above. The covariance
matrix ΓY of the n time series Y can be factorized as

ΓY = E[XTX
′
T ] = UΛUT (B.2)

where Λ
N×N

is the matrix with the ordered eigenvalues of the covariance matrix on the diagonal,
while U

N×N
is the orthogonal matrix of the corresponding eigenvectors. Once the �rstK eigenvalues

and eigenvectors are selected via the random matrix procedure illustrated in Section 4.2, the factor
model boils down to:

Xt = B̃F̃t + et (B.3)

where B̃ has dimension N ×K and F̃ has dimension K × T . If we de�ne the factor loadings 23 as
B̃ =

√
nŨ , then the matrix F̃ can be estimated by OLS such that:

F̃ = (B̃T B̃)−1B̃TX (B.4)

Lastly, factors can be identi�ed up to a rotation

F̂ = ΘF̃ (B.5)

where Θ =

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
is the rotation matrix. Consider for instance the two models

X(1) = B̃F̃ + e (B.6)

X(2) = B̃ΘF̃ + e (B.7)

Assuming E(e) = 0 and computing the covariance matrices we can show that ΓX(2)
= E[XTX

′
T ] =

(B̃ΘF̃ + e)′(B̃ΘF̃ + e) = F̃ ′Θ′B̃′B̃ΘF̃ + e′e. Using B̃ = Ũ , we have that B̃′B̃ = I , while Θ′Θ = I
by de�nition of the rotation matrix. We thus have ΓX(2)

= F̃ ′F̃ + e′e = ΓX(1)
.

For each window we estimate the �rst two factors according to our selection procedure. More
precisely, for each window, we compute the Spearman correlation of the factors with the �ltered
time series. Given the large number of windows (around 200), we report the correlation coe�cients
aggregated by year in Table B.1 and B.2 for 1-year yields, in Table B.3 and B.4 for 5-year yields, and

23This choice of loadings is common in the literature for its asymptotic properties (See e.g. Stock and Watson 2002).
In our case, however, given n = 11 we cannot claim any particular asymptotic property, so that the multiplication by√
n can be seen as a simple rescaling factor.
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in Table B.5, B.6 for 10-year yields. An inspection of the tables shows that the correlations of the
peripheral countries tend to be weaker with the �rst factor in times of crisis and stronger in general
with the second factor. To help a visual inspection, Figure B.1 shows the factors on the graph in
levels for 5 and 10 year yields.24
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Figure B.1: Factors evolution.
Notes: the �rst factor is in blue, while the second factor is in red.

The analysis of the factors supports the conclusions reached in Section 5.2 that bond yields at
1-year maturity are poorly synchronized. In contrast, one factor has been driving all the series of
5- and 10-years bonds up to 2008. From 2008 on some series are still strongly correlated with the
factor, while other lose correlation. In some cases, such as year 2011 and 2012, we have that the
correlations even di�er in sign between the two groups of countries. Notice that this dynamic and
the signs of the correlations are robust for all the three maturities and for both �ltered and raw data.
The analysis also supports the interpretation of the second factor, which from year 2008 on robustly
shows a higher correlation with the peripheral countries and generally a low correlation with the
core countries.

24Unfortunately the 1 year yields does not allow a friendly visualization due to the extreme values of some yields,
especially Greece. The high frequency of the data also makes a visualization of the �ltered time series and their factors
useless. Finally, notice that already for the 5 year yields, the levels of the second factor are already in�uenced by the
extreme values of some time series. It is worth remembering, however, that factors for the time series in levels are
derived from the factors computed on the �rst di�erences by adding any scalar to the sequential sum of their values.
The absolute values of the factors in levels matter, therefore, only for the graphical visualization, while the analysis of
the correlations between the factors and the series considers only the slope of the factor.
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Filtered 1 year yields

AT BE FI FR DE GR IR IT PT SP
2011 0.34 0.22 0.28 0.41 0.28 -0.60 -0.12 0.12 -0.28 0.15
2012 0.44 0.50 0.12 0.34 0.19 -0.56 -0.05 0.62 0.30 0.55
2016 0.32 0.34 0.39 0.33 0.36 0.13 0.29 0.14 -0.01 0.17
2017 0.67 0.31 0.69 0.32 0.59 0.01 0.62 0.10 -0.18 0.02
2018 0.33 0.12 0.45 0.21 0.54 -0.46 0.28 -0.78 -0.12 -0.25

Table B.1: Yearly average Spearman correlation between the �rst factor and the 1 year yields �ltered time series (�rst
di�erence). Note: in the case of 1 year yields, many time series result being constant for long periods before 2010.
In many case, therefore, it is not possible or meaningless to compute the Spearman correlation. We report the more
complete results that we are able identify for this type of yields.

AT BE FI FR DE GR IR IT PT SP
2011 -0.04 0.05 -0.08 0.02 -0.02 0.33 0.06 0.08 -0.03 0.10
2012 0.20 0.26 -0.16 0.15 -0.05 -0.55 0.04 0.70 0.16 0.68
2016 -0.03 -0.09 -0.06 -0.05 -0.07 0.05 -0.07 -0.20 -0.13 -0.21
2017 -0.10 -0.03 -0.09 -0.02 -0.12 -0.18 -0.12 -0.02 0.07 0.04
2018 -0.02 0.01 0.01 -0.06 0.10 -0.33 -0.15 -0.55 -0.06 -0.26

Table B.2: Yearly average Spearman correlation between the second factor and the 1 year yields �ltered time series
(�rst di�erence). Note: in the case of 1 year yields, many time series result being constant for long periods before 2010.
In many case, therefore, it is not possible or meaningless to compute the Spearman correlation. We report the more
complete results that we are able identify for this type of yields.
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Filtered 5 year yields

AT BE FI FR DE GR IR IT NE PT SP
2003 0.99 0.98 0.00 0.98 0.97 0.00 0.88 0.98 0.97 0.98 0.98
2004 0.66 0.66 0.00 0.64 0.64 0.00 0.65 0.65 0.66 0.66 0.66
2005 0.66 0.66 0.00 0.64 0.65 0.00 0.52 0.64 0.65 0.66 0.64
2006 0.98 1.00 0.00 0.99 1.00 0.00 0.39 0.98 0.98 1.00 1.00
2007 0.99 0.99 0.37 1.00 0.99 0.98 0.78 0.98 0.99 0.99 1.00
2008 0.94 0.96 0.96 0.96 0.93 0.85 0.92 0.89 0.97 0.94 0.96
2009 0.86 0.85 0.84 0.86 0.81 0.47 0.62 0.72 0.88 0.73 0.81
2010 0.81 0.54 0.84 0.84 0.84 -0.20 0.09 0.19 0.84 -0.08 0.12
2011 0.66 0.28 0.59 0.64 0.53 -0.18 -0.20 -0.08 0.61 -0.24 -0.04
2012 0.81 0.81 0.34 0.78 0.13 -0.03 0.06 0.59 0.57 0.07 0.58
2013 0.92 0.89 0.92 0.92 0.86 0.07 0.48 0.73 0.92 0.41 0.59
2014 0.44 0.45 0.38 0.43 0.32 0.44 0.48 0.52 0.41 0.49 0.51
2015 0.90 0.92 0.86 0.92 0.79 0.04 0.84 0.74 0.88 0.62 0.71
2017 0.89 0.92 0.89 0.90 0.88 0.01 0.90 0.61 0.89 0.43 0.60
2018 0.90 0.85 0.92 0.87 0.93 -0.32 0.82 -0.40 0.89 -0.17 -0.04

Table B.3: Yearly average Spearman correlation between the �rst factor and the 5 year yields �ltered time series (�rst
di�erence).

AT BE FI FR DE GR IR IT NE PT SP
2006 -0.07 -0.08 0.00 -0.07 -0.08 0.00 -0.01 -0.05 -0.04 -0.08 -0.09
2007 0.04 0.05 0.01 0.05 0.04 0.08 -0.12 0.09 0.05 0.06 0.05
2008 -0.12 -0.05 -0.12 -0.12 -0.22 0.35 0.05 0.20 -0.09 0.02 -0.06
2009 0.00 0.11 -0.07 -0.06 -0.14 0.46 0.18 0.26 -0.07 0.25 0.19
2010 0.14 0.52 -0.00 0.06 -0.08 0.74 0.20 0.70 0.01 0.78 0.75
2011 0.07 0.37 -0.07 0.10 -0.18 0.48 0.34 0.42 -0.08 0.41 0.42
2012 0.21 0.38 -0.48 0.24 -0.58 -0.06 0.24 0.86 -0.25 0.20 0.84
2013 0.05 0.09 0.05 0.05 -0.07 0.33 0.44 0.64 0.04 0.83 0.72
2014 0.07 0.08 -0.01 0.07 -0.10 0.83 0.44 0.64 0.03 0.74 0.64
2015 0.19 0.21 0.15 0.20 0.00 0.50 0.34 0.74 0.17 0.79 0.75
2017 -0.04 0.04 -0.07 0.11 -0.05 0.06 0.09 0.54 -0.07 0.57 0.54
2018 -0.01 -0.03 -0.01 -0.03 -0.01 -0.11 -0.03 -0.12 -0.01 -0.13 -0.11

Table B.4: Yearly average Spearman correlation between the second factor and the 5 year yields �ltered time series
(�rst di�erence).
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Filtered 10 year yields

AT BE FI FR DE GR IR IT NE PT SP
2003 0.96 0.99 0.99 0.98 0.99 0.00 0.99 0.99 0.98 0.98 0.98
2004 0.82 0.82 0.83 0.82 0.82 0.00 0.83 0.82 0.82 0.79 0.82
2005 0.94 0.99 0.99 0.99 0.99 0.00 0.99 0.98 0.92 0.74 0.98
2006 0.95 1.00 0.99 0.99 1.00 0.00 0.94 0.98 0.99 0.78 0.99
2007 0.40 0.40 0.40 0.40 0.40 0.20 0.20 0.40 0.40 0.40 0.40
2008 0.95 0.98 0.95 0.96 0.91 0.85 0.92 0.90 0.96 0.94 0.95
2009 0.86 0.86 0.85 0.86 0.79 0.50 0.61 0.75 0.87 0.72 0.80
2010 0.73 0.57 0.79 0.78 0.77 -0.07 0.01 0.32 0.77 0.09 0.21
2011 0.51 0.16 0.52 0.48 0.50 -0.12 -0.16 -0.11 0.51 -0.09 -0.11
2012 0.75 0.64 0.83 0.71 0.87 -0.70 -0.14 -0.46 0.83 -0.54 -0.42
2013 0.42 0.43 0.41 0.43 0.37 0.16 0.28 0.32 0.41 0.18 0.29
2014 0.69 0.71 0.67 0.71 0.59 0.29 0.68 0.63 0.67 0.50 0.63
2015 0.93 0.96 0.90 0.95 0.87 0.03 0.90 0.78 0.92 0.54 0.73
2016 0.92 0.94 0.91 0.94 0.81 0.01 0.92 0.84 0.90 0.66 0.79
2017 0.74 0.77 0.75 0.78 0.71 0.06 0.78 0.60 0.74 0.48 0.59
2018 0.97 0.94 0.98 0.96 0.96 -0.14 0.93 -0.06 0.97 0.18 0.29

Table B.5: Yearly average Spearman correlation between the �rst factor and the 10 year yields �ltered time series (�rst
di�erence).

AT BE FI FR DE GR IR IT NE PT SP
2006 -0.04 -0.08 -0.08 -0.08 -0.08 0.00 -0.09 -0.08 -0.07 -0.18 -0.09
2007 -0.06 -0.03 -0.05 -0.06 -0.08 -0.17 0.08 -0.00 -0.05 -0.01 -0.04
2008 -0.15 -0.10 -0.19 -0.15 -0.26 0.20 -0.04 0.13 -0.13 0.03 -0.05
2009 0.13 0.12 -0.03 0.00 -0.15 0.64 0.49 0.36 0.02 0.40 0.24
2010 -0.11 0.01 -0.10 -0.09 -0.09 0.09 0.14 0.11 -0.12 0.10 0.12
2011 0.12 0.63 -0.17 0.17 -0.28 0.61 0.45 0.72 -0.17 0.52 0.70
2012 -0.06 0.09 -0.19 0.01 -0.30 0.58 0.37 0.77 -0.17 0.75 0.79
2013 -0.01 0.02 -0.04 0.01 -0.07 0.50 0.31 0.37 -0.04 0.43 0.41
2014 -0.02 0.04 -0.04 0.03 -0.17 0.88 0.44 0.64 -0.06 0.74 0.62
2015 -0.00 0.05 -0.06 0.03 -0.11 0.93 0.22 0.42 -0.03 0.59 0.44
2016 0.03 0.12 0.02 0.13 -0.09 0.27 0.27 0.46 0.01 0.54 0.45
2017 0.02 0.12 0.01 0.16 -0.03 0.20 0.17 0.55 0.01 0.64 0.56
2018 -0.01 0.05 -0.01 0.04 -0.05 0.28 0.05 0.39 -0.03 0.36 0.33

Table B.6: Yearly average Spearman correlation between the second factor and the 10 year yields �ltered time series
(�rst di�erence).
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Appendix C. Additional Results
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Figure C.1: Eigenvalue evolution with optimal parameters for �rst di�erence.
Notes: the full line indicates the Marčenko-Pastur theoretical bound, the dotted line indicates the simulated random
model, and the thin dotted line indicates the rotational bound. For both the simulated random model and rotational
random shu�ing, 300 Monte Carlo simulations have been run. The dimension of the windows of the random matrix
theory are reported in Table 2 in Section 6.2 (in short, windows’ width of 783 observations, i.e. 3 years, and step of 65
observations, i.e. one quarter).
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Figure C.2: Evolution of the second largest eigenvalue under di�erent bandpass �lters. The line in bold is the time
average across the eigenvalues corresponding to the di�erent frequency bands.
Notes: the full line indicates the Marčenko-Pastur theoretical bound, the dotted line indicates the simulated random
model, and the thin dotted line indicates the rotational bound. For both the simulated random model and rotational
random shu�ing, 300 Monte Carlo simulations have been run. The full dark blue line indicates the mean of the values
given by the di�erent frequencies selection. The selection of the frequencies is discussed in Section 6.2.
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