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Abstract

Improving energy efficiency is often considered to be one of the keys to reducing greenhouse gas
emissions. However, efficiency gains also reduce the cost of energy services and may even reduce
the price of energy, resulting in energy use rebounding and potential energy use savings being eaten
up. There is only limited empirical research quantifying the economy-wide rebound effect that
takes the dynamic economic responses to energy efficiency improvements into account. We use
a Structural Factor-Augmented Vector Autoregressive model (S-FAVAR) that allows us to track
how energy use changes in response to an energy efficiency improvement while accounting for a
vast range of potential confounders. Our findings point to economy-wide rebound effects of 78%
to 101% after two years in France, Germany, Italy, the U.K., and the U.S. These findings imply
that energy efficiency innovations alone may be of limited help in reducing future energy use and
emphasize the importance of tackling carbon emissions directly.
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1. Introduction1

“Energy efficiency” is one of the key concepts of green new deal strategies to mitigate greenhouse gas2

emissions (IPCC, 2019; IEA, 2016). In political discussions, energy efficiency is seen as a panacea3

for reducing energy consumption while simultaneously reducing the costs of production and thereby4

ensuring green growth (European Commission, 2019; Ocasio Cortez, 2019; OECD, 2012). However,5

efficiency gains and the associated cost reductions will result in some rebound, whereby energy use6

savings due to the gains in efficiency are reduced or even completely eaten up.7

The direct rebound effect describes the behavioral response of consumers and producers that will8

want to expand the use of energy services as the cost of these services falls (e.g. Sorrell and Dim-9

itropoulos, 2008). There are also many follow-on effects across the economy known as indirect10

rebound effects. For example, a cost-saving energy efficiency gain for consumers will redirect saved11

income to other goods and services that also require energy to be produced. Furthermore, a cost-12

saving energy efficiency gain may also lower the price of energy resulting in further incentives to13

expand the use of energy services and the new energy-saving technology might even require more14

energy to be produced than the old one (Lange et al., 2020; Sorrell and Dimitropoulos, 2008; Gilling-15

ham et al., 2016). The rebound effect measures – as a percentage of the potential savings in energy16

use – the extent of savings in energy use that have not been realized due to the direct and indirect17

responses of economic agents to the initial efficiency gain.18

While direct rebound effects are comparatively well studied and are on average estimated to range19

between 10% and 30% in developed countries (Maxwell and McAndrew, 2011), it is challenging to20

estimate the economy-wide rebound effect, which encompasses both direct and indirect rebound21

effects. In this study, we empirically estimate the economy-wide rebound effect for a sample of22

European countries and the United States, finding rebound effects that approach almost 100%23

after two years.24

The quantitative literature on the economy-wide rebound effect can be divided into computational,25

accounting, and fully empirical approaches (Stern, 2020). Computational approaches are used most26

frequently, including partial equilibrium approaches (e.g. Saunders, 2008) and computable general27

equilibrium (CGE) models (e.g. Turner, 2009; Koesler, 2013; Rausch and Schwerin, 2018). These28

structural models are theoretically comprehensive and can capture a wide range of mechanisms.29

The estimated rebound effects from CGE models vary between negative effects, indicating that30
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energy use is reduced by more than the efficiency improvement, to the opposite effect where energy31

efficiency triggers an increase in the use of energy (known as “backfire”) (Turner, 2009; Colmenares32

et al., 2019). The accounting approach (Lin and Liu, 2012; Shao et al., 2014; Lin and Du, 2015;33

Zhang and Lin Lawell, 2017) treats changes in energy intensity as changes in energy efficiency34

and assumes that rebound is proportional to total factor productivity growth, neither of which is35

appropriate (Stern, 2020).36

Only a few studies try to quantify the economy-wide rebound effect fully econometrically, using37

observed data and statistical methods (Adetutu et al., 2016; Orea et al., 2015; Yan et al., 2019). The38

key challenge that all these studies face when empirically estimating the effect of energy efficiency39

improvements on energy use is the interdependence and co-evolution of the relevant time series.40

Existing studies do not allow GDP and the price of energy to change in response to changes in41

energy efficiency. These changes in GDP and the price of energy (and also other relevant time42

series), however, may then result in further changes in energy use and ignoring these dependencies43

will bias estimates of the economy-wide rebound effect.44

Recently, Bruns et al. (2021) proposed a Structural Vector Autoregressive (SVAR) model for es-45

timating the economy-wide rebound effect. SVAR models are the workhorse of macroeconomic46

time series analysis consisting of a small system of regression equations that represent the statis-47

tical dependence among the relevant time series (Kilian and Lütkepohl, 2017). In this framework,48

exogenous changes in energy efficiency can be identified and the reaction of energy use to these49

changes can be measured, taking into account the possibility that this reaction may be mediated50

by other variables such as prices and GDP. Bruns et al. (2021) use this approach to provide a first51

estimate of the economy-wide rebound effect for the U.S., indicating that the rebound effect is52

about 100%.53

In this study, we extend the work of Bruns et al. (2021) in two directions. First, while the SVAR54

approach provides powerful tools for estimating the responses of an economic system to exogenous55

forces, the presence of unobserved confounders may bias these estimates (Bernanke et al., 2005; Bai56

and Ng, 2013; Favero et al., 2005). Accounting for unobserved confounders in macroeconomic time57

series analysis is non-trivial as the number of potential confounders is very large, while the number58

of available observations is small. Therefore, we apply a Structural Factor-Augmented Vector Au-59

toregressive (S-FAVAR) model. These models not only estimate, like SVAR models, the relationship60
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among several variables over time but also augment the core model with the principal components61

of a rich set of potential confounders (Bernanke et al., 2005). Specifically, our core model includes62

three variables: energy use, the real price of energy, and GDP. We obtain the additional factors63

from a set of 41 to 56 economic time series depending on the country considered. This approach64

helps to comprehensively mitigate the threat of omitted-variable biases and to reduce the potential65

bias due to economic agents anticipating energy efficiency improvements (nonfundamental shocks).66

Second, Bruns et al. (2021) estimate a rebound effect of roughly 100% for the U.S., but it is also67

important to investigate whether energy efficiency innovation in large polluting countries other than68

the U.S. is equally unlikely to significantly reduce energy use in the long run. Therefore, we use69

the improved S-FAVAR approach to estimate economy-wide rebound effects in France, Germany,70

Italy, the U.K., and the U.S.71

Our analysis relies on the notion that changes in the economic system can be traced back to in-72

dependent impulses, commonly referred to as “shocks” in the econometrics literature (Kilian and73

Lütkepohl, 2017). We identify an energy efficiency shock by applying Independent Component Anal-74

ysis (ICA) to the residuals of a reduced-form Factor-Augmented Vector Autoregressive (FAVAR)75

model. ICA finds the least dependent linear combinations of the residuals, which correspond to an76

estimate of the independent shocks that jointly affect the observed variables. Based on this, we can77

estimate the response of the economy-wide energy use over time to an energy efficiency shock.78

We find that the economy-wide rebound effect ranges from 78% to 101% for France, Germany, Italy,79

the U.K., and the U.S. after two years. This implies that policies to encourage energy efficiency80

improvements may not be effective in reducing energy use in the long run, which might be at odds81

with common green growth strategies.82

The remainder of the paper is organized as follows. Section 2 presents the emprirical strategy that83

is used to estimate economy-wide rebound effects, disentangling the different components of the84

S-FAVAR model and introducing the dataset. Empirical results are discussed in Section 3. Finally,85

Section 4 summarizes and concludes.86
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2. Empirical Approach87

2.1. The Economy-Wide Rebound Effect88

The economy-wide rebound effect is defined as the extent of savings in energy use across the economy89

that have not been realized due to the direct and indirect responses of economic agents to the initial90

efficiency gain. We estimate the economy-wide rebound effect by identifying an energy efficiency91

shock, that is, an independent and exogenous shock to economy-wide energy use that cannot be92

explained by any other variable considered in the S-FAVAR model as outlined in the subsequent93

sections, and by tracing the dynamic response of energy use to this shock. Using the subscript i to94

denote the number of periods since the energy efficiency improvement, the economy-wide rebound95

effect is given by:96

Ri = 1− Actual

Potential
= 1− ∆êi

εe1
(1)

where εe1 is the contemporaneous response of energy use to the energy efficiency shock, which97

represents the potential “engineering” change in energy use, and ∆êi is the actual change in energy98

use (Bruns et al., 2021). Notice that εe1 is by construction a negative number, while ∆êi measures99

the response of energy use to the energy efficiency shock after i periods and can be any real number.100

2.2. Structural Factor-Augmented Vector Autoregressive (S-FAVAR) model101

It would be desirable to consider all variables that potentially influence economy-wide energy use102

and, therefore, potentially confound the estimate of the economy-wide rebound effect. However, the103

analysis of intertemporal dependencies in a “data-rich” environment is problematic using standard104

multivariate autoregression models, as the number of parameters to be estimated may rapidly105

exceed the available observations. Augmenting a classical SVAR model with factors obtained from106

a large set of time series provides a remedy.107

To characterize the effect of an efficiency shock on energy use, we assume that the state of the108

economy is represented by a vector Ct, whose entries are both observed and latent variables. As109

we are interested in estimating the response of energy use to an energy efficiency shock, we include110

the following three observable series: Energy use (Et), GDP (Yt), and the price of energy (Pt).111

We consider these three variables to be the core variables when analyzing economy-wide rebound112

effects. Moreover, we incorporate several latent factors (Ft) in the vector Ct that summarize the113

information in a large set of macroeconomic indicators (see Section 2.3 for the estimation of these114
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factors). The dynamics of the common components are modeled by the following reduced-form115

FAVAR model116

Ct = Φ(L)Ct−1 + ut

where

Ct =


Et

Yt

Pt

Ft


(2)

where φ(L) is a conformable lag polynomial of finite order and the error term and ut is assumed to117

be i.i.d. with mean zero.118

In contrast to a traditional VAR model, the system in Equation (2) also includes latent factors, Ft.119

These factors can be extracted from a large number of macroeconomic time series. The dynamic120

factor model is explained in the following subsection.121

2.3. Factor augmentation122

The general idea of the factor model is to reduce a large matrix of time series data into a few latent123

factors. The following equation relates the unobserved common factors, collected in the r×1 vector124

Ft, and the vector of m observed core variables Wt (in our case time series data on the price of125

energy, energy use and GDP, so that m = 3) to an N × 1 vector of (observed) “informational”126

variables Zt (in our case 41 to 56 time series, depending on the country analyzed):127

Zt = ΛfFt +DWt + ζt, (3)

where Λf is an N × r matrix of factor loadings, D is a N ×m diagonal matrix, and ζt is a N × 1128

vector of idiosyncratic residuals. Hence, changes in Zt are driven by the latent factors (Ft) and129

the endogenous observable time series (Wt), plus idiosyncratic noise. In the multi-period setting130

Z = (Z1, Z2, . . . , ZT )′ is the T × N data matrix, W = (W1,W2, . . . ,WT )′ a T × m matrix of131

observables and F = (F1, F2, . . . , FT )′ is a T × r matrix of latent factors. We follow Hwang (2009)132

to obtain estimates of D, Λf and F by the following steps:133
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1. Regress Zt on Wt, and compute the least squares estimates, D̂, and the residuals Ût =134

Zt − D̂Wt, with Û = (Û1, . . . , ÛT )′;135

2. Estimate the first K − r principal components of Ût which represent the estimated latent136

factors.137

Hence, the factor estimates can be specified as F̂ = Û ′Λf , where the columns of Λf are the138

eigenvectors corresponding to the largest eigenvalues of Û ′Û . This ensures that the loading ma-139

trix has orthonormal columns and can be identified.1. The resulting factors, Ft, are included in140

the reduced-form FAVAR in Eq. (2), which can be estimated using OLS, before identifying the141

structural representation.142

2.4. Identification143

After estimating the factors, the model in Equation 2 can be treated as a standard VAR. As the144

residuals, ut, in equation (2), might be correlated across equations, we rewrite these innovations as145

a linear combination of the underlying orthogonal structural disturbances ηt. Rewriting Equation146

(2) results in the following structural model147

 Ft

Wt

 = φ(L)

 Ft−1

Wt−1

+Bηt (4)

where ηt, has mean zero with covariance matrix Σ. The non-singular matrix B specifies the contem-148

poraneous relations between the shocks and the reduced-form innovations ut=Bηt, with E[ut] = 0149

and Cov[ut] = BB′ = Σu. The mixing matrix, B, contemporaneously transmits the effects of the150

shocks to the dependent variables.151

The matrix B is estimated and hence the shocks are identified using two different search methods152

that use unsupervised statistical learning typical of machine learning research and fall under the153

class of Independent Component Analysis (Comon, 1994). Both methods rely on two key assump-154

tions about the statistical properties of the vector of shocks. Namely, the shocks are assumed to be155

mutually statistically independent and distributed according to a (not necessarily specified) non-156

1See Kilian and Lütkepohl (2017) Table 16.1 or Bai and Ng (2013) for alternative sets of identification conditions
for factors and factor loadings.
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Gaussian distribution, with at most one exception. The latter assumption can be easily checked157

indirectly by testing whether Gaussianity of the reduced-form innovations, ut, is rejected. The158

former assumption cannot be tested, but is in tune with the idea of finding the primitive exogenous159

forces that drive the dynamics of the system, each of which is denoted by a particular economic160

characteristic, not shared with the others, and that can be possibly used as policy levers.161

The two ICA approaches we apply are distance covariance (dcov) (Matteson and Tsay, 2011) and162

non-Gaussian Maximum Likelihood (ngml) (Lanne et al., 2017), which have been recently studied in163

the econometric literature in the context of SVAR models (Herwartz, 2018). We further probe the164

robustness of our results by computing the Choleski decomposition of the residual variance matrix165

which gives similar results (see Table D.6 for a comparison of the different rebound estimations).166

ICA does not determine the sign nor the economic meaning of the shocks a priori. The columns167

of the (instantaneous) impact matrix should be reordered and if necessary their sign changed to168

make them easier to interpret economically (Gouriéroux et al., 2017; Moneta and Pallante, 2020).2169

We solve this indeterminacy by assuming that of the three empirically identified shocks the energy170

efficiency improvement should have the largest (in absolute value) contemporaneous effect on energy171

use. This shock represents exogenous changes to energy use that are not explained by any of the172

other variables considered in the model and, thus, we attribute this exogenous change to a change173

in efficiency. The effect of this shock on energy use is by definition negative as we are interested in174

studying the effect of improvements on energy efficiency.175

In our analysis, we extensively use the R package svars, which implements independence-based176

identification (Lange et al., 2019).177

2.5. Estimating the economy-wide rebound effect178

The rebound effect is defined as the ratio between actual and potential energy savings (see equation179

(1)), which can be approximated by the evolution of the impulse-response functions. Figure 1 shows180

an illustrative impulse-response function of energy use with respect to an energy-specific shock. Here181

the initial or potential savings (εe1), indicated at time 0, decrease over time and even exceed, in182

2In the language of matrix analysis, ICA identifies the impact matrix up to the right multiplication of a signed
permutation matrix, i.e. a matrix containing exactly one entry in each row and column equal to +1 or -1 and all
other entries equal to 0. ICA leaves undetermined also the scale of the shocks, but these are typically normalized to
have unit variance.
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Figure 1: Illustration of potential energy savings (PES) and actual energy savings (AES) depicting an
exemplary impulse-response function of energy use (red curve) with an exemplary confidence interval (gray area).

this particular illustration, the pre-shock level leading to actual savings (∆ε̂i) that are negative183

and, therefore, to backfire.184

The estimation of the rebound effect based on an S-FAVAR model addresses the omitted variables185

problem that is common in SVAR analysis by including the information from a large set of variables.186

Furthermore, the S-FAVAR model allows us to tackle a related but subtler problem, which is typical187

of standard (small scale) SVAR models and may bias the estimation of the rebound effect. In SVAR188

analysis, structural shocks are identified from a linear transformation of VAR prediction errors (i.e.189

reduced-form residuals). But it is conceivable that these prediction errors do not accurately capture190

the true prediction errors of the economic agents, because the latter rely on an information set that191

is larger than the one contained in the econometric model. This creates a mismatch between the192

shocks of the (true) data generating process and the shocks of the SVAR model, which has been193

studied in the literature on so-called nonfundamental shocks3 (Kilian and Lütkepohl, 2017; Alessi194

et al., 2011). In case of such a mismatch, the shocks identified from a VAR model may in fact be195

anticipated by economic agents. This would engender a bias in the estimate of the energy efficiency196

shock and of its rebound effect. This problem, and, more generally, the problem of nonfundamental197

shocks, can be resolved or at least ameliorated in S-FAVAR analysis because the information set198

is enlarged and so it is more likely that it mirrors the information set that economic agents use to199

3The name is due to the fact that the moving average representation of the VAR prediction errors is called the
fundamental representation. Nonfundamental shocks are shocks that cannot be recovered from this representation.
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predict or anticipate energy efficiency innovations.200

However, our estimation still bears two caveats that need to be considered. First, the model does201

not capture rebound that may happen contemporaneously with the efficiency improvement. This202

effect is discussed in the literature under the terms “embodied-energy effect” or “redesign effect”203

(Lange et al., 2021). Bruns et al. (2021), however, explain that this error is smaller the closer204

the true rebound effect is to 100%. Second, our rebound-measure describes only the response205

that can be attributed to energy-specific efficiency improvements. The reason is that our energy206

efficiency shock is assumed to be orthogonal to other shocks. Hence, if labor- or capital-augmenting207

innovations are captured in the GDP shock ( or other shocks) and if these innovations are correlated208

with improvements in energy efficiency, then these energy efficiency improvements are not captured209

in the energy efficiency shock.210

2.6. Data211

The main variables of our model comprise energy use, the price of energy, and economic output,212

measured by GDP. For the U.S., the data used in this article corresponds to the data described in213

Bruns et al. (2021). Compared to the U.S., in Europe monthly time series data at the country level214

are still quite sparse. Therefore, we restrict our analysis to France, Germany, Italy, and the U.K. as215

the monthly data for these countries and variables are available from January 2008 to September216

2019, providing 141 observations. All data series were log-transformed and deseasonalized using217

the seasonal package in R with the X-11 adjustment procedure.218

Additionally, the extraction of the latent factors is based on a large matrix of time series describing219

the economy. For this purpose, we use the Main Economic Indicator (MEI) database which is220

developed and maintained by the OECD. This data set presents comparative statistics that provide221

an overview of recent international economic developments for the European countries we analyzed,222

covering information on the labor market, national accounts, retail sales, production, construction,223

prices, finance, international trade, and the balance of payments (OECD, 2018). The latent factors224

are intended to summarize the main source of variation in the data panel and hence can be inter-225

preted as common driving forces behind different variables of the economy. Online Appendix A226

discusses the sources of the data in detail.227
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Figure 2: Time series data for the countries included in the analysis.

3. Results228

3.1. Reduced-form FAVAR229

Using the Akaike information criterion, we select lag lengths of p = 2 for France, the U.K. and the230

U.S., p = 3 for Italy and p = 4 for Germany. Maximum lag lengths of 6 and 12 both result in231

selecting the same lag length (see Table D.5 in the Online Appendix for the comparison).232

We statistically evaluate the number of Gaussian components based on component-wise normality233

tests (Shapiro-Wilk, Shapiro-Francia, Jarque-Bera) for the reduced-form residuals of the model.4234

The test results indicate that the presence of more than one Gaussian component cannot be rejected235

(see Table D.7 in the Online Appendix). However, these tests perform poorly in small samples,236

which is particularly true if the distributions of the samples are close to normality (Gouriéroux237

et al., 2017; Maxand, 2018). Maxand (2018) show that at least the unique identification of the non-238

Gaussian shocks can be guaranteed irrespective of the distributions of the remaining system. We are239

4Additionally, we compared the component-wise tests with a boostrappping test, based on forth order blind
identification (FOBI) explained in the Online appendix
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especially interested in the energy efficiency shock and at least the normality of the reduced-form240

residuals of the energy use equation can be rejected for all countries except France. Furthermore, in241

the case of multiple Gaussian reduced-form residuals, the ICA methods in any case deliver orthog-242

onal shocks, since they orthogonalize the residuals like a standard principal component analysis.243

However, the residuals are identified up to an orthogonal transformation, which may dramatically244

increase the variance of the estimates (Hyvärinen and Oja, 2000). Additionally, we tested the ro-245

bustness of the identified shocks by comparing the result of the independence-based identification246

strategies with the results derived by a Choleski decomposition finding similar results for the energy247

efficiency shock (see D.6).248

3.2. Factor augmentation to account for potential confounders249

The first two factors explain from 45.78% (U.K.) to 62.82% (U.S.) of the variance of the informa-250

tional variables in each country panel (see Table 1). We include these two factors in the S-FAVAR251

model to ensure a balance between the variance explained and degrees of freedom considerations.252

Increasing the number of included factors by one adds roughly 10% to the explained variance (see253

Table 1). A robustness check of the estimated rebound effect with three factors included can be254

found in the Online Appendix (Figure D.17).255

Table 1: Explained variance in the set of country-specific time series

Factor 1 2 3 4 5 6 7 8 9 10

France 33.22 13.49 11.31 7.69 6.46 6.17 5.56 5.07 4.82 4.08

Germany 35.59 19.54 12.09 8.89 8.39 5.73 4.36 4.17 4.06 3.60

Italy 37.34 15.04 10.27 8.80 6.97 6.06 5.65 5.43 4.21 3.64

UK 23.78 22.00 11.70 9.88 7.23 6.11 5.81 5.32 4.55 4.11

USA 43.33 19.49 12.80 9.16 8.29 6.57 5.05 4.41 3.72 3.44

Notes: Each row shows the variance in the country-specific set of time series explained by the respective

factor (in %).

These two estimated latent factors are presented in Figure 3. The identification of the estimated256

factors is only possible up to a change of sign.5 The factors fluctuate strongly during the financial257

5This becomes evident as Factor 1 peaks during the financial crisis in 2008/2009 for Germany, Italy and the U.K.
and collapses in France and the U.S.
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Figure 3: Estimated latent factors. The factors with the highest explanatory power, factor 1 (in red) and factor
2 (in blue), are depicted for each country.

crisis that started in 2008, which indicates that they enlarge the information set by adding the258

impact of the financial crisis.259

We present the factor loadings for Germany (Panel a) and the U.K. (Panel b) in Figure 4 to show260

what the latent factors might represent. The higher the absolute value of the factor loading, the261

higher the correlation between the time series and the respective factor. For both countries one262

factor seems to load mainly on different producer price indicators and the other on exchange rates,263

the unemployment level, exports, industrial production, and expectations. This means that one264

factor mostly represents real changes in the economy while the other mostly represents changes in265

prices. The factor loadings for the other countries are similar to the German example and can be266

found in the Online Appendix (Figure D.16).267
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Figure 4: Example factor loadings. The 15 highest factor loadings for the first two factors for (a) Germany and
the (b) U.K.. “ExRates” stands for exchange rates, “IntRates” for interest rates, “LI” for leading indicator, “PPI”
for producer price index and “HCPI” for harmonized consumer price index.

3.3. Identifying energy efficiency shocks268

We estimate a S-FAVAR model with energy use, GDP, the price of energy, and the two factors269

estimated in the previous stage. As described in the methods section, we identify the energy270

efficiency shock by using the criterion that this shock should have the largest contemporaneous271

effect on energy use. As our focus is on estimating the economy-wide rebound effect, identification272

of the energy efficiency shock is sufficient. The shocks associated with GDP and the price of energy,273

as well as the overall economic plausibility of the estimated S-FAVAR model, are discussed in Online274

Appendix C.275

The identified energy efficiency shocks are presented in Table 2. For all countries, the energy276

efficiency shock has a large contemporaneous effect on energy use compared to its effects on GDP277

and the price of energy, except for the U.S. where its effect on energy use is similar in magnitude to278

its effect on the price of energy. The effect of this shock on energy use is negative by construction and279

in all countries the confidence intervals do not overlap zero. By contrast, the confidence intervals of280
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Table 2: Contemporaneous effects of the energy efficiency shock

Germany France Italy U.K. U.S.

et -3.41 -5.25 -4.53 -4.02 -1.8

(-3.7, -1.32) (-6.05, -1.85) (-4.61, -3.51) (-4.51, -1.46) (-2.01, -0.68)

yt 0.03 -0.17 -0.03 0.03 -0.01

(-0.16, 0.14) (-0.23, -0.02) (-0.13, 0.08) (-0.11, 0.11) (-0.22, 0.17)

pt 1.47 3.88 -1.28 -0.23 1.76

(-0.92, 3.4) (-0.48, 5.88) (-3.08, 2.04) (-3.43, 3.58) (-0.91, 3.43)

Notes: Contemporaneous effects of the energy efficiency shock on energy use (et), GDP (yt) and the

price of energy (pt) for the five countries. 95% confidence intervals in parentheses using a wild bootstrap.

the contemporaneous effects of the energy efficiency shock on GDP and the price of energy always281

overlap zero, except for the effect on GDP in France where zero is marginally excluded.282

We corroborate the identification of the energy efficiency shock by inspecting the forecast error283

variance decompositions (FEVD) shown in Figure 5 (Uhlig, 2005; Netšunajev and Glass, 2017).284

FEVDs are a measure of the impacts of the shocks on each of the modeled variables. FEVDs show285

how much of the variance of the forecasting error of each variable (the prediction mean squared286

error of the model variables) at different time horizons is accounted for by the different shocks. If a287

shock accounts for most of the forecast error variance of a specific variable x, at most time horizons,288

this provides good evidence that the shock should be labeled as the x-shock.289

The panels show for each country the percentage of the forecast error variance of energy use ex-290

plained by the different shocks in the months following a shock of each type. If the forecast error291

variance of energy use can be largely explained by the shock that we identified as the energy ef-292

ficiency shock, then this would be a strong sign that the identification is correct. For all forecast293

horizons in Germany, for example, about 75% of the forecast error variance of energy use is ex-294

plained by the shock that we identified as the energy efficiency shock (top left plot in Figure 5).295

For all countries and at all time steps considered, the forecast error variance of energy use is mostly296

explained by the identified energy efficiency shocks.297

The FEVDs for the other variables, shown in Figure B.9 of the Online Appendix, and the discussion298

of the economic plausibility of the estimated impulse response functions (provided in Appendix C)299
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Figure 5: Forecast error variance decomposition for energy use. The decomposition shows the percentage (y
axis) of the i-months (x axis) ahead forecast error variance which is explained by the five different shocks (indicated
by the five different colours).

further strengthen our identification of the energy efficiency shock.300

3.4. Economy-wide rebound effect301

In Figure 6 (left panel) the impulse response functions of energy use for an energy-efficiency shock302

show the same tendency for all countries: after an immediate reduction in energy use due to303

increased efficiency, energy use rebounds towards the original level of consumption. The impulse-304

response curves of the U.S. and France seem to rebound faster than the other countries. However,305

the differences are subtle and the confidence intervals are overlapping. Figure 6 (right panel) shows306

that after 24 months the estimated rebound effect ranges between 78% and 101% for all countries307

with all confidence intervals overlapping 100%.308

In general, estimates for the rebound effects tend to be consistent across countries and identification309

methods (compare Table D.6 in the Online Appendix).310
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Figure 6: Impulse response functions of energy use for an energy efficiency shock (a) and estimated
rebound effects (b). Shaded areas represent 90% confidence intervals in the left panel. Error bars represent 90%
confidence intervals in the right panel. Confidence intervals based on wild bootstrapping.

4. Discussion and Conclusions311

We used a Structural Factor Augmented Vector Autoregressive (S-FAVAR) model to quantify the312

economy-wide effect of energy efficiency improvements on energy use. Our methodology improves313

on past research by being able to separate the effect of energy efficiency improvements on energy314

use from other factors that might influence energy use, such as economic growth, changes in the315

price of energy, and a multitude of other potentially confounding factors by incorporating a large316

number of economic time series into the analysis. Our approach also allows GDP and the price of317

energy to evolve in response to the energy efficiency impulse and, in turn, energy use to respond318

again to the evolution of GDP and the price of energy.319

Our analysis extends in two main ways the work of Bruns et al. (2021) who use U.S. data to provide320

the first SVAR-based quantification of the economy-wide rebound effect. First, we augment the321

SVAR with factors obtained from a rich panel of time series to address the potentially large number322

of confounders. Addressing potential omitted-variable biases is crucial to improving and ensuring323

the reliability of the estimated economy-wide rebound effect. At the same time, augmenting the324

model with factors from a rich macroeconomic data set improves the information contained in the325

model and better reflects that available to economic agents in the real world. In this manner, it326

is less likely, in comparison with a small scale econometric model (e.g. SVAR), that the identified327

energy efficiency shocks are events that can be systematically anticipated by economic agents, which328
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would bias the estimate of the economy-wide rebound effect. Rather, the shocks can be interpreted329

as genuine innovations, whose rebound effect can be reliably estimated. Second, we apply the330

improved estimation approach to both the U.S. and a set of European countries (France, Italy,331

Germany and U.K.) to explore how similar the economy-wide rebound effect is across large, high332

income countries.333

We find that the economy-wide rebound effect is close to 100 % across our sample of countries,334

supporting the findings of Bruns et al. (2021). This implies that energy efficiency improvements335

that save energy due to the adoption of more efficient cost-reducing technology will have limited336

long-run impact on aggregate energy consumption.337

Our analysis identifies exogenous changes in energy use as changes in energy efficiency, as they338

can be neither explained by the core variables nor by the additional factors. We interpret these339

exogenous changes to largely represent cost-reducing improvements in energy efficiency. It should340

be emphasized that Fullerton and Ta (2020) show in a theoretical model that energy efficiency341

mandates that raise the cost of energy services can have a negative rebound effect resulting in more342

energy being saved than mandated. On the other hand, they find that cost-reducing innovations343

in the face of binding energy efficiency mandates are expected to have an especially large rebound344

effect.345

We conclude by emphasizing that even though cost-reducing energy efficiency innovations might346

enhance welfare, by providing more energy services to consumers and producers for a given cost,347

the magnitude of the estimated rebound-effect means that they will not significantly reduce energy348

use in the long run. However, a tightening cap on carbon emissions or equivalent carbon tax policy349

would reduce fossil fuel use regardless of the rebound effect. In fact, improving energy efficiency350

would help reduce the welfare cost of such a policy.351

Supplementary material352

The supplementary material contains the Online Appendix as well as data and code to reproduce353

all findings reported in this article.354
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Appendix A. Data473

Energy use: We measure energy use by gross inland consumption (GIC), which covers the amount474

of energy that is needed to satisfy the total energy demand of a country. Eurostat provides monthly475

energy data from January 2008 onwards for crude oil (without natural gas liquids), natural gas,476

and solid fuels6. Unfortunately, data on renewable energy sources is only provided as part of the477

data on total electricity consumption. Including the data on electricity consumption would lead to478

double counting, as part of total electricity is generated by fossil fuels. Therefore, we decided to479

only include fossil fuel energy for the European countries. The series are converted from different480

energy units to Tonne(s) of oil equivalent (toe) and aggregated for each country.7481

Energy prices: To estimate how energy prices evolved we use indices on harmonized consumer482

prices (HICP) which measure the changes over time in the prices of consumer goods and services483

acquired by households. The indices are available for the three different energy carriers (solid,484

liquid, and gaseous fuels) via Eurostat. To obtain an energy price series we multiply the index485

with the quarterly end-use energy prices for the industry. To compute the mean cost of the energy486

carriers in our data we multiply the price series for the different energy carriers with the respective487

gross inland consumption. Finally, we divide the cost series by the total gross inland consumption.488

Figure 2 presents the data series for the three main variables. Note that the data for energy con-489

sumption in the U.S. also includes energy from renewables, biomass, and nuclear power generation,490

which are not included in the European data.491

6Including data on hard, coke oven and brown coal, peat, oil shale, and oil sands, patent fuels and brown coal
briquettes.

7For the conversion we used the values from the IEA energy unit converter:
https://www.iea.org/classicstats/resources/unitconverter/
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Figure A.7: Comparison between the interpolated series (red) and the quarterly GDP data (blue) for
Germany. The grey lines in the background depict the evolution of the instrumental series (industrial production,
the unemployment rate, and retail trade)

Monthly Economic Indicators: We assume that the factors can be extracted from a large matrix492

of time series describing the economy. For this purpose, we use the Main Economic Indicator (MEI)493

database which is developed and maintained by the OECD. This data set presents comparative494

statistics that provide an overview of recent international economic developments for the European495

countries we analyzed, covering information on the labor market, national accounts, retail sales,496

production, construction, prices, finance, international trade, and the balance of payments (OECD,497

2018). The latent factors are intended to summarize the main source of variation in the data panel498

and hence can be interpreted as common driving forces behind different variables of the economy.499

Stationarity of the time series in the panel is a precondition for the factor model (Stock and500

Watson, 2016). To this end, each series of the panel is tested for non-stationarity with the help501

of an Augmented Dickey Fuller (ADF) test and if the p-value of the test was larger than 0.05, the502

series is differenced. Then, the time series are tested again and if a time series is still non-stationary,503

this time series is again differenced. We end up with data sets of the following dimensions for the504

different countries: Germany (141× 56), France (141× 53), Italy (141× 48), U.K. (141× 46) and505

USA (141× 41).506

Gross Domestic Production: GDP data is not available on a monthly basis for European507

countries, therefore we construct monthly series of real GDP based on the encompassing methods508

proposed by Mönch and Uhlig (2005) and Bernanke et al. (1997). We create a monthly time series509
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for economic activity by combining the available quarterly GDP series and appropriate histori-510

cal monthly time series. Our approximated GDP series relies on indices capturing employment511

information, retail trade, and industrial production as instrumental variables.512

Although the construction of the monthly GDP series is described in detail in Mönch and Uhlig513

(2005) and Bernanke et al. (1997), we shall briefly outline the main steps here. We assume that514

the latent monthly GDP can be explained by correlated high-frequency series using the following515

dynamic regression framework:516

(1− φ1L− · · · − φpLp) yt = xtβ + ut (A.1)

ut = ρut−1 + εt, εt ∼ N
(
0, σ2

)
(A.2)

where yt is the series to be interpolated, i.e. unobserved monthly GDP, and xt are exogenous co-517

variates that exhibit a high correlation with yt. The monthly GDP series as well as the regression518

residuals ut are assumed to follow an AR-process of lag order p (We use p = 1 for simplicity).519

520

Furthermore, the mean of three consecutive monthly GDP values shall equal exactly one third of

the observed quarterly GDP value and yt equals zero for the months that information on GDP is

missing. Hence, yt and y+t are connected by the following measurement equation:

y+t =
1

3

2∑
i=0

yt−i, t = 3, 6, 9, . . . (A.3)

y+t = 0 otherwise (A.4)

The relationships between the observable and the latent series can be encompassed in the following

27



state-space form:

y+ = H ′tξt (A.5)

ξt =


φ 0 0 ρ

1 0 0 0

0 1 0 0

0 0 0 ρ




yt−1

yt−2

yt−3

ut−1

+


x′tβ

0

0

0

+


εt

0

0

εt

 (A.6)

where the matrix Ht varies as specified:521

H′t =


[

1/3 1/3 1/3 0
]
, t = 3, 6, 9, 12, . . . , T[

0 0 0 0
]
, otherwise

(A.7)

According to Issler and Notini (2016) this form of interpolation offers two considerable advantages:522

first, the form is especially appealing because it is able to incorporate different model specifications523

used for interpolation in a unified framework. More precisely, depending on the restrictions on the524

parameters φ and ρ several models can be estimated amongst them the specifications of Chow and525

Lin (1971), Fernandez (1981), and Mitchell and Jones (2005). Second, we ensure that the aggregate526

of each three-months of interpolated GDP data is equal to measured quarterly GDP.527

528

Following Mönch and Uhlig (2005) we treat the monthly GDP values as latent states which are529

estimated using the Kalman filter. We estimate the parameters φ, ρ and the variance of ut via530

Maximum Likelihood.531

The choice of the related series, xt, is crucial for the results of the interpolation procedure as532

they provide the signals extracted for the monthly estimates. The series do not only have to be533

available on a monthly frequency but also be highly correlated with the quarterly GDP series.534

Monthly data is in general quite scarce for European countries. Natural candidates for this kind of535

business cycle analysis, and also the series used by Mönch and Uhlig (2005) and Issler and Notini536

(2016) are industrial production, retail sales, income, exports, and employment. We decided on the537

combination of instrumental variables conditional on data availability as well as on the measures of538

fit in first differences for the filtered and smoothed GDP estimates (see Table A.3). The latter is539
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Country Related Series R2
filtered R2

smoothed

Italy IP, Emp, Ret 0.29 0.65

UK IP, Emp, Ret 0.62 0.88

France IP, Emp, Ret 0.73 0.92

Germany IP, Emp, Ret 0.59 0.87

Table A.3: Related series used for interpolation (IP=Industrial Production, Emp=Employment, Ret=Retail sales,
CPI=Consumer Price Index) and the R2 goodness of fit statistics as measures of interpolation quality

calculated using the following R2:540

R2
diffs =

Var (∆yiT )

Var (∆yiT ) + Var (∆uiT )
(A.8)

The results in Table A.3 as well as the visual inspection of the plots in A.8 indicate that the541

interpolation is reasonably accurate. The smoothed estimates of the interpolated GDP serve as our542

GDP sequence.543

Additionally, we estimated a GDP series that is approximated by IP only and used it as a robustness544

check in the analysis. The results did not differ significantly.545
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Figure A.8: Comparison between the interpolated series (red) and the quarterly GDP data (blue) for
European countries. The grey lines in the background depict the evolution of the instrumental series industrial
production, unemployment, and retail trade indices.



Appendix B. Forecast Error Variance Decomposition546

The FEVD are a measure of the impact of an impulse on the modeled variables, and, specifically,547

on their predicted values, since it studies how much of the variance of the error one makes in fore-548

casting a variable xt (in other words, the prediction mean squared error of xt) at different time549

horizons, is accounted for by the different impulse shocks. If an impulse accounts for most of the550

forecast error variance of a specific variable xt at most of the time horizons, this is a good evidence551

that the impulse shock should be labeled as shock for xt.552

553

While we focus on identifying the energy efficicency impulse (first column of Figure B.9), col-554

umn two and three also show the FEVD for what we labelled the energy price impulse and the555

GDP impulse. This holds even if in some countries, e.g. UK, US and France, energy use receives556

some impact from what we label the energy price impulse, whose percent of its prediction mean557

squared error range from about 10% to 20%. For most of the countries, it is obvious that labeling558

the impulse which has the greatest impact on price (on GDP) as the price (GDP) impulse is also559

correct. However, this is not obvious for Italy, where two impulses impact almost equally on price560

and GDP. As mentioned, the identification of these two shocks is not relevant for the estimate of561

the rebound effect.562
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Figure B.9: Forecast error variance decomposition. The decomposition, for each variable and country, shows
the percent (y axis) of h-months (x axis) ahead forecast error variance (prediction mean squared error) explained by
five impulse shocks, which we label as the Energy, GDP, Price, Factor 1, Factor 2 impulses.



Appendix C. Economic plausibility of the estimated S-FAVAR models563

We analyse the impulse response functions for the three main variables. We would expect the564

energy efficiency shock to have a negative contemporaneous effect on energy and a positive or zero565

effect on GDP in the long run (because TFP increases and consumers have more real income after566

an efficiency improvement), and a negative effect on the price of energy. Looking at Figure C.10,567

all countries have the negative effects on energy use, which reduce over time. The UK, Italy, and568

Germany have a positive impact on GDP and the US the most negative though the confidence569

interval includes zero. France has a negative mean but a rising trend.8570

We would expect the GDP shock to have a large positive effect on GDP, which we see in all countries.571

Standard demand theory and cross-country studies suggest that a GDP shock should increase energy572

use. However, structural change associated with economic growth could lower energy use. This is573

what we see in all countries apart from the US. If we assume a standard supply and demand setting574

and assume that growth only moves the demand curve, then if energy use is reduced by the GDP575

shock it should reduce the price of energy and vice versa. There is a mixed picture with the GDP576

shock raising the price of energy in the UK (and insignificantly in Italy) despite reducing energy use577

and increasing the price of energy in the US and lowering it in France and Germany as we would578

expect.579

We notice that the GDP shock appears to be permanent in most countries, which is what we would580

expect for an increase in TFP or population.581

By contrast, price shocks have temporary positive effects on the price of energy. The price shock582

mostly has a negative or zero effect on energy use, though in the US the initial effect is large and583

positive. The expected negative or zero effects on GDP are present except in the UK though the584

latter is not statistically significant. Speculatively a positive effect could happen in an oil producing585

country. But we do not see this in the US.586

In summary, we mostly see the expected theoretical effects though there are notable exceptions.587

8For the impulse response functions for the individual countries, refer to Figure C.11-C.15
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Figure C.10: Impulse Response Functions based on the distance covariance approach. The first column
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35Table C.4: Contemporaneous reaction of variables to different impulses

εE εY εP εF1
εF2

Germany

et -3.41 -0.05 0.13 -0.94 -1.27

(-3.7, -1.32) (-1.04, 1.19) (-1.82, 1.74) (-1.53, 0.96) (-3.12, 0.56)

yt 0.03 0.43 0.08 -0.17 -0.06

(-0.16, 0.14) (0.14, 0.47) (-0.18, 0.37) (-0.34, 0.09) (-0.3, 0.17)

pt 1.47 -1.2 3.32 -0.34 2.46

(-0.92, 3.4) (-2.62, 1.08) (0.83, 4.43) (-1.98, 1.23) (-0.67, 4.26)

France

et -5.25 -2.12 0.78 0.55 -2.18

(-6.05, -1.85) (-5.15, 1.91) (-2.43, 4.11) (-1.53, 2.23) (-4.23, 1.29)

yt -0.17 0.12 0.14 0.04 0.07

(-0.23, -0.02) (-0.03, 0.24) (-0.01, 0.23) (-0.09, 0.12) (-0.05, 0.19)

pt 3.88 -3.23 4.4 0.11 0.66

(-0.48, 5.88) (-6.43, 0.33) (-0.12, 6.34) (-2.46, 2.85) (-2.21, 2.96)

Italy

et -4.53 -0.07 -0.32 0.97 -0.41

(-4.61, -3.51) (-1.37, 1.48) (-1.47, 2.06) (-1.6, 1.87) (-1.52, 1.33)

yt -0.03 0.34 -0.03 0.03 0.01

(-0.13, 0.08) (0.27, 0.34) (-0.09, 0.13) (-0.08, 0.13) (-0.08, 0.09)

pt -1.28 1.25 6.42 0.76 -1.04

(-3.08, 2.04) (-1.94, 2.27) (4.96, 6.71) (-2.13, 2.37) (-2.16, 1.61)

United Kingdom

et -4.02 0.14 0.17 -1.01 1.91

(-4.51, -1.46) (-1.3, 1.21) (-2.44, 2.2) (-1.58, 1.22) (-1.19, 3.8)

yt 0.03 0.33 0.01 -0.03 0.03

(-0.11, 0.11) (0.21, 0.32) (-0.14, 0.17) (-0.2, 0.08) (-0.13, 0.13)

pt -0.23 1.11 6.76 -0.1 -3.19

(-3.43, 3.58) (-3.22, 3.63) (3.41, 7.36) (-2.9, 2.06) (-5.46, 1.57)

United States

et -1.8 0.4 0.79 -0.38 -0.09

(-2.01, -0.68) (-0.66, 1.04) (-0.56, 1.76) (-0.86, 0.6) (-0.8, 0.64)

yt -0.01 0.45 -0.07 0.04 -0.08

(-0.22, 0.17) (0.22, 0.45) (-0.32, 0.22) (-0.15, 0.19) (-0.25, 0.17)

pt 1.76 1.54 3.31 1.27 0.07

(-0.91, 3.43) (-1.09, 3.09) (1.12, 4.1) (-0.96, 3.09) (-2.53, 1.58)

Notes: Bootstrapped 95% confidence intervals in parentheses.
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Figure C.11: Impulse Response Functions for the U.K., identified with the distance covariance approach. The
grey-shaded areas indicate 68% confidence intervals
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Figure C.12: Impulse Response Functions for the US, identified with the distance covariance approach. The
grey-shaded areas indicate 68% confidence intervals
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Figure C.13: Impulse Response Functions for Italy, identified with the distance covariance approach. The
grey-shaded areas indicate 68% confidence intervals
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Figure C.14: Impulse Response Functions for France, identified with the distance covariance approach. The
grey-shaded areas indicate 68% confidence intervals
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Figure C.15: Impulse Response Functions for Germany, identified with the distance covariance approach. The
grey-shaded areas indicate 68% confidence intervals



Appendix D. Additional Figures and Tables588

Table D.5: Lag length selection based on the AIC. Comparison of a maximal lag length of 6 and 12.

country lag.max = 6 lag.max = 12

1 Germany 4 4

2 France 2 2

3 Italy 3 3

4 UK 2 2

5 USA 2 2

41
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Table D.6: Estimated rebound effects for different identification methods

Country Months Distance covariance Non-gaussian ML Choleski

Germany 3 0.70 0.72 0.72

6 0.77 0.76 0.77

12 0.86 0.87 0.88

24 0.93 0.92 0.91

France 3 0.71 0.69 0.71

6 0.96 0.93 0.90

12 1.01 0.99 0.96

24 1.01 1.00 0.94

Italy 3 0.72 0.73 0.69

6 0.72 0.73 0.68

12 0.82 0.86 0.79

24 0.95 1.02 0.95

UK 3 0.55 0.63 0.64

6 0.64 0.74 0.77

12 0.75 0.84 0.85

24 0.77 0.87 0.87

USA 3 0.74 0.73 0.73

6 0.94 0.93 0.90

12 0.95 0.95 0.95

24 0.98 0.99 1.00

Notes: Comparison of estimated rebound effects, using the ICA approaches (distance covariance

and non-Gaussian Maximum Likelihood) and a classic Choleski decomposition with the causal

order: y −→ e −→ p −→ F1 −→ F2.
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Figure D.16: The 15 highest factor loadings considering the first two factors. Notes: “ExRates” stands for
exchange rates, “IntRates” for interest rates, “LI” for leading indicator, “PPI” for producer price index and “HCPI”
for harmonized consumer price index.



We statistically evaluate the number of Gaussian components based on a fourth order blind identifi-589

cation (FOBI) to the reduced-form model disturbances ût (Nordhausen et al., 2017). This procedure590

evaluates the residuals under the null hypothesis of K − k non-Gaussian components, where K is591

the total number of components and k is the number of Gaussian components. Except for Germany,592

this hypothesis can be rejected for all countries. For all countries, we can not reject the null hy-593

pothesis, which indicates that all components except for one are non-Gaussian (k = 4). For France594

and the UK the hypothesis of k = 3 cannot be rejected, hinting at two Gaussian components and595

for the US and Italy the hypothesis of k = 2 and therefore of three Gaussian components. Last,596

for Germany all components could be considered Gaussian according to the test results of the IC597

test. The fact that there is more than one Gaussian component in the model is also reflected by598

the component-wise tests for the time series (see Table D.7).599
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Table D.7: Component-wise normality tests for the different time series

country Variable SW SF JB IC Test, k = 1 k = 2 k = 3

Germany E 0.01 0.01 0.00 0.562 0.631 0.9165

Y 0.69 0.56 0.91 -

P 0.26 0.32 0.50 -

F1 0.06 0.02 0.00 -

F2 0.33 0.27 0.49 -

France E 0.73 0.47 0.28 0.003 0.042 0.5642

Y 0.33 0.24 0.19 -

P 0.80 0.77 0.93 -

F1 0.00 0.00 0.00 -

F2 0.10 0.04 0.01 -

Italy E 0.34 0.13 0.09 0.023 0.41 0.5867

Y 0.61 0.51 0.59

P 0.15 0.10 0.13

F1 0.00 0.00 0.00

F2 0.27 0.17 0.46

UK E 0.00 0.00 0.00 0.001 0.023 0.9745

Y 0.00 0.00 0.00

P 0.02 0.01 0.00

F1 0.24 0.16 0.30

F2 0.09 0.06 0.26

USA E 0.01 0.01 0.00 0.025 0.219 0.6557

Y 0.16 0.07 0.07

P 0.24 0.40 0.32

F1 0.00 0.00 0.00

F2 0.21 0.10 0.10

Notes: SW = Shapiro-Wilk, SF = Shapiro-Francia, JB = Jarque-Bera and IC stands for an

independence based boostrappping test, based on fourth-order blind identification tests from

the package ICtest (Nordhausen et al., 2017).
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Figure D.17: Estimated rebound effects for a model including 3 factors. Error bars represent 90% confidence
intervals.
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Figure D.18: Impulse-response functions resulting from various identification strategies. The identifica-
tion via smooth transitions of covariances (st), the dictance-covariance approach building on ICA and the Choleski
decomposition (chol) all show comparable results for the depicted impulse-response to an energy efficiency shock


