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a b s t r a c t

Energy security is the triggering factor for a developing country. Thus, for ensuring energy security
renewable energy such as PV plant could be a best alternative. This study deals with the performance
analysis of 80 KWp grid-connected solar power plant in Dhaka. This study presents a solar irradiation
predict model based on fuzzy logic and artificial neural networks which aims to achieve a good
accuracy at different weather conditions. The accuracy of predicted solar irradiation will affect the
power output forecast of grid-connected photovoltaic systems which is important for power system
operation and planning. Used data are taken from NASA. The performance of ANN is better than fuzzy
logic model by comparing RMSE, R 2 and percentage of accuracy. These fuzzy logic and ANN models can
be used to forecast solar irradiation of Dhaka city in different environment condition and to provide
enough information about the feasibility of solar power projects.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Life without a sustainable supply of energy is almost unimag-
inable. The importance of energy is even more supplementary
in the context of developing countries, which have traditionally
experienced prolonged periods of energy crises.

Socio-economic development of any country depends on per
capita consumption of energy. On the other hand increased con-
sumption of energy has direct effect on environment which in
turn affects the economic development. Energy is available in
different forms in the universe. These various forms of energy are
related and can be transformed from one form to another. Hence,
energy cannot be destroyed, it can only be converted to other
forms only. Presently, fossil fuels are used to generate electrical
energy in most of the countries of the world. But this form of
energy is expensive, exhaustive, non-renewable and day by day
decreasing. As a part of fuel diversification drive, Bangladesh can
look forward to replacing fossil fuel and non-renewable energy
with renewables in order to match its local energy demand.
Hence, various other forms of renewable energy gained popu-
larity, solar energy is one of those renewable energy that are
available in abundant in the universe. Electricity generated from

∗ Corresponding author.
E-mail addresses: bengir.duet@gmail.com (M.B.A. Shuvho),

asadzmn2014@yahoo.com (M.A. Chowdhury), shameem21bd@gmail.com
(S. Ahmed), drkashemll@yahoo.com (M.A. Kashem).

solar power is relatively cost effective compared to imported
oil-based electricity, which makes it a go to option in the near
future. Solar energy is believed to be the most efficient and
sustainable source of energy with absolutely no contribution to
environmental degradation.

Many characteristics make solar energy technology unique
and different from other kinds of renewable energy. Due to no
emissions being released, it is considered an environmentally
friendly. Because the sun comes up every day it is considered
a secure source of energy. Solar energy harvesting systems can
easily scale to varied sizes and there exists many ideas for im-
plementation: such as panels, roof tiles, and paints. Flexibility in
mounting and the small amount of maintenance required for so-
lar panels make them attractive. In addition, solar energy systems
can be easily implemented in remote areas without the need for
long power lines. The fact that solar panels can directly deliver
electrical energy is advantageous, as the need for an electric
generator is removed. Vast amounts of solar energy are available
on the surface of the earth with all locations receiving at least
some sun. Even though solar panels are still a little expensive,
cost has been dropping exponentially and continues to drop.

Testing and modeling the PV module/system in the outdoor
environment with specifying the influences of all significant
factors, are very important to check the system performance
and to facilitate efficient troubleshooting for photovoltaic mod-
ule/system through considering hourly, daily and monthly or
annual basis (King, 2003).
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Table 1
STC performance of the solar panel.
PV module (STC) Inverter

Parameters Specification Parameters Specification

Type of module Mono-crystalline Model BOSCH 250
Pmax 250 W Input (DC)
Iam 8.25 A Nominal Power, W 12250
Vam 30.31 V Voltage range, V 1000
Isc 8.82 A Nominal current, A 22/11
Voc 37.9 Maximum current, A 33/12.5b
Temperature coefficient of Pmax 0.44%/◦C Output (AC)
Nominal operating cell temperature (NOCT) 48.4 ◦C Voltage range, V 160–280
Module area, m2 (1620.16 * 966.24) Nominal current, A 19.2
No. of modules Nominal frequency, Hz 50
Efficiency 13% Efficiency, % 98/97.7
Weight/module, kg 21 Weight, kg 64

Fig. 1. Experimental investigation of solar panel.

Photovoltaic output power depends on many factors; such
as sun position, weather conditions, module temperature, ther-
mal characteristics, module material composition and mounting
structure (Ayomp, 2010).

Real time power generation should be investigated precisely
for grid performance, because a high penetration of PV production
could create instability in the grid (McCollum et al., 2018). The
uncertainty of the photovoltaic performance models is still too
high; the early existing PV performance models mainly deal with
the ideal PV module characteristics rather than the dynamic situ-
ation under the surrounding conditions (McCollum et al., 2018;
Bahauddin and Salahuddin, 2012; Ahmed et al., 2013; Shariar
et al., 2011; Dincer and Rosen, 1998; Pillai and Banerjee, 2009;
Sharma, 2011; Sharma and Chandel, 2013; Karafil et al., 2015; Bai
and Wang, 2006; Halabi et al., 2018).

In this study, performance of the 80 kWp PV system so-
lar power plants were investigated. We predicted solar irradia-
tion using fuzzy logic, ANN and performance of grid connected
80 kWp was investigated. Fig. 1 shows the location of grid con-
nected power plant. Performance of the grid connected solar
panel, Fuzzy logic and ANN analysis were investigated by the
study of irradiation.

2. Performance of the solar panels

Table 1 shows the performance of a PV solar panel under
standard test condition (STC). The performance (97.7%) of the
inverter found under standard test condition (STC). During actual
operation the efficiency is found 40%–45%.

Fig. 2. Sun simulator testing lab.

3. Performance of the solar panels after sun simulator test

A solar simulator or sun simulator is a device which has similar
intensity and spectral composition to the nature of sunlight. It is
widely used as a controllable indoor test facility offering labora-
tory conditions for solar cells. A solar simulator usually consists of
three major components: (i) light source(s) and associated power
supply; (ii) any optics and filters used to modify the output beam
to meet the requirements; (iii) necessary controls to operate the
simulator. Xenon lamps or other artificial light sources are usually
chosen as the light source of a standard solar simulator. However,
there are differences between artificial light source(s) and nature
sun light, both in intensity and spectral composition, which only
with the help of optics and filters can be modified to meet the
nature sun light. Furthermore, as the outdoor condition is time
dependent, it is necessary to define a standard test condition for
the solar simulator. The testing lab of sun simulator is shown
in Fig. 2. The sun simulator test was performed at 25 ◦C and
this temperature is the standard test condition for solar panel.
Performance measured from the sun simulator is represented in
Table 2.

4. Fuzzy logic and ANN analysis for irradiation

4.1. Fuzzy logic

The relationship between the input parameters (temperature,
wind speed, and humidity) and the output parameter (tilt angle
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Table 2
Test data of sun simulator.
Serial no Isc Voc Pm Ipm Vpm Eff. (%) F.F Rs (�) PWR (kW)

M60 EV30117 8.165 37.661 194.39 6.463 30.077 13.129 0.632 1.379 194.390
M60 EV30118 7.983 37.677 189.68 6.208 30.556 12.811 0.631 1.42 189.680
M60 EV30119 8.626 37.614 189.62 6.170 30.735 12.808 0.618 1.437 189.620
M60 EV30120 7.914 37.613 189.28 6.158 30.740 12.785 0.635 1.453 192.390
M60 EV30121 8.171 37.630 194.37 6.461 30.084 13.128 0.632 1.371 194.370
Mean 8.172 37.639 191.45 6.292 30.438 12.9322 .629 1.412 192.09

Table 3
Fuzzy linguistic variables and parameters.
Parameter Linguistic variable Range

Temperature (◦C) Low (L), medium (M), high
(H)

18.6–27.7 (◦C )

Wind speed Very low (L), low (l),
medium (M), high (H)

2.07–3.11 (m/s)

Humidity Very low (L), low (l),
medium (M), high (H)

55–80 (%)

Tilt angle very very low (VVL), very
low (VL), Low (L), medium
(M), high (H), very high
(VH), very very high (VVH)

2.14–47 (degree)

Irradiation very very low (VVL), very
low (VL), Low (L), medium
(M), high (H), very high
(VH), very very high (VVH)

3.95–5.16
(kWh/m2/day)

Fig. 3. Input variable Gaussian membership functions for temperature.

and irradiation) was considered in constructing rules. The fuzzy
linguistic characteristics and fuzzy expression for the input and
output parameters are shown in Table 3. Each input parameter
has three membership functions: low (L), medium (M), and high
(H) as shown in Figs. 3, 4, and 5. The two output parameters
have 7 membership functions: very very low (VVL), very low
(VL), low (L), medium (M), high (H), very high (H), and very
very (VVH) as shown in Fig. 6. The membership functions were
selected based on the knowledge of authors (Mohammadi et al.,
2015). The MATLAB software was utilized for the linguistic vari-
ables with associated membership functions. Meteorological data
were retrieved from NASA power data access viewer (Power Data
Access Viewer, 0000)

4.2. Fuzzy logic rules

In this study, the fuzzy rule base containing a set of IF-THEN
statements for 12 rules with three inputs, namely temperature,
wind speed, humidity and with two multi-response output, tilt
angle and irradiation are considered. Twelve rules were identified
on the available data shown in Table 4, the constructed rules are
presented in Table 5 and fuzzy rules interface is shown in Fig. 7.

Fig. 4. Input variable Gaussian membership functions for wind speed.

Fig. 5. Input variable Gaussian membership functions for humidity.

Fig. 6. Output triangular membership function for A Tilt angle and B Irradiation.
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Table 4
Meteorological data for fuzzy logic.
Months Inputs Outputs

Temperature (◦C) Wind speed (m/s) Humidity (%) Tilt angle (Degree) Irradiation (kWh/m2/day)

January 18.61 2.59 69 45.09 4.29
February 21.81 2.85 58 37.44 5.18
March 25.69 3.00 55 26.23 5.96
April 26.61 3.11 65 14.40 5.83
May 27.11 3.05 73 5.02 5.28
June 27.67 2.88 79 4.06 4.49
July 27.42 2.59 80 2.14 4.09
August 27.44 2.34 80 9.39 4.20
September 26.67 2.21 79 20.40 3.95
October 24.95 2.07 74 32.30 4.43
November 21.81 2.30 68 41.99 4.37
December 19.22 2.40 71 46.94 4.07

Table 5
Rules used for fuzzy logic model.
Rule number If statements for input parameters Then statements for output response

Temperature Wind speed Humidity Tilt angle Irradiation

1 L M L VVH L
2 L H VL H H
3 M H VL M VVH
4 M H L L VH
5 H H M VL H
6 H H H VL M
7 H M H VVL VL
8 H L H L L
9 H L H M VVL

10 M VL M H M
11 L L L VH M
12 L L M VVH VL

The fuzzy output is generated for the fuzzy logic rules by fol-
lowing the maximum minimum compositional process (Chowd-
hury et al., 2019).

4.3. Defuzzification

The fuzzy output from the fuzzy interface system requires a
defuzzification process. Numeric data are found from the fuzzy
set data by the defuzzification process. Researchers utilize sev-
eral methods of defuzzification, including center of sum (COS),
mean of max, largest area, weight average, and centroid. In this
study, a defuzzification process, called the centroid of area (COA)
technique (Zalnezhad and Sarhan, 2014), is used to obtain the nu-
meric value from the fuzzy interface system. Given its extensive
utilization and acceptance, the COA defuzzification technique was
used to obtain more correct results (Topcu and Sarıdemir, 2008).

The defuzzied value defined by X∗ is obtained using the COA
method.

X∗
=

∑n
i=1 xi.µ(xi)∑n
i=1 µ(xi)

(1)

where xi represents the samples, µ(xi) is the membership func-
tion, and n denotes the number of elements.

Surface plot for predicted tilt angle is shown in Fig. 8 and
surface plot for predicted solar irradiation is shown in Fig. 9.

In this study, root mean square error (RMSE) and fraction
of variance (R2) were used for predicting the fuzzy logic model
performance with the measured values. The rate of error (ei) and
the accuracy of the fuzzy logic model (A) were determined by the
following formula.

RMSE =

√∑
i(Fi − Mi)2

N
(2)

R2
= 1 −

∑
i(Fi − Mi)2∑

i (Fi)
2 (3)

Fig. 7. Fuzzy rules interface.

ei =
(|M − F |)

M
× 100% (4)

A =
1
N

∑
i

(1 −
(|M − F |)

M
) × 100% (5)

where F is the predicted fuzzy value and M is the measured
experimental value, and N is the number of experiment (see
Tables 6–8).

5. Artificial neural network

ANN is a connectionist system based on the neural structure
of the human brain (biological neural networks), which processes
data among a number of neurons. The basic unit of ANN is
neurons, which are connected to one another with a weight factor
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Fig. 8. Surface plot of predicted tilt angle (degree) values by fuzzy logic in
relation to parameters change: A temperature and wind speed, B temperature
and humidity and C Humidity and wind speed.

that determines the strength of the connections. ANN can be
trained for a specific function by adjusting the value of these
weight factors of the neurons.

One of the most widely used neural networks is the multi-
layered perception (MLP) neural network. This neural network
has been used by a number of researchers (MacDonald et al.,
1999; Shuvho et al., 2019). A backpropagation algorithm is used
to train this multilayered feed forward network. Backpropagation
identifies the network error with respect to the network weight

Fig. 9. Surface plot of predicted irradiation (degree) values by fuzzy logic in
relation to parameters change: A temperature and wind speed, B temperature
and humidity and C Humidity and wind speed.

and biases of the process. Fig. 10 shows a schematic of the MLP
network. The MLP model maps a set of input data onto a set of ap-
propriate output data. The MPL has multiple layers, such as input,
hidden, and output layers of nodes, in a directed graph, with each
layer connected to the next layer. MLP utilizes backpropagation,
a supervised learning method, to train the network.

In this study, an MLP neural network was utilized to predict
the solar irradiation for Dhaka region in relation to the input pa-
rameters, such as air temperature, relative humidity, atmospheric
pressure, wind speed, earth temperature.

Numerous studies on ANN model has been made in recent
years. These studies have given a prediction on monthly solar
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Table 6
Fuzzy logic model error and accuracy for tilt angles.
Months Tilt angle (◦) Predicted (fuzzy)

tilt angle
Error (%) Accuracy (%)

January 45.09 45.3 0.465735 99.53426
February 37.44 26.7 28.6859 71.3141
March 26.23 23 12.31414 87.68586
April 14.40 12.4 13.88889 86.11111
May 5.02 5.26 4.780876 95.21912
June 4.06 4.69 15.51724 84.48276
July 2.14 2.75 28.50467 71.49533
August 9.39 11.65 24.06816 75.93184
September 20.40 18.5 9.313725 90.68627
October 32.30 31.2 3.405573 96.59443
November 41.99 38.3 8.787807 91.21219
December 46.94 45.3 3.493822 96.50618

Table 7
Fuzzy logic model error and accuracy for irradiation.
Months Irradiation

(kWh/m2/day)
Predicted (fuzzy)
irradiation

Error (%) Accuracy (%)

January 4.29 4.3 0.2331 99.7669
February 5.18 5.53 6.756757 93.24324
March 5.96 5.93 0.503356 99.49664
April 5.83 5.79 0.686106 99.31389
May 5.28 5.24 0.757576 99.24242
June 4.49 4.62 2.895323 97.10468
July 4.09 4.13 0.977995 99.022
August 4.20 4.17 0.714286 99.28571
September 3.95 4.17 5.56962 94.43038
October 4.43 4.62 4.288939 95.71106
November 4.37 4.62 5.720824 94.27918
December 4.07 4.12 1.228501 98.7715

Table 8
Performance of the fuzzy logic model.
Output RMSE R2 A (%)

Tilt angle 3.6157 0.981489 87.23
Irradiation 0.15695 0.998937 97.47

Fig. 10. Typical structure of an MLP network.

irradiation. As ANN is of nonlinear behavior and no need for
primary assumption to develop data relationships, it becomes a
necessary tool for estimating solar irradiation. ANN models are
developed to model various solar radiation variables in different
locations. Yadav and Chandel (2014) gave a review on artificial
neural network models to identify best suitable method for so-
lar radiation prediction. Yadav et al. (2014) designed a neural
network model to determine most relevant input parameters for
prediction of solar radiation. Kisi (2013) tried fuzzy genetic ap-
proach to estimate solar radiation and gave a compare with ANN

Fig. 11. Performance regression plot for predictive model.

Fig. 12. Comparison graph of ANN and Fuzzy logic with actual irradiation.

approach. Egeonu et al. (2015) developed a temperature based
ANN model trained with the Levenberg Marquardt algorithm to
provide a forecast on solar radiation in Nigeria. Uenkal (2015)
applied artificial neural network approach for giving a model
and prediction of mean perceptible water and solar radiation in
specific location in Turkey based on meteorological data.

In this present paper, a feed forward back propagation neural
network with one hidden layer to estimate the monthly solar
radiation for Dhaka city in Bangladesh as shown in Table 9.
Table 10 shows error and accuracy of the ANN model, and Ta-
ble 11 represents performance of the ANN model. Here the input
layer consists of five units and hidden layer with 15 neurons
and output layer with 1 neuron to estimate solar irradiation,
70% of the total data was used for training, 15% for testing and
15% for validating the developed model as shown in Fig. 11.
Fig. 12 represents the comparison among actual solar irradiation,
predicted irradiation by fuzzy logic and ANN models. Stability
analysis for the ANN model will be carried out in future study
by the Lyapunov synthesis algorithm (Yu and Li, 2001; Jiang and
Wang, 2001) and Korkobi et al. (2008) have proposed a stable
back propagation algorithm to provide stable adaptive updating
process.
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Table 9
Meteorological Data for ANN.
Month Air temperature Relative humidity Atmospheric pressure Wind speed Earth temperature Daily solar radiation - horizontal

◦C % kPa m/s ◦C kWh/m2/d

January 19.7 53.8% 100.9 1.9 21.5 4.36
February 23.0 49.2% 100.7 2.1 25.6 4.92
March 26.4 52.4% 100.4 2.2 29.3 5.59
April 27.1 69.5% 100.2 2.5 29.1 5.76
May 27.6 78.0% 99.9 2.5 29.2 5.30
June 27.9 84.5% 99.5 2.4 28.7 4.53
July 27.7 86.3% 99.6 2.2 28.1 4.23
August 27.6 85.7% 99.7 1.9 28.1 4.29
September 27.0 84.7% 100.0 1.7 27.5 4.02
October 25.5 80.1% 100.4 1.5 26.0 4.32
November 22.5 72.8% 100.8 1.6 22.9 4.28
December 20.2 61.0% 101.0 1.7 21.1 4.21

Table 10
ANN model error and accuracy for irradiation.
Months Actual

Irradiation
(kWh/m2/day)

Predicted (ANN)
Irradiation
(kWh/m2/day)

Error (%) Accuracy (%)

January 4.36 4.3616 0.036697 99.9633
February 4.92 4.8206 2.020325 97.97967
March 5.59 5.5901 0.001789 99.99821
April 5.76 5.6227 2.383681 97.61632
May 5.30 5.3005 0.009434 99.99057
June 4.53 4.5319 0.041943 99.95806
July 4.23 4.234 0.094563 99.90544
August 4.29 4.29 0 100
September 4.02 4.2992 6.945274 93.05473
October 4.32 4.3201 0.002315 99.99769
November 4.28 4.28 0 100
December 4.21 4.3373 3.023753 96.97625

Table 11
Performance of the ANN model.
Output RMSE R2 A (%)

Irradiation 0.318129 0.999535 98.78669

6. Performance analysis of 80 kWp PV solar plant

System parameters such as array yield, performance ratio, spe-
cific yield were calculated by the following the reference Kumar
and Sudhakar (2015). The performance results of the 80 kWp PV
system power plant discussed in this section. In the mathematical
model section, different performance indicators were discussed.
Figs. 13 and 14 show the monthly generation and specific yield of
80 kWp plant in two years and it can be observed that maximum
generation was found in April due to maximum irradiation and
minimum in December, 2016 due to winter session and less
irradiation. In 2016, average energy generation and specific yield
were found 6140.76 kWh and 77.76 respectively. In 2017, average
generation and specific yield were found 4354.51 kWh and 54.43.
These results show that in 2016 the plant utilized 77.76% capacity
of the plant and in 2017, the plant utilized 54.43% capacity of
the plant. In Bangladesh, April to August is a hot session and the
average temperature is found 27–28 ◦C as shown in Table 9. Thus
power generation is found at maximum level.

Comparing the year 2016 and 2017 it can be observed that
in 2016 energy generation is higher than 2017 because of 1 year
depreciation. The specified module efficiency of 13% mentioned
in the PV solar panel manual has been used in the calculation of
nominal plant output to determine the performance ratio.

Fig. 15 shows the monthly performance ratio of the 80 kWp
plant. It can be observed that in June and August, 2016 perfor-
mance ratios are highest and plant was utilized 79% nominal
capacity in June and 77% nominal capacity in August 2016. Again

Fig. 13. Monthly generation of 80 kWp solar plant.

Fig. 14. Monthly specific yield of 80 kWp plant.

Fig. 15. Monthly performance ratio (PR) of the 80 kWp plant.

it can be observed that in 2017 performance ratio is less than
2016. In 2016 average performance ratio was found 0.67 and in
2017 average performance ratio was found 0.47. These results
show that average 67% irradiation was utilized in 2016 and 47%
irradiation was utilized in 2017.
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Table 12
Performance summary of some selected grid connected PV systems.
Reference Location PV-Type System size

(kWp)
Final yield
(kWh/kWp/day)

PV module
efficiency
(%)

Inverter
efficiency

Performance
ratio

Ayompe et al.
(2011)

Dublin, Ireland Mc-Si – 2.4 14.9 89.20 81.5

Pietruszko
and Gradzki
(2003)

Poland a-si – – 6.0 93.00 80.00

Kymakis et al.
(2009)

Crete, Greece P-Si – 1.96–5.07 15.0 – 67.36

Chokmaviroj
et al. (2006)

Thailand – – 2.91–3.98 12.0 92.16 70.00

Mondol et al.
(2006)

Dublin, Ireland – 3.056 1.69 7.60 75.00 0.6-0.62

Cucumo et al.
(2006)

Italy P-Si – 3.40 7.95 98.0 –

Drif et al.
(2007)

Spain Isofoton
I-106

2.5 1.60 5.71 87.03 49

Okello et al.
(2015)

South Africa P-Si 3.2 4.90 13.72 88.10 64.30

Sidrach-de
Cardona and
Lopez (1999)

Spain – 2.0 3.80 8.50 88.00 64.00

Wittkopf
et al. (2012)

Singapore P-Si – 3.12 11.80 – 81.00

Al Ali and
Emziane
(2013)

Abu Dhabi a-Si/P-Si 142.5 – – 94.80 –

Vasisht et al.
(2016)

India P-Si 20 4.1 13.71 – 85.00

Pundir et al.
(2016)

India P-Si 1816 – 8.76 – 63.58

Kamalapur
and
Udaykumar
(2011)

India – 50 – – – 55-89

Kumar and
Nagarajan
(2016)

India Mc-Si 80 4.45 15.53 – 83.2

Padmavathi
and Daniel
(2013)

India 3 MWp 3.75 – – 0.70

Shukla et al.
(2016)

India c-Si/a-Si 110 2.67–3.36 – 93.5–97.5 71.6-79.5

Sundaram
and Babu
(2015)

India 5 MWp 4.81 6.08 88.2 –

Kumar and
Sudhakar
(2015)

India P-Si 10 MWp 1.96–5.07 13.2 97.0 86.12

Present study Dhaka c-Si 80 2.53 13 97.7 66

7. Conclusion

Photovoltaic energy is considered as one of the most promis-
ing renewable energy technologies. The performance of the PV
system was compared with that of other heuristic models as well
as grid connected PV systems installed across the globe as shown
in Table 12. The salient findings from the study are summarized
below.

i. The accuracy of fuzzy logic model was obtained 97.47% and
the accuracy of ANN model was obtained 98.78% with the
actual irradiation.

ii. This study found that performance of ANN model is better
than the fuzzy logic model for solar irradiation prediction.

iii. This predictive model of fuzzy logic and ANN will be help-
ful for researchers and engineers for design and planning
of solar plants.

iv. 80 kWp power plant has been operating with good amount
of performance ratio 66 PR.

v. To derive maximum efficiency, design of the subject Pho-
tovoltaic system needs to be reviewed.

Future research investigations can be conducted on mapping
of solar potential over Bangladesh along with the fuzzy logic and
ANN model.

8. Future recommendation

Stability analysis of the fuzzy logic and ANN models will
be carried out in future for verifying the convergence stability
criteria of these results. Fuzzy logic and ANN models can be
used to analyze hybrid renewable energy for future energy crisis
mitigation. In addition to that these methods can be utilized
to design management system of global warming and climate
change challenges.
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