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a b s t r a c t

The rise in environmental awareness has increased the significance of controlling and monitoring
electricity consumption. The efficiency of power management is directly affected by the accuracy of
predicting electricity consumption. It is easy to estimate the electricity consumption if the electricity
status is predicted. Therefore, this study proposes a method to predict the electricity consumption of
public buildings by using an adaptive network-based fuzzy inference systems (ANFISs) and weather
conditions. ANFIS combines the interpretability of fuzzy inference systems and the learning ability of
neural networks. Gray relational analysis (GRA) is used to analyze the relationship between weather
conditions and electricity consumption. In this study, a multi-ANFISs approach is introduced to
estimate the electricity consumption by weather conditions and human activities. An alarm system was
also developed using the estimation errors. The results show that the proposed multi-ANFISs achieves
a greater performance with less number of parameters, and the GRA can evaluate the magnitude of
relation between the factors and a specific output.

© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The electricity consumption is increasing with the rising eco-
nomic growth (Shahbaz et al., 2017; Su, 2019). In the case of an
urgent need of excess electricity, the efficiency of power gener-
ators drops and they create harmful exhausts. A proper power
generation plan can lower the negative impact of these genera-
tors. The Taiwan Power Company (TPC) offers public institutions
and private enterprises a contract of electricity consumption.
According to this contract, the institutions estimate the amount
of electricity they will consume during a billing period. If the
consumed electricity is in the estimated range, they are rewarded
with a lower price per kWh. On the other hand, if the consumed
electricity exceeds the estimated range, the institutions pay a
higher price per kWh as a penalty. This program lets TPC predict
the total electricity and avoid instances of emergency power
supply. Thus, this study introduces an adaptive network-based
fuzzy inference system (ANFIS) model to estimate the electricity
consumption of a building using weather conditions and human
activities.

The chosen mathematical model directly affects the accuracy
of the prediction of electricity consumption. Various predicting
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approaches have been proposed in other studies (Deb et al., 2017;
Kumar et al., 2013; Tetlow et al., 2015; Xie et al., 2016), for ex-
ample, random forest (Ahmad et al., 2017), cluster analysis (Deb
and Lee, 2018; Hsu, 2015), linear and nonlinear artificial neural
network (ANN) (Kumar et al., 2013; Ahmad et al., 2017; Azadeh
et al., 2008; Ekici and Aksoy, 2009; Işık and Inallı, 2018; Neto
and Fiorelli, 2008; Pao, 2006; Shi et al., 2016; Wong et al., 2010;
Ye and Kim, 2018), etc. Table 1 summarizes the input variables
for these models. In this study, we adopt a multiple adaptive
network-based fuzzy inference system (multi-ANFISs) approach
to estimate the electricity consumption, which combines fuzzy
inference systems and the structure of neural networks, which
means that ANFIS has both learning ability and interpretabil-
ity. Studies have shown that this can be used for electricity
consumption forecasting (Işık and Inallı, 2018; Azadeh et al.,
2009).

In this paper, we predict electricity consumption using a sim-
plified and meaningful method using multi-ANFISs. Multiple in-
puts affect electricity consumption, but the corresponding influ-
ence level of each factor is unknown. Therefore, gray relational
analysis (GRA) is used to evaluate the correlation between elec-
tricity consumption and the input factors. ANFIS is chosen as the
relationship between the input variables and the output can be
shown by If-Then rules, which are more meaningful than the
weights and biases in other machine learning tools. In addition,

https://doi.org/10.1016/j.egyr.2019.10.009
2352-4847/© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Summary of mentioned studies.
Method Input variables

ANN & Random forest (Ahmad
et al., 2017)

Temperature, dew-point temperature,
relative humidity, time variables, variables
depending on hotel operation

Cluster analysis (Deb and Lee,
2018; Hsu, 2015)

Variables depending on air-conditioning
operation, tax value, and other economic
indices

ANN4 (Azadeh et al., 2008;
Ekici and Aksoy, 2009; Işık and
Inallı, 2018; Neto and Fiorelli,
2008; Pao, 2006; Shi et al.,
2016; Wong et al., 2010; Ye
and Kim, 2018)

Simplified weather conditions, human
activities, time series data, economic
indices, variables depending on
air-conditioning operation and industries,
office condition, building material and
design

ANFIS (Işık and Inallı, 2018;
Azadeh et al., 2009)

Weather conditions, Time series data

the problem considered does not need a deep learning technol-
ogy. We apply multi-ANFISs in three different states for the build-
ing investigated in our study. The inputs are the outside weather
conditions, including temperature, precipitation, sunshine du-
ration, solar radiation, cloud covering, and relative humidity.
Different ANFIS models are chosen for working days, school days,
and holidays in buildings of both public institutions and private
enterprises. Finally, we compare the results obtained using our
method with the Levenberg–Marquardt back-propagation neural
network, single ANFIS model, linear regression, and nonlinear
regression. By using multi-ANFISs, we can predict electricity con-
sumption as well as the relationship between the input factors
and the output.

This paper is organized as follows: In Section 2, the prob-
lem definition and methodologies are introduced. In Section 3,
the data used is shown and explained. Section 4 introduces the
proposed method and experimental results, and also includes
the performance comparison with other methods. Finally, the
conclusion is presented according to the experimental results.

Main contributions

1. Discussing the level of influence for different input factors
on electricity consumption forecasting. By experiment, GRA
can filter important input factors.

2. Using multiple models to solve the binary problem when
applying ANFIS.

3. Discussing the relationship between input factors (weather
conditions, human activities) and electricity consumption.
The effect of human activity is much larger than weather
conditions, and thus it is transferred to a criterion for
selecting models.

4. Comparison results of each method and the relationship
of input factors for electricity consumption generated by
multi-ANFISs_GRA, multi-LMBP_GRA, linear regression,
nonlinear regression, single ANFIS, and PACF+SAE. Multi-
ANFISs_GRA is simpler with an acceptable performance.

5. An alarm system established using predicted error is pro-
posed, which determines the unusual electricity consump-
tion and excludes the special cases initially.

2. Preliminaries

This section introduces the preliminaries, including problem
formulation of electricity prediction, adaptive network-based
fuzzy inference system (ANFIS), gray relational analysis (GRA),
normalization of data, and evaluation indices.

2.1. Prediction of electricity consumption

Electricity consumption is a basis for power companies to
calculate electricity bills. It is also used to assess the amount
and efficiency of electricity generation. The main consumers of
electricity are air conditioners, elevators, computers, etc. Among
these devices, air conditioners, known as heating, ventilating,
and air conditioning (HVAC), maintain the temperature inside the
building by heat exchange with the outside environment, i.e., the
required energy depends on the weather conditions. Thus, the
amount of electricity consumption of these devices is related to
human activities. Here, we investigate the electricity consump-
tion of a public building (Library) using weather conditions and
human activities. We choose average temperature, wind speed,
precipitation, sunshine duration, solar radiation, cloudiness, and
average relative humidity as the inputs of weather conditions,
represented by x1, x2, . . . , x7, and use the human activity to select
a suitable prediction model. The highest frequency of people
entering and leaving the library are students and the officers
working inside the building. Therefore, we simplify human activ-
ities into two conditions, working day and school day conditions,
which are represented by x8 and x9, respectively The output of
the predicted electricity consumption (y) is represented as

y = f (x1, . . . , x9). (1)

2.2. Gray Relational Analysis

Gray relational analysis (GRA) is used to solve the tuning
operations with multiple performance characteristics (Ping Zhang
et al., 2013). It has three steps, data normalization, relational
coefficient computation, and correlation calculation.

First, we use different normalizing methods on each factor
since the relationship between each factor and the output is
different. In the following, xi (k) and xo(k) denote the input and
output, respectively. We normalize the dataset as follows:

Xi (k) =
xi (k) − min (xi)

max (xi) − min (xi)
(2)

Xi (k) =
max (xi) − xi (k)

max (xi) − min (xi)
(3)

Xo (k) =
xo (k) − min (xo)

max (xo) − min (xo)
. (4)

For temperature, precipitation, sunshine duration, solar radiation
and relative humidity, we use Eq. (2) to normalize, as these fac-
tors and electricity consumption are positively correlated accord-
ing to our study. For wind speed and cloud cover, we use Eq. (3)
to normalize. Eq. (4) shows the corresponding normalization for
output variable.

And then the gray relational coefficient (GRC) is obtained by

∆Xi (k) = |Xo (k) − Xi(k)| . (5)

Subsequently, we compute the GRC between output and inputs
by

ζi (k) =
min∆Xi (k) + ξmax(∆Xi (k))

∆Xi (k) + ξmax(∆Xi (k))
, (6)

where ζ is the identification coefficient. 0 ≤ ζ ≤ 1. ζ = 0.5463
has the best resolution ability according to some studies. In this
study, we use ζ = 0.1, 0.2, . . . , 0.9, 1 and computed the average
of γi in the final step of GRA using a different ζ .

Finally, the gray relational grade (GRG) is calculated. At this
stage, we have the average of ζi,

γi =

∑n
k=1 ζi (k)

n
, (7)

where γi is called GRG that shows the influence level of each
factor.
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Fig. 1. Structure of ANFIS.

2.3. Adaptive Network-based Fuzzy Inference System (ANFIS)

We assume that the relationship between the input variables
and the output is formulated as in Eq. (1) that is established by
the ANFIS. Fuzzy inference system is based on the way people
make decisions on imprecise and non-numerical information. It
uses If-Then rules that are defined by a dataset or the user to
make final decisions to reach control purposes. ANFIS combines
fuzzy inference systems and neural network (Hsu, 2015). The
structure of the first-order Sugeno-type ANFIS (TSK) is shown in
Fig. 1.

From input variables, the corresponding membership values of
input variables are computed by

O1,ij = µj (xi) = exp(−
(xi − mij)2

σ 2
ij

),

i = 1, 2, . . . ,N; j = 1, 2, . . . ,M (8)

where mij, σij are the center and the width of a Gaussian mem-
bership function, respectively; xi denote the weather condition
inputs; M denotes the fuzzy partition number.

The second layer is the rule layer. The firing strength is calcu-
lated by the Mamdani t-norm product

O2,p =

N∏
i=1

µj (xi) = wp, j = 1, 2, . . . ,M; p = 1, 2, . . . , P . (9)

Subsequently, the normalization operation is applied

O3,p =
wp∑P
p=1 wp

= wp. (10)

The output of the defuzzification layer is

O4,p = wpfp = wp

(
N∑
i=0

rpixi

)
, xo = 1 (11)

where rpi is a parameter of the first order Sugeno model. Finally,
the output of ANFIS is

O5,p =

P∑
p=1

wpfp =

∑P
p=1 wpfp∑P
p=1 wp

. (12)

In the training process of ANFIS, the training algorithm will
adjust the width and center of membership functions according
to the If-Then rules.

In this study, the ANFIS is used to predict the electricity
consumption using weather conditions and it is implemented by
MATLAB R2014a. For each structure, we made three attempts and
computed the average error.

Before training and predicting, the data is normalized by

x′
=

x − xmin

xmax − xmin
(13)

where x’ is the normalization value of data. In this study, we
use mean squared error (MSE) and mean absolute percentage
error (MAPE) to evaluate the performance of models. MSE is the
average of the squared error of all data computed by

MSE =
1
N

N∑
n=1

(ŷn − yn)2, (14)

where ŷn is the normalized output of the model and yn is the
normalized target. MAPE is a typical percentage error. The error
in percentage can give a more identical criterion to compare the
models. MAPE can be computed by

MAPE =
1
N

N∑
n=1

|ŷn − yn|
yn

. (15)

3. Dataset introduction

The corresponding electricity consumption data used in this
paper is the electricity consumption of the library of Providence
University, Taichung, Taiwan. Weather condition data is obtained
from the Wuqi District weather station, Taichung, listed in Ta-
ble 2. Data from December 2017 to November 2018 is set to
be the training data, and from December 2018 to February 18,
2019 is the testing data. The training data is shuffled before every
training. From Table 2, there are nine variables considered in this
study. The constraints of the training dataset are listed in Table 3.

4. Electricity prediction using multi-ANFISs_GRA

According to our observations, the electricity consumptions
of different human activities (working day and school day con-
ditions) are different even if the weather conditions are similar.
Table 2 (2018/04/01∼2018/04/03) lists three days having similar
weather conditions, for which different combinations of working
day and school day conditions result in different electricity con-
sumption. Thus, working days and school days are considered as



1512 H.-Y. Chen and C.-H. Lee / Energy Reports 5 (2019) 1509–1524

Table 2
Part of the dataset for this study (2017/12/01∼2017/12/10) and (2018/04/01∼2018/04/03).
Date Avg.

Temp.
(◦C)

Wind
speed
(m/s)

Precip.
(mm)

Sunshine
duration
(h)

Solar radiation
(MJ/m^2)

Cloud Avg.
relative
humidity (%)

Work School Elect.
consume
(kWh)

2017/12/1 19.7 10 0 1 8.33 8.3 78 1 1 4588
2017/12/2 20.2 8.4 0 1.1 8.57 8.5 81 1 0 2877
2017/12/3 20.7 8.5 0 3.3 9.19 6.5 80 1 0 2861
2017/12/4 19.6 9.4 0 9.5 14.23 0 69 1 1 4509
2017/12/5 17.2 8 0 5.5 10.35 4.5 62 1 1 4461
2017/12/6 16.4 4.5 0.5 0.3 5.17 9.5 72 1 1 4319
2017/12/7 16.9 4.7 2 0.1 4.65 9.5 85 1 1 4222
2017/12/8 14.8 9.5 1.5 0 5.11 10 69 1 1 3788
2017/12/9 14.5 3.8 2 1.1 5.76 9 80 1 0 2533
2017/12/10 17.3 4.4 0 8.7 12.85 2.3 79 1 0 2641

. . .

2018/4/1 24.1 2.7 0 5.8 17.44 5.5 73 1 0 3225
2018/4/2 23.5 1.9 0 6.7 19.28 5 77 1 1 4401
2018/4/3 23.9 2.1 0 7.2 21.19 4.8 71 0 0 1347

Table 3
Constraints for all variables.

Avg.
Temp.
(◦C)

Wind
speed
(m/s)

Precip.
(mm)

Sunshine
duration
(h)

Solar
radiation
(MJ/m^2)

Cloud Avg.
relative
humidity (%)

Work School Elect.
Consume
(kWh)

Max 30.8 11.2 126 12.4 27.51 10 96 1 1 8645
Min 8.9 1.6 0 0 0.74 0 46 0 0 964

Fig. 2. Prediction scheme using Multi-ANFISs.

the main parameters for selecting the prediction ANFIS model.
The binary coding of working day and school day dates are not
suitable to use with ANFIS directly, and hence the relationship be-
tween each factor is adjusted to change the binary problem into a
continuous distribution. Therefore, the two parameters (working
date and school date) are used to select the corresponding model
and the other factors are the inputs of the multi-ANFISs. The
proposed multi-ANFISs predicted scheme is shown in Fig. 2. Using
this, we can improve the rationality of ANFIS when encountering
a binary problem.

In general, more inputs result in complexity and a higher
computation effort. Hence, we need to select the main factors
and ignore the ones that are less important. We adopt the GRA
to evaluate the influence level of the various weather conditions.
As described in Section 2.2, the GRC results of GRA shows the

influence of factors. The GRG values calculated using GRC results
contains the complete information about how each factor affects
the whole dataset. The dataset is divided into three sets, ‘‘W1S1’’
is the dataset for both working day and school day, ‘‘W1S0’’ is
dataset for working day but not school day, and ‘‘W0S0’’ is dataset
for a holiday. We use three ANFIS models for three different sit-
uations. For each model, we use the weather conditions with the
top five GRG values as inputs. The entire process of the proposed
method can be comprehended as: human activities determine
the basic level of electricity consumption and weather conditions
are used for tuning the final value. The equation of our problem
formulation can be rewritten as{if x8 = 1 and x9 = 1, y = f1(X1, X2, . . . , X5)
if x8 = 1 and x9 = 0, y = f2(X1, X2, . . . , X5)

if x8 = 0, y = f3 (X1, X2, . . . , X5) ,
(16)
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Fig. 3. GRG of weather conditions.

Fig. 4. Prediction results using structure 1.

Table 4
Performance of the proposed multi-ANFISs_GRA scheme.
Parameters of
MF structure

Number of membership functions Training error Testing
MSE

Epochs
(each ANFIS)

Temp. Sunshine
duration

Solar
radiation

Cloud Relative
humidity

Structure 1 2 2 2 2 2
W1S1: 0.0604

0.0273 500W1S0: 0.0543
W0S0: 0.0389

Structure 2 3 2 2 2 2
W1S1: 0.0582

0.0654 1000W1S0: 0.0535
W0S0: 0.0287

Structure 3 2 3 3 2 2
W1S1: 0.0587

0.035 1000W1S0: 0.0527
W0S0: 0.0282

Structure 4 2 2 2 3 2
W1S1: 0.061

0.0793 1000W1S0: 0.05
W0S0: 0.029

Structure 5 2 2 2 2 3
W1S1: 0.0579

0.0513 1000W1S0: 0.0526
W0S0: 0.0344

where X1, X2, . . . , X5 are the top five input factors, x8, x9 are the
working day and school day conditions.

5. Experimental results and discussions

This section introduces several experimental results to show
the effectiveness and performance of our approach, including the
comparison results on applying GRA to weather conditions for
electricity consumption, comparison results using multi-ANFISs
and single ANFIS, prediction using the LM-BP neural network,
and alarm for abnormal situations. According to Table 1, there
are very few studies that have used weather conditions as input
variables. Moreover, the results of Azadeh et al. (2008), Işık and

Inallı (2018) and Deb and Lee (2018) using weather conditions
did not introduce the relational analysis. Therefore, we present a
complete method here. Other models will also be compared using
the factors of our study to ensure the fairness of comparison.

(a) Performance of proposed multi-ANFISs_GRA scheme
The GRG of seven input factors are shown in Fig. 3. From this

figure, we can see that the influence level of wind speed and pre-
cipitation are lower than the other factors. Thus, the remaining
five major conditions are considered for the prediction. In this
section, we present the comparison results for different structures
of membership functions. The performance and the number of
membership functions of each input are listed in Table 4. The



1514 H.-Y. Chen and C.-H. Lee / Energy Reports 5 (2019) 1509–1524

Fig. 5. Membership functions for W1S1.

number on the table denotes the fuzzy partition, e.g., Structure
1 has five inputs and each input has two membership functions.
All inputs, outputs, and targets are normalized. From Table 4, we
observe that Structure 1 has a smaller testing MSE. Therefore,
we choose Structure 1 as the final model. The prediction of the
training dataset and the testing dataset using Structure 1 is shown
in Fig. 4. Fig. 4(a) and (b) are the training and testing results,
respectively. The corresponding membership functions (MFs) of
each input of Structure 1 are shown in Figs. 5, 6, and 7. According
to the results presented earlier, we can see that the proposed
method can predict electricity consumption with MSE less than
3%.

(b) Discussion of using GRA

We introduce a comparison result of multi-ANFISs using seven
and five parameters, i.e., discussion of GRA effectiveness. Table 5
lists the comparison results of ANFIS using five
(multi-ANFISs_GRA) and seven conditions (multi-ANFISs). The
corresponding membership functions of each input factor are
listed in Table 5. As shown inTable 5, ANFIS with seven in-
puts has a high computational effort (approximately 15 min)
due to more tuning parameters (1052) and fuzzy rules (192),
while the multi-ANFISs_GRA has a lower computational time
(1 min 24 s) in which the fuzzy rules of the single model are
32 and the tuning parameters are 212. The corresponding MSE
of multi-ANFISs_GRA is approximately 8 times better than the
results of multi-ANFISs. This illustrates the effectiveness of GRA.
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Fig. 6. Membership functions for W1S0.

Table 5
Comparison and illustration of ANFISs using GRA.

Number of membership functions Epochs Testing MSE Time

Temp. Wind
Speed

Precip. Sunshine
Duration

Solar
radiation

Cloud Relative
Humi.

Multi-ANFISs 2 2 3 2 2 2 2 500 epoch
each ANFIS

0.2159 15 min
Multi-ANFISs_GRA 2 2 2 2 2 0.0273 1 min 24 s

Table 6
Comparison of single ANFIS and multi-ANFISs_GRA.

Number of membership functions Number of
parameters

Testing
MSE

Epochs Time

Temp. Sunshine
Duration

Solar
radiation

Cloud Relative
Humi.

Working
day

School
day

Single ANFIS 2 2 2 2 2 2 2 1052 0.0111 500 4 min
Multi-ANFISs_GRA 2 2 2 2 2 212 × 3 0.0273 500 each

model
1 min
24 s
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Fig. 7. Membership functions for W0S0.

In the following discussions, the multi-ANFISs_GRA is adopted for
demonstrations.

(c) Discussion of ANFIS models
Here, we discuss the effectiveness of using ANFIS models.

Comparison results of prediction performance using ANFISs with
the same weather conditions input factors and adding working
day and school day conditions as inputs are introduced, denoted
as multi-ANFISs_GRA and single ANFIS. Table 6 lists the cor-
responding structure, learning parameters, predicted MSE, and
computational effort (time). We can find that these two systems
have a similar performance in MSE, while the single ANFIS model
performs better with a larger computational time (4 min). The
corresponding predictions of models using the testing dataset
are shown in Fig. 8, 8(a) and (b) are results of multi-ANFIS_GRA
and single ANFIS, respectively (blue lines represent prediction,
black lines indicate the actual data). From Fig. 8, we observe that
there is a large prediction error during the New Year’s holiday

and winter vacation. Single ANFIS has better accuracy since it
uses the whole dataset to train model. However, if we observe
the membership function of the single ANFIS, we can notice
the unreasonable membership function of using single ANFIS,
as shown in Fig. 9. Also, the structure of multi-ANFISs_GRA is
simpler than the single ANFIS model since the number of the
parameters is only 60.5% of single ANFIS.

(d) Comparison on models (ANFIS and LM-BP)
In this discussion, we have the comparison results between

LM-BPs and ANFISs. We use the same scheme as shown in Fig. 2
with the ANFISs are replaced by three LM-BP models, and the
corresponding parameters are introduced in Table 7. Table 8
lists the corresponding comparison results of testing MSEs. The
computational effort (time) of LM-BPs is larger than ANFISs and
the results of LM-BPs have better MSEs than ANFISs, however, the
ANFISs are acceptable with explainable models and less parame-
ters compared to LM-BP. The corresponding fuzzy rules of ANFISs
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Fig. 8. Prediction results using multi-ANFISs_GRA and single ANFIS . (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 9. MFs of temperature using single ANFIS.

after training are introduced in Appendix. The prediction results
of two models are shown in Fig. 10, 10(a) and (b) are results of
ANFIS and LM-BP (blue: prediction result, black: actual values)

(e) Comparison with other models
First, we compare the results of the proposed method, linear

regression, and nonlinear regression. The comparison of MAPE is
listed in Table 9. The corresponding predictions using regression
models are shown in Fig. 11, 11(a) denotes the linear regression
result, and Fig. 11(b) is the nonlinear regression. We can find that
the result of our approach (multi-ANFISs_GRA) is better than the
results of regression methods. However, the regression models
are less complicated. Fig. 12 introduces the comparison of param-
eters using different models. The figure shows that our proposed
method gets a better balance between model complexity and
performance.

A comparison result with a deep learning approach (denotes
PACF+SAE (Li et al., 2017), a combination of time series pre-
diction and deep learning methods) is introduced to illustrate
the effectiveness and performance of our approach. We briefly
introduce it here. Partial auto-correlation function (PACF) is ap-
plied to analyze the correlation between recent and past data.
The input variables of the time series can be evaluated according
to the PACF values. Then, the sparse autoencoder (SAE) is used
to build the predicted model. The number of lags is chosen as
30 since we consider that time affects electricity within a period
of 30 days. The threshold of auto-correlation is chosen as ±0.2.

Table 7
Parameters of each LM-BP.
Parameters Value

Max epoch 5000
Performance goal 0
Minimum of gradient 10−14

Initial µ 0.05
Increase of µ 0.5
Decrease of µ 1000
Structure of hidden layer 13–17–13 with biases

(number of parameters: 564)
Activation function Hyperbolic tangent (tansig)
Learning rate 0.01

Table 8
Comparison of LM-BPs and ANFISs.

Number of
parameters

Testing MSE Time

Multi-LM-BPs 564 × 3 0.013 4 min 43 s
Multi-ANFISs 212 × 3 0.0273 1 min 24 s

Table 9
Comparing MAPE of part (e).
Model MAPE of testing data

Multi-ANFISs_GRA 12.25%
Linear regression 17.07%
Nonlinear regression 16.0%

The result of PACF is shown in Fig. 13. The determined optimal
input variables with respect to electricity consumption y(p) are
x1 = y(p−14), x2 = y(p−8), x3 = y(p−7), x4 = y(p−6), and x5 =

y(p− 1). Subsequently, the autoencoder is trained and the inputs
are the five variables chosen by PACF. The number of nodes of the
single hidden layer inside the autoencoder is 100. L1 regularizer
is applied with the value of 0.0002. The decoder is removed, and
we get a two-layer back-propagation neural network (BPNN) for
prediction. There are 32 nodes in the first hidden layer and 16
in the second layer. The result is shown in Fig. 14. The MAPE
of PACF+SAE is 21.9%. Though we use a deep learning method,
the performance is not comparable to our proposed method and
other simple methods.

(f) Alarm system of abnormal situation
In this section, we discuss how to detect the unusual electricity

consumption by the proposed multi-ANFISs_GRA. Comparing the
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Fig. 10. Prediction of multi-ANFISs and multi-LM-BPs.

Fig. 11. Prediction results using regression models.

Fig. 12. Comparing number of parameters using different models.

prediction errors, we observe the results and find time peri-
ods with obvious errors owing to corresponding events from
the calendar of Providence University and the website of the
Library of Providence University. Finally, we have the following
observations from the events and the corresponding predicted
errors. The predicted performances are introduced in Fig. 15, (a)
examination; (b) library activity for fresh student; and (c) last day

of semester. The established alarm system is designed using the
following observations:

1. Examination: We find that the electricity consumption
a week before the examination has an evident error, as
shown in Fig. 15(a). Fig. 15(a) shows the prediction results
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Fig. 13. Partial auto-correlation of electricity consumption with 30 lags.

Fig. 14. Prediction result of SAE versus actual values.

during the examination period (June 19, 2017). The elec-
tricity consumption of June 12 to 16, 2017 is higher than
the prediction. We compute all the prediction errors of cor-
responding events. The range of the differences comparing
to prediction is between −25.8% and 23.8%.

2. Events held by library: Human activity is a main factor of
electricity consumption. We can also see the corresponding
phenomenon by observing the divergence between predic-
tion and actual data. Fig. 15(b) shows that the electricity
consumption of this week is much higher than the pre-
diction. According to the website of the library, it held a
welcome event for freshmen from October 16 to 20, 2017.
In the other words, there were more people than usual.
We also compare the difference between the same period
of 2017 and 2018 (Fig. 15(c)). The consumption of 2017 is
higher than the data of 2018 by approximately 15%. The
maximum difference compared to the model is 25.4%.

3. The last day of the semester: Though the school arranges
the exam week, most departments only need a couple of
days instead of the entire week. This circumstance can be
observed at the final exam week since the students who get
accommodations may go home right after they finish the
tests. From Fig. 15(d), at January 9, 2017, it is the first day
of the final exam week. We can notice that the electricity
consumption is lower than the prediction from the fourth

day of the exam week. The same situation can be observed
in 2018. The differences between the actual data compared
to the prediction is between −1.9% to −75.3%. The average
is −27.71%.

According to these cases, we set up an alarm threshold which
can inform the users and exclude most of these situations. The
value we choose is ±40% with a safety factor 1.5. If the difference
is out of this range, the system will show an alarm so that the
person in charge can handle it as soon as possible. In Fig. 16,
we use data from December 2018 to February 18, 2019 to show
a simple alarm application. The black line is the prediction of
the proposed model. The yellow region is the acceptable region,
which means the error is within ±40% of prediction. The red
points and the blue points are actual data points. The blue points
are inside the acceptable region. The red points are outside the
region, which represents that the error between actual data and
output of the alarm system is greater than 40%.

6. Conclusions

In this study, we have proposed a predictive and explain-
able forecast method based on ANFIS with multiple models. GRA
evaluates and selects the input factors. By inputting the selected
environment factors, e.g., temperature, sunshine duration, and
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Fig. 15. Prediction results of human activity events.

solar radiation and the working day and school day conditions,
the consumption of electricity of a school library can be predicted
and analyzed. Multiple models are more flexible because the
models of different categories are trained independently. We
can adjust the models for different situations, for example, in
the case of our study, we can add more data for the model
of the holiday condition to improve the accuracy. ANFIS is a
combination of fuzzy inference systems and a structure of neu-
ral networks. It can infer the relationship between inputs and
output, which neural networks cannot show us. The integra-
tion of multiple models and ANFIS provide a faster method for
forecasting electricity consumption by inputting effective factors.
The factors are different in different buildings according to the
function of each one. We used single ANFIS, LM-BPs, regressions,
and SAE as comparisons. The results showed that multi-ANFISs is
slightly less accurate than the single ANFIS and LM-BPs, which

are complicated models. When comparing with simple mod-
els like regression methods, multi-ANFISs show a much better
performance. We conclude that multi-ANFISs_GRA can be used
not only for predicting the electricity consumption, but also for
specific correlation between factors and the use of electricity. At
the same time, multi-ANFISs_GRA has a simpler structure. We
also provided an alarm threshold to determine unusual electricity
consumption. The prediction can be a reference of the contract
of electricity consumption mentioned in the Introduction. This
application can reduce both electricity fee and the chance of
emergency power supply. For the alarm application, since Taiwan
is a country with a lot of typhoons in summer, we can try to
analyze the influence of short-time power failure caused by bad
weather and define a new threshold for abnormal electricity
consumption.
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Fig. 16. Illustration of alarm criterion from prediction result . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Appendix. FUzzy rules of ANFIS

In the following, X denotes the input variables [Temp., Sun-
time, SunEnerg., Cloud, Humi. 1]T .

A.1. Fuzzy rules of ANFIS-surface of W1S1

1. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is low) then (out-
put is [0.001088 0.00113 0.001302 0.001802 0.001426
0.002904]×X)

2. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is high) then (output
is [0.0278 0.01195 0.01678 0.03051 0.02921 0.05287] ×X)

3. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is low) then (output
is [0.005011 0.005049 0.008594 0.02243 0.01267 0.02677]
×X)

4. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is high) then (output
is [0.155 0.02248 0.0639 0.07746 0.02423 0.1507] ×X)

5. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is low) then (out-
put is [0.001429 0.003826 0.003181 0.003687 0.001986
0.006513] ×X)

6. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is high) then (output
is [0.1294 0.1093 0.1071 0.1561 0.1363 0.3382] ×X)

7. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is low) then (output
is [−0.003383 0.02979 0.03133 0.05931 0.02041 0.07757]
×X)

8. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is high) then (output
is [0.02292 −0.01354 −0.03438 0.1237 −0.03887 0.2854]
×X)

9. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is low) then (out-
put is [0.002701 0.003814 0.003297 0.001227 0.002001
0.005223] ×X)

10. If (Temp. is low) and (Suntime is long) and (SunEnerg.
is small) and (Cloud is few) and (Humi. is high) then
(output is [0.008989 0.007594 0.008134 0.01038 0.009694
0.01919] ×X)

11. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is low) then (out-
put is [0.001709 0.002734 0.003368 0.005865 0.003155
0.007938] ×X)

12. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is high) then (output
is [0.01335 0.01268 0.0142 0.02344 0.01724 0.03648] ×X)

13. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is low) then (output
is [0.09742 0.2004 0.0466 −0.04086 −0.0004338 0.1694]
×X)

14. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is high) then (output
is [0.05012 0.1601 0.0627 −0.0405 −0.1061 0.2356] ×X)

15. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is low) then (output
is [0.01604 0.04283 0.04486 0.06892 0.02987 0.1014] ×X)

16. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is high) then (output
is [−0.1535 0.08494 −0.08169 0.1788 −0.03485 0.3537]
×X)

17. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is low) then (out-
put is [0.004695 0.002844 0.003539 0.003391 0.003616
0.006264] ×X)
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18. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is high) then (output
is [0.05371 0.02144 0.03081 0.04329 0.05078 0.07616] ×X)

19. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is low) then (output
is [0.01747 0.004209 0.009524 0.0202 0.01479 0.02422]
×X)

20. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is high) then (output
is [0.2786 0.04487 0.09327 0.2883 0.2486 0.3567] ×X)

21. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is low) then (output is
[0.01397 0.01194 0.0121 0.006632 0.008684 0.01733] ×X)

22. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is high) then (output
is [0.149 0.06217 0.05211 0.09296 0.1101 0.2061] ×X)

23. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is low) then (output
is [0.01038 0.009281 0.009253 0.01101 0.008396 0.01805]
×X)

24. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is high) then (output
is [0.3208 0.09191 0.1233 0.1132 0.2451 0.2256] ×X)

25. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is low) then (output is
[0.0103 0.01108 0.01027 0.003353 0.006273 0.0147] ×X)

26. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is high) then (output
is [0.03492 0.025 0.02782 0.0207 0.02842 0.04653] ×X)

27. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is low) then (out-
put is [0.006833 0.004558 0.005627 0.005483 0.005208
0.009211] ×X)

28. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is high) then (output
is [0.06103 0.02724 0.03518 0.04882 0.04775 0.07389] ×X)

29. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is low) then (output is
[0.08639 0.1437 0.04352 −0.004991 0.01717 0.1568] ×X)

30. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is high) then (output
is [0.5576 0.2208 −0.3355 0.1089 −0.004861 0.4917] ×X)

31. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is low) then (output
is [0.04189 0.03048 0.03179 0.02144 0.02536 0.05497] ×X)

32. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is high) then (output
is [0.5123 −0.04301 −0.2238 0.1485 0.2356 0.3214] ×X)

A.2. Fuzzy rules of ANFIS-surface of W1S0

1. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is low) then (output
is [0.001086 0.001129 0.0013 0.001799 0.001424 0.0029]
×X)

2. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is high) then (output
is [0.01238 0.006291 0.007785 0.01085 0.01482 0.0213]
×X)

3. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is low) then (output
is [0.004984 0.005048 0.008578 0.02235 0.01263 0.02669]
×X)

4. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is high) then (output
is [0.04418 0.02973 0.05642 0.04596 0.03936 0.06883] ×X)

5. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is low) then (out-
put is [0.001372 0.003885 0.003172 0.003569 0.001951
0.006496] ×X)

6. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is high) then (output
is [0.09828 0.04516 0.05483 0.06087 0.1133 0.1535] ×X)

7. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is low) then (output
is [−0.003524 0.02971 0.03119 0.05908 0.02028 0.07728]
×X)

8. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is high) then (output
is [−0.09197 0.02387 −0.04338 0.04695 0.07725 0.08976]
×X)

9. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is low) then (out-
put is [0.002682 0.003839 0.003307 0.001184 0.001987
0.005218] ×X)

10. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is high) then (output
is [0.008099 0.008851 0.00784 0.005801 0.0104 0.0161]
×X)

11. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is low) then (out-
put is [0.001703 0.002726 0.003361 0.005854 0.003149
0.007918] ×X)

12. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is high) then (output
is [0.01071 0.009119 0.01127 0.02062 0.01746 0.02853]
×X)

13. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is low) then (output
is [0.06332 0.1624 −0.0004843 −0.04582 −0.0068 0.127]
×X)

14. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is high) then (output
is [−0.03652 0.05365 −0.07189 0.02001 0.01848 0.1905]
×X)

15. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is low) then (output
is [0.01448 0.04128 0.04279 0.06738 0.02902 0.09854] ×X)

16. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is high) then (output
is [−0.07287 −0.02195 −0.09935 0.04318 0.0882 0.1579]
×X)

17. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is low) then (output is
[0.004695 0.002844 0.003539 0.00339 0.003615 0.006263]
×X)

18. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is high) then (output
is [0.0472 0.01912 0.02674 0.03413 0.04357 0.06227] ×X)

19. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is low) then (output
is [0.01746 0.004208 0.009522 0.02019 0.01478 0.0242]
×X)

20. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is high) then (output
is [0.2539 0.04286 0.07685 0.2273 0.1897 0.2745] ×X)

21. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is low) then (output
is [0.01394 0.01195 0.01209 0.006597 0.008672 0.01732]
×X)

22. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is high) then (output
is [0.2452 0.1108 0.1411 0.1382 0.2 0.2891] ×X)
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23. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is low) then (output
is [0.01032 0.009253 0.009196 0.01092 0.008347 0.01794]
×X)

24. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is high) then (output
is [0.3783 0.1071 0.09315 0.09859 0.2051 0.282] ×X)

25. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is low) then (output is
[0.0103 0.01109 0.01027 0.003345 0.006272 0.0147] ×X)

26. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is high) then (output
is [0.0343 0.02512 0.02747 0.01913 0.02846 0.04504] ×X)

27. If (Temp. is high) and (Suntime is long) and (SunEnerg.
is small) and (Cloud is much) and (Humi. is low) then
(output is [0.006832 0.004556 0.005625 0.00548 0.005206
0.009207] ×X)

28. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is high) then (output
is [0.06013 0.02626 0.03429 0.04786 0.04797 0.07126] ×X)

29. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is low) then (output
is [0.06722 0.1194 0.01695 −0.007282 0.0123 0.1289]×X)

30. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is high) then (output
is [0.4559 −0.03064 −0.131 0.2562 0.1823 0.3195] ×X)

31. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is low) then (output
is [0.04061 0.02946 0.03041 0.02051 0.02479 0.05323] ×X)

32. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is high) then (output
is [0.4267 −0.0752 −0.1407 −0.01246 0.1913 0.292] ×X)

A.3. Fuzzy rules of ANFIS-surface of W0S0

1. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is low) then (output
is [0.001407 −0.01757 −0.01459 −0.005075 −0.004438
−0.02122] ×X)

2. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is high) then (out-
put is [0.01389 0.001003 −0.002786 0.002199 −0.001701
0.003698] ×X)

3. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is low) then (output
is [0.0962 0.008526 0.02826 0.01269 0.0006347 0.02919]
×X)

4. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is high) then (output
is [0.1556 0.01833 0.01493 0.004455 −0.05347 0.002206]
×X)

5. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is low) then (output
is [−0.006357 −0.01512 −0.01555 −0.01798 −0.01343
−0.02805] ×X)

6. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is high) then (output is
[0.01092 0.005484 0.004852 −0.009877 0.00556 0.004598]
×X)

7. If (Temp. is low) and (Suntime is short) and (SunEnerg.
is large) and (Cloud is much) and (Humi. is low) then
(output is [0.0232 −0.01624 −0.002639 0.01881 0.007631
0.009785] ×X)

8. If (Temp. is low) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is high) then (out-
put is [0.02599 −0.01623 0.002511 0.02681 −0.005619
0.0183] ×X)

9. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is low) then (out-
put is [−0.007639 0.1049 0.05058 −0.02346 −0.003216
0.09709] ×X)

10. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is high) then (out-
put is [0.003183 −0.02651 −0.01903 −0.01159 −0.009184
−0.02802] ×X)

11. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is low) then (output
is [0.001334 −0.01127 −0.01054 −0.008705 −0.006271
−0.01983] ×X)

12. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is high) then (out-
put is [0.0171 0.001306 −0.0006532 0.0006805 0.001949
0.003433] ×X)

13. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is low) then (output
is [−0.03373 0.1017 0.03644 −0.05938 −0.05294 0.0927]
×X)

14. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is high) then (out-
put is [0.009764 −0.04507 −0.01846 −0.0535 0.005171
−0.03752] ×X)

15. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is low) then (out-
put is [0.0001028 −0.01105 −0.01003 −0.0111 −0.008933
−0.02334] ×X)

16. If (Temp. is low) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is high) then (output
is [0.02335 0.006356 0.01151 0.008024 0.01385 0.01158]
×X)

17. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is low) then (output
is [0.03878 0.02047 0.02309 0.04988 0.04293 0.0783] ×X)

18. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is high) then (out-
put is [0.03407 0.001638 −0.02742 −0.01271 −0.1021
−0.06166] ×X)

19. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is low) then (output
is [−0.1372 0.04845 0.08225 0.001602 0.07061 0.0934]
×X)

20. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is high) then (output
is [−0.2942 −0.1587 −0.1923 0.3549 −0.262 0.2158] ×X)

21. If (Temp. is high) and (Suntime is short) and (SunEnerg.
is large) and (Cloud is few) and (Humi. is low) then (out-
put is [−0.0416 −0.001359 −0.03243 −0.02324 −0.02294
−0.03265] ×X)

22. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is high) then (output
is [0.07955 0.1095 0.078 0.0953 0.01316 0.02077] ×X)

23. If (Temp. is high) and (Suntime is short) and (SunEnerg.
is large) and (Cloud is much) and (Humi. is low) then
(output is [−0.06498 0.01311 −0.001138 0.04555 0.02197
0.07213] ×X)

24. If (Temp. is high) and (Suntime is short) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is high) then (output
is [0.1225 −0.2187 −0.05128 0.07252 −0.06178 0.07808]
×X)

25. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is low) then (out-
put is [0.02271 −0.01244 −0.007807 0.004681 −0.007978
−0.01197] ×X)
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26. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is few) and (Humi. is high) then (output
is [0.119 0.07708 0.06623 0.06073 0.106 0.1431] ×X)

27. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is low) then (out-
put is [0.000322 0.003675 0.004733 0.007909 0.007348
0.009736] ×X)

28. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
small) and (Cloud is much) and (Humi. is high) then (output
is [0.001086 0.04777 0.03466 −0.002351 0.03077 0.04901]
×X)

29. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is low) then (output is
[0.1035 −0.02181 0.03819 −0.007867 −0.02285 0.02059]
×X)

30. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is few) and (Humi. is high) then (output is
[0.08737 −0.1835 0.008111 0.08812 0.07189 0.09713] ×X)

31. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is low) then (out-
put is [−0.001709 0.005811 0.01107 0.01174 −0.0001003
0.02528] ×X)

32. If (Temp. is high) and (Suntime is long) and (SunEnerg. is
large) and (Cloud is much) and (Humi. is high) then (output
is [−0.08746 0.05875 0.03154 −0.004031 0.1148 0.1062]
×X)
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