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Abstract

Production of bio-succinic acid through microbial fermentation using agro-industrial waste has been observed extensively.
Large scale production is now being considered since bio-succinic acid has broad range application in several industries
including agricultural, food, chemical, metal, and pharmaceutical industry as a precursor, ion chelator, and or additive agent.
One of promising microbes able to produce bio-succinic acid in large amount and recognized for industrial production
is Actinobacillus succinogenes. However, several factors still need to be considered in order to optimize the fermentation
performance. Therefore, this paper aims to review the progress of fermentation methods and discuss the fermentation strategy
focused on the influences of different carbon sources, nitrogen sources, pH regulator, and fermentation configuration to the
fermentation parameters including concentration, productivity and yield of bio-succinic acid. As a result, combinations of
several fermentation strategies are needed to be performed to realize an efficient and effective bio-succinic acid industry.

c⃝ 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bio-succinic acid – a term of succinic acid (C4H6O4) produced from renewable resources – is one of top twelve
value added chemicals from biomass based on report released by US Department of Energy [1]. As the most
important C4 building-block, bio-succinic acid is widely used in several industries including agricultural, food,
chemical, metal, and pharmaceutical industry as a precursor, ion chelator, and or additive agent [2–6].

Naturally, bio-succinic acid is formed by plants, animals, and microorganism as a fermentation product. However,
highest production of bio-succinic acid is achieved by anaerobic microbial fermentation [7]. Various microbes can
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be utilized as bio-succinic producer including bacteria isolated from rumen, such as Actinobacillus succinogenes,
Anaerobiospirillum succiniciproducens, Mannheimia succiniciproducens, Basfia succiniciproducens and Bacillus
fragilis and certain fungi such as Fusarium, Aspergillus and Penicillium species [8–12].

Fortunately, A. succinogenes is recognized as one of the most promising microorganisms for industrial production,
due to it produces relatively large amount of bio-succinic acid [13,14] and its able to use a broad range of carbon
sources [15] including lactose, xylose, arabinose, cellobiose, and other reduced sugars, to produce succinic acid
as a major end product [9,16,17]. Besides, various renewable and inexpensive resources have been utilized by A.
succinogenes to produce bio-succinic acid, including empty fruit bunch (EFB), sugarcane bagasse, corn stover,
carob pods, corn fiber, sake lees, rapeseed meal, wheat bran, waste bread, corn stalk, cotton stalk, cane molasses,
duckweed, fresh cassava root, cheese whey, corn cob, and corn straw.

This paper aims to review the progress of bio-succinic acid production by A. succinogenes as the most promising
microorganisms using agro-industrial wastes. Fermentation strategy as the key success of microbial production of
bio-succinic acid will be discussed.

2. Bio-succinic acid production by microbial fermentation

Microbial fermentation of bio-succinic acid was conducted for the first time by Georgius Agricola in 1546 [5,7].
Currently, large scale microbial fermentation in order to produce bio-succinic acid is expected, since bio-succinic
acid has wide application in several industries. In order to meet the needs, different fermentation strategy of
bio-succinic acid production has been observed by many researchers considering several factors affect to the
fermentation performance, including carbon sources, nitrogen sources, pH regulator, and fermentation configuration.
As the promising microorganism, the summary will be focused on the use of A. succinogenes as the producer of
bio-succinic acid, as shown in Table 1.

3. Production of bio-succinic acid using different carbon sources

Various carbon sources have been employed by researchers to produce bio-succinic acid using A. succinogenes.
In order to meet industrial needs by reducing production cost, carbon sources were originated from several agro-
industrial wastes as the renewable and inexpensive resources which abundantly available. Empty fruit bunch (EFB)
of palm oil has been utilized to produce bio-succinic acid. By using autoclave-alkali pretreatment, reducing sugar of
EFB was used as the fermentation substrate obtaining 33.4 g/L bio-succinic acid concentration with the productivity
of 1.69 g/L/h and yield of 0.47 g/g substrate [36]. In the other side, sugarcane bagasse has been observed as the
carbon sources of bio-succinic acid fermentation. By using batch fermentation mode, concentration of bio-succinic
acid obtained was 22.5 g/L, with productivity of 1.014 g/L/h and yield of 0.43 g/g substrate [18]. Meanwhile, 70.81
g/L of bio-succinic acid concentration by using fed-batch fermentation mode, with productivity of 1.42 g/L/h and
yield of 0.815 g/g sugar [23].

Corn stover has also been utilized as the carbon sources by several researchers. Bio-succinic acid concentration
obtained was 42.8 g/L, productivity of 1.27 g/L/h, and yield of 0.74 g/g sugar by using yeast extract and corn
steep liquor as the nitrogen sources [29]. Moreover, other study has been attempted to improve the production
of bio-succinic acid by supplementing yeast extract and yeast cell hydrolysate as the nitrogen sources, obtaining
56.4 g/L of bio-succinic acid concentration with the yield of 0.73 g/g glucose [27]. Another strategy has been
conducted by performing simultaneous saccharification and fermentation and obtaining 47.4 g/L of bio-succinic
acid concentration, 0.99 g/L/h of productivity and yield of 0.72 g/g substrate [35].

Other types of corn waste has also been observed as the carbon source to produce bio-succinic acid via
fermentation route, including corn fiber, corn stalk, corn cob, and corn straw. Corn fiber has been used in two
different studies. Using different types of nitrogen sources, there is slight difference against the value of bio-succinic
acid concentration. 35.4 g/L of bio-succinic acid concentration was obtained by using yeast extract and corn steep
liquor as the nitrogen source with the productivity of 0.98 g/L/h and yield of 0.725 g/g total sugar [19], while 35.5
g/L of bio-succinic acid concentration was obtained using yeast extract and yeast cell hydrolysate as the nitrogen
sources, with 0.63 g/L/h of productivity and 0.677 g/g glucose [22]. Corn cob has also been used obtaining 23.64
g/L of bio-succinic acid concentration, 0.49 g/L/h of productivity, and 0.58 g/g sugar of yield [33]. In the other
study, corn straw has been utilized as the carbon sources by conducting different mode of fermentation, obtaining
higher value of bio-succinic acid concentration, productivity, and yield at 53.2 g/L, 1.21 g/L/h, and 0.825 g/g sugar
respectively, by using fed-batch mode than by using batch mode [34].
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Table 1. Production of bio-succinic acid by A. succinogenes in different strategy.

Fermentation operating factors Conc. Prod. Yield Ref.

Carbon sources Nitrogen sources pH regulator Configuration (g/L) (g/L/h) (g/g)

EFB Yeast extract and corn steep liquor MgCO3 SSF 33.4 0.69 0.47 [5,7]
Sugarcane bagasse Yeast extract NaOH SHF 22.5 1.014 0.43 [18]

Carob pods Yeast extract NaOH SHF
9.04 1.67 0.39

[13]
18.97 1.43 0.94

Corn fiber Yeast extract and corn steep liquor MgCO3 SHF 35.4 0.98 0.725 [19]
Sake lees Yeast extract and corn steep liquor MgCO3 SHF 48 0.94 0.75 [20]

Rapeseed meal Yeast extract Na2CO3 SSF
15.5 0.22 0.12

[21]
23.4 0.33 0.12

Corn fiber Yeast extract and yeast cell hydrolysate MgCO3 SHF 35.5 0.63 0.677 [22]

Sugarcane bagasse Corn steep powder MgCO3 SHF
39.9 1.37 0.82

[23]
70.81 1.42 0.815

Wheat bran Yeast extract MgCO3 SHF 50.6 1.04 0.73 [24]
Waste bread Yeast extract NaOH and H2SO4 SHF 47.3 1.12 0.55 [25]

Corn stalk
Yeast extract and urea NaOH SHF

17.8 0.56 0.66
[26]

Cotton stalk 15.8 0.62 1.23

Corn stover Yeast extract and yeast cell hydrolysate Mg(OH)2 and NaOH SHF 56.4 N/A 0.73 [27]

Cane molasses Yeast extract Na2CO3 SHF
46.4 0.97 0.79

[28]
55.2 1.15 N/A

Corn stover Yeast extract and corn steep liquor Na2CO3 SHF 42.8 1.27 0.74 [29]

Duckweed Corn steep liquor powder MgCO3

SHF 62.12 1.04 0.81
[30]SSF 52.41 0.87 N/A

SSSF 65.31 N/A 0.85

Fresh cassava root Yeast extract MgCO3 SHF
93.34 1.87 0.77

[31]
151.44 3.22 1.51

Cheese whey Yeast extract and peptone NaOH N/A 21.2 0.44 0.57 [32]

Corn cob Yeast extract MgCO3 SHF 23.64 0.49 0.58 [33]

Corn straw Yeast extract MgCO3 SHF
45.5 0.95 0.81

[34]
53.2 1.21 0.825

Corn stover Corn steep liquor MgCO3 SSF 47.4 0.99 0.72 [35]

SHF: Separate Hydrolysis and Fermentation; SSF: Simultaneous Saccharification and Fermentation; SSSF: Semi-Simultaneous Saccharification
and Fermentation; Conc.: concentration of bio-succinic acid; Prod.: productivity of bio-succinic acid.

Carob pods have also been used as the carbon sources for fermentation. A study showed 9.07 g/L and 18.97
g/L of bio-succinic acid concentration has been obtained by employing batch and fed-batch fermentation mode,
respectively [13]. Sake lees have also been utilized as carbon sources and obtaining 48 g/L of bio-succinic acid
concentration [20]. Rapeseed meal as the carbon source, indicates concentration of bio-succinic acid at 23.4 g/L by
employing fed-batch fermentation mode [21], while wheat bran as the carbon sources, shows the concentration of
bio-succinic acid at 50.6 g/L by employing batch fermentation mode [24]. Waste bread [25] and cotton stalk [26]
has also been studied as the carbon sources for the production of bio-succinic acid, resulting the concentration
of bio-succinic acid at 47.3 g/L and 15.8 g/L, respectively. Cane molasses [28] and cheese whey [32] has also
been investigated, obtaining concentration of bio-succinic acid of 55.2 g/L and 50 g/L, respectively. Moreover,
duckweed [30] as the carbon sources has been investigated by employing different configuration of fermentation and
obtaining the highest bio-succinic acid concentration at 65.31 g/L by applying semi-simultaneous saccharification
and fermentation (SSSF). From all the carbon sources, fresh cassava root [31] exhibits the highest value of bio-
succinic acid concentration at 151.3 g/L by applying fed-batch fermentation mode. Thus, the use of agro-industrial
waste has to be considered as the carbon sources of microbial fermentation to produce bio-succinic acid in large
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scale since agro-industrial waste abundantly available throughout the year, renewable, inexpensive, environmentally
friendly, and does not compete with food needs.

4. Production of bio-succinic acid using different nitrogen sources

One of the significant factors affecting the fermentation performance and bio-succinic acid production is the
presence of proper nitrogen sources. There are two types of nitrogen sources, including organic and inorganic
sources. However, in the production of bio-succinic acid by A. succinogenes, organic nitrogen sources are extensively
used by researchers due to inorganic nitrogen sources are not proper for A. succinogenes growth [28]. The organic
nitrogen sources commonly used are yeast extract, meat extract, peptone, tryptone, corn steep liquor, and nutrient
broth.

Different types of nitrogen sources has been employed including wheat bran, beef extract, soy peptone, soy
bean powder, yeast extract, and corn steep liquor. Among them, yeast extract exhibits the highest result for bio-
succinic acid production with 22.09 g/L of bio-succinic acid concentration. Besides, by applying yeast extract as
the nitrogen sources, ratio of bio-succinic acid is also high comparing with other by products [33]. Yeast extract as
the nitrogen source has also been extensively used by researchers in order to produce bio-succinic acid by microbial
fermentation. In the other hand, a mixture of yeast extract and corn steep liquor has also been employed obtaining
various concentration of bio-succinic acid.

The effect of supplementing yeast cell hydrolysate to the production of bio-succinic acid has also been observed
considering yeast cell containing high amounts of protein, lipid, RNA, vitamin and mineral [37]. Based on the
result, by supplementing yeast cell hydrolysate, cell growth and glucose consumption is increase 32.5% and 49%,
respectively, obtaining 53.24 g/L of bio-succinic acid concentration and total sugar utilization of 97.5%.

5. Production of bio-succinic acid using different pH regulator

pH level is one of key parameter in the microbial fermentation since the maintenance and regulation of cell
activities is highly dependent to the pH [38]. Most bacterial fermentation require near neutral pH level to optimize
the performance. However, in the production of bio-succinic acid through fermentation route, acidification of
medium will be absolutely occurred. Therefore, pH regulator should be provided to neutralize the pH condition
of fermentation cultures.

Study about the effect of pH regulator to the fermentation performance in order to produce bio-succinic acid has
been conducted. MgCO3, NaHCO3, and Na2CO3 have been tested as the pH regulator of the fermentation culture.
From the result, MgCO3 exhibited higher bio-succinic acid production and less by-product comparing with the use of
NaHCO3 and Na2CO3 [33]. This is due to Mg2+ has several effects on the cellular metabolism including controlling
pH, providing CO2 which is required to form succinic acid, and acts as the cofactor of PEP carboxykinase as the
key enzyme used to synthesize succinate [39].

Other study also revealed that glucose consumption in the fermentation using Na2CO3, NaHCO3, Mg(OH)2,
and MgCO3 as the pH regulator were much higher compared with Ca(OH)2, CaCO3, NaOH, and NH3.H2O [27].
However, when Ca(OH)2 and CaCO3 were used as pH regulator, the cell growth was severely suppressed
obtaining low amount of bio-succinic acid. Meanwhile, among the three Na+ pH regulator, NaOH obtained higher
concentration of bio-succinic acid than Na2CO3 and NaHCO3. Based on the study, the use of MgCO3 as pH regulator
also resulted the best cell growth, glucose utilization, and succinic acid production parameters [27]. Due to its good
performance as pH regulator, MgCO3 has been widely used by researchers to produce bio-succinic acid using A.
succinogenes obtaining various concentration, productivity, and yield of bio-succinic acid as shown in the Table 1.
Besides, NaOH has also been used by researchers considering relatively cheap cost.

6. Production of bio-succinic acid using different fermentation configuration

In order to enhance the production efficiency and reduce the cost, configuration of hydrolysis and fermentation
step is able to be adjusted. There are three configurations that have been investigated, including separate
hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF) and semi-simultaneous
saccharification and fermentation (SSSF) [30]. SHF occurred by operating enzyme hydrolysis and fermentation
in different stage, therefore optimization of each stage can be achieved. However, SHF process produces high
glucose concentration and poses high contamination risk [40]. To overcome this problem, different configuration
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of fermentation was proposed, called SSF. SSF occurred by operating enzyme hydrolysis and fermentation in the
same stage and maintain low sugar concentration, thus decreasing the contamination risk. Several production of bio-
succinic acid through SSF has been attempted by several researchers. Unfortunately, optimal condition of enzymatic
hydrolysis and microbial fermentation is mismatched. Therefore, another strategy was proposed by combining SHF
and SSF, called SSSF. SSSF occurred by operating pre-saccharification in short period with a faster hydrolytic rate
before the main SSF process occurred. With the combined advantages of SSF and SHF, SSSF produces higher yields
than SHF and SSF [41]. A study has been proven that SSSF produces higher concentration and yield of bio-succinic
acid than SHF and SSF. Based on the results, by operating SHF, SSF, and SSSF, bio-succinic concentration obtained
is 62.12 g/L, 52.41 g/L, and 65.31 g/L, respectively and yield of bio-succinic acid obtained by SSSF reach 0.85
g/g sugar [30].

7. Conclusion

Bio-succinic acid as the most important C4 building-block has to be industrially produced by microbial fermenta-
tion considering the wide application of this compound. As the most promising microbes, A. succinogenes has been
investigated applying several fermentation strategies to improve the production of bio-succinic acid. Different carbon
sources have been attempted utilizing several agro-industrial wastes since it is renewable, inexpensive, abundantly
available, and environmentally friendly. Nitrogen sources as one of the significant factors has also been observed to
improve cell growth. To maintain the pH condition of the fermentation cultures, pH regulator also play an important
role to be chosen. Besides, configuration of fermentation also contribute to improve bio-succinic acid production.
However, as the most recent strategy, fermentation configuration seems important to be more considered in order
to realize an efficient bio-succinic industry, since the recent configuration improved the yield of bio-succinic acid.
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