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Abstract

This paper explores the design parameters of high-voltage coils of three-phase transformers and the effects of eddy current
losses caused by energy conversion. The commercial software, ANSYS-Maxwell, was employed to conduct the simulation of
electrical and magnetic fields. The design parameters of the high voltage coil include the leg distance of core, the height and
the block thickness of primary windings, the height of primary coils, and the height of secondary windings. The specification
of the three-phase transformer of this study are 3000 kVA with rated voltage of 6600 V and corresponding current of 151.5
A. Base on thirty cases of simulation, machine learning, artificial neural network, was utilized to predict the extra loss due to
eddy current in the clamps and the windings. The prediction accuracies are 0.72 and 0.86 for primary and secondary windings,
respectively.
c⃝ 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Main text

Transformer is an important device in power supply and distribution networks. The high-frequency transformers
have drawn much attention in recent years with the need high power electrical power conversion [1,2]. The dry-type
transformers are increasingly utilized because of safety and environmental friendly. However, the size of dry-type
transformer is larger and consequently the price of dry-type transformer is higher than oil type one [3].

In the design work of transformer, careful attention has to be paid on the core and winding loss mechanisms. The
estimation of eddy current losses for core and winding is essential to eliminate possible hot spots and reduce stray
losses. The eddy losses of transformers have a considerable economic impact on the operation of electrical systems.
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Due to the complexity of winding geometries and interactions between conductors in windings, it is difficult to find
a general analytical solution for the eddy current losses in windings [4].

There are several approach to estimate eddy current losses, such as empirical models, the loss separation methods,
and the hysteresis models [5]. Numerical methods such as finite element analysis (FEA) are widely employed to
calculate eddy-current in order to find the field solutions. Though it is difficult to use FEM to simulate the Litz-wire
due to the long computation time [6], computational simulation still is a convenient approach in building features
of physical models.

Although there have been many studies on transformer and eddy current loss, due to too many parameters in
design, there is no systematical analyses in literature to study input and output data. The loss values of each part
cannot be measured with systematical adjustment of the parameters. Therefore, a large amount of data could be
obtained through combination of numerical simulation with technology of machine learning, it is worthwhile to
try to find the best design for energy saving and material saving. Neural networks have been used to find the best
way to make magnetic materials based on finite elements [7]. The design of the transformer can also be optimally
designed in this way in combination with numerical methods [8].

In the present investigation, a numerical 3-D model was established to estimate the eddy current loss of a dry-
type 3000 kVA transformer. Thirty cases of simulations have been performed for machine learning to establish
relationships between geometry parameters and eddy current loss. The main objective of present study is to find
the relationship between geometry parameters and the eddy current for each components.

2. Numerical model

The copper losses of primary windings, secondary windings, and clamps in a transformer were studied with
numerical model. The model of the transformer is schematically shown in Fig. 1, which contains primary windings,
secondary windings, a core, and four clamps. The small subsidiary parts were neglected for convenience of model
construction. One primary winding was composed of eight coil blocks. The gap between two adjacent blocks was
determined by coil height and the primary winding height. One secondary winding includes four parts of coils with
three ducts between adjacent parts. A real winding is composed of many turns of wire curling around core leg. For
feasibility of modeling and meshing, the turns were built as concentrated hollow regular polygons. Only half of the
whole transformer was modeled since the electromagnetic field was symmetric.

Fig. 1. Physical model for the present study.

In the study, geometrical parameters were adjusted to estimate the copper loss while the primary voltage and the
primary current were kept the same. Besides, the cross section areas of primary windings and secondary windings
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were also kept constant, respectively. The extra losses due to eddy current were estimated for various designs. The
parameters include spacing of core leg (P1), primary winding height (P2), secondary winding height (P3), primary
coil height (P4), and primary winding thickness (P5).

The materials of coils were considered as copper. Since the coils were insulated with very thin PET membranes,
the conductivity of the coils was considered as mixture of conductor and PET insulator. The modified material
properties were set according to the cross-section area percentage of the conductors in the primary and the secondary
coils. Due to temperature rise in the windings, the conductivity was further modified as that at 120 ◦C. The material
of the clamps was set as cast iron with corresponding relative permeability. The surface effect of eddy current on
clamp was considered. The material of the core was set as silicon steel.

The electromagnetic field analysis was conducted with finite element method and a commercial code, Maxwell,
was utilized. The applied mean voltage in primary winding was 6600 V and the total resistance was set to obtain
the anticipated mean current, 151.5 A. The total power of three phases is 3000 kVA. The whole magnetic field
range is about twice the total size of the transformer, and the magnetic flux on the far boundaries was set to be
zero. For a specified geometry design, electromagnetic fields with and without eddy current were simulated to
estimate the copper losses, respectively. The mesh of the field was refined during iteration based on the gradient
of electromagnetic field. The convergence criterion was set as energy variation less than 0.003. According to the
simulation results, the total number of grids is between 800,000 and 1.5 million.

3. Results and discussions

Fig. 2 shows the power loss of windings containing eddy current in a typical case. It is noted that eddy current
mainly occurs at the top and bottom regions of coils. This is due to the magnetic flux crossing over the two edges.

Fig. 2. The loss in the windings containing eddy current.

Thirty cases with various geometrical designs were simulated. The parameters P1∼P5, the copper loss in clamps
(A), the loss increment in primary windings (B), and the loss increment in the secondary windings (C) are listed
in Table 1.

Artificial neural network was employed to conduct machine learning on the copper losses with eddy current.
The parameters P1∼P5 were taken as input neurons. The copper loss in clamps, the loss increment in primary
windings, and the loss increment in the secondary windings were taken as output. There were three hidden layers
in the machine learning. The maximum number of parameters was eight during the training process. The learning
results were shown in Table 2. It is found that the square root of error converges when the learning rate ranges from
0.005 to 0.0001. It is also noted that the estimation in the clamps is very accurate, corresponding to about 6 W.
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Table 1. The data for various input parameters and output.

P1 (mm) P2 (mm) P3 (mm) P4 (mm) P5 (mm) A (W) B C

750 1105 1250 125 57.024 186.0 0.267 0.171
750 1170 1235 120 59.400 186.0 0.212 0.151
750 1190 1250 135 52.800 185.0 0.178 0.143
750 1220 1250 135 52.800 186.0 0.155 0.156
750 1250 1250 135 52.800 198.0 0.120 0.163
750 1140 1255 125 57.024 188.0 0.227 0.147
750 1215 1250 130 54.780 196.0 0.172 0.145
750 1246 1257 140 50.900 194.0 0.129 0.168
800 1166 1255 130 54.780 184.0 0.203 0.142
800 1180 1250 130 54.780 182.0 0.190 0.144
800 1194 1250 130 54.780 192.0 0.183 0.138
800 1220 1260 135 52.800 194.0 0.159 0.147
800 1246 1252 140 50.900 188.0 0.125 0.174
850 1126 1255 125 56.760 176.0 0.235 0.155
850 1206 1250 135 52.800 174.0 0.170 0.149
850 1220 1259 135 52.800 186.0 0.158 0.149
850 1241 1240 142 50.160 166.0 0.123 0.171
850 1244 1235 138 51.645 168.0 0.129 0.183
770 1159 1250 130 54.780 181.0 0.207 0.144
770 1132 1242 124 57.486 180.0 0.229 0.150
780 1108 1238 121 58.910 182.0 0.259 0.163
780 1225 1252 140 50.900 184.0 0.142 0.156
790 1168 1255 125 56.760 193.0 0.228 0.128
790 1081 1220 115 61.980 172.0 0.283 0.173
795 1240 1250 120 59.400 208.0 0.188 0.183
820 1255 1260 135 52.800 196.0 0.136 0.175
825 1140 1255 125 56.760 182.8 0.239 0.134
825 1164 1265 128 55.688 199.2 0.219 0.143
835 1100 1245 255 55.910 176.0 0.266 0.170
835 1248 1240 250 57.020 170.0 0.120 0.178

Table 2. The machine learning results with various learning rate.

Learning rate 0.005 0.0005 0.0001 FEM average Accuracy

Loss of clamp (training/test) (W) 3.64/6.65 2.76/6.34 3.46/6.32 185.1 W 0.97
Loss increment in primary windings (%) 5.66/6.0 5.0/5.39 4.90/5.39 0.188 0.72
Loss increment in secondary windings (%) 3.74/4.0 1.76/2.53 1.38/2.14 0.156 0.86

The prediction of the extra loss due to eddy current in the windings is less accurate. According to the losses in the
primary and secondary windings, about 4550 W and 4350 W, the error is about 220 W. This is small compared
with the total loss. More considered factors or more learning cases may increase the accuracy.

4. Conclusions

Numerical analysis and machine learning of a dry-type 3000 kVA transformer has been conducted for various
geometrical parameters. Brief summaries are listed as following:

1. The eddy current loss of clamps ranges from 170 W to 208 W. The error is 3.46 W for training data and
6.32 W for test data, showing over fitting of the data set.

2. The loss increment in the secondary has higher accuracy than that in the primary windings during machine
learning.

3. Learning rate of 0.0001 shows good learning results compared with that of 0.005.
4. More cases should be done in order to obtain a more accurate prediction on the eddy loss of transformer.
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