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Abstract

Optimal sizing with energy management strategy as a transition pathway towards a sustainable 100% renewable energy-based
microgrid is investigated in this paper. Due to the challenges of intermittency of renewable energy, microgrid operations are
complicated. Hence, in order to overcome some of the challenges facing microgrid planning and operations, optimal capacity
sizing incorporated with energy management strategy considering time-ahead generation prediction is proposed. The system
model consists of wind turbine (WT), solar photovoltaic (PV) and battery energy storage system (BESS). The generation
forecasting output is used to reschedule the flexible demand resources (FDR) to reduce the mismatch between power demand
and supply, and optimal sizing of components is performed jointly to determine the optimal capacity values of the PV, WT, and
BESS for minimal investment costs. The optimization results for the scenarios with and without load shifting effects of FDRs
are determined and analyzed for the case study. From the results obtained, the application of demand scheduling program using
the generation forecasting outputs resulted in a cost-saving of 12.41%. The forecasting model is implemented using a random
forest algorithm on python platform and the mixed-integer linear program on MATLAB® environment is used to model and
solve the capacity sizing problem.
c⃝ 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the scientific committee of the 6th International Conference on Power and Energy Systems Engineering (CPESE
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1. Introduction

Optimal component sizing is a crucial aspect of long-term planning towards maximizing the technical and
economic benefits of power systems. The design specifications for sustainable, reliable and 100% renewable energy
based-microgrid development has necessitated the incorporation of demand-side management (DSM) for maximum
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benefits. This can further be enhanced by introducing energy resource forecasting into the energy management
strategy and component sizing models as presented by Amrollahi and Bathaee [1]. As the share of wind and solar
energy resources increases system resilience decreases as highlighted by Alizadeh et al. [2]. This is due to the
stochastic nature of wind and solar power generation, which varies with the weather changes; this necessitates
the incorporation of an efficient energy storage system. However, a system that considers only energy storage as
a source of flexibility tends to be very expensive. Sheth et al. [3] states that there is a need for the inclusion of
DSM and renewable energy generation forecasting in the microgrid planning and operation. The implementation of
the DSM programs has the potential of acting as an additional modality towards meeting the net-load as well as
minimizing the total investment cost of the microgrid, through customers’ participation.

The cost–benefit advantage of incorporating the short-term forecasts of solar irradiance, wind speed and load
demand as a cost-effective approach in reliable system operation planning is highlighted in [4]. Hodge et al. [5]
asserts that a precise outlook into the expected generated power profile can provide the necessary flexibility planning
for the operator to intelligently schedule the various system components, especially the loads. The economic benefits
of DSM in terms of energy market planning and demand flexibilities using demand response is also discussed
in [6]. Hence, optimal scheduling of flexible demand resources (FDRs) within the microgrid system can yield
enough operational flexibility from the demand side. This benefit can ultimately be reflected in the economics of
storage capacity sizing and cheaper cost of electricity for the end-user. However, the appropriate implementation
of DSM, especially for optimal scheduling of FDRs can be effectively achieved with the knowledge of future
generation capacity of the renewable energy systems. With the forecasted generation information, the client can
alter their energy demand to benefit from the flexible pricing provided by the utilities, in order to reduce their
energy consumption bills.

This paper investigates an optimal component sizing and energy management strategy towards achieving 100%
renewable energy-based microgrid. The scheme under consideration consists of the WT and PV as the energy-
generating sources alongside the BESS. The potential benefit of the energy management strategy is evaluated by
its effectiveness in addressing the variability of the renewable sources as well as the cost–benefit analysis of the
optimal component sizes. The sizing optimization problem was solved using the MILP solver in MATLAB®, and
resource forecasting was done using Scikit-learn tools in Python.

2. Description of case study and system modeling

The energy management strategy discussed in this study is implemented for a Kenyan microgrid in Marsabit
county, and the proposed system consists of wind generator, solar PV and BESS as shown in Fig. 1 and the system
parameters for BESS, WT and PV are as summarized in Table 1. The operation of FDRs (shiftable loads) tries to
minimize the gap that exists between the electricity generation profile and consumption based on the DR strategy.
The FDRs are activated to consume surplus generation and are deactivated during periods of shortages.

2.1. Photo-voltaic system model (PV)

The generated power output PVp of the PV system in kW with respect to the received solar irradiances R in
(W/m2) can be determined by using Eq. (1). ηpv is the PV module derating factor, Rstc is standard solar irradiance
and PVr is the rated capacity in kW.

PVp (t) = PVr (t) × ηpv ×
R (t)
Rstc

(1)

2.2. Wind turbine model

The wind turbine generated power output depends on the speed of the wind at specified hub height. The power
output of a WT can be described by using a piece-wise function as expressed in Eq. (2). WTr is the rated output
power; wcin, wr and wcot are the cut-in, rated and cut-out wind speeds, respectively.

W T p(t) =

⎧⎪⎪⎨⎪⎪⎩
W Tr ×

w(t)3
− w3

cin

w3
r − w3

cot
wcin ≤ w ≤ wr

W Tr wr ≤ w ≤ wcot

0 w < wcin or w > wr

(2)
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Fig. 1. Proposed microgrid configuration.

Table 1. Simulation parameters for the proposed system.

Parameters

Discount rate, r 5%
Inflation rate 6%
Rated power 1 kW
Investment cost 1690 US $/kW
PV maintenance & operation costs 26 US $/kW/yr
PV reduction factor 84%
PV lifetime 25 yr
WT rated power 1 kW
WT investment costs 2030 US $/kW
WT maintenance & operation costs 76 US $/kW/yr
Cut-in wind speed 3.5 m/s
Rated wind speed: 14 m/s
Cut-out wind speed: 25 m/s
BESS investment costs 300 US $/kW
BESS maintenance & operation costs 10 US $/kW/yr
Efficiency 85%
Lifetime 5 yr

2.3. Battery energy storage system (BESS)

The BESS state of charge at any given time t is a subject the difference between the system load and the sum
of the total renewable generation with reference to the previous state of charge. The BESS amount of charge at
any given time t for the charging (in the event of generation surplus) and discharging (in the event of generation
deficit) operation state are given by Eqs. (3) and (4), respectively.

SOC (t) =

(
PV p(t) + W T p(t) −

P L(t)
βv

)
× βec + SOC (t − 1) × (1 − dh) (3)

SOC (t) = −

(
P L
βv

− [PV p (t) + W T p (t)]
)

/βed + SOC (t − 1) × (1 − dh) (4)

where SOC(t) and SOC(t − 1) are the state of charge of the BESS for the current and previous time period in kWh
respectively, dh is the hourly rate of self-discharge, PL is the load demand, βv is the efficiency of the inverter and
βec; βed are the BESS charging and discharging efficiency.
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3. Wind and solar forecasting

The wind and solar power forecasting model considered the following input parameters [7]; wind speed, solar
irradiance, humidity, temperature, pressure and wind direction. The Random forest (RF), regression forecasting
approach, is adopted in this study as explained below. RF is a bagging ensembled-based machine learning algorithm
that combines several single models of classification and regression trees. The RF has the advantage of overcoming
the shortcomings of the classical decision tree, which are over-fitting of the training data and high variance by
randomization procedures [8]. The details of training and implementation procedures for the RF algorithm are
discussed in [9]. The prediction results of the forecasting models are evaluated using the mean absolute error (MAE),
root means squire error and the r2 metrics [10].

4. Demand-side management and flexible demand resources

Demand-Side Management (DSM) programs are procedures that attempt to modify the energy demand of the
power system in order to improve the overall system efficiencies. Based on appropriate DSM, the FDR can be
activated to consume surplus power during the period of excess generation and deactivated during periods of low
generation. Netload demand after DSM implementation is equal to the initial load demand PL, plus the FDR capacity
defined as SD.

P L ′ (t) = P L (t) + SD (t) (5)

5. Sizing optimization: objective function and constraint

The objective of the optimum component sizing is to minimize the Net Present Value (NPV) of the total invest-
ment costs (TIC). The investments cost entails the capital costs, operation and maintenance and the replacement
costs of PV, WT and BESS. The optimization decision variables are optimum component sizing of PV, WT and
BESS.

T I CN PV = Cx + (O&Mx + R Px − RVx )
T∑

t=1

1
(1 + r )t

(6)

where the subscript (x) represents each component of the microgrid. Cx is the capital investment costs; O& Mx ,
RPx and RV x represents the operation and maintenance costs, replacement costs and the salvage value respectively.
r is the discount rate, t is the time period index and T is the project lifespan. The system constraint is such that the
total power generated should satisfy the demand at any given time, with and without FDR, as illustrated by Eq. (7).

PV p(t) + W T p(t) + Pds
b (t) − Pch

b (t) = P L ′(t) (7)

6. Simulation results and discussion

The forecasting results based on MAE, RMSE and r2 performance metrics for wind speed, solar irradiances,
wind and solar photovoltaic power are as summarized in Table 2. The performance of the RF algorithm depends
on the selected size of the estimators.

The number of estimators n represents the numbers of decision trees selected and grown at random with
replacement during the training phase of the model. As it can be observed, the best performances are obtained
when the decision tree is set to 800 for the case of wind speed and wind power prediction. This is confirmed by the
least error values indicated by the MAE and RMSE error metric values for wind speed and wind power forecast
results. The appropriateness of the model and parameter estimation selection are validated by the highest value of
the r2 metric. Fig. 2(a) and (b) show a graphical comparison of the actual versus the predicted data using the RF
forecasting model.

The sizing optimization results for microgrid component size for two cases is presented in Table 3. The optimal
minimum total investment cost without DR is US $ 15,247,276.77 for the obtained optimal component sizes. The
large optimal capacity of the BESS is selected by the optimization program to compensate for the huge power
mismatch between load demand and generation. For case 2 simulation (with DR), the total investment cost is
US $ 13,355,165.67 with the optimal system component sizes indicated in Table 3. The application of the DR
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Table 2. Random forest forecasting simulation results in terms of performance evaluation metrics.

Predictions Error metrics n = 8 n = 80 n = 800

Wind speed MAE (m/s) 0.28 0.26 0.24
RMSE (m/s) 0.38 0.34 0.31
r2 0.93 0.93 0.95

WT power MAE (kW) 42.91 39.31 37.68
RMSE (kW) 62.14 53.63 52.28

Solar irradiance MAE (m/s) 17.85 19.48 20.63
RMSE (m/s) 47.10 42.36 440.6
r2 0.98 0.98 0.98

PV power MAE (kW) 31.59 22.09 23.40
RMSE (kW) 53.42 48.05 49.97

Fig. 2. Show a graphical comparison of the actual versus the predicted data using the RF forecasting.

Table 3. Results comparison for without and with DSM scheduling consideration.

Scenario Without DSM With DSM

Demand side management None FDR scheduling
WT size kW 2054 1866
PV size kW 1196 1401
BESS size kWh 7150 5200
BESS cost (US $) 6.30E+06 4.58E+06
BESS % cost proportion to total costs 41.33% 34.31%
Investment costs (US $) 1.52E+07 1.34E+07
% investment reduction – 12.41%

program for FDR rescheduling results in a significant cost-saving in the investment costs of about 12.41%. The DR
implementation allowed the customers to time shifts the operation of the FDRs from the period of deficit generation
to surplus generation periods resulting in a percentage cost reduction proportion of the BESS to total investment
from 41.32% to 34.31%. The increase in PV capacity and decrease in WT is because PV costs are relatively cheaper
compared to WT generation technology for the considered region.

7. Conclusion

In this paper, an optimal sizing and energy management strategy for the design of a 100% renewable energy-based
microgrid has been investigated using DSM and resource forecast. The DSM approach tries to shift the operation of
controllable loads (FDRs) to coincide with the period of surplus generation and to minimize energy gaps between
the demand and generation. The results of the forecasting were used to improve the planning and effectiveness of
the FDR scheduling program. The optimum component sizes were evaluated with and without the FDR scheduling
program. From the simulation results obtained, the application of the FDR scheduling DSM program significantly
reduced the investment cost by about 12.41%. There is also a percentage cost reduction proportion of the BESS to
total investment from 41.32% to 34.31%. This paper has demonstrated the potential cost–benefit of consideration
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of DSM in optimum component sizing towards achieving a 100% green microgrid for the considered case study.
The strategies described in this work can be adopted for other regions.
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