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Abstract

In this article, a comparative analysis is made between three statistical methods (Taguchi’s Orthogonal Array Testing method,
Monte Carlo and Two-Point method) by integrating the uncertainty of primary sources of renewable generation in systems of
electric power. The modeling of the Institute of Electrical and Electronics Engineers test system of 13 nodes is made by
integrating the distributed generation with two different sources: wind and photovoltaic. For the simulation of wind power
generation, the wind speed data is from El Cabo de la Vela in the Guajira department in Colombia and for the simulation of
solar power generation, the solar radiation data is from Bogota city in Colombia. Once the system of 13 nodes is modeled
and incorporated to the variability of primary resource and the load in each case; the load flow can be made by using the
Matpower tool in Matlab for each one of the statistical methods proposed. The voltage, power generated, and power demanded
data is recovered for each method to create comparison charts, establish the advantages, and disadvantages of each one in the
analysis of the distribution of power systems with distributed generation. The main results are: the Taguchi’s Orthogonal Array
Testing method improves its behavior if the number of levels is increased for each variable; more iterations in the Montecarlo
method produce a greater precision of the probabilities; and the two-point method is a combination between the benefits of
the deterministic and the probabilistic.
c⃝ 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the scientific committee of the Tmrees, EURACA, 2019.
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1. Introduction

Competitive electricity power system is based on a deregulated market structure consisting of electricity supplier
and consumer transactions, coordination and rules that serve to guarantee competition and non-discriminatory open
access [1].
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Nomenclature

IEEE Institute of electrical and electronics engineers
DG Distributed generation
TOAT Taguchi’s orthogonal array testing method
PV Photovoltaic
RES Renewable energy sources
WTs Wind turbines
PVs Photovoltaic systems
PDF Probability distribution function
OM Orthogonal matrix
k Shape parameter
c Scale parameter
p.u. Per unit

Photovoltaic (PV) power generation has rapidly developed as one of the world’s most promising sources of
energy [2]. A key aspect for high PV system penetration is financial viability, the assessment of which is dependent
on a reliable prediction of the lifetime energy output of the system [3]. The solar PV power output depends on the
ambient weather conditions such as incident solar radiation, temperature, humidity etc. As the weather parameters
are themselves quite uncertain, the solar PV power also becomes uncertain in nature [4].

Increasing penetration of wind power raises concerns about un-certainties of the wind power generation. The
uncertainties are related to the value and reliability of wind power generation as well as the variations of generation
patterns [5]. The power generated by wind turbines is characterized by its power curve which shows the relationship
between wind speed and its power output [6].

Distributed systems mean distributed processing in a shared environment to minimize computing time and to
increase the overall performance [7]. In literature it has been proven that distributed energy systems offer multiple
benefits and can become the norm of future energy systems, providing energy with low total annual cost and lower
carbon emissions compared to conventional energy systems [8]. Modern power systems with increased integration
of Renewable Energy Sources (RES), such as Wind Turbines (WTs) and Photovoltaic Systems (PVs) [9] introduce
additional uncertainties in the power injections into the system due to their volatile primary sources throughout the
year [10].

The loads on the distribution system vary instantaneously owing to the uncertainty of the power demand at
the user end thus loads are assumed as random variables and are modeled using probability distribution functions
[11]. Probabilistic power flow technique is a desirable method for evaluating the operating state of the electricity
network under the uncertain environment [12]. Uncertain demands can be predicted by assigning proper probability
distribution functions, which describe the uncertainties, to certain demands [13].

In the literature there are different studies to optimize energy systems using the Taguchi Method (TOAT) [14–16],
for photovoltaic energy, thermal solar energy and wind energy. In this study we use the Montecarlo Method and
the Two-Point Method in addition to the TOAT Method, to evaluate the impact of distributed generation on power
systems.

2. Probabilistic and deterministic methods

2.1. Montecarlo simulation method

The Montecarlo simulation method is the one in which the properties of the distributions if the random variables
are investigated by the simulation of aleatory numbers. This method is like the usual statistical methods if we
leave aside the origin of the data, is in which aleatory samples are used to make inferences about the origin
population. Generally, in its statistical application, a model is used to simulate a phenomenon that contains an
aleatory component. In the Montecarlo method, on the other hand, the object of the investigation is a model based
on itself and it used aleatory or pseudo-aleatory events are used to study.
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Therefore, to be able to reach values of the reliability coefficients of the system, it is necessary to perform a
simulation during determined time intervals. There are two types of techniques for simulation, deterministic and
non-deterministic. The Montecarlo method is a numerical technique to calculate probabilities and other related
amounts, using sequences of aleatory numbers.

For cases with a single variable the procedure is the following:

• Generate a series of aleatory numbers r1, r2, . . . , rm, evenly distributed in the range [0,1].
• Use this sequence to generate other sequence, x1, x2, . . . , xm, distributed according to the probability

distribution function (PDF) to describe the aleatory variable.
• Use the sequence of x values to estimate a property of f(x). The values of x can be treated as simulated

measurements and from those, the probability of x taking values in certain region can be estimated.

Formally, the calculation of the Montecarlo simulation is simply an integration. In general, for one-dimensional
integrals its viable to use other optimized numerical methods.

2.2. Taguchi’s orthogonal array testing (TOAT) method

The fundamental part of this method consists in the optimization of products and processes, with the finality of
guarantying robust products, with high quality and low costs. This is based in three steps:

• Design of the system.
• Design of the parameters.
• Design of tolerances.

From these three steps the most important one is the design of parameters; its main objectives are:

• Identify which factors affect the characteristics of quality when it comes to magnitude and variability.
• Define the “optimal” values than must be selected for each parameter or factor, to optimize the functionality

of the product and make it as robust as possible.
• Identify factors that do not cause a substantial effect in the characteristic of quality to release the control of

these factor and save in the testing costs.

To accomplish this, a series of statistical tools known as experiment design has been achieved. The TOAT presents
an alternative not completely different to what is known as: orthogonal arrays and lineal graphs. The tool normally
used is the fractionate factorial designs, however, when the number of factors increases, the possible interactions
increase, just as the complications to identify which are the specific conditions needed to trial.

A Taguchi’s matrix arrangement can be compared with a replication of a fractioned factorial, which conserves
the concept of orthogonality and contrasts. A fractioned factorial trial is also an orthogonal arrangement. For a
system with some uncertain input variables, the proper adjustment in control variables can make that the system
adapts to different operating scenarios less sensitive to aleatory variables. Generally, some selected scenarios for
uncertain variables are tested to guide the adjustment of the control variables.

Let us suppose that a system Y that can be represented by the function Y = Y (x1, . . . , x f ) where x1, . . . , x f are
F uncertain variables. If all the variables in the set (x1, . . . , x f ) is represented by B levels and selecting its variable
range, the number of all the combinations of the state of the system is BF. This is computationally expensive for
all the BF testing in cases when F is too broad. Therefore, TOAT, is used to generate an optimal number of test
scenarios and only a small number of tests are completed.

In TOAT, the testing scenarios are made according the Orthogonal Matrix (OM). An OM for F variables and B
levels is represented by LH(BF), where H is the number of combinations of the variables. LH (BF) is represented
in a matrix with H rows and F columns, the levels of the variable are indicated by the values inside the elements
of the matrix. For example, in (1) OM L4(23) is represented.

L4
(
23)

=

⎡⎢⎢⎣
1 1 1
1 2 2
2
2

1
2

2
1

⎤⎥⎥⎦ (1)
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Therefore, for the system Y, H scenarios can be made based on a OM LH(BF). Generally, H is much smaller
than BF. For the (2.1) system, with three aleatory variables and each one represented by 2 levels, the number of
all combinations is 23. However, according to L4(23), only 4 testing scenarios are made. Therefore, the number of
testing is minimized. An OM has the following characteristics:

• For the variable in each column all the levels happen H/B times. For example, in L4(23), H = 4 and B = 2,
which means that 1 and 2 happens twice in each column.

• In any of the columns, the combination of variables is produced the same number of times. For example, in
any of the columns of L4(23), the combination of two levels of variable “11”. “12”, “21”, and “22” appear
once.

• The combinations determined by the OM are uniformly distributed in the space of all possible combinations.
For example, the combination of the L4(23) are shown in Fig. 1.

The vertices of black color in Fig. 1 correspond to the L4(23) combinations.

Fig. 1. Orthogonal matrix L4 (23).
Source: Own elaboration with data
from [17].

According to the notation used by Taguchi in the arrangement used as an example, it is called L4 arrangement
because it has four lines. In general, for a two-level arrangement, the number of columns (effects or factors) that can
be analyzed is equal to the number of lines minus 1. Taguchi developed a series of arrangements for experiments
with two level factors, the most used and spread ones according to the number of factors analyzed are given in
Table 1.

Table 1. The notation of Taguchi’s arrangements.
Source: Own elaboration with data from [17].

Number of factors to analyze Fix to use Number of conditions to be tested

Between 1 and 3 L4 4
Between 4 and 7 L8 8
Between 8 and 11 L12 12
Between 12 and 15 L16 16
Between 16 and 31 L32 32
Between 32 and 63 L64 64

2.3. Two-point estimation method for probability moments

X and Y being real aleatory variables and a function Y = Y (X ). Given the expected value of X and X ,
the asymmetry coefficient vx of X, and the standard deviationσx , approximate expressions are searched for the
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distribution moments of X. The expressions are valid for all distributions of X, and the expressions of probability
density functions (2) and (3) are selected.

P+∂
(
X − x+

)
(2)

P−∂
(
X − x−

)
(3)

where P+ and P− are coefficients, ∂ is delta of Dirac and, x+ and x− are specific values of X. The probability
density function consists of the concentrations P+ y P− in x+ and x−, respectively. Also, when Y admits and
expansion in Taylor series on X , now you obtain the expression (4).

E
[
Y n]

= P+yn
+

+ P−yn
−

(4)

where E [Y n] is the expected value of the superior terms of the series, being y± = y (x±), and n is a real number.
From Eq. (4) the parameters of the distribution of Y can be determined.

P±y x± must satisfy the simultaneous equations (5)–(8) to meet the following conditions.

P+ + P− = 1 (5)

P+x+ + P−x− = X (6)

P+

(
x+ − X

)2
+ P−

(
x− − X

)2
= σ 2

x (7)

P+

(
x+ − X

)3
+ P−

(
x− − X

)3
= σ 3

x v3
x (8)

Which is a solution for the terms (9)–(11).

P+ =
1
2

[
1 ∓

√
1 −

1

(V x/2)2

]
(9)

P− = 1 − P+ (10)

x = X ∓ σx

√
P∓

P±

(11)

When vx is insignificant and the probability distribution of X is approximately Gaussian, often the accuracy can
be improved by taking the probability density to be concentrated in more that two points. For the negative values
of vx Eq. (12) will be applied.

P+ =
1
2

−
vx

4
(12)

When vx is unknown, this can be taken as null, then P± = 1/2 and x± = X ± σx . In this case Eq. (4) becomes
(13)

Y =
y+ + y−

2
(13)

With the resulting terms (14) and (15):

σY =

⏐⏐⏐⏐ y+ − y−

2

⏐⏐⏐⏐ (14)

vY =

⏐⏐⏐⏐ y+ − y−

y+ + y−

⏐⏐⏐⏐ (15)

To visualize, Fig. 2 presents the magnitudes of the concentrations for aleatory variables X1 and X2. Also, Fig. 3
is presented for the case of three stochastic variables.

As an example, for the described for this method, we have: consider the function Y = X k , where the distribution
of X is Log is normal with X = 1 and vx = 0.2. The exact parameters of the distribution of Y are given by (16)
and (19).

Y = X
k (

1 + v2
x

)k(k−1)/2
(16)

1 + v2
Y =

(
1 + v2

x

)k2
(17)
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Fig. 2. Concentrations of the probability distribution function when Y = Y (X1, X2).
Source: Own elaboration with data from [18].

Fig. 3. Concentration of the probability distribution function when Y = Y (X1, X2, X3).
Source: Own elaboration with data from [18].

By deduction:

E
[(

X − X
)3
]

= X
3
v4

x

(
3 + v2

X

)
(18)

Therefore,

vx = vx
(
3 + v2

x

)
= 0.608 (19)

According to Eqs. (9)–(11), P+ = 0.35457, . . . with k = 3 the exact answer is according to Eqs. (16) and (17),
Y = 1.125, vy = 0.651. The Eq. (4) has the same value than Y yvy = 0.693, while according to the Eqs. (13)–(15),
Y = 1.120, vy = 0.543.

3. IEEE test system of 13 nodes

In Fig. 4 shows the one-line diagram of the test system used for this study.
This power system is integrated by the following elements and electric conditions:

• 2 bars with generations, located in the 650 and 680 nodes.
• The 650 bar is taken as “slack”. The wind and solar units generating the generation uncertainty are located

in the 680 bar.
• 9 bars PQ, located in the nodes: 632, 671, 646, 645, 634, 611, 692, 675 y 652. These produce an uncertainty

due to the changes in the demand of real power and reactivate at different times of the day and 12 branches
that build the network between the different nodes.

• It is assumed that the transmission lines behave ideally to not the chargeability of these.



94 J.C. Beltrán, A.J. Aristizábal, A. López et al. / Energy Reports 6 (2020) 88–104

Fig. 4. One-line diagram for the IEEE system of 13 nodes.
Source: Own elaboration with data from IEEE.

For the purposes of this study it will be assumed that the IEEE system of 13 nodes is in balance between its
phases and it will be able to perform the calculation of the power flow in MATPOWER in an optimal way.

Table 2 shows the wind speed for El Cabo de la Vela-Guajira for 2017.

Table 2. Wind speed for El Cabo de la Vela, Guajira,
Colombia, 2017.
Source: Own elaboration with data from NASA.

Month Wind
m/s

January 7,7
February 7,9
March 7,7
April 6,4
May 5,5
June 6,5
July 6,7
August 5,7
September 4,6
October 4,4
November 5,2
December 6,9

Table 3 shows the solar radiation data for Bogota City, Colombia for 2017.

4. Results

The Weibull function is a function characterized by two parameters. One of them is the scale and the other
is the shape. The first one defines how disperse the distribution is while the second one defines the shape of the
distribution. The Weibull probability of density is given by:

f (v) =

(
k
c

)(v

c

)k−1
exp

[
−

(v

c

)k
]

(20)

And the function of accumulated distribution is:

F (v) = 1 − exp
[
−

(v

c

)k
]

(21)
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Table 3. Solar radiation in Bogota City, Colombia, 2017.
Source: Own elaboration with data from NASA.

Month Daily solar radiation
kWh/m2-day

January 4,86
February 4,83
March 4,91
April 4,65
May 4,72
June 4,83
July 5,00
August 5,07
September 5,03
October 4,7
November 4,6
December 4,6

The values used for the wind speeds belong to El Cabo de la Vela-Guajira in 2017, were obtained from the
NASA website. With this data the Maximum Probability method was applied by using the following equations:

k =

(∑N
i=1 vk

i ln (vi )∑N
i=1 vk

i

−

∑N
i=1 ln (vi )

N

)−1

(22)

c =

(
1
N

N∑
i=1

vk
i

)1/k

(23)

where N represents the number of observations and vi the average wind speed registered in that time frame.
Fig. 5 shows probability curve of the wind speed for El Cabo de la Vela, Guajira for 2017 and Fig. 6 shows the

function of accumulated distributions of wind speed for the same year.

Fig. 5. Probability curve for the wind speed for El Cabo de la Vela, Guajira, 2017.
Source: Own elaboration.

The values of shape and scale of the wind speed for El Cabo de la Vela, Guajira found with the use of Matpower
are: K = 6,39534069 and y C = 6,74360088. These values are introduced in the simulation of the Montecarlo
method in the code designed in Matlab for power flows integrating the uncertainty of the wind speed in the IEE
test system of 13 nodes.

Fig. 7 shows the probability curve for the solar radiation in Bogota City in 2017 and Fig. 8 presents the function
of accumulated distribution of solar radiation for the same year.

As seen in Fig. 7, Bogota has excellent solar radiation conditions for the production of electricity. The highest
probabilities of photovoltaic generation have solar radiation greater than 4, 5 kWh/m2-day; which can be contrasted
with the cumulative distribution function shown in Fig. 8.
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Fig. 6. Function of accumulated distributions of wind speed for El Cabo de la Vela, Guajira, 2017.
Source: Own elaboration.

Fig. 7. Probability curve for the solar radiation in Bogota, Colombia, 2017.
Source: Own elaboration.

Fig. 8. Function of accumulated distribution of solar radiation in Bogota, Colombia, 2017.
Source: Own elaboration.

The values of shape and scale of solar radiation found using the MP method are: K = 33,359 y C = 4,8937.

These values are input in the simulation of the Montecarlo method in the code designed in Matlab for power flows

integrating the uncertainty of solar radiation in the IEEE system of 13 nodes.
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4.1. Modeling the wind speed and solar radiation

The Montecarlo simulation for the wind speed at El Cabo de la Vela, Guajira fulfilled the following conditions
of probability distribution:

• The loads were simulated as uniform probability distributions that vary between 70% and 120% of the nominal
real power demanded by each node.

• The uncertain variable generated by the wind system is simulated as a Weibull probability distribution with
parameters of shape and scale of 6,3953 and 6,7436.

• Size of the sample = 10.000 data.
• Time of simulation: 97,145832 s.

The TOAT simulation for the wind speed at El Cabo de la Vela, Guajira, considered the following criteria for
the construction of the OM:

• Uncertain variables: 1 of renewable generation plus 9 of uncertain loads. F = 10 the uncertain variables.
• The number of levels inside each element of the matrix is selected. For this study there is going to be 2 levels:

B = 2.
• An OM is selected with columns equal to F. since there is not a defined OM with this number of columns,

L12(211) is selected. The first six columns are used for this study.
• L8 indicates that there will be 12 testing scenarios in each OM.

Different combinations can be generated between the values assigned to 1 and 2 for its maximum and minimum
values, as showed in Table 4.

Table 4. Taguchi orthogonal matrix.
Source: Own elaboration.

Orthogonal matrix number Level number Assigned renewable
generation [%]

Load value
[%]

OM1
1 25 120
2 100 70

OM2
1 100 70
2 25 120

OM3
1 25 70
2 100 120

OM4
1 100 120
2 25 70

Size of the sample = 48 scenarios.
Time of simulation = 0,595136 s.
Each OM has 12 different testing scenarios and when 4 possible combinations are built between 1 and 2, we

can obtain 48 different testing scenarios, which were programmed in only a 48 × 11 matrix.
The simulation using the two-point estimation method for the wind speed at El Cabo de la Vela, Guajira,

considered the maximum and minimum values of the active powers demanded in each bar of the IEEE system
of 13 nodes as follows:

• Load 1(Bus 632) = Max = 0.100 MW * 1,2 = 0.12 MW, Min = 0.100 MW * 0,7 = 0.07 MW
• Load 2(Bus 671) = Max = 0.385 MW * 1.2 = 0.46 MW, Min = 0.385 MW * 0,7 = 0.26 MW
• Load 3(Bus 646) = Max = 0.230 MW * 1,2 = 0.27 MW, Min = 0.230 MW * 0,7 = 0.16 MW
• Load 4(Bus 645) = Max = 0.170 MW * 1,2 = 0.20 MW, Min = 0.170 MW * 0,7 = 0.11 MW
• Load 5(Bus 634) = Max = 0.160 MW * 1,2 = 0.19 MW, Min = 0.160 MW * 0,7 = 0.11 MW
• Load 6(Bus 611) = Max = 0.170 MW * 1,2 = 0.20 MW, Min = 0.170 MW * 0,7 = 0.11 MW
• Load 7(Bus 692) = Max = 0.170 MW * 1,2 = 0.20 MW, Min = 0.170 MW * 0,7 = 0.11 MW
• Load 8(Bus 675) = Max = 0.485 MW * 1,2 = 0.58 MW, Min = 0.485 MW * 0,7 = 0.33 MW
• Load 9(Bus 652) = Max = 0.128 MW * 1,2 = 0.15 MW, Min = 0.128 MW * 0,7 = 0.08 MW
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The statistics for each load in active energy demand are summarized in Table 5.

Table 5. Statistic of the probability distribution functions of the loads (active power).
Source: Own elaboration.

Node Nominal active
power [MW]

Half Median Standard
deviation

Variance Bias Coefficient
of variation

Minimum
value

Maximum
value

632 0.100 0.10 0.10 0.01 0.00 0.00 0.1519 0.07 0.12
671 0.385 0.36 0.36 0.06 0.00 0.00 0,1604 0.26 0.46
646 0.230 0.22 0.22 0.03 0.00 0.00 0,1477 0.16 0.27
645 0.170 0.16 0,16 0.03 0.00 0.00 0.1676 0.11 0.20
634 0.160 0.15 0.15 0.02 0.00 0.00 0.1540 0.11 0.19
611 0.170 0.16 0.16 0.03 0.00 0.00 0.1676 0,11 0.20
692 0.170 0.16 0.16 0.03 0.00 0.00 0.1676 0.11 0.20
675 0.485 0.46 0.46 0.07 0.01 0.00 0.1586 0.33 0.58
652 0.128 0.12 0.12 0.02 0.00 0.00 0.1757 0.08 0.15

Knowing these values, apply the equations from Section 2.3. to find the maximum and minimum generation
values in the bar 2.

Since the bias is negative Eq. (12) is applied, resulting in the expressions (24)–(25).

Vx = −0.4116 (24)

x = X+σx

√
P+

P±

⇒

{
x+ = 1.65 MW
x− = 1.11 MW

(25)

Considering these values, the arithmetic mean is calculated:

X =
(1.65 + 1.11)

2
= 1.38 MW (26)

Size of the sample = 1024 scenarios.
Time of simulation: 314,737494 s.
The Montecarlo simulation for the solar radiation in Bogota, fulfilled the following conditions of probability

distribution in each uncertain variable:

• The loads were simulated as uniform probability distributions that vary between 70% and 120% of the nominal
real power demanded by each node.

• The uncertain variable generated by the photovoltaic system is simulated as a Weibull probability distribution
with parameters of shape and scale of 33,36 y 4,89.

• Size of the sample = 10.000 scenarios.
• Time of simulation: 98,8380 s.

The simulation using the TOAT method for the solar radiation for Bogota city, considered the following criteria
for the construction of the OM:

• Uncertain variables: 1 of renewable generation plus 9 of uncertain loads. F = 10 the uncertain variables.
• The number of levels inside each element of the matrix is selected. For this study there is going to be 2 levels:

B = 2.
• An OM is selected with columns equal to F. since there is not a defined OM with this number of columns,

L12(211) is selected. The first ten columns are used for this study.
• L8 indicates that there will be 12 testing scenarios in each OM.

Size of the sample = 48 scenarios.
Time of simulation: 0,595136 s.
The simulation using the Two-point estimation method for solar radiation in Bogota, considered a Weibull

distribution to find the maximum and minimum values of generation in the bar 2.
Since the bias is negative Eq. (12) is applied, resulting in the expressions (27)–(28).

Vx = −0.9708 (27)
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x = X ∓ σx
√

P∓/P± ⇒

{
x+ = 1.13 MW
x− = 1.03 MW

(28)

Considering these values, the arithmetic mean is calculated:

X =
(1.13 + 1.03)

2
= 1.08 MW (29)

Size of the sample = 1024 scenarios.
Time of simulation: 315,275230 s.

4.2. Statistical results for wind speed and solar radiation

Fig. 9 Shows the voltage box (p.u) graph for the wind generation (El Cabo de la Vela, Guajira) using the
Montecarlo method in the IEEE system of 13 nodes.

Fig. 9. Graph of the voltage box (p.u) for the wind generation at El Cabo de la Vela, using the Montecarlo method.
Source: Own elaboration.

Voltage variation using the Montecarlo method for the entire system was recorded between 1,012 p.u (node 634)
and 1,042 p.u (node 671). Particularly in the node 634, the voltage range was 0,013 p.u (data vary between 1,012
p.u. and 1,025 p.u.) with a median of 1,0185 p.u. for the rest of the nodes of the testing system, the integration of
the wind generation does not alter the voltage by no more than 0,046 p.u. with the node 671 presenting the highest
magnitude.

Fig. 10 shows the graph of the voltage box (p.u.) for the wind generation (at El Cabo de la Vela, Guajira) using
the TOAT method in the IEEE system of 13 nodes.

In the case of the TOAT method, the wind generation in the testing systems makes the voltage vary in a range
of 0,044 p.u. for the node 634, the TOAT method produces a lower distribution of the whiskers compared to the
Montecarlo method. Specifically, the first quarter of the voltage of the node 634 varies between 1,023 p.u. and
1,025 p.u. while the last quarter varies between 1,085 p.u. and 1,011 p.u. with a median of 1,017 p.u.

Fig. 11 shows the graph of the voltage box (p.u.) for the wind generation (at El Cabo de la Vela, Guajira) using
the two-point method in the IEEE system of 13 nodes.

The simulation of the algorithm of the two-point method generates the variability of the voltage lower to 1,04
p.u. for the nodes of the system and higher to 1,012 p.u. The variability of the voltage data of the box graph for
each node using this method is the lowest compared to the two previous methods.

The results for the wind generation suggest a careful and independent evaluation for each one of the nodes in
the system, there is an evident alteration in the voltage for node 634 under the normal behavior of the other nodes.
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Fig. 10. Graph of the voltage box (p.u.) for the wind generation at El Cabo de la Vela using the TOAT method.
Source: Own elaboration.

Fig. 11. Graph of the voltage box (p.u.) for the wind generation at El Cabo de la Vela using the two-point method.
Source: Own elaboration.

Fig. 12 shows the demanded active power (p.u.) of wind power in each node using the TOAT method.
As observed in Fig. 12 the results do not generate whiskers in the box graph, using the TOAT method, which

indicates that this method does not select random values but calculates them deterministically assuming maximum
and minimum values for each variable.

The nodes that demand a higher amount of wind power are the nodes 671, 646 and 675. The wind power
demanded by node 671 has a median of 0,367 p.u. with a minimum of 0,275 p.u. and a maximum of 0,466 p.u.
while the node 675 presents a demanded wind power with a median of 0,462 p.u. and its range varies between
0,333 p.u. and 0,587 p.u.

Fig. 13 shows the voltage box graph (p.u) for the photovoltaic generation in Bogota using the Montecarlo method
in the IEEE system of 13 nodes.

The voltage variation using the Montecarlo method for the photovoltaic generation presented the same results as
for wind generation: between 1,012 p.u (node 634) and 1,042 p.u (node 671).4



J.C. Beltrán, A.J. Aristizábal, A. López et al. / Energy Reports 6 (2020) 88–104 101

Fig. 12. Graph of the box of the active power demanded in p.u. of wind energy, using TOAT method for El Cabo de la Vela, Guajira.
Source: Own elaboration.

Fig. 13. Voltage box graph (p.u) for photovoltaic generation in Bogota using the Montecarlo method.
Source: Own elaboration.

Both simulations (wind and photovoltaic generation) had the same sample size when using the Montecarlo
method: 10,000 data. The difference was noticeable in the time taken for the simulation: 97,145832 s for the wind
generation and 98,8380 s for the photovoltaic generation.

Fig. 14 shows the voltage box graph (p.u) for photovoltaic generation in Bogota using the TOAT method in the
IEEE system of 13 nodes.

The generation of whiskers in the cash charts of the results indicate a probabilistic analysis of the applied
methods. The node 634 presents a higher drop of voltage of the whole system: the lowest voltage reported was
1,097 p.u. and 1,025 p.u. and the highest was 1,025 p.u., with a 1,0175 p.u. median. Other node representing a
drop in the voltage was the node 675 which registered a minimum of 1,019 p.u.

The TOAT method behaves identically in the two cases analyzed (solar and wind), since this always takes the
“maximum” and “minimum” of each variable. Also, with both resources the same installed generation capacity was
assumed (1.65 MW), with 100% being the maximum and the minimum of 25% of capacity.

Fig. 15 shows the voltage box graph (p.u) for photovoltaic generation (in Bogota) using two-point method in the
IEEE system of 13 nodes.

Again, for this case the probabilistic behavior of the results are similar to those reported for the wind generation
of Fig. 11. The results for the two-point method generates a variability of the voltage lower than 1,04 p.u. for all
the nodes in the system and higher than 1,012 p.u.
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Fig. 14. Voltage box graph (p.u) for photovoltaic generation in Bogota using the TOAT method.
Source: Own elaboration.

Fig. 15. Voltage box (p.u) for photovoltaic generation in Bogota, using the two-point method.
Source: Own elaboration.

Fig. 16 shows the demanded active power (p.u) of solar energy in Bogota in each node using the two-point
method.

In this simulation whiskers are not obtained in the box graphs, just like it happened with the TOAT method
applied to the wind generation in Fig. 12. Also, because of the deterministic calculation made by the two-point
method: the sum of the standard deviation and the means as initial values of each variable (generation and charge).
The nodes with higher photovoltaic demand were node 671 with a maximum power of 0,423 p.u. and the node 675
which registered a median of 0,46 p.u.

5. Conclusions

In the Montecarlo and two-point methods, the Weibull probability distribution function is considered the primary
to represent the variable behavior of the wind and solar resources; which determines the probabilistic nature of these
methods. On the other hand, the TOAT method does not leave any random variable, taking only the maximum and
minimum levels of each one to perform the different iteration, being merely a deterministic method.

The TOAT method improves its behavior if the number of levels is increased for each variable, not only taking
the maximum and minimum levels but incorporating the intermediate levels.
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Fig. 16. Cash graph of the active power demanded in p.u. of photovoltaic energy, using the two-point method for Bogota.
Source: Own elaboration.

The number of iterations in each method varies: the TOAT and the two-point methods the number of iterations
is related to the number of variables in the system, while in the Montecarlo method it remains to the choice of the
programmer making the simulation. Considering that the more iterations are made in the Montecarlo method, the
greater the precision of the probabilities obtained.

The two-point method has an advantage over the other two methods studied: the statistical characteristics of
the PDF of the variables are considered to determine their initial values deterministically to then probabilistically
iterate the different scenarios, which means it is a combination between the benefits of the deterministic and the
probabilistic.
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