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a b s t r a c t

Building energy data analysis is a major branch of smart city development research. The usual back
propagation neural network model for building energy prediction has problems of unclear physical
significance, poor data generalization and low fitting accuracy. Therefore, a composite prediction model
of building power consumption based on FCM-GWO-BP neural network was proposed. According to
the similar statistical distribution characteristics of data, the fuzzy C-means clustering algorithm (FCM)
was used to cluster the historical power consumption data. BP neural network prediction model was
established for different categories to reduce the impact of relevant noise in the sample data on the
modeling accuracy. Then, according to the train and test data sets of each category, the corresponding
grey wolf algorithm was established to optimize the error back propagation neural network prediction
model (GWO-BP). The experimental results showed that compared with the sample prediction accuracy
index root mean square percentage error (RMSPE), the GWO-BP neural network after FCM clustering
was reduced by about 0.225 compared with the BP model, and was reduced by about 0.135 compared
with the GWO-BP model, so its prediction accuracy was improved by 75% at most. Respectively, the
mean absolute percentage error (MAPE) was reduced by 14.41% and 6.48%. It can be seen that this
model has strong generalization ability, better prediction accuracy and reliability, and absolutely can
meet the needs of practical engineering.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

With the continuous progress of urbanization, the construc-
tion of smart city has gradually attracted extensive attention (Ly-
tras and Visvizi, 2018). As the focus of smart city, intelligent
energy system refers to through the analysis and integration
of information and data resources to avoid resource waste. The
software core technologies of smart city construction include big
data, internet of things, cloud computing, intelligent algorithm
and others (Visvizi and Lytras, 2018b; Chui et al., 2018).

Many scholars have studied the key problems of building
energy consumption in intelligent energy system, and success-
fully solved the problems of energy consumption characteristic
analysis, energy consumption influencing factor analysis, energy
coordination optimization and so on (Kim et al., 2019a; Yang
et al., 2018; Xu et al., 2017b). At present, the energy consumption
of building is larger, and the data format is more diverse, and the
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Province, Xi’ an University of Architecture and Technology Xi’ an, CN 710055, PR
China.

E-mail address: junqiyu@126.com (J. Yu).

data level is constantly improved. As a result, the development
of intelligent energy system is facing a bottleneck, and it is in
urgent need of a more generalized and robust prediction method
to support the system (Visvizi and Lytras, 2018a; Wu et al., 2018).

The main research methods of building energy consump-
tion include building model simulation and data-driven in the
moment. Firstly, common building energy simulation software
is TRNSYS (AI-Saadi and Zhai, 2015; Safa et al., 2015), ECO-
TECT (Peng, 2016; Amani, 2018) and EnergyPlus (Yu et al., 2015;
Fumo et al., 2010). Currently, simulation method in real build-
ing energy consumption prediction is inefficiency. On the one
hand, modeling the building is time consuming, and the model
need to be continuously improved according to the results of
operation for more precise prediction; on the other hand, the
building model is difficult to provide accurate real-time control
strategy for operation stage in the design phase; meanwhile,
the professional demand of establishing a model of parameter
settings for modelers is fairly higher (Fumo and Rafe Biswas,
2015). Therefore, the traditional simulation software program is
not appropriate to be used for the actual management of the
system. As for data-driven, mainly methods include multiple
linear regression (MLR) (Catalina et al., 2013), support vector
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machine (SVM) (Shine et al., 2019), auto regression (AR) and other
models (Bourdeau et al., 2019). The MLR model is highly non-
linear in terms of multivariable factors that affect building energy
consumption, so the prediction accuracy is relatively low. The
SVM model requires a large amount of data for model training,
so the absence of variables has a large impact on the model
effect, and the robustness is not high. The input variable of AR
model is only the historical data of building energy consumption
without considering other factors, so the prediction accuracy
is difficult to meet the actual requirements. In recent years,
with the rapid development of Artificial Intelligence, BP (Back
Propagation) neural network has been widely applied in dynamic
prediction of building energy consumption due to its prominent
non-linear mapping, self-adaptation, fault tolerance and other
characteristics (Biswas et al., 2016; Daut et al., 2017; Liu et al.,
2016; Xu et al., 2017a). However, BP neural network has some
defects such as local optimization, irrelevant to physical meaning,
strong dependence on training data and slow convergence speed,
which hinder its application in practical engineering. Some re-
searchers adopt grey wolf optimization (GWO) to optimize the BP
neural network’s global search capability, which can greatly avoid
trapping in local best solution (Esmaeil et al., 2018; Shi et al.,
2017). However, due to poor correlation between model input
variables and output variables, and high redundancy and coupling
relationship between variables, the defects of poor prediction
accuracy of the model have not been well solved (Daut et al.,
2017).

This paper proposed a composite model of power prediction
based on fuzzy C-means clustering and grey wolf optimized back
propagation neural network. In view of the strong coupling and
non-linear characteristics of the sample data of building power
consumption, the sample data is divided into several categories
by fuzzy C-means clustering method, so as to reduce the impact of
the correlation of the data itself on the modeling accuracy. On the
basis of obtaining all kinds of sample data, the corresponding BP
neural network model is distributed and constructed. At the same
time, the grey wolf algorithm with global optimization ability was
used to optimize the parameters of the error back propagation
neural network, so as to avoid the blindness of artificial param-
eter selection and improve the prediction accuracy of the model.
By using the actual operation data of an office building in Xi’an,
the prediction results show that the prediction accuracy of the
FCM-GWO-BP model proposed in this paper is much higher than
that of the traditional prediction model in accuracy, and it can
meet the actual application requirements of the project.

2. Composite model of building power consumption predic-
tion for office buildings

2.1. Fuzzy C-means clustering algorithm

As a typical clustering method, fuzzy C-means (FCM) has been
successfully applied in data analysis, image segmentation and
other fields (Qiu et al., 2017).

FCM algorithm is an unsupervised pattern recognition method,
and its core idea is to determine the membership degree of each
data point by using the objective function, and then achieve the
goal of automatic data classification of samples (Zhao and Zheng,
2017).

A sample is X = {x1 , x2, . . . , xn}, and clustering number is c.
Where X can be divided into class c and can be presented as the
fuzzy matrix U = (uik)c×n; uik is the signal, and sample i belongs
to the first k class membership. Meanwhile uik is supposed to

meet the following conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c∑
i=1

uik = 1, 1 ≤ k ≤ n

0 ≤ uik ≤ 1, 1 ≤ k ≤ n
n∑

k=1

uik > 0, 1 ≤ i ≤ c

(1)

FCM algorithm finds the optimal solution by gradient de-
scent, which is to make the objective function reach the min-
imum value. The iterative steps of clustering algorithm are as
follows (Wen and Wang, 2018):

Step 1: Determine the number of clusters c, the weight index
m; randomly generate the clustering center matrix Z(0); make
the number of iterations l = 0.

Step 2: Use Eq. (2) to calculate the membership matrix U(l+1),
and modify the clustering center Z(l + 1).⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z(l+1)
i =

∑n
k=1(uik(l))mxk∑n
k=1(uik(l))m

uik
(l+1)

= [

n∑
j=1

(
dl
ik

dl
jk
)

2
m − 1

] − 1
(2)

where, l is the number of iterations, and m is the weighted index.
Step 3: For a given threshold ε > 0, the algorithm terminates

when the target function J(ml) − J(ml + 1) ≤ ε. Otherwise, the
iteration returns to Step 2.

2.2. GWO-BP neural network algorithm

Back propagation algorithm is one of the most effective multi-
layer neural network learning methods. Its main characteristics
are that though adjusting forward transmission of signals, back-
ward propagation of errors and continuous adjustment of net-
work connection values can make the final output of the network
as close as possible to the expected output, so as to achieve the
training purpose (Daut et al., 2017).

Grey wolf optimizer (GWO) is a new swarm intelligence opti-
mization algorithm proposed by Mirjailili et al. in 2014. Its core is
to optimize the dynamic process of parameter by simulating the
hunting process of grey wolves, such as finding, surrounding and
attacking prey (Hatta et al., 2018).

The algorithm divides the wolves into the optimal grey wolf,
the second-best grey wolf, the third best grey wolf and the
remaining grey wolf. The highest ranking optimal grey wolf has
two partial, one male and one female, which is responsible for
decision-making and leading the whole wolf pack in the process
of hunting and seeking for the best. Behaviors at each level need
to be strictly subject to the leadership at the higher level, so as to
carry out group optimization. Research shows that the grey wolf
algorithm is obviously superior to the traditional evolutionary
strategy, genetic algorithm, particle swarm optimization algo-
rithm and other intelligent algorithms in global optimization (Xu
and Ding, 2017).

Therefore, GWO is selected in this paper to optimize the
weights and thresholds of BP neural network. The main math-
ematical model of the algorithm is described below.

Step 1: Surround. The first step of grey wolf hunting is to lock
the target and surround. Its mathematical formulas are as follows:

D = |C · XP (t) − X(t)| (3)

X (t + 1) = XP (t) − A · D (4)

where, t is the current iteration number; XP (t) is the location
of prey of the current t generation; X(t) represents the current
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position of t generation grey wolf individuals; both A and C are
vector coefficients, whose specific values can be obtained from
the formulas (Mirjalili et al., 2014):

A = 2a · r1 − a (5)

C = 2 · r2 (6)

In the above formulas, the value of a decreases linearly from
2 to 0 as the number of iterations increases, while r1 and r2 are
random vectors in the interval of [0, 1].

Step 2: Hunt. After the encirclement, the wolf will be guided
by the optimal grey wolf, the sub-optimal grey wolf, and the third
superior grey wolf for position updating, and the mathematical
model is as follow:

Da = |C1 · Xa| (7)

Dβ = |C2 · Xβ | (8)

Dδ = |C1 · Xδ| (9)

X1 = Xα − A1(Dα) (10)

X2 = Xβ − A2(Dβ ) (11)

X3 = Xδ − A3(Dδ) (12)

X(t+1) =
X1 + X2 + X3

3
(13)

In the above formulas, X(t+1) is the updated position of grey
wolf individual (namely the optimal solution vector).

Step 3: Attack. The last step of grey wolf optimization is to
capture the target, that is, to obtain the optimal solution. The
optimal solution is obtained mainly by decreasing the value of a,
and the wolf will realize the attack on the prey when the value of
A gets any value in the interval of [−2a, 2a] and |A| ≤ 1 (Kutaiba
et al., 2018).

2.3. GWO-BP algorithm for fuzzy C-means clustering optimization

GWO-BP with fuzzy C-means clustering optimization is a
group intelligence algorithm which can obtain the global optimal
solution while selecting the mode, and can improve the conver-
gence speed and precision. The core of GWO-BP algorithm is to
take the weight and threshold of BP neural network as the grey
wolf location information X(t), and updating the location is equal
to updating the weight and threshold of BP neural network, so as
to find the global optimal.

Considering the timeliness and interference of building energy
consumption, this paper firstly conducts sample identification
through data clustering, and then established BP neural net-
work prediction model for different types of samples. In order to
avoid trapping in local optimum, the back propagation algorithms
are finally modified by grey wolf optimization algorithm. The
structure diagram of the composite prediction model is shown in
Fig. 1. The BP model assigns the weighting matrix and threshold
of hidden layer neurons between the input layer and hidden
layer by random, which containing a large number of variable
parameters and the parameter variables are difficult to control
and the result is not stable. The GWO algorithm has the advan-
tages of less parameters and stronger global search ability. After
introducing grey wolf optimization algorithm, punishment factor
and kernel parameters of BP neural network can been dynamic
optimized because the GWO-BP algorithm can effectively extract
the optimum matrix connection weights and threshold in order
to achieve a better and relatively stable prediction effect. The
GWO bionic algorithm mimics wolf predation and solves similar
dynamic non-numerical optimization problems.

3. Case analysis

3.1. Introduction to office buildings

The data used is from a comprehensive office building in
Xi’an. The office building has 44 floors above ground and 3 un-
derground floors, with a total construction area of 300000 m2

(including 300000 m2 air conditioning heating area). The building
is a concrete shear wall structure with solid clay bricks for the
external walls. The glass is low-E, which is the energy saving
and environmental protection new-type. The shape coefficient of
the whole office complex is 0.8. Units in the office building have
irregular working hours on weekdays and weekends, and irregu-
lar overtime work on weekdays and weekends. Therefore, typical
sample modeling cannot be carried out simply according to the
regular work schedule in the modeling process, and clustering
method should be adopted to improve the accuracy of the model.

The office building in this paper has been put into use for
a long time. At the same time, the building is equipped with
an energy consumption monitoring platform and the system op-
erates normally, which can realize real-time data collection of
outdoor temperature and humidity, air conditioning supply and
return water temperature, flow rate and energy consumption. It
can ensure the reliability and authenticity of data. Fig. 2 shows
the annual energy consumption of lighting socket, air conditioner,
power and special power in office buildings. It can be known that
lighting socket accounts for the largest proportion of electricity
consumption, and the energy consumption of the other three
items is basically flat. This is mainly due to the Clause 6.4.3
GB50189-2015 requires public buildings should be in accordance
with the item of lighting, air conditioning, electric power, special
power socket for power monitoring and measurement. And if the
end of the air conditioning system separate metering electricity,
air conditioning system at the end of electricity shall be calculated
in the lighting and socket items, including 220 V fan, indoor air
terminal (fan coil units, VAV, and so on), as well as split air
conditioning, etc.

3.2. Construct the sample set

3.2.1. Selection of input and output parameters
In the first step of predictive modeling, relevant data should

be obtained, and the input and output data involved in modeling
should be preprocessed to obtain an accurate and applicable
sample set (Hossein, 2014).

In view of the non-linear complexity of building energy con-
sumption system, the main factors affecting power consumption
are generally divided into four major characteristics: equipment,
personnel, weather and building, including building structure
and materials, personnel density, temperature, humidity and so
on (Fumo, 2014).

The output parameters of the model are selected from the ac-
tual operation data of an office building in Xi’an for a whole year.
General component is the power of office building lighting socket
electricity, air conditioning, power electricity utilization and spe-
cial, at the same time each category has different characteristics
and the corresponding significantly influence factors. Considering
the office building has the characteristic of strong regularity, the
input parameters of the model are comprehensively evaluated,
and the input parameters are finally selected as follows on the
basis of literature research (Erkoreka et al., 2016; Chen and Lee,
2019; Kim et al., 2019b):
(1) Outdoor meteorological parameters: outdoor daily average
temperature T; daily average moisture content W; daily average
relative humidity RH; total solar radiation R.
(2) Historical energy consumption data: previous daily energy
consumption Qt−1; energy consumption on the same day of the



Y. Tian, J. Yu and A. Zhao / Energy Reports 6 (2020) 620–627 623

Fig. 1. Structure of composite prediction model.

Fig. 2. Office building power consumption variation.

previous week Qw−1; energy consumption of the same day and
month in the previous month Qm−1.
(3) Working day: setting the data as 1 if it is the working day;
otherwise setting the data as 0.

3.2.2. Input parameter standardization
As the input data has many categories and different dimen-

sions, it greatly affects the calculation efficiency. Therefore, this
paper first normalized the input data, as shown in the following
equations:

T =
T − Tmin

Tmax − Tmin
(14)

W =
W − Wmin

Wmax − Wmin
(15)

RH =
RH − RHmin

RHmax − RHmin
(16)

R =
R − Rmin

Rmax − Rmin
(17)

In formulas (14)∼(17), Tmin and Tmax respectively sample of
minimum and maximum outdoor air temperature, ◦C; Wmin and
Wmax are the minimum and maximum moisture contents of air
in the sample respectively, g/kg dry air. RHmin and RHmax are
respective the minimum and maximum values of average relative
humidity in the sample, m/s; Rmin andRmax sample the minimum

and maximum of solar radiation, MJ/m2. The power consumption
and outdoor meteorological parameters can be seen in Fig. 3.

3.3. Consumption prediction for building

3.3.1. Sample data selection
The collected data were preprocessed according to the steps

in 3.2.2, and the continuous power consumption records from
January to December 2018 (365 records in total) were obtained
as sample data.

To improve the robustness of the model, N_1 = 110 groups
of data were randomly selected as prediction samples, and the
remaining N_2 = 255 groups were selected as training samples.
At the same time, 59 sets of data in January (31 days) and
February (28 days) of 2019 were selected for modeling prediction
to verify the generalization ability of the model.

In Fig. 3, four seasons were selected to compare the amount of
electricity data. On the one hand, it shows that the office building
power consumption is larger irregularity. July and October elec-
tricity consumption is relatively larger, and it mainly because of
cold and heat variability. The office building power consumption
is relatively low in January because the building has just been put
into using, and some idle office units did not begin to work.

On the other hand, in the input parameters of this office build-
ing, the dry-bulb temperature presents a great regularity, with
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Fig. 3. Power consumption and outdoor meteorological parameters in January, April, July and October 2018.

the highest in July, the lowest in January, and the temperature
fluctuation range of April and October are similar.

The average daily moisture content also showed great reg-
ularity and was the highest in July, the lowest in January, and
fluctuated within the same range in April and October. In compar-
ison, the total solar radiation and relative humidity show greater
irregularity. Traditional energy consumption prediction methods
fail to combine these physical meaning in practice, resulting in
low accuracy and great influence by outliers in power predic-
tion. Therefore, this paper proposes to use FCM-GWO-BP model
combined with physical meaning analysis to optimize it, so as to
improve prediction accuracy and generalization performance.

3.3.2. Actual modeling
Based on the analysis in the second section, this experiment

adopted the three-layer BP neural network structure.
Taking the energy consumption of a lighting socket as an ex-

ample, FCM clustering algorithm was used to cluster the training
samples. From its physical interpretation, the parameters ε =

0.000001, tmax = 200, m = 4. With reference to 2.1, c was set as
2 to

√
N2. The results of multiple times of clustering are shown

in Fig. 4. It can be seen that clustering it into four categories has
the most ideal effect.

At the same time, the information entropy (Kikuta and Taka-
hashi, 2016) of the clustering results is calculated for verification,
and the results are shown in Fig. 5, so as to verify the results of
multiple clustering.

After clustering into four categories, BP neural network models
(ANN1, ANN2, ANN3, ANN4) were established for four training
samples (class A, class B, class C and class D), and all the unclus-
tered sample groups were taken to establish BP neural network
model (ANN0). The number of neurons in the input layer of
the neural network is 8; the hidden layer is 17; the output
layer is 1; and the training function of the hidden layer is Sig-
moid function. The output layer function is a linear function;
the training times are 1000; the learning rate is 0.01; and the
training target is 1.00E−08. Forecast 59 set of clustering sam-
ples, and determine the type of its offspring into corresponding
ANN1/ANN2/ANN3/ANN4 model to forecast, and then get the
clustering of predicted ŷ(i). As control group, the sample under
test into ANN0 get load forecast ŷ(0). The RMSPE values of the
corresponding model and the ANN0 model are compared.

After the system is grouped into 4 categories, a total of 8
groups of input parameters can be obtained. Aiming at the prob-
lem that BP neural network is easy to get stuck at locally optimal
value, the parameters are optimized by referring to the steps in
part 2. The grey wolf optimization algorithm was used to test the
samples, and RMSPE values of the ANNi∗ model were obtained.

4. Result analysis

4.1. Determination of performance evaluation indexes

Finally, the fitting results are evaluated and verified. Common
prediction model error evaluation indexes are:

∆ - absolute error:

∆ = ŷ (i) − y(i) (18)

δ - relative error:

δ =
∆

y(i)
× 100% (19)

MAPE- mean absolute percentage error:

MAPE =

∑N
i=0

|y(i)−ŷ(i)|
y(i)

N
× 100% (20)

RMSPE- root mean square percentage error:

RMSPE =

√
1
N

∑N
i=0(y(i) − ŷ(i))2

y
(21)

where N represents the number of samples to be predicted; y is
sample mean; y(i) and ŷ(i) present the real value and the pre-
dicted value of the i sample respectively. During the convenience
period, the normalized dimensionless value is adopted for power
consumption. The prediction accuracy is inversely proportional to
the above values.

4.2. Evaluation and verification of the model

4.2.1. Robustness verification of the model
After the prediction model was run for 8 times, it can be seen

from Table 1 that after using FCM clustering the average RMSPE
of the GWO-BP neural network prediction was reduced by 0.225
compared with the BP model, and was reduced by about 0.135
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Fig. 4. MATLAB conducted multiple FCM tests.

Fig. 5. The change trend of information entropy with the clustering number.

Table 1
Comparison of RMSPE of each model.

RMSPE0 RMSPEi RMSPEi∗

Training set 0.298 0.208 0.073
Testing set 0.213 0.183 0.141

compared with the pure GWO-BP model. The result indicating
that the prediction accuracy of the neural network after clustering
was significantly improved, with a maximum increase of 75%.
The reason for this is that the neural network interference after
clustering is less and more targeted. The RMSPE values of ANN0,
ANNi and ANNi∗ were calculated according to the steps in the
second section, as shown in Table 1. The calculation results of
RMSPE in both test set and training set were better than GWO-BP
and better than BP model.

4.2.2. Model generalization verification
A total of 59 groups of data in January (31 days) and February

(28 days) of 2019 were substituted for modeling and prediction.
The modeling and prediction were carried out according to the
steps in Section 2. The results are shown in Fig. 6.

Fig. 6 is calculated to predict the error ∆, as shown, the
absolute error of BP model in January of 2019 comes to 1293 kW
h; GWO-BP comes absolute error is up to 764 kW h. The GWO-BP
optimized by fuzzy C-means clustering algorithm is the minimum

absolute error, and is only 509 kW h. In January 2019, the RMSPE
of FCM-GWO-BP model reached 5.04%, and the model optimized
with parameters reduced by 14.13% and 7.22% respectively. In
February 2019, the RMSPE of FCM-GWO-BP model reached 5.45%,
which was 12.17% lower than that of the model without cluster-
ing, and 8.15% lower than that of the model without grey wolf
algorithm for parameter optimization.

The reason for the increasing in accuracy is that different
working data can improve the generalization ability of the model.
The more different working days, the more precise model se-
lection, the performance of the algorithm will be stronger. It is
worth noting that optimization GWO-BP algorithm belongs to the
building energy consumption prediction method of data driven.

The actual new building has to be put into use for a while,
and we have to get the run data of the building over a period of
time firstly. Then, we can use the algorithm to forecast for on-
line optimization by computer, in order to guide the real energy
scheduling.

To determine the cluster number of c for building cluster pro-
cessing, the cluster number shall be determined according to the
clustering formula in FCM. The data characteristics of buildings
are different, and the number of cluster c is inconsistent. How-
ever, according to formula (2), the optimal number of clusters can
be calculated through historical data.

In the case study, the average value was calculated after 8
operations, and the MAPE results were shown in Table 2. It can
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Table 2
FCM-GWO-BP prediction method was compared with MAPE.
Time Actural value/kW h Prediction/kW h (Average)

BP model GWO-BP model FCM-GWO-BP model

Prediction MAPE (%) Prediction MAPE (%) Prediction MAPE (%)

January 94815.4 76449.7 19.37 82906.6 12.56 89372.9 5.74
February 74803.3 59737.9 20.14 66500.2 11.10 71100.6 4.95
Average 84809.4 68093.8 19.76 74703.4 11.83 80236.8 5.35

Fig. 6. Histogram of absolute error between the predicted values of the two models and the actual values of building electricity consumption.

be seen that the MAPE in February 2019 was as low as 4.95%,
which was 6.42% lower than the GWO-BP model without fuzzy C-
means clustering optimization and 15.19% lower than the simple
BP model.

The results of mean absolute percentage error in January 2019
also show that fuzzy C-means clustering can greatly improve the
accuracy of prediction. It can be concluded that the generalization
of FCM-GWO-BP neural network method is better than that of
GWO-BP and BP prediction method.

5. Conclusion

The construction of the new smart city is driven by data.
The mining of collected data and information, and the prediction
and diagnosis of building energy consumption are hot topics in
the current smart city research. However, due to the increasing
amount of energy consumption data and more complex types,
an effective energy consumption forecasting model is urgently
needed to guide energy consumption.

Aiming at this problem, the paper established a building power
consumption prediction method based on FCM-GWO-BP, and
studied the power consumption prediction of an office building
in Xi’an, Shaanxi province. The main works contain:

(1) Compared with the traditional neural network prediction
method, the FCM clustering method is used to carry out un-
supervised learning division of the training data set, and the
classification prediction model is established for different build-
ing energy consumption samples to eliminate the noise in the
sample data. The model results show that compared with the
pure model, the prediction accuracy is improved by 75%, and
the influence of correlation on the prediction performance of the
model is reduced.

(2) GWO algorithm is adopted to optimize the parameters of
BP neural network to avoid the blindness of parameter selection.
The prediction effect of the optimal model constructed based on
the sample data of FCM clustering analysis and GWO optimization

parameters is better than that of BP and GWO-BP models. The
MAPE of the model is reduced by 14.41% and 6.48% by using the
test monthly data set (January and February 2019), which proves
that the model has enhanced generalization ability and obtained
better prediction accuracy and reliability.

Faced with smart city, the improved GWO-BP modeling was
proposed in this paper to analyze and predict the energy con-
sumption of buildings. The novel way can improve the accuracy of
prediction, so it is convenient to realize the advance dispatching
of power system, and reduce the energy waste in the process of
power transmission, and lay a foundation for the construction of
self-regulating smart cities.
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