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a b s t r a c t

With the aging of Lithium-ion batteries (LIBs) of electric vehicles in the near future, research on the
second use of retired LIBs is becoming more and more critical. The classification method of the retired
LIBs is challenging before the second use due to large cell variations. This paper proposes a rapid
classification method based on battery capacity and internal resistance, because batteries with different
capacities and internal resistances have different voltage curves during charge/discharge. First, the
piecewise linear fitting method established by the specified tested batteries with capacities and their
corresponding characteristic voltages is used to sort the batteries. Then combined with the nonlinear
function approximation ability of the radial basis function neural network (RBFNN) model, battery
capacity and internal resistance are predicted after the model training. 108 cells are used for the
simulation classification with experimental classification performed on 12 cells. The results prove that
the classification method is accurate.

© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

With the rapid development of new energy vehicles, a big
problem about how to dispose the large amounts of retired bat-
teries occurs. Currently, there are two ways to dispose the retired
Lithium-ion batteries (LIBs) —directly recycled or recycled after
second use. The fields of second use of retired LIBs include low-
speed electric vehicles(EVs), mobile power, energy storage for
family use and so on. Since 70%–80% of the capacity of retired
battery can be used, the second use of the retired LIBs could be
attractive.

An early approach to the topic of the retired battery second
use was conducted by the U.S. Advanced Battery Alliance (US-
ABC), in which Pinsky et al. studied the technical and economic
feasibility of using a secondary Nickel Metal Hydride (NiMH) EV
batteries (Pinsky et al., 2002). Saxen et al. discussed the appli-
cability that the retired battery standard capacity is 80% of the
initial battery so that the battery can meet the customer’s EV
capability during aging (Saxena et al., 2015). On the economic as-
pect, research has shown that it is profitable to use retired lithium
batteries for backup power and energy storage sites (Assunção
et al., 2016a,b; Heymans et al., 2014; Ahmadi et al., 2014a; Gur
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et al., 2018; Xu et al., 2019). Gur et al. conducted a comprehensive
review of existing waste battery projects and considered that ap-
propriate fiscal incentives were needed to encourage investment
in such systems (Gur et al., 2018). Neubauer et al. studied the
impact of secondary battery use on customers based on the initial
cost of EV batteries and explored the potential of second-hand
EV batteries in the grid energy storage application market. It has
been found that it is likely to become a common part of the life
cycle of automotive batteries in the future and may transform
markets in need of cost-effective energy storage (Neubauer and
Pesaran, 2011). Tong et al. studied the feasibility of installing
a second-stage battery pack in a off-grid photovoltaic vehicle
charging system, and considered that a system using a second-
life battery system could achieve similar performance to a new
battery system, but at a reduced cost (Tong et al., 2013). Jiao et al.
believed that the secondary use of retired batteries could poten-
tially promote business model innovation and link the current
isolated transportation field to the energy applications (Jiao and
Evans, 2016). Linda Gaines described a working system that used
the lead–acid battery recycling as a recycling model with con-
siderations what steps could be taken to avoid recycling barriers
and ensure an economical and sustainable choice at the end of
battery life (Gaines, 2014). Ambrose et al. simulated the resource
and potential performance of retired batteries in rural areas, as
well as technical and economic aspects, and concluded that a
large number of retired vehicle batteries can provide electricity to
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rural users (Ambrose et al., 2014). Ziyou Song et al. investigated
and compared the profits that second-life and fresh batteries can
bring to wind farm owners. And they believed second-life bat-
teries might outperform fresh batteries in the future if the wind
energy price could decreases faster than the battery price (Song
et al., 2019). Lluc Canals Casals et al. studied a technical and
economic analysis of the secondary electricity markets in Europe
and the monitoring data of a second-life EV battery that installed
in a library in Montgat, Barcelona, Spain. This study showed
that battery lifespan increases by a 35% with the incorporation
of second life applications in buildings. Moreover, second-life
batteries could reduce the effective price of EVs and reduce its life
cycle impacts (Casals et al., 2019). Silvia Bobba et al. developed a
dynamic stock and flows model to describe the life-cycle steps
and processes along the value-chain of lithium batteries after
their removal from electric vehicles in Europe. They believed this
study contributed to a more-in depth knowledge of the second-
use of batteries and its potential effects in Europe (Bobba et al.,
2019). In terms of the environment, the second use of retired
batteries from EVs can greatly reduce carbon dioxide emissions
and improve air quality (Martinez-Laserna et al., 2018; Sathre
et al., 2015; Ahmadi et al., 2014b).

A battery pack in an EV is composed of dozens or even hun-
dreds of single battery cells connected in series and in parallel,
thereby obtaining high voltage and high capacity. However, bat-
tery cells in the same batch made by the same manufacturer will
be inconsistent more or less. Besides, during the stage of the EV
usage, battery cells decay at varied speeds when the environment
is different (especially when temperatures are different). There-
fore, battery cells will be more different from each other after
the EV usage. It is very important to achieve accurate predictions
of the remaining battery life and battery state under various
operating conditions (Hu et al., 2020, 2019, 2018; Zheng et al.,
2019; Zhang et al., 2019; Tian et al., 2019). This is essential for
the battery management system to ensure reliable operation and
timely maintenance and is also critical for battery second-life
applications.

According to relevant documents, the inconsistency of retired
lithium batteries for reuse will be more severe than original
ones (Dubarry and Liaw, 2009; Barré et al., 2013; Paul et al.,
2013; Zheng et al., 2015; Baumhöfer et al., 2014; Schuster et al.,
2015). Problems such as over-charge and over-discharge, or even
thermal runaway accidents are more likely to happen. There-
fore, before the second use, the retired lithium batteries shall
be classified. Batteries with the same features shall be picked
out to construct new battery packs in series and parallel with
less difference. Baumhöfer et al. experimented with 48 cells from
a large-scale production line, using data mining algorithms to
identify the dependence between initial battery performance and
cycle life, resulting in a linear regression model that predicts life-
time, and believe it can be used to classify batteries into different
batches before battery pack production (Baumhöfer et al., 2014).
The method can estimate battery performance good, but this
method requires extensive tests of multiple stages to determine
the current battery performance. The process may also be affected
by many factors. Kaizheng Fang et al. realized that the battery
was divided into different heating categories by collecting the
heat data generated by the nickel-metal hydride battery during
charging (Fang et al., 2013). In this method, thermal behaviors are
used for classification, but however, the heat data are also hard
to be quickly achieved. Chengbao Liu et al. used a convolutional
neural network (CNN) for LIBs screening, and the results showed
that lithium battery inconsistency can be greatly reduced (Liu
et al., 2018). This method uses deep learning method which is
suitable for battery classification. Nevertheless, it first needs to
test the battery capacity, then classify the batteries according

their capacity. At last, the classified battery needs to be dis-
charged completely, and thus is very labor intensive. Liao et al.
(2017) and Li et al. (2017) conducted a classification of retired
LIBs by observing the appearance of the battery, battery capac-
ity measurement, pulse characteristic curve and electrochemical
impedance spectroscopy. Their approaches are good to achieve
a comprehensive judgment and accurate classification, but they
require a variety of different performance tests and thus are time
consuming. Our research group proposed a capacity estimation
method based on charging voltage curves. In the demonstration of
the basic theory, the capacities of other series-connected batteries
in the battery pack are estimated by the method of shifting
and scaling the charging curve to make the charging voltage
curve of other cells coincide with the charging voltage curve of a
known capacity of the battery pack, which can be used to classify
batteries of different capacities (Zheng et al., 2013). For traditional
classification, each retired lithium battery shall be fully charged
and discharged, by which the internal resistance, capacity, self-
discharge and other parameters can be achieved; after that, the
retired batteries with the same parameters will be selected and
formed in series–parallel to form new battery packs. In fact, it
costs a lot, both time and money. Therefore, it is not applicable for
disposing large amounts of retired lithium batteries. Recently, via
parallel equalization of the retired batteries, followed by short-
term fast series charging, we classified the batteries of different
capacities according to the inherent relationship between charg-
ing voltage changes and capacity (Lai et al., 2019). However,
the parallel equalization process cannot be applied for battery
modules. Nevertheless, in real applications, batteries before reuse
are usually hard to be disconnected as the modules are usually
connected by welding. Under this background, we (Lai et al.,
2018) further proposed a fast discharge classification method in
which each cell had a short-term series discharge after they were
fully charged, and then model training and capacity computing
were carried out by genetic algorithm back propagation (GA-BP).
Unfortunately, because of the single input single output (SISO) of
this method, it is not so good for classifying both the capacity and
internal resistance.

In this paper, short-term series discharge after being sepa-
rately fully charged of each cell are used to exam the battery
characteristics; furthermore, radial basis function neural network
(RBFNN) model is established with the multi-dimensional input
of characteristic voltages and multi-dimensional output of the
internal resistance and capacity. In this way, batteries can be
classified fast while the classification accuracy regarding the in-
ternal resistance and capacity can be highly guaranteed. With
the basic principle of the battery classification for the capacity
and internal resistance, two classification methods—the piece-
wise linear fitting (PLF) method and the RBFNN method are put
forward, which can be used to classify retired lithium batteries in
different amounts. The PLF model is established by some tested
batteries with capacities and their corresponding characteristic
voltages. Capacities of the remaining batteries can be obtained
by substituting characteristic voltages into the model. But the
PLF method requires organized data of the tested batteries, and
may not be suitable for large-scale battery classification. The
RBFNN method randomly selects some retired batteries for model
training, and then uses this model to predict the internal resis-
tance and capacity of the rest retired batteries. When it comes
to classify large-scale batteries, these two methods can be used
in combination. Firstly, the PLF method is used to collect a batch
of data. Then the data is used for the RBFNN method for train-
ing, which achieves the transition from small-scale to large-scale
battery classification.

The structure of this paper is as follows: Section 2 describes
the principle and the methods of classification. Simulations and
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Fig. 1. Cell charging voltage curves.

experiments are described in Section 3. In Section 4, simulation
and experimental results are analyzed with proposed methods.
Section 5 discusses the evaluation of classifying results, advan-
tages and disadvantages of methods, and the economics. Section 6
gives a summary of the paper.

2. Classification principle and methods

2.1. Classification principle

For retired lithium batteries of the same type, internal resis-
tances and capacities are quite different. The same charge rate
is used for each cell in the modules until an identical voltage is
reached, and then the voltage drops after the cell is stored for
some time. It is known that polarization and diffusion processes
are observed in lithium batteries, which are generally consid-
ered as the internal resistances. The higher internal resistance
is, the higher voltage drop will be and vice versa. Batteries with
different internal resistances can be classified according to this
simple characteristic. If batteries with the same initial voltage and
internal resistance are discharged in series for a period of time,
batteries with different capacities will have different discharge
curves. The higher capacity is, the lower voltage drop will be and
vice versa. So batteries with different capacities can be classi-
fied if the effects of the internal resistance difference are firstly
eliminated.

Based on the aforementioned principle, this paper describes
the following classification process. First, retired LIBs in the same
batch will be charged independently, whose charge rate and cut-
off voltage are set the same. Fig. 1 shows the schematic diagram
of the cell charging voltage curves. Cell 1 is under rest from the
time 0 to tc1; it is charged from time tc1, and stopped at tc2 when
it reaches charge cut-off voltage. A voltage relaxation process
is observed after tc2. After voltage relaxation process, the open
circuit voltages (OCV) of all cells are sorted in an ascending order
and cells with the OCV difference within 0.002 V are divided into
one group, which means cells with similar internal resistance are
classified into one group.

Fig. 2 shows the schematic diagram of the discharge curves of
the modules. t1 is the time to start discharging and the voltage at
this time is U1;t2 is the time after 10 s discharge, and the voltage
at this time is U2;t3 is the time after 5 min discharge and the
voltage at this time is U3. During t1 to t3, the change of the cell
voltage consists of two parts. One is caused by the polarization of
the cell, it is UR which is equal to the voltage difference during t1
to t2, as is shown in formula (1). Because the time of discharge
from t1 to t2 is too short, it can be considered that the amount
of electricity discharged during this period has no effect on the
OCV of the cell, so the voltage change in this part is considered

Fig. 2. Module discharging voltage curves.

to be caused by the internal resistance. The other part is the drop
of the OCV, which is caused by the state of charge (SOC) change
during the discharge. This part is marked as Ud as is shown in
formula (2). Ud excludes the interference of the 10 s internal
resistance voltage, and can be attributed largely to the amount
of electricity discharged. Because the SOC drops are different due
to the different capacities of battery cells, we can see that Ud of
the cells in the modules are different. Therefore, Ud can be used
for the capacity classification.

UR = U1 − U2 (1)

where UR is the 10 s internal resistance voltage of the cell, U1
is the initial voltage before discharge, and U2 is the voltage after
10 s discharge.

Ud = U2 − U3 (2)

where Ud is the OCV drop caused by discharge, and U3 is the
voltage after 5 min discharge.

2.2. Classification method

2.2.1. Piecewise linear fitting method
By formula (2), Ud of battery cell in each group can be ob-

tained. Taking a certain group as an example, Ud of battery cells
are sorted in an ascending order, that is [Ud min ...Ud max]. Accord-
ing to the voltage difference (Ud max − Ud min ) and quantity of
cells, the cells are properly n-partitioned, then the ith section
is [Ud min + (i−1)(Ud max − Ud min )/n, Ud min + i(Ud max − Ud min
)/n]. For each section, the isometric sampling is done as shown
in Fig. 3. Three cells are sampled in the ith section and subjected
to standard capacity test. Since it is not guaranteed that the Ud
of the sample cell corresponds to the sample voltage U in each
section, it can be replaced by the cell which is the closest to the
sample voltage U. After Ud and capacity C of the three sample
cells are obtained, linear fitting can be performed, and the fitting
parameters k and f of the ith section will be obtained, as shown
in formula (3). The capacities C of the remaining cells in the
ith section can be obtained by substituting Ud into formula (3).
By performing the same process in other sections, the fitting
parameters k and f of all sections can be obtained. Thereby the
capacity of all sections can be obtained. Finally, other groups can
be performed in the same way and the capacity of each cell can
be obtained.

C = k × Ud + f (3)

where C is the battery capacity, k and f are the fitting parameters.
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Fig. 3. Isometric sampling for Section i.

2.2.2. Radial basis function neural network method
For the method mentioned above, it is mandatory to sort and

group the batteries. If there are large amounts of retired batteries,
the classification would be quite complicated and would not be
so efficient. Thus, the RBFNN method is put forward. Relying on
nonlinear mapping function owned by RBFNN input and output,
model training is performed on some already-know data, and
then use the already-trained model to predict the new data.

The artificial neural network is modeled and linked based
on the basic unit of human brain — neuron, simulating the
human brain nervous system, forming an artificial system with
intelligent information processing such as learning, association,
memory and pattern recognition. RBFNN can use a supervised
learning algorithm to obtain the weight parameters of the neural
network through training sample data, so that the error between
the final output result and the actual result is minimized. Since
RBFNN essentially implements the mapping function from in-
put to output, and mathematical theory proves that it has the
function of realizing any complex nonlinear mapping, it can be
used to solve complex internal mechanisms, making it suitable
for regression prediction, classification and recognition and other
issues. Therefore, this paper uses the RBFNN model to conduct
training on battery data, such as characteristic voltages, internal
resistances and capacities. After that, the model can be used to
predict the internal resistance and capacity of other batteries.
RBFNN consists of input layer, hidden layer and output layer. The
flow chart is shown in Fig. 4.

For the RBFNN model in this paper, it is mandatory to train
some battery data first. The input are the characteristic voltage
U1, U2 and U3 collected during the series discharge, and the
output are capacity C and internal resistance R, where the internal
resistance R can be obtained by formula (4) and the capacity is
achieved by the full charge and discharge experiments. Before the
training, the data needs to be normalized. The specific method
is to change the number to a decimal between (−1, 1), such
as formula (5), which make it easier to process data, speed up
the convergence of network training and improve training speed.
When the training is completed, input a new group characteristic
voltage U1, U2 and U3, then the capacity C and the internal
resistance R can be estimated. The estimation process is indicated
by the blue arrow in Fig. 4.

R = UR/Idsc (4)

where R is the internal resistance of the battery, Idsc is the dis-
charge current.

X = 2(U − Umin)/(Umax − Umin) − 1 (5)

where Umax and Umin are the maximum and minimum values of
the voltage U in the samples.

3. Simulation and experiment

3.1. Simulation

The simulation uses a second-order resistor-capacity(RC)
equivalent circuit model, which includes an ideal electromotive
force E, a pure ohmic internal resistance R0 and two polarized RC
parallel circuits, as is shown in Fig. 5. R1, R2 are polarized resistors,
and C1, C2 are polarized capacitors. The parallel circuit composed
by R1 and C1 represents the polarization of the electrode, and
the parallel circuit composed by R2 and C2 represents the con-
centration polarization. The model can not only correctly test the
parameters, whose computing error is quite small; but also it can
well reflect the dynamic and static feature of the battery. The
model formula is shown in (6).

UL = E − ILR0 − U1 − U2 (6)

where UL is the terminal voltage of the cell, E is the electromotive
force, IL the current, R0 the ohmic internal resistance, U1, U2 the
terminal voltages of the two RC circuits respectively.

The single cell model also includes a thermal model. Because
temperature has a large impact on cell performance, the thermal
model is the basis for other submodels. In addition, other sub-
models are included, including SOC calculation model, voltage
model, internal resistance model, aging model, Coulomb effi-
ciency model, capacity decay model, self-discharge model and so
on. Finally, a battery pack system model is build which contains
108 single cells, as is shown in Fig. 6. This battery pack system
model includes a battery pack, information output, and power
system. The battery pack consists of 108 single cells connected
in series. The information output function mainly records and
exports data for analysis. The main function of the power system
is to control the charge and discharge of the battery. One may
refer to our preliminary work (Zheng et al., 2014) for more
information about the battery pack system model.

The simulation process is shown in Fig. 7. (1) Firstly, 108
battery capacities are randomly set. In order to make the sim-
ulation more in line with the actual situation, the setting of
battery capacity refers to the batteries used in real applications.
When setting battery capacity, the real battery original capacity
(60%–90%) is used as the selection range and obtained by using
MATLAB unifrnd function. Since the unifrnd is a continuous uni-
form random function, we can see a uniform distribution in the
figure. (2) The 108 battery cells are individually charged with the
same charging rate(1/3Crate, and C-rate is the measurement of the
charge and discharge current with respect to its nominal capacity,
and a fully-charge battery is fully discharged in 3 h with 1/3C-
rate current), and the charging cut-off voltage is 4.15 V. After
charging, the battery cells are rest for relaxation to achieve OCVs.
(3) all the battery cells are discharged in series with 5 min, and
the discharge rate is 1Crate. Finally, according to the classification
principle and method mentioned in Section 2, the capacities and
internal resistances of the cells will be estimated.

3.2. Experiment

A total of 12 LiCoxNiyMn1−x−yO2(NCM) cells of different ages
were selected in this experiment. The basic parameters are shown
in Table 1.

The experimental procedure is shown in Fig. 7.
(1) Standard capacity test on the selected 12 cells are firstly

carried out. Because results of each test are slightly different,
capacities will be calculated for three times and the average will
be taken as the standard capacity for corresponding cells.

(2) The 12 cells are charged separately with 1/3Crate, and the
charging cut-off voltage is 4.15 V. After charging, the cells will be
rest for 3 h to achieve the OCV.
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Fig. 4. Flow chart of the RBFNN method . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Second-order RC model.

Fig. 6. Battery pack system model.

(3) 12 cells in series are discharged with 1Crate, and the dis-

charge lasts 5 min. According to the classification principle and

method in Section 2, capacities and internal resistances of the

cells will be estimated.

Table 1
Basic parameters of NCM battery.
Item Specification Item Specification

Nominal capacity 32.5 Ah Standard charge
current

11 A (1/3Crate)

Nominal voltage 3.75 V Standard
discharge current

11 A (1/3Crate)

Maximum charge
current

65 A (2Crate) Charge cut-off
voltage

4.15 V

Maximum
discharge current

65A (2Crate) Discharge cut-off
voltage

2.5 V

Storage
temperature

−40∼70 ◦C Operating
temperature

−25∼60 ◦C

4. Results and analysis

4.1. Simulation and experimental results based on the PLF method

4.1.1. Simulation results based on the PLF method
According to the classification principle and method described

in Section 2, the cell characteristic voltages U1, U2 and U3 corre-
sponding to the times t1, t2, and t3 are collected, and the internal
resistances of cells can be obtained by formulas (1) and (4), as are
shown in Fig. 8. According to the classification principle described
in Section 2, U1 is sorted in an ascending order and cells with
the voltage difference within 0.002 V are divided into one group.
The general results are shown in Table 2. Ud of each cells are
figured out via formula (2). Subsequently, the cells are sorted
in an ascending order according to the respective Ud in each
group. The number of sections is decided according to the voltage
difference (Ud max − Ud min) and the quantity of cells. The results
are shown in Table 2.

Group 7 has the largest number of cells, so we take it as an
example. According to the voltage difference (Ud max − Ud min )
and cell quantity, the cells in Group 7 are divided into 2 sections,
as are shown in Table 3. In Section 1, 3 of the 9 cells (Cell 5,74
and 102) are selected to have the capacity test according to the
isometric sampling. The fitting parameters k71 = −1052 Ah/V,
f71 = 93.56 Ah are obtained after linear fitting. In Section 2, 2
of the 4 cells (Cell 45 and 100) are selected to have the capacity
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Fig. 7. Simulation and experimental process.

Fig. 8. Internal resistances of the 108 cells in simulation.

test. The fitting parameters k72 = −1104.87 Ah/V, f72 = 98.4268
Ah are obtained after linear fitting. According to formula (3), the
estimated capacities of cells in each section can be obtained by Ud.
The estimation results and errors are shown in Fig. 9 and Table 3.

Table 2
Groups and sections for the 108 cells in simulation.
Group (U1/V) Number of cells Number of sections (n)

Group 1 (4.0973∼4.0993) 11 2
Group 2 (4.0993∼4.1013) 7 1
Group 3 (4.1013∼4.1033) 3 1
Group 4 (4.1033∼4.1053) 12 2
Group 5 (4.1053∼4.1073) 11 2
Group 6 (4.1073∼4.1093) 10 2
Group 7 (4.1093∼4.1113) 13 2
Group 8 (4.1113∼4.1133) 10 1
Group 9 (4.1133∼4.1153) 9 2
Group 10 (4.1153∼4.1173) 11 2
Group 11 (4.1173∼4.1193) 11 2

Similar processes are done for the other groups, and the result is
shown in Fig. 10. From the result, we can see that the capacity
estimation is quite accurate, and the maximum error does not
exceed ±4.2%.

4.1.2. Experimental results based on the PLF method
In the experiment, the cells were firstly tested to achieve the

capacities and resistances. The results are shown in Table 4. The
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Fig. 9. Estimation capacities and errors in Group 7. (a) Capacity estimation; (b) Capacity estimation errors.

Fig. 10. Estimation results and errors using the PLF method in simulation. (a) Capacity estimation; (b) Capacity estimation errors.

Table 3
Capacity estimation results based on the PLF method for Group 7 in simulation.

Section 1

Cell 5 95 70 72 102 52 86 19 74
Ud/V 0.0610 0.0615 0.0629 0.0630 0.0630 0.0631 0.0639 0.0639 0.0646
Real Capacity/Ah 29.5929 29.1719 27.5469 27.5373 26.8921 28.0028 26.7970 26.5574 25.8526
Estimated Capacity/Ah 29.388 28.862 27.3892 27.284 27.284 27.1788 26.3372 26.3372 25.6008
Error/% 0.69 1.06 0.57 0.92 −1.46 2.94 1.72 0.83 0.97

Section 2

Cell 45 47 1 100
Ud/V 0.0678 0.0682 0.0683 0.0701
Real Capacity/Ah 23.5166 22.5751 22.6297 20.9754
Estimated Capacity/Ah 23.5166 23.0747 22.9642 20.9754
Error/% 0 −2.21 −1.47 0

Note: The sampled batteries are shown in bold.

Table 4
12 cell capacity, resistance and U1 .
Cell 1 2 3 4 5 6
Capacity/Ah 24.9983 28.2313 24.3978 28.6667 29.8928 28.0153
Resistance/� 0.0038 0.0027 0.0039 0.0026 0.0024 0.0026
U1/V 4.083 4.086 4.058 4.094 4.093 4.094

Cell 7 8 9 10 11 12
Capacity/Ah 25.599 22.646 29.341 29.2559 28.320 28.885
Resistance/� 0.0041 0.0046 0.0025 0.0024 0.0028 0.0023
U1/V 4.08 4.048 4.092 4.09 4.09 4.091

different values of U1 prove that the batteries with different in-
ternal resistances have different voltage drops after fully charged
and rested that described in Section 2.

The series discharge experiment is performed. The results
are shown in Table 5. According to the classification principle
described in Section 2, U1 is sorted in an ascending order. The
cells with voltage difference within 0.002 V are grouped into
one group, which means cells with similar internal resistance
are classified into one group. Because some cells have a large

Table 5
Groups for the experiment cells.

Group 1 Group 2

Cell 4 5 6 9 10 11 12
U1/V 4.094 4.093 4.094 4.092 4.09 4.09 4.091
U2/V 4.017 4.021 4.017 4.018 4.017 4.006 4.021
U3/V 3.916 3.927 3.909 3.917 3.918 3.892 3.92

difference in U1 from others and the quantity is not enough, these
cells are not grouped. Since there are not many cells in each
group, sections are not required in each group.

Next, the linear fitting is performed. In group 1, Cell 5 and 6
are selected to do the linear fitting according to the sampling
principle. The fitting parameters k1 = −134.1071 Ah/V, f1 =

42.4989 Ah are obtained. In group 2, Cell 10 and 11 are selected to
do the linear fitting and the fitting parameters are k2 = −62.3933
Ah/V, f2 = 35.4328 Ah. Capacities of each group can be obtained
by Ud according to formula (3), and the estimated results and
errors are shown in Table 6. The results show that the estimated
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capacity obtained by the PLF is accurate, and the errors are within
±1%.

4.2. Simulation and experimental results based on the RBFNN
method

4.2.1. Simulation results based on the RBFNN method
This paper selects the first 50% of 108 cells as training samples,

in which U1, U2 and U3 are used as the input training data, and
the capacity C and internal resistance R are used as the output
training data. After the training is completed, the remaining 50%
cells are used as verification samples. Namely, after U1, U2 and U3
are inputted into the RBFNN model, the capacity C and internal
resistance R of cells can be estimated. The result is shown in
Fig. 11. From the results of Figures b and d, we can see that
the prediction of RBFNN is accurate. The maximum error of the
capacity does not exceed ±5%, and the maximum error of internal
resistance does not exceed ±0.4%, indicating that the RBFNN
method can be used to classify large-scale retired batteries.

4.2.2. Experimental results based on the RBFNN method
Since there are only 12 cells in this experiment, the first 8 cells

are selected from the 12 cells as the RBFNN training samples,
and the remaining 4 cells are used for verification. The results
are shown in Fig. 12. From Figures b and d, we can find that
the maximum error of the capacity does not exceed ± 5%, and
the maximum error of internal resistance does not exceed ±

1%. Though the experimental data is not many, the estimation
accuracy of the RBFNN model is still reliable.

5. Discussion

Two methods proposed in this paper can be used for accurate
estimation of battery capacity and internal resistance, and further
used for battery classification. On this basis, this section further
discusses three issues: the first is how to classify the batteries
with the estimated capacities and internal resistances and how to
evaluate the battery packs after classification; the second is the
advantages and disadvantages of above two methods and their
respective applicable situations; the third is about the economic
analysis of the methods proposed in this paper comparing with
traditional methods.

5.1. Evaluation of the classification

The basic idea of the classification evaluation is simple and
direct: the batteries are regrouped according the capacities and
internal resistances, and experimented in a certain test condition
to see whether the voltage difference is smaller than an arbitrary
regroup. In this paper, two groups of single cells are selected
from simulation cells and experimental cells respectively and
connected in series into two battery packs, and then the discharge
test is performed. The voltage difference between the two battery
packs is observed from the discharge curve.

5.1.1. Simulation classification
In group 5 Section 2, we select cell 3, cell 62, cell 68, cell 93

and cell 35 to form a battery pack in series, which is named Pack
A. We also randomly select 5 cells from the 108 cells, whose
numbers are 1, 25, 52, 73 and 100, and connect them in series
into a battery pack, which is named Pack B. The discharge test
is performed on the two battery packs using 1/3Crate, and the
discharge last 1 h. The results are shown in Fig. 13. The voltage
consistency of the discharge curve of Pack A is better. At the end
of discharge, the cell voltage difference of Pack A is 0.0195 V; the
cell voltage difference of pack B is 0.0553 V. The root mean square

error (RMSE) of the discharge curves of the two battery packs are
calculated. The RMSE in Pack A is 0.004 V, and the RMSE in Pack
B is 0.01208 V. It is obviously that the batteries classified have
good consistency.

5.1.2. Experimental classification
In the above experiment, we have classified out two groups of

cells with similar capacity and internal resistance from 12 cells as
shown in Table 6. One group containing 4 cells (Cell 9, 10, 11, and
12) are selected and connected in series to form a battery pack,
which is named Pack C. Four cells are randomly selected from
the 12 cells (Cell 1, 3, 4, and 11) and connected in series to form
a battery pack named Pack D. The discharge test is performed on
the two battery packs using 1/3Crate and last 1 h. The results are
shown in Fig. 14. The cell voltage consistency of the discharge
curves of Pack C is good. At the end of discharge, the cell voltage
difference is 0.004 V, and the RMSE of the discharge curves is
0.002675 V. The discharge curves are scattered and the consis-
tency is poor for Pack D. At the end of discharge, the cell voltage
difference is 0.0341 V, and the RMSE of the discharge curves is
0.015525 V. The results demonstrate that the cells classified by
the method of this paper have good consistency.

5.2. Applicability of the proposed methods

Simulation and experimental results show that both PLF and
RBFNN methods can achieve the classification of retired bat-
teries, but both methods have disadvantages. The PLF is not
suitable for large-scale batteries; although the RBFNN method is
suitable for large-scale batteries, it requires a batch of known
data to perform model training first. Therefore, when faced with
large-scale retired batteries, these two methods should used with
combination. The first method is used to collect a batch of data,
and then the data is used for the RBFNN training to achieving
the transition from the small-scale battery classification to the
large-scale battery classification. For a better understanding, a
further explanation is displayed. When less than a dozen of
batteries are required to be classified, which is not the typical
case of large scale retired battery classification, we can use the
traditional method to perform the full-charge/discharge test on
each battery to obtain the capacities and internal resistances,
and subsequently classify them according to the achieved results.
The traditional method would be time-consuming and power-
consuming when the battery scale enlarges to hundreds. The PLF
method is then suitable for this scale, with some batteries tested
with the traditional method, the PLF method can be easily estab-
lished. It is not practical to deal with thousands of batteries with
the PLF method as some of the cells need to be selected and tested
with the traditional method. But we can build a database based
of the PLF method which contains dozens of the cell capacities
from the PLF method and used to train the RBFNN model. And
as a result, the training data of the RBFNN model is no longer a
time-consuming process.

5.3. Economic analysis

The traditional method uses fully charge and discharge to
achieve battery capacity. The battery generally stores certain
power when it leaves the EVs, because the lithium battery it-
self has a self-discharge phenomenon. If the battery is in an
empty state, the self-discharge will cause the battery to be over-
discharged which will cause the active material to be lost, thereby
reducing the capacity of the battery. If the lithium-ion battery
capacity is about 50% when it leaves the EVs, the traditional
battery capacity test process is: full charge - full discharge -
charge to 50% SOC. The battery test procedure in this paper is: full
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Table 6
Estimation results and errors of 2 group cells.

Group 1 Group 2

Cell 5 4 6 10 9 12 11
Ud/V 0.094 0.101 0.108 0.099 0.101 0.101 0.114
Real Capacity/Ah 29.8928 28.6667 28.0153 29.2559 29.341 28.885 28.320
Fitting Capacity/Ah 29.8928 28.9541 28.0153 29.2559 29.1311 29.1311 28.320
Error/% 0 −1 0 0 0.72 −0.85 0

Note: The sampled cells are shown in bold.

Fig. 11. Estimation results and errors based on the RBFNN method with the simulation data. (a) Capacity estimation; (b) Capacity estimation errors; (c) Resistance
estimation; (d) Resistance estimation errors.

charge - series discharge for 5 min. Taking a 110 Wh NCM battery
as an example, the energy consumed by full charge is about 120
Wh, and the energy consumed by full discharge is about 118 Wh.
Assuming that the average SOC of the retired batteries is 50%, the
energy consumed by traditional method is about 238 Wh, while
the energy consumed by the method of this paper is only 70 Wh.
The power will be reduced to 30% by the methods of this paper.
When faced with large-scale retired batteries, the equipment cost
saved is very considerable. In terms of the time consumption, the
first step of the traditional method and the method in this paper
are the same. Although it needs rest for a certain period of time
after full charge for the proposed method, but the rest time does
not occupy the equipment. So the first step of the both methods
take the same equipment time. The proposed method needs to
discharge all the batteries in series for 5 min with 1 Crate. Even
if the traditional method is calculated according to the fastest
time, using 1Crate to full discharge in series and then charge in
series to 50% SOC, it will take 90 min. It can be concluded that:
although the capacity accuracy of the traditional method is 100%,
it costs a lot, both equipment and time. The classification method
in this paper is not as accurate as the traditional method, but
the equipment and time cost is greatly reducing. Hence, it is very
promising for the reuse of retired batteries.

6. Conclusion

This paper proposed a rapid classification method of the re-
tired NCM batteries. As the capacity and internal resistance of

retired lithium batteries are quite different, two classification
approaches are suggested: the PLF and RBFNN methods. the PLF
model is established by the specified tested cells with capaci-
ties and their corresponding characteristic voltages. The RBFNN
method randomly selects some retired batteries for the model
training, and then uses this model to estimate the internal re-
sistance and capacity of the rest retired batteries.

108 cells are used for classification simulation, and 12 cells
are subjected to classification experiments. The experimental and
simulation results show that the two methods proposed in this
paper can be used for accurate estimation of battery capacity
and internal resistance, and further used for battery classification.
The classification results show a better voltage consistency by
the proposed method than random classifications. We further
suggest that the PLF and RBFNN methods could be combined for
large-scale retired batteries classification. And finally, compared
with the traditional method, the proposed methods can greatly
reduce the equipment and time cost with satisfactory capacity
and internal resistance accuracy.
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Fig. 12. Estimation results and errors based on the RBFNN method with the experimental data. (a) Capacity estimation; (b) Capacity estimation errors; (c) Resistance
estimation; (d) Resistance estimation errors.

Fig. 13. Discharge curves of Pack A and Pack B.

Fig. 14. Discharge curves of Pack C and Pack D.
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