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a b s t r a c t

Islanded microgrids as flexible, adaptive and sustainable smart cells of distribution power systems
should be operated in accordance to both techno-economic purposes. Motivated by this need, the
microgrid operators are in charge to elevate the active accommodation of both demand-side and
supply-side distributed energy resources. To that end, in this paper, a new flexible frequency dependent
energy management system is proposed through which distributed generators have time varying
droop controllers with a gain-adaptive strategy. Besides to cope economically with uncertainty arise
frequency excursions, a new, comfort-aware and versatile frequency dependent demand response
program is mathematically formulated and conducted to the energy management system. It is aimed to
co-optimize the microgrid energy resources such a way the day-ahead operational costs are managed
subject to a secure frequency control portfolio. The presented model is solved using a two-stage
stochastic programming and by a tractable efficient mixed integer linear programming approach. The
simulation results are derived in 24-h scheduling time horizon and implemented on a typical test
microgrid. The effectiveness of the proposed hourly gain assignment and frequency responsive load
management program has been verified thoroughly by analyzing the results.

© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Motivation and needs

An Islanded Microgrid (IMG) can be defined as an adaptable
and sustainable block in distribution power systems which as-
semble versatile demand-side and supply-side distributed energy
resources (DER) to procure energy demands with high security
and flexibility (Rezaei and Kalantar, 2015b). The microgrid central
controller (MGCC) main task is to reliably preserve the load
balance constraint while at the same time all the required techno-
economic targets of a smart microgrid are tailored (Rezaei and
Kalantar, 2015b; Guerrero et al., 2013). Similar to large scale
power systems, one of the great challenges of the IMGs is to man-
age the frequency excursions arise from operational uncertainties
in a secure and economic portfolio (Rezaei and Kalantar, 2015b;
Simpson-Porco et al., 2017). The MGCC should provide a flexible
framework to adapt with uncertainties and frequency restric-
tions by optimal coordinating both droop controlled distributed

∗ Corresponding author.
E-mail address: n.rezaei@uok.ac.ir (N. Rezaei).

generations (DGs) and demand response programs (Bidram and
Davoudi, 2012; Eid et al., 2014). Motivated by this need, in this
paper, a new frequency aware adaptable energy management
system is proposed which can be folded in two main contribu-
tions. First, a new, comfortable, economic and highly flexible fre-
quency responsive demand response program is established and
mathematically modeled. The constructed frequency responsive
load (FLR) model is based on potential of thermostatically con-
trolled loads in providing discretized step-wise set-point mod-
ification in response to system frequency feedbacks. Next, the
droop controllers of the DGs are changed to an adaptive time
varying blocks through which an optimal hourly gain assign-
ment strategy is conducted according to the system operational
feedbacks. In gist, the paper concentrates on an adaptive energy
management system aims to manage the day-ahead operational
costs subject to secure control of stochastic frequency excur-
sions. To cope with uncertainties of load consumption and renew-
able energy sources (RES) a two-stage stochastic programming is
adopted and the whole optimization model is solved by an effec-
tive tractable mixed integer linear programming approach. The
executed high accommodate IMG energy management system
can procure imperative cost-effective frequency control paradigm
by flexible coordination of the droop gains and FLR set-point
modifications.

https://doi.org/10.1016/j.egyr.2020.04.021
2352-4847/© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

Indices

h ∈ H Index of hours
s ∈ S Index of scenarios
g ∈ G Index of distributed generators
i ∈ I Index of photovoltaic units
w ∈ W Index wind turbine units
n ∈ N Index of natural responsive loads
d ∈ D Index of demand response providers

Parameters

B Natural load frequency dependency co-
efficient

VLL Value of Lost Load
π Probability of scenario
f 0 Nominal frequency of MG
∆f Maximum allowable microgrid

frequency excursion limit
α Fixed operation cost of DG
β First-order operation cost of DG
δ Start-up/shut-down cost of DG
ρDRP The cost associated to demand response

providers
λWT The operation cost of WT
λPv The operation cost of PV
PDG Maximum power generation of DG
PDG Minimum power generation of DG
URDG Ramp-up limit of DG
DRDG Ramp-down limit of DG
UTDG Minimum up-time limitation of DG
DTDG Minimum down-time limitation of DG
PL Forecasted load consumption of MG
PWT Maximum forecasted power output of

WT
PPV Maximum forecasted power output of

PV

Variables

PDG_ref Active power reference of DG
PDG_ref Power output of DG
ngain Droop gain of DG
f MG Frequency of MG
∆PL Load deviation from its forecasted
∆PWT WT power deviation from its forecasted
∆PPV PV power deviation from its forecasted
∆PDG Power deviation of DG from its refer-

ence
∆PNR Power deviation associated to natural

responsive loads
∆PFR Power deviation associated to

frequency responsive loads

1.2. Literature review

To provide a background of the research this section is al-
located to review the associated literature. In some papers, fre-
quency excursions arising from the uncertainties in the envi-
ronment of IMGs are ignored and energy management is only

LSH Involuntary load shedding
u Binary variable indicating commitment

state of DG
uON Binary variable indicating start-up state

of DG
uOFF Binary variable indicating the shut-

down state of DG

conducted to optimize operation objectives. In Marzband et al.
(2013), a real-time control system is proposed to operate and
validate the hybrid resources in the IMGs, experimentally. In Zia
et al. (2019), a determinist EMS is proposed for an IMG that opti-
mizes both the operating and emission costs. In Marzband et al.
(2017) a multi-period optimization algorithm is implemented
for economic scheduling of IMGs. Moreover, an artificial neural
network is used to predict uncertainties. In Singh et al. (2018),
an EMS is proposed for IMGs to regulate voltage through optimal
control of electric vehicles. In Pourghasem et al. (2019), a stochas-
tic multi-objective model for optimal management of combined
heat and power based IMGs is proposed considering the uncer-
tainties of forecasted wind power and load demand. Another
stochastic EMS is proposed in Farzin et al. (2017) to minimize
total operation cost during unscheduled MG islanding periods
using optimal scheduling of all resources. Authors of Liu et al.
(2016) has proposed an optimal scheduling model for minimizing
the operating costs of an IMG by using chance-constrained pro-
gramming approach. A stochastic frequency security constrained
EMS for an isolated MG with droop controlled DGs is proposed
in Rezaei and Kalantar (2014). A new technical objective function
is extended. It minimizes frequency deviations during day-ahead
MG operation and limits operational and emission costs of MG
to a reasonable level. In Vahedipour-Dahraie et al. (2017), a
two-stage stochastic model for optimal frequency-security con-
strained energy and reserve scheduling in an IMG is proposed.
The droop coefficients are considered fixed. In Rezaei et al. (2018),
a robust EMS based on information gap decision theory is pro-
posed for IMGs to minimize operation cost while managing fre-
quency excursions. Authors of Gholami and Sun (2018) have
proposed a framework for minimizing total load shedding cost of
MGs while the frequency stability is ensured following unplanned
contingencies. In Rezaei and Kalantar (2015a), a multi-objective
EMS is proposed for IMGs in which optimal prices of energy and
frequency security is determined for droop-controlled DGs.

In the above papers the droop coefficients are permanently
allocated on the basis of the capacity of the controllable DGs.
However, with the advent and installation of Advanced Mea-
surement Infrastructure (AMI) in the smart MGs, there is the
possibility of adaptive optimizing droop coefficients depending
on time and operation set-point. In Li et al. (2016), an agent-
based distributed model is proposed to control the frequency and
perform economic dispatch of an IMG with renewable resources.
In Abdelaziz et al. (2014), a probabilistic algorithm is used to
optimally adjust the droop gains of DGs considering uncertain-
ties of renewable generations and loads. In Ref. Khaledian et al.
(2017), a two-layer real time energy management is proposed to
reduce the frequency deviation and provide an economic power
sharing between DGs in an IMG. Optimal droop gain assignment
of DGs based on combination of gradient descent method and
minimum mean square frequency error strategy is used in the
second layer. Although the variable droop coefficients are consid-
ered for DGs, the effects of uncertainty of the renewable resources
and loads are not considered. A similar model is proposed in
Abedini and Abedini (2018) to optimize droop parameters of
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DGs aims to improve voltage and frequency excursions of IMGs
with minimum cost. In Abdelaziz and El-Saadany (2015), a proba-
bilistic analytical control strategy is proposed to optimally select
the droop gains of DGs in order to minimize the uncertainties.
In Aunedi et al. (2013), a frequency related demand response
model based on refrigeration appliances through an advanced
stochastic control strategy is proposed for frequency regulation
under renewable uncertainties. Plug in electric vehicles (PEVs)
is used as another demand side response to improve primary
frequency control. Regarding to the fast response of PEVs in
comparison to conventional DGs, some portions of PEVs reserve
is replaced by DGs by using a new control strategy after a certain
time (Izadkhast et al., 2017). Table 1, summarizes the comparison
between the proposed model and other existing approaches. As
it can be interpreted no research can be found, to the best of
our knowledge, which is comprehensively manage the microgrid
operational uncertainties using coordinated scheduling of the
gain adaptive droop controllers and thermostatically based fre-
quency responsive loads. Besides, the proposed step-wise model
of frequency responsive loads is new, comfort-preserving, eco-
nomic and provocative for both the end-user demand response
providers and the MGCC. The conducted frequency dependent
unit commitment model is transformed into a tractable and high
efficient linear one which implements an effective new lineariza-
tion lemma to convert bilinear bounded variables that can be
used easily by commercial solvers. In other words, the present
paper fulfills the gap of providing a linearized EMS for frequency
management of IMGs by joint time-dependent gain assignment
of the droop controllers and optimal daily load scheduling in a
cost effective manner.

1.3. Paper contributions

In gist, the objective of the proposed EMS is to minimize
total operation cost of the IMG while its frequency security is
guaranteed in a cost-effective manner. To this end, the MGCC
manages the gains of the droop controlled DGs in coordination
with frequency-responsive loads while all techno-economic con-
straints of the IMG are ensured, simultaneously. Moreover, to
promote the proposed EMS, droop gain of controllable DGs are
models as time dependent variables and adaptively optimized
in such a way that the frequency security of the MG, along
with the objective function based on its economy, is fulfilled. To
cope with the enforced operational uncertainties, the proposed
EMS model is formulated as a two-stage stochastic mixed-integer
linear programming (MILP) problem that guaranties achieving the
global optimal solution. In the following, the main contributions
of the paper are highlighted:

• Proposing a novel energy management system for IMGs
including precise modeling of the droop controlled DGs and
frequency-responsive loads in which all techno-economic
constraints of MG are ensured.

• Modeling droop gain of controllable DGs as time dependent
variables which are adaptively optimized in response to the
system hourly new set-points.

• Introducing a new mathematical model of frequency re-
sponsive loads based on the behavior of thermostat con-
trolled loads.

• Coordinating time-varying gain assignment of controllable
DGs with frequency responsive loads to increase the cost-
effectiveness of the proposed frequency aware EMS.

• Utilizing a new, effective and tractable mixed-integer lin-
ear programming formulation that guaranties achieving the
global optimal solution.

1.4. Paper organization

The reminder of this paper is organized as follows. In Section 2,
the uncertainty modeling of WT power generation, PV power
generation, and load are presented. The frequency responsive
load model is introduced in Section 3. Then, problem formulation
and description are presented in Section 4. Numerical study is
performed in Section 5 and finally, the conclusion is provided in
Section 6.

2. Uncertainty modeling

Different uncertainties related to forecasted power generation
of WTs and PVs as well as MG load demand should be consid-
ered in the proposed gain adaptive EMS which are modeled in
this section by probability distribution functions (PDFs). More-
over, an efficient scenario generation and reduction method are
introduced to reduce the computational burden.

2.1. Wind power generation

The Weibull distribution as a typical PDF fits wind speed
variations with high precision, hence it is used to model wind
speed uncertainty (Wang and Gooi, 2011). The PDF of Weibull
distribution is as follows:

f (v) =

(
k
c

)(v

c

)k−1
exp

[
−

(v

c

)k−1
]

(1)

The power generation of WTs is a function of wind speed and
is presented as follows:

PWT
w =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0; 0 ≤ v ≤ Vciw

P rated
w ×

(v − Vciw)

(Vrw − Vciw)
; Vciw ≤ v ≤ Vrw

Prated; Vrw ≤ v ≤ Vcow

0; Vcow ≤ v

(2)

where, P rated, v, Vci, Vr , and Vco are the rated power, forecasted
wind speed, cut-in speed, rated speed and cut-off speed of WT,
respectively.

2.2. Photovoltaic generation

The variations of solar irradiance at a particular location usu-
ally follow a Beta distribution which is used to model the solar
irradiance uncertainty (Mazidi et al., 2014). The PDF of Beta
distribution is as follows:

f (I) =

⎧⎨⎩
Γ (α + β)

Γ (α) Γ (β)
I(α−1) [1 − I](β−1)

; 0 ≤ I ≤ 1

0; otherwise
(3)

The parameters of Beta distribution can be calculated using
the mean and standard deviation of uncertain variable, i.e., solar
irradiance, as follows:

β = (1 − µI) ×

(
µI (1 + µI)

σ 2
I

− 1
)

(4)

α =
µI × β

1 − µI
(5)

The irradiance-to-power conversion function is used to calcu-
lated the power generation of PVs:

PPV
i = ηPV

i × SPVi × I; 0 < I < ∞ (6)

where, I , ηPV , and SPV are the solar irradiation, efficiency (%), and
total area (m2) of PV, respectively.
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Table 1
Comparison of the proposed model with the existing approaches.
Ref Frequency-

responsive
loads

Day-ahead
adaptive
droop gains

Frequency
security
margins

Load
uncertainty

Renewable
generation
uncertainty

Economic
based energy
management
system

Linearized
microgrid unit-
commitment
model

Stochastic
programming

Marzband et al. (2017) ×

Singh et al. (2018) ×

Pourghasem et al. (2019) × ×

Farzin et al. (2017) ×

Liu et al. (2016) × × ×

Rezaei and Kalantar (2014) × × × × ×

Vahedipour-Dahraie et al.
(2017)

× × × ×

Rezaei et al. (2018) × × × × ×

Gholami and Sun (2018) × × × × × ×

Rezaei and Kalantar (2015a) × × × × ×

Li et al. (2016) × × ×

Abdelaziz et al. (2014) × × × × × ×

Khaledian et al. (2017) × × × ×

Abedini and Abedini (2018) × × × × ×

Abdelaziz and El-Saadany
(2015) and Aunedi et al. (2013)

× × ×

Izadkhast et al. (2017) × × ×

Wang and Gooi (2011) × × × ×

Mazidi et al. (2014) × ×

This paper × × × × × × × ×

2.3. Load demand

The load uncertainty is modeled with normal distribution
which its PDF is as follows (Wang and Gooi, 2011):

f (PL) =
1√

2πσ 2
L

exp
(
− (PL − µL)

2 /
(
2σ 2

L

))
(7)

where, PL is load demand of MG with mean value and standard
deviation of µL and σL, respectively.

2.4. Scenario generation and reduction

The forecasted uncertainties associated with power generation
of WTs and PVs as well as MG load demand are modeled by
continuous PDFs in the previous subsections. However, using the
PDFs in the continuous format makes the optimization problem
very complicated. Therefore, the continuous PDF of each uncer-
tain variable is divided into discrete intervals to form multiple
states and then combined, to generate a scenario set. As shown
in Fig. 1, the relative PDFs which are used for modeling the un-
certainty in wind speed, solar irradiation, and load demand of MG
are divided to 5, 5, and 7 discrete intervals, respectively. Note that
the considered intervals are an example of discretizing the con-
tinuous PDFs, it can also be divided into more discrete intervals
in accordance to the desired preciseness. It should be mentioned
that each state represents an expected value for the uncertain
variable with its occurrence probability. The expected value is
considered as the middle of the interval while its probability can
be easily calculated by integration.

To combine the different discrete PDFs, the scenario tree is
used in this paper (Mazidi et al., 2019; Zakariazadeh et al., 2014).
As can be seen in Fig. 2, each scenario includes three different
states of wind power, solar power, and MG load at each hour
of scheduling horizon. Likewise, a weight πs is assigned to each
scenario that indicates the probability of its occurrence.

Ss =
{
di, wj, pk

}
; ∀s = 1, 2, . . . ,N (8)

πs = πdi × πwj × πpk; s = 1, 2, . . . ,N (9)

Accordingly, if the relative PDFs which are used for modeling
the uncertainty in wind speed, solar irradiation, and load demand
of MG are divided to 5, 5, and 7 discrete intervals, N = Ni ×

Nj × Nk = 175 scenarios would be generated at each hour of
scheduling.

As the large number of scenarios makes the optimization prob-
lem insolvable, a scenario reduction method should be applied.
To select the desired scenarios (NS) form the first N generated
scenarios by scenario tree method, a stopping criterion is defined
as (10) and applied to the generated scenarios of each hour,
then the NS remained scenarios selected as the reduced desired
scenarios and transferred to the next hour. The procedure is
iterated over the whole 24 h scheduling period. The stopping
criterion is based on standard deviation of the solved scenarios
in each hour. That is, the normalized standard deviation with
respect to the mean value after solving the proposed optimization
problem over each generated scenario is computed and compared
to a pre-specified threshold (Wu et al., 2007; Amjady et al., 2009).
The given threshold can be various according to the preciseness of
the problem and can be chosen from 0.01 to 0.05. In this paper,
the threshold of the stopping criterion is set at 0.03, hence the
remained scenarios (NS) from the employed scenario reduction
methodology is set on 20.

σn =
1

NS.µ

√ NS∑
s=1

(ESFs − µ)

NS − 1
(10)

where, σn is the normalized standard deviation of the ESF ob-
jective function in the accepted scenarios. ESF s is the optimized
value of the objective function in scenario s. — is the mean value
of the ESF in scenario s.

The proposed scenario reduction approach explained which
is based on the simultaneous backward algorithm (Growe-Kuska
et al., 2003). The backward reduction method for large scenario
reduction is included in the SCENRED library. This scenario re-
duction algorithm provided by SCENRED determine a scenario
subset (of prescribed cardinality or accuracy) and assign optimal
probabilities to the preserved scenarios (GAMS, 0000).

3. Frequency responsive load modeling

The loads which participate in MG frequency management can
be categorized in two cases, namely, natural response loads and
frequency controlled loads (responsive loads). These loads are
modeled in the following of this section.
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Fig. 1. Probability distribution function of (a) wind speed, (b) solar irradiation, and (c) load demand of MG (Mazidi et al., 2019).

3.1. Natural response load

In natural response loads the demand changes as the fre-
quency changes according to the nature of the load. For exam-
ple, in induction machines, the machine slows down when the
frequency drops, which leads to lessened power demand (Eli-
zondo et al., 2016). The amount of power variation can be written
as a function of frequency variation for natural response loads
(NRLs) (Samarakoon et al., 2012):

∆PNR
s,n,h = Bn,h∆fs,h (11)

where, Bn,h is a coefficient which depends on the natural fre-
quency of the load which can be determined experimentally
according to the type and technical characteristics of different
loads. In this paper, it is assumed that NRLs are elastic with
respect to the frequency of MG. Thus, Bn,h can be calculated as
follows:

Bn,h =
PNR
n,h

f 0
(12)
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Fig. 2. Scenario tree for combination of wind power, solar power, and load forecasted values.

3.2. Frequency responsive load

Thermostat controlled loads with fast controller such as re-
frigerators, freezers, air conditioners and electric water and space
heaters can be utilized as frequency responsive loads (FRLs). In
these loads, the power consumption could be controlled as a func-
tion of the frequency (Molina-Garcia et al., 2011; Xu et al., 2011).
To this end, the set-points of FRLs are adjusted with respect to
the frequency excursion:

T Set
h =

⎧⎨⎩
T Set0
h + K FRL

(
fh − f 0

)
; f > f

T Set0
h ; f < f < f

T Set0
h − K FRL

(
f 0 − fh

)
; f < f

(13)

According to (13), when the frequency exceeds the upper
bound, the desired set points increase which leads to turning on
thermostat loads. On the other hand, when the frequency excur-
sion exceeds the lower bound, the desired set points decrease
and consequently thermostat loads are turned off. This concept
is shown in Fig. 3.

It should be mentioned that the desired temperature of FRLs
should be preserved in a pre-specified range which is implied by
the following constraint (Ghofrani et al., 2019):

T Set
≤ T Set

h ≤ T Set (14)

Although utilization FRLs to manage frequency excursion is
an effective solution, but controlling a large number of them is



920 N. Rezaei, M. Mazidi, M. Gholami et al. / Energy Reports 6 (2020) 914–932

Fig. 3. Control of thermostat loads to manage variation of system frequency.

Fig. 4. Step-wise power–frequency packages.

a challenging task. To cope with this issue, demand response
providers (DRPs) register the FRLs, aggregate their power, and
submit the aggregated power–frequency function on behalf of
them to the EMS. It is assumed that the submitted power–
frequency function of DRPs are in form of step-wise power–
frequency packages which are shown in Fig. 4.

The above shown step-wise power–frequency packages could
be formulated as follows:

∆PFR
s,d,h =

{
−PJ−j+1; f 0 ≤ f MG

s,h ≤ f 0 + ∆f ∀j ∈ J

Pi; f 0 − ∆f ≤ f MG
s,h ≤ f 0 ∀i ∈ I

(15)

where, j and i are indexes for the number of divisions in the
interval of [f 0, f0 + ∆f ] and the number of controllers of the
interval of [f 0 − ∆f , f 0], respectively. They are adjusted using a
frequency dependent controller. It should be noted the consumer
comfort index should be considered for the entire settings.

4. Model description and formulation

The structure of the proposed gain adaptive EMS for a typical
IMG is shown in Fig. 5. As can be seen, the EMS includes two
control levels, i.e., primary and secondary. The aim of primary
control level is to compensate the frequency excursions and
provide a stable balance between the generation and demand
in the IMG. The second control level has the most important
role in the proposed EMS which is performed by the MGCC in a
centralized manner. In the following of this section, each control
level is explained in details with corresponding mathematical
formulations and then the proposed EMS is presented.

4.1. Primary control level

The primary controllers compensate the frequency excursions
caused by the variability of renewable generation resources as
well as MG load fluctuations based on the characteristics of the
droop-controlled DGs in a distributed and automatic manner. As
mentioned, the inertia of VSI based DGs is much smaller than
a synchronous generator. Therefore, to mimic the governor of a
synchronous generator, a virtual inertia is added to VSI based DGs
using an active power–frequency (P/f) droop which is shown in
Fig. 6 and described as follows (Raj et al., 2018):

fs,h = f 0 + ngain
g,h

(
PDG_ref
g,h − PDG

s,g,h

)
; ∀s, g, h (16)

According to (16), when the MG takes positive frequency ex-
cursions, the generation power of controllable DGs are decreased
to alleviate the frequency excursions while the generation power
of controllable DGs are increased for the sake of mitigation the
negative frequency excursion.

Primary control level guarantees that all of controllable DGs
generate voltages with the same steady state angular frequency
(Abdelaziz et al., 2012). Thus, the frequency of IMG can be calcu-
lated as follows:

f MG
s,h = f 0 + ngain

1,h

(
PDG_ref
g=1,h − PDG

s,g=1,h

)
= f 0 + ngain

g=2,h

(
PDG_ref
g=2,h − PDG

s,g=2,h

)
= · · · = f 0 + ngain

g=G,h

(
P
DGref
g=G,h − PDG

s,g=G,h

)
; ∀s, h (17)

It should be mentioned that the droop, i.e., ngain, and the refer-
ence of active power, i.e., P ref , of controllable DGs are fixed at each
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Fig. 5. The structure of the proposed EMS.

Fig. 6. Active power–frequency (P/f) droop characteristic.

hour of scheduling horizon by the value determined by the MGCC.
In fact, the main contribution of this paper is to determine the
optimal values of ngain and P ref for controllable DGs of the MG in a
way that not only the operation cost is minimized but also the MG

frequency lies within the secure ranges. This concept is shown in
Fig. 7. As can be seen, if the values of ngain and P ref are optimally
adjusted, following a greater variation in renewable generation
resources or load, the frequency of MG can be preserved within
a pre-defined secure range.

4.2. Secondary control level

The MGCC lies on the second control level and plays an im-
portant role in the proposed EMS. Indeed, the MGCC is respon-
sible for optimal operation of the IMG subject to all techno-
economic constraints. To this end, the MGCC locally determines
active power references of droop-controlled DGs and their droop
gains as well as responsiveness level of FRLs such that not only
the operation cost is minimized but also the MG frequency lies
within the secure ranges. In the following the objective function
and constraints of the second control level are formulated.

4.2.1. Objective function
The objective of MGCC is modeled by a stochastic optimization

function as follows:

Minimize F =

H∑
h=1

⎡⎣ G∑
g=1

[(
αgug,h + βgP

DG_ref
g,h

)
+ δg × (uON

g,h + uOFF
g,h )

]
+

W∑
w=1

λWT
w PWT

w,h +

I∑
i=1

λPV
i PPV

i,h



922 N. Rezaei, M. Mazidi, M. Gholami et al. / Energy Reports 6 (2020) 914–932

Fig. 7. Impact of droop gain and power reference on frequency security of IMG.

+

S∑
s=1

πs ×

⎡⎣ G∑
g=1

βg∆PDG
s,g,h +

W∑
w=1

λWT
w ∆PWT

s,w,h

+

I∑
i=1

λPV
i ∆PPV

s,i,h

+

D∑
d=1

ρDRP
d ∆PFR

s,d,h + VLL × LSHs,h

⎤⎦⎤⎦ (18)

According to the objective function, the first part implies the
fuel cost, start-up cost, and shut down cost of controllable DGs
as well as operation cost of WTs and PVs. This part associates
with the first-stage decisions and does not rely on scenarios. The
second part shows the scenario-related part of the objective func-
tion and depends on the second stage decisions. It includes some
terms that reflect the power deviation costs of controllable DGs,
WTs, and PVs from their scheduling, deployed cost of frequency
responsive loads, and load shedding which should be paid for
the damages inflicted to the customers due to an electric power
interruption.

4.2.2. Constraints
The following technical and economic constraints should be

considered in the second control layer of the proposed EMS:
Power balance: At each hour of scheduling horizon, supplied

power from the committed DGs and renewable resources must
satisfy the load demand of MG:
G∑

g=1

PDG_ref
g,h ug,h +

W∑
w=1

PWT
w,h +

i∑
i=1

PPV
i,h = PL

h; ∀h (19)

Following the power variations of renewable resources and
loads from their forecasted values, power generation of control-
lable DGs and responsive level of FRLs should be adjusted in
a way that the active power balance is always satisfied during
scheduling horizon. Otherwise, an unplanned load shedding is
unavoidable. Accordingly, the following constraint is enforced:

G∑
g=1

∆PDG
s,g,hug,h +

W∑
w=1

∆PWT
s,w,h +

i∑
i=1

∆PPV
s,i,h

= ∆PL
s,h −

N∑
n=1

∆PNR
s,n,h −

D∑
d=1

∆PFR
s,d,h − LSHs,h; ∀s, h (20)

It should be mentioned that with power variations of renew-
able resources and loads, the frequency of IMG deviates from
its nominal value; Therefore, the consumption of NRLs changes
which is also considered in (20). Meanwhile, the amount of load
shedding should be less than total MG load which is imposed by
the following constraint:

0 ≤ LSHs,h ≤ PL
s,h (21)

Controllable DGs: To guarantee the safe operation of control-
lable DGs the following constraints should be considered (Mazidi
et al., 2016):

PDG
g ug,h ≤ PDG_ref

g,h ≤ PDG
g ug,h; ∀g, h (22)

PDG_ref
g,h − PDG_ref

g,h−1 ≤ URDG
g

(
1 − uON

g,h

)
+ PDG

g uON
g,h; ∀g, h (23)

PDG_ref
g,h−1 − PDG_ref

g,h ≤ DRDG
g

(
1 − uOFF

g,h

)
+ PDG

g uOFF
g,h ; ∀g, h (24)

h+UTDGg −1∑
t=1

ug,t ≥ UTDG
g uON

g,h; ∀g, h (25)

h+DTDGg −1∑
t=1

(
1 − ug,t

)
≥ DTDG

g uOFF
g,h ; ∀g, h (26)

ug,h+1 − ug,h ≤ uON
g,h+1; ∀g, h (27)

ug,h − ug,h+1 ≤ uOFF
g,h+1; ∀g, h (28)

ug,h+1 − ug,h ≤ uON
g,h+1 − uOFF

g,h+1; ∀g, h (29)

The capacity limit of DGs is given by (22). Constraints (23) and
(24) represent the ramp up and ramp down capabilities of DGs,
respectively. Moreover, the minimum up time and down time
of DGs are considered in (25) and (26), respectively. To prevent
conflicted situations in the status of DGs, constraints (27) to (29)
are incorporated.

The constraints related to safe operation of DGs at each sce-
nario should also be satisfied:

PDG
g ug,h ≤ PDG

s,g,h ≤ PDG
g ug,h; ∀s, g, h (30)

PDG
s,g,h − PDG

s,g,h−1 ≤ URDG
g

(
1 − uON

g,h

)
+ PDG

g uON
g,h; ∀s, g, h (31)

PDG
s,g,h−1 − PDG

s,g,h ≤ DRDG
g

(
1 − uOFF

g,h

)
+ PDG

g uOFF
g,h ; ∀s, g, h (32)

Frequency security: The variation of renewable power genera-
tion and load from their forecasted values causes the frequency
of IMG to deviate from the nominal frequency. Therefore, the
security constraint of the MG should be considered as follows:

⏐⏐∆fs,h
⏐⏐ ≤ ∆f ; ∀s, h (33)

where,⏐⏐∆fs,h
⏐⏐ =

⏐⏐f MG
s,h − f 0

⏐⏐ ; ∀s, h (34)

Droop constraint: According to (17), the following constraint
should be considered by the MGCC for calculating the optimal
values of droop gains:

ngain
g=1,h∆PDG

s,g=1,h = ngain
g=2,h∆PDG

s,g=2,h = · · · = ngain
g=G,h∆PDG

s,g=G,h; ∀s, h

(35)

where,

∆PDG
s,g,h = PDG

s,g,h − P
DGref
g,h ; ∀s, g, h (36)
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Note that according to (33), the frequency deviations of MG
should be preserved within a pre-defined secure range. Therefore,
the following constraint is needed to be considered by the MGCC
in calculating the optimal values of ngain:

0 ≤ ngain
g,h ≤ ngain

g ug,h =
∆f

PDG
g

ug,h; ∀g, h (37)

Renewable resources: The scheduling power of WTs and PVs must
always be smaller than their maximum power generations:

PWT
s,w,h ≤ PWT

s,w,h; ∀s, w, h (38)

PPV
s,v,h ≤ PPV

s,v,h; ∀s, v, h (39)

It should be mentioned that the constraints of (22) to (29)
should be only considered for controllable DGs.

4.3. Linearization

Microgrid energy management system is inherently laid out
as high constrained non-linear and usually with non-convex re-
gion. To reach the optimal solution, the MGCC can utilize either
evolutionary or classic optimization algorithms. Each strategy
has its own advantages, however, in the case of evolutionary
optimization techniques, the decision making process may suffer
from difficult constraint handling and large computational time in
such non-linear and highly constrained optimization problem the
MGCC confronted in the microgrid energy management system.
Thus, conducting mathematical classic optimization portfolios
such nonlinear programming can fulfill the drawbacks of the
constraint handling and/or computation speed in some ways.
However, in nonlinear programming based solvers, guaranteeing
the solution optimality may be unreliable. Hence, the linear pro-
gramming which ensure reaching to the nearest global optimal
solution by relying on efficient simplifying assumption may be
more attractive from the MGCC.

In order to implement a linear programming approach, the
nonlinear terms namely, (34) and (35), should be modified into
their equivalent linear formats. The linear expression of (34) can
be illustrated by the following substitutions (Rezaei and Kalantar,
2014):⏐⏐∆fs,h

⏐⏐ = ∆f +

s,h + ∆f −

s,h; ∀s, h (40)

∆fs,h = ∆f +

s,h − ∆f −

s,h; ∀s, h (41)

∆f +

s,h ≥ 0, ∆f −

s,h ≥ 0; ∀s, h (42)

Constraint (35) establishes a non-linear relationship between
power variations of controllable DGs. This non-linearity can be
converted into linear expressions by employing the McCormick
lemma (Gupte et al., 2013). In general form, bilinear term Mk.Nl
in which continuous variables are bounded as Mmin

k ≤ Mk ≤ Mmax
k

and Nmin
l ≤ Nl ≤ Nmax

l can be recast using a relaxation replace-
ment including a new variable Hkl by some adjoined constraints
as follows in Equation set (43) (Ghofrani et al., 2019):(
Mk − Mmin

k

) (
Nl − Nmin

l

)
≥ 0 → Hkl − Nmin

l Mk − Mmin
k Nl

+ Mmin
k Nmin

l ≥ 0(
Mk − Mmin

k

) (
Nmax

l − Nl
)

≥ 0 → −Hkl + Nmax
l Mk

+ Mmin
k Nl − Mmin

k Nmax
l ≥ 0 (43)(

Mmax
k − Mk

) (
Nl − Nmin

l

)
≥ 0 → −Hkl + Nmin

l Mk

+ Mmax
k Nl − Mmax

k Nmin
l ≥ 0(

Mmax
k − Mk

) (
Nmax

l − Nl
)

≥ 0 → Hkl − Nmax
l Mk − Mmax

k Nl

+ Mmax
k Nmax

l ≥ 0

Table 2
Economic data of controllable DGs.
DG α ($) β ($/kWh) SUC ($) SDC ($)

MTs 85.06 4.37 9 8
FCs 255.18 2.84 16 9
GT 212.00 3.12 12 8

Table 3
Technical data of controllable DGs.
DG Pmin Pmax RMPup/RMPdn STup/SHdn TMUP/TMDN

(kW) (kW) (kW) (kW) (h)

MTs 30 150 250 100 2
FCs 20 100 250 100 2
GT 35 200 280 120 2

To this end, in this paper, each term ngain
g,h ∆PDG

s,g,h is replaced
by an added new continuous variable Xs,g,h and adjoined by the
following constraints:

Xs,g,h ≥ 0; ∀s, g, h (44)

− Xs,g,h + PDG
g × ngain

g,h ≥ 0; ∀s, g, h (45)

− Xs,g,h + ngain
g × ∆PDG

s,g,h ≥ 0; ∀s, g, h (46)

Xs,g,h + ngain
g × PDG

g − ngain
g × ∆PDG

s,g,h − PDG
g × ngain

g,h ≥ 0; ∀s, g, h
(47)

Using the above expressions, the proposed gain adaptive en-
ergy management system can be solved using an efficient mixed-
integer linear programming methodology in which the global
optimal solution is guaranteed.

5. Numerical study

5.1. Data

To evaluate the effectiveness of the proposed gain adaptive
energy management system, it is implemented for an IMG test
system which is shown in Fig. 8. The MG has five droop controlled
DGs including two micro-turbines (MTs), two fuel cells (FCs),
and a gas turbine. Meanwhile, two WTs and two PVs has been
installed in the MG. Both the natural and frequency responsive
loads are connected to the MG and a DRP is considered for
managing all the frequency responsive loads. The economic and
technical data of controllable DGs are taken from Rezaei and
Kalantar (2015b) and Rezaei and Kalantar (2014) and presented
in Tables 2 and 3, respectively. The WTs are the same type with
the parameters of Prated = 100 kW, Vci = 2.5 m/s, Vr = 10 m/s
and Vco = 20 m/s. Meanwhile, the PVs are also the same type
with the parameters of ηPV

= 12% and SPV = 500 m2. The
operation cost of WTs and PVs, i.e. λWT

w and λPV
i , are assumed to be

1 cent/kW and 0.8 cent/kW, respectively (Zhang et al., 2017). It is
assumed that all the DGs and renewable resources are operating
at unity power factor and reactive power requirements have been
technically guaranteed.

The hourly forecasted values of solar irradiance, wind speed,
and MG load demand over 24-h time interval are retrieved
from Mazidi et al. (2019) which are illustrated in Fig. 9. The
parameters of Weibull distribution are assumed c = v/0.9 and
k = 2 for all hours (Wang and Gooi, 2011). Meanwhile the
standard deviations of solar irradiance and MG load demand are
assumed 10% and 20% of their forecasted, respectively.

It is assumed that 10 NRLs are connected to the MGwhich con-
tain 10% of MG load demand at each hour of scheduling horizon.
In the step-wise power–frequency package of DRP, 8 same steps
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Fig. 8. Microgrid test system equipped with its components.

Fig. 9. Hourly forecasted of load, solar irradiance, and wind speed.

with values of 40 kW and 37.5 mHz are considered for power
and frequency, respectively. Meanwhile, the cost associated to the
DRP is set 100 $/kWh. Based on the IEEE Std-1547 (Anon, 2014),
the maximum permissible frequency deviation is set to ±300
mHz. Meanwhile, the nominal frequency of the MG is considered
to be 60 Hz. Meanwhile, the VLL is taken 1000 $/kWh.

The proposed EMS is a MILP problem that was solved using
CPLEX 12.5.1 under GAMS (GAMS, 0000) on a 3.60-GHz Intel Core
i7 CPU personal computer with 8 GB of RAM memory. The gap
tolerance for solving MILP problem was 0.05%.

5.2. Results and discussion

To model the uncertainties related to power generation of
WTs and PVs as well as load demand of MG, 175 scenarios are
generated using scenario tree method and then, reduced to 20
by SCENRED tool which is provided by GAMS. The active power
deviations of WT, PV as well as load demand of MG over the 24-
h time interval are generated for different scenarios which are
shown in Figs. 10, 11, and 12, respectively.

The energy management for the 24-h time interval is per-
formed for the test MG, and the optimal values for reference
power of controllable DGs and theirs droop gains as well as
responsiveness level of frequency-dependent loads are obtained.
The hourly power reference of controllable DGs is shown in
Fig. 13. As can be seen, the DGs with lower operation cost,
e.g., DG5, are the most dispatchable units. Meanwhile, although
DG1 and DG2 have the highest operation cost, but they have
been dispatched during the scheduling horizon. The reason is
that dispatching DG1 and DG2 increases the capability of the MG

Table 4
Maximum droop gain of controllable DGs.
DG DG1 DG2 DG3 DG4 DG5

ngain
g (kW/Hz) 500 500 333 333 666

to preserve frequency deviations within the permissible secure
range. In other words, according to the optimal droop gains of
DG1 and DG2, they can participate in balancing between genera-
tion and demand of the MG following deviations of WT, PV as well
as load from their forecasted values. This strategy leads to the
lowest operation cost while the frequency security is respected
during the scheduling horizon.

The optimal gains are obtained adaptively in the proposed
EMS for different scenarios which are presented in Fig. 14. As can
be seen, during the hours in which the power deviations of WTs,
PVs as well as load from their forecasted values increases, namely
between 15 to 24, the gains of controllable DGs are increased.
In this way, the capability of DGs in compensation of power
deviations increases which leads to keep the frequency of MG in
the pre-defined secure range. The values of maximum droop gain
can be calculated using (35) which are presented in Table 4. Note
that the droop gain of controllable DGs are always lower than the
maximum allowable gains during the scheduling horizon.

Fig. 15. represents the responsiveness level of FRLs which are
aggregated by the DRP in each scenario during scheduling horizon
of the MG. The MGCC uses the capability of FRLs besides the
controllable DGs to preserve the frequency deviations of MG in a
secure range in a way that operation cost is minimized. As can be
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Fig. 10. WT active power deviations in each scenario.

Fig. 11. PV active power deviations in each scenario.

seen, DRP is mostly called to reduce the consumption of FRLs dur-
ing the hours 1 to 12 of the scheduling horizon. This is due to the
fact that during these hours, reference power of controllable DGs
is relatively low which reduces their capability in compensation
of frequency deviations. However, with increasing the reference
power of controllable DGs, the participation of DRP reduces and
the MGCC prefers to use capability of controllable DGs in the
frequency management of the DG. These strategies reduce the
operation cost of the MG during the scheduling horizon.

Another option that is considered in the scheduling horizon
of the MG is the load shedding, which is shown in Fig. 16 for
each scenarios during scheduling horizon. As can be seen, the
values of load shedding are zero in most of the scenarios. In fact,
due to high penalty cost which has to be paid for the damages
inflicted to the customers, the MGCC schedules controllable DGs
and FRLs to compensate frequency deviations. However, in some
scenarios, namely hours 1 and 6, power deviations of WTs, PVs as

well as load from their forecasted values cannot be compensated
completely by the controllable DGs and FRLs and therefore, the
MGCC forces to shed loads.

Fig. 17 shows the frequency deviations of the MG in each
scenario during scheduling horizon. As can be seen, the frequency
deviations are successfully limited within secure range of ±300
mHz. To this end, the MGCC has scheduled the controllable DGs
and FRLs which leads to higher operation cost. The expected
frequency excursion and expected operation cost of the MG over
scenarios are shown in Fig. 18. As can be seen, with increasing the
frequency excursion, the operation cost increases. On the other
hand, with reducing the frequency excursion, the operation cost
relatively reduces. This is due to the fact that the MGCC schedules
the controllable DGs and FRLs with a higher operation cost to
cope with frequency excursions during the scheduling horizon.
It should be mentioned that this is the cost relating to the MG
frequency insurance.
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Fig. 12. MG load demand power deviations in each scenario.

Fig. 13. Optimal power references of controllable DGs.

5.3. Discussion

For the sake of a detailed analysis, the optimization results in
scenario 6 over 24 h of scheduling horizon are evaluated. These
results are presented in Table 5. As can be seen, the frequency
of the MG becomes 59.78 and 60.12 Hz at hours 7 and 16,
respectively. This is due to the fact that power deviations of
WTs, PVs and load from their forecasted values cause generation
shortage at hour 7 and generation excess at hour 16. To cope
with this issue, primary controller increases the generation power
of controllable DGs at hour 7 while the generation power of
controllable DGs are decreased at hour 16. Meanwhile, the MGCC
calls the DRP to reduce power of FRLs by 21.08 kW at hour 7 and
increase 2.64 at hour 16. Accordingly, the balance between power
supply and load demand in the MG is improved. Note that the
demand of NRLs are reduced by 1.34 kW at hour 7 and increased
by 1.1 at hour 16. Likewise, the MGCC enforces to shed 16.7 kW
at hour 7 to balance between power supply and load demand in
the MG.

To increase the reliability of the proposed model, the load
shedding in each scenario can be limited to a predefined value.
Fig. 19 represents the expected frequency of the MG with re-
spect to maximum allowable load shedding. As expected, with
decreasing the maximum allowable load shedding, the expected
frequency of the MG is reduced. In other words, the frequency
security of the MG is increased. However, this issue increases
the operation cost of the MG as shown in Fig. 20. The reason is
that, MGCC schedules more controllable DGs and FRLs to preserve
the balance between power supply and load demand during the
scheduling horizon.

The given threshold can be various according to the precise-
ness of the problem and can be chosen from 0.01 to 0.05. In
this paper, the threshold of the stopping criterion is set at 0.03,
hence the remained scenarios (NS) from the employed scenario
reduction methodology is set on 20 in this paper. Too few scenar-
ios may cause inaccurate results, while too many scenarios may
make the problem computationally impractical. Fig. 21 illustrates
the evolution of expected cost versus different stopping criteria,
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Fig. 14. Scheduled droop gains: (a) DG1, (b) DG2, (c) DG3, (d) DG4, (e) DG5.

Fig. 15. The responsiveness level of FRLs.

i.e., σn. As can be seen, the expected cost fixes in vicinity of
0.03 which indicates 20 scenarios. Thus, accuracy of the results
obtained in this paper is ensured.

To provide a verification portfolio in this section, a Monte-
Carlo Simulation (MCS) strategy is employed to compare with
the adopted stochastic programming approach. In the executed
MCS, 1000 random scenarios are generated considering to the
operational uncertainties are generated. The statistical histogram
and the fitted normal probability distribution function is depicted
in Fig. 20. The maximum, minimum, mean and standard devi-
ation values of the MG cost function derived out by running
the MCS are 293494.87$, 141599$, 190576.41$ and 40018.67$,
respectively. The optimal solution of the stochastic programming
approach is 219001.08$ which can be considered as a reasonable

optimal solution with respect to the statistical values of the MCS
based histogram. In other words, as can be seen from Fig. 20, the
MG operational cost optimized using the scenario-based stochas-
tic programming framework conducted over 20 reduced efficient
scenarios is neither a conservative nor an opportunistic solution.
It is median optimistic solution with reasonable distance with
respect to the mean and max values resulted by applying the MCS
over 1000 random scenarios. This helps the MGCC to rely on the
stochastic programming solution which has less computational
burden, provides efficient covering of the MG uncertainty spec-
trum through a non-conservative optimality achievement (see
Fig. 22).
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Fig. 16. MG load shedding in each scenario.

Fig. 17. MG frequency deviations in each scenario.

6. Conclusion

In contrast to conventional energy management systems,
where MGs frequency deviations are not taken into account, this
paper proposed a novel gain adaptive energy management sys-
tem for IMGs operation considering frequency responsive loads.
The proposed gain adaptive scheme brought out high flexibility,
reliability and sustainability for the smart microgrids. To cope
with the enforced operational uncertainties, the proposed EMS
model is formulated as a two-stage stochastic MILP problem that
guaranties achieving the near-optimal solution. The operational
uncertainties were managed effectively by coordinated utilization

of demand-side and supply-side energy providers which can
guarantee the renewable sources sustainable integration even
with higher penetration levels. Simulation results demonstrated
that by proper scheduling droop controlled DGs and FRLs, the
frequency of the IMG can be cost-effectively preserved within a
pre-defined secure range under enforced operational uncertain-
ties. Note that the proposed EMS model increases the operation
cost of the IMG to ensures the MG frequency security. This is
the cost relating to the MG frequency insurance. Moreover, it
is shown that by increasing the reliability of the proposed EMS
model, the frequency security of the IMG is improved which in-
creases the operation cost. Furthermore, optimal operational cost
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Fig. 18. Expected frequency excursion and operational cost of MG.

Fig. 19. Expected frequency of MG with respect to maximum allowable load shedding.

Fig. 20. Expected operation cost with respect to maximum allowable load shedding.
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Table 5
Scheduling results of the MG in scenario 6.

Fig. 21. The evolution of expected cost versus different stopping criteria.

thrifting was ensured by active participation of elastic frequency
responsive loads in the primary level which was constructed
on great potential capacity and high control flexibility of the
proposed thermostatically controlled loads. The proposed load
management module was conducted such a way not only it can
become an effective provocation for end-user consumers to take
part into microgrid energy management but it also can preserve
the qualifying limitations of life comfort. As future perspectives,
modeling the role of grid-forming renewable energy sources
in coordinating with droop controlled DGs for providing more
efficient primary frequency management structures can be an

attractive subject. The proposed energy management system can
also consider the potential of electric vehicles into the proposed
demand responsiveloads.
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Fig. 22. Monte-Carlo Simulation histogram and comparison with stochastic programming.
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