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a b s t r a c t

In the study presented in this paper, the deterioration in the performance of an industrial gas
turbine during the operation design point was simulated by using the thermodynamic principle and
a multi feedforward artificial neural networks (MFANN) system. Initially the thermodynamic model
was constructed using the components performance map technique, that entailed calculating the
operating point which was compliant with the performance map for each component. The various
design operation points were generated by changing the engine component’s efficiency or outer
environmental conditions and simulating the engine’s performance for each case. The MFANN model
was constructed by using these operation points for the training and testing stage. In this way, the two
MFANN models were established. The aim of the first model was to calculate the engine’s performance
while the second model was used to detect the deterioration of the components of the engine This
paper presents a robust fault diagnosis system for gas turbine degradation detection with the aim of
improving energy efficiency.

© 2020 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A gas turbine engine is a thermodynamic machine that per-
forms its functions efficiently without exceeding the design lim-
itations. It uses fuel and air to convert the chemical power of
the fuel into mechanical power, such that the air and gas (prod-
ucts of combustion) are working fluids in cold and hot sections,
respectively (Talaat et al., 2018).

Gas turbine engines are used in industrial and aerospace appli-
cations. In industrial applications, gas turbine engines are widely
used to produce mechanical power for:

• driving various loads such as large pumps and compressors,
• driving tanks, marines and transportation vehicles, and
• driving generators for electrical power production.

Gas turbines may be used in electrical power plants alone or in
combination with a steam turbine, whether in combined cycles,
or in cogeneration for both electrical power and industrial heat
treatment. The combined cycle power plant, commonly used for
power generation, is featured with one or more gas turbines and
often one steam turbine to offer high efficiency (Talaat et al.,
2018).

E-mail address: aalblawi@su.edu.sa.

The performance of a gas turbine depends on several factors,
including external factors which are difficult to control. Exam-
ples are surrounding environmental pollution, and increased air
temperature and humidity. Other factors that can be repaired are
fouling in the compressor and the turbine which may be repaired
by the washing of these components. Erosion occurring in the
components is repaired by replacing the defective part (Talaat
et al., 2018; Cohen et al., 1987; Norvaisis, 1974; Gobran, 2013).

The continuing operation of an engine leads to the occur-
rence of the above-mentioned factors. However, one can de-
lay these occurrences through the safe operation of the engine,
the use of better-quality fuels and with regular maintenance.
Many researchers have dealt with this issue by using the prin-
ciples of thermodynamics to build representational models of
the degradation affecting gas turbine performance. These ther-
modynamic models are used to represent the engine components
by the application of performance maps. The performance maps
simulate the deterioration with modification of the compressor
and turbine performance (Talaat et al., 2018; Lakshminarasimha
et al., 1994; Roumeliotis, 2010). The thermodynamic models are
utilized to calculate changes in the gas turbine performance if
deterioration exists in the engine components. Accordingly, the
researchers proposed to use an artificial intelligence network
in order to detect and then predict the deterioration in a gas
turbine (Talaat et al., 2018; Syverud, 2007; Ogbonnaya, 2011).

J. Bai et al. proposed an identification method for parameter
uncertain linear model for an aero gas turbine (GT) (Bai et al.,
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2019). This was performed by using nonlinear programming.
Through this method, the turbine model identification problem
was solved by means of considering the model parameter un-
certainty. The model, designed for the fault diagnosis (FD) and
engine control of the GT, could simulate the real state of the
engine within a 1% error range.

S. Amirkhani et al. proposed a robust FD as an uncertain non-
linear system using a new adaptive threshold method (Amirkhani
et al., 2019). This method was proposed for a power plant GT.
They employed the Monte Carlo simulation approach to deter-
mine the bounds of the adaptive threshold and to identify the
Neural network thresholds modelling. The proposed model was
found to achieve robust, accurate and reliable performance with-
out any assumptions regarding the nonlinearity type.

P. K. Wong et al. proposed a novel application for extreme
learning machine (ELM) algorithm for building a real time FD
system (Wong et al., 2014). The data preprocessing techniques
are integrated in this proposed system. Wavelet packet transform
and time-domain statistical features are proposed for getting the
vibration signal features. Kernel principal component analysis
is then applied to reduce the redundant features in order to
shorten the fault identification period and improve accuracy. In
order to evaluate the performance of the proposed model, a
comparison between the support vector machines (SVM) and the
ELM algorithms was performed upon experimental data. While
each algorithm provides comparable accuracy, the time of fault
identification using the ELM was extremely short compared to
that of the SVM.

In 2020, J. Li and Y. Ying proposed a novel gas path (GP) diag-
nostic method (Li and Ying, 2020). This was performed through
three steps. The first was proposing an equivalent cooling flow
processing method for thermodynamics modelling of the GP di-
agnostic. Then, they proposed a steady state diagnostic scheme
under transient conditions based on local optimization algorithm.
Afterwards, the diagnostic performance was compared using two
local optimization algorithms of Newton–Raphson and Kalman
filters. The case studies used, proved that the proposed model is
effective in detecting both component gradual failure and abrupt
fault quantitatively. Moreover, it was found that the diagnostic
method based on Newton–Raphson algorithm has better real-
time performance than the Kalman filter algorithm.

S. Zhong et al. proposed a new gas turbine fault diagnosis
based on conventional neural network (CNN) training (Zhong
et al., 2019). It is well known that the CNN is effective for
determining errors in larger size training data sets. Consequently,
it is presupposed that this prevents the application of the CNN
from accurately diagnosing errors in smaller sized training data
sets. However, in their research, the authors used the CNN to
determine errors in smaller size training data. They utilized a
feature mapping method to extract the feature representations
from the normal training data set by reusing the internal layers
of the CNN trained on the normal dataset. Consequently, the
researchers have determined the efficacy of the CNN to diagnose
errors in both large and smaller sized training data sets.

H. Hanachi et al. suggested a new fault detection method
for gas turbines based on a hybrid diagnostic framework that
integrates the results from a measurement-based fault param-
eter with a fault propagation model (Hanachi et al., 2019). The
hybrid framework used a novel particle filter (PF) structure with
redundant measurements. This technique simplifies updating the
particle weights while reducing the dimensionality of the mea-
surement likelihood. This framework was applied on GT gas-path
data with four different gradually worsening faults. The results
showed that the diagnostic accuracy displayed an almost ten-
fold increase compared to the accuracy of the previous fault
parameter estimation scheme.

Kazemi and Yazdizadeh presented a new scheme for fault di-
agnosis and isolation (FDI) including inversion-based fault recon-
struction and optimal state observers (Kazemi and Yazdizadeh,
2020). The optimal state observers concern a class of nonlinear
systems, subject to concurrent faults and unknown disturbances
that represent the nonlinear dynamic model of a GT. The original
system was transformed into a new form in which both observers
were applied for fault diagnosis for each fault type through coor-
dinate transformation. The coordinate transformation came from
observability concepts in differential geometry. The presented
approaches were applied for the FDI of a gas turbine model
subject to compressor efficiency, compressor mass flow capacity,
and actuator faults, in addition to an unknown disturbance. The
simulation results proved that the proposed FDI schemes were a
good tool for the GT diagnostics.

D. Zhou et al. proposed a method for a gas path fault diagnostic
for the GT based on the changes in the blade profiles (Zhou et al.,
2020). They used the blade profile change parameters to replace
the traditional performance degradation parameters to achieve
the gas path fault diagnosis. The deterioration of the GP was
characterized by the blade profile change parameters, including
the blade thickness increment and blade roughness. In addition,
the velocity, temperature, and pressure fields were numerically
obtained. The results proved the effectiveness of the proposed
diagnostic model in GP fault detection.

A. Guasch et al. proposed two different approaches for im-
proving the FD of GT based on the embedded information in the
control system (Guasch et al., 2000). The first system suggests
an automatic development for the trouble shooting of the de-
terministic knowledge embedded within the Programmable Logic
Controller (PLC). This system attempts to overcome the difficul-
ties of the FD especially for the old GTs. The second approach is
based on the analysis of the digital control system which detects
the faults in the feedback systems.

Simani and Patton proposed a procedure based on a model
for FDI of faults on a gas turbine simulated process (Simani and
Patton, 2008). The main objective presented an identification
scheme in connection with dynamic observer or filter design
procedures for diagnostic purposes. Large numbers of simulations
of the test-bed process and Monte Carlo analysis were used for
assessing experimentally the capabilities of the developed FDI
scheme.

In the gas turbine diagnosis field, the artificial neural network
(ANN) may be more effective relative to other artificial intelli-
gence systems. In the degradation cases, it is difficult to use the
mathematical models to describe the behaviour of the system.
However, the ANN uses training data to judge the behaviour of
the system upon the introduced behaviour. Subsequently, it is
expected to give more trusted results as it simulates the actual
behaviour of the system during the degradation (Talaat et al.,
2018). The new techniques of the artificial neural networks, such
as the multi feedforward artificial neural network (MFANN) can
be utilized for diagnosing different faults of industrial gas tur-
bines. The MFANN has the ability of system modelling. It enables
the monitoring of an enormous group of different and connected
inputs and outputs that employs the concept of ANN non-linear
relationships with high accuracy (Talaat et al., 2018; Bettocchi
et al., 2002).

The disadvantages of ANNs are that they may generate error in
the forecasting process. In addition, training may be unstable, and
many parameters need to be determined. Small sample size and
low convergence issues are two common drawbacks of ANNs. A
neural network model is constructed by choosing the input data
and output data (Farahat and Talaat, 2012; Talaat et al., 2020,
2019).

Consequently, the MFANN has the advantage of overcoming
the disadvantages of ANNs by
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• using the concept of the forward and non-linear algorithm
of the network, and

• the different weights and special structure of the network.

The only difficulty in the MFANN technique is the suggested
numbers of neurons and hidden layers. These number of neurons
and number of hidden layers should be carefully selected in the
MFANN because they affect the accuracy of training. With these
selections in place, the MFANN becomes more suitable than the
classical modelling of ANN techniques (Asgari et al., 2013).

The treatment of different input measurement layers and the
required output are usually completed using a suitable number
of neurons in the hidden layers for the training stage. Often the
selection process involves training of the network several times
with a different neuron number and then concluding the selec-
tion process with the appropriate neuron number. Though these
hidden layers are impalpable for the users of these networks,
they have a major effect on the overall result (Farahat and Talaat,
2012; Tamuno-ojuemi Ogaji, 2003).

Degradation in the industrial gas turbine is due to the deteri-
oration factors that surround the engine. Due to an increase in
fuel consumption, these factors lead to high operational costs.
The independence of the electricity market promotes competi-
tion between the objective of the electrical power investor and
responsibility towards a cleaner environment. Because of the high
cost of fuel, the plant operators must be concerned with detect-
ing all forms of gas turbine performance deterioration wherever
they occur. With a significant increase in the price of fuel, the
diagnosis of degradation becomes of vital importance to maintain
a healthy and optimal operational performance of the industrial
gas turbine. Often a mathematical model is designed to generate
the degradation database because of the difficulty in obtaining
this information from the real engine. The Mathematical model
is then determined as the detection tool that is used to analyse
the engine measurement data by means of the database created
by it.

The deterioration factors that can affect the performance of a
gas turbine are many. In the study presented in this paper, some
of these factors had a more noticeable effect than others on the
overall performance of the gas turbine in the study. They were
as follows: the combustion efficiency, compressor efficiency, tur-
bine efficiency, air capacity efficiency, and air filter efficiency.
Other degradation factors that can affect the performance are
the faults in intake and outtake ducts, air and gas leakages, and
guide vanes mistaking. In this present study some experimental
data were that were used are as follows: pressure ratio, air flow
rate, fuel flow rate, compressor discharge temperature, turbine
inlet temperature, relative speed and power load. The rest of
the parameters were: working fluid flow rate and components
efficiency which were calculated using the thermodynamic model
with iterations to validate the mass and energy balances in the
deterioration cases. This data was used to train and test the
proposed MFANN model.

2. Thermodynamic proposed model

In this study, the thermodynamic model was constructed (by
using MATLAB program) for the calculation of the steady state
performance of a single spool gas turbine GE-9EA, simple Brayton
cycle during both start-up (64% to 100% design speed) and loading
(100% design speed).

To overcome the lack of the real engine component charac-
teristics, alternative maps were built by applying suitable scaling
techniques to the available real maps.

Fig. 1 represents the model of the thermodynamic simple pro-
cess cycle of industrial turbine, and these processes are explained
as follows:

Fig. 1. (a) Schematic diagram of a simple industrial turbine; (b) Thermodynamic
simple process cycle of an industrial turbine.

• from 1 to 2 which represents the air compressed in the
compressor part,

• from 2 to 3 which the burning of fuel in the part of the
combustion chamber, and

• from 3 to 4 which represents the part required to produce
the output electrical power by the expanding process.

The target of this model was to find the suitable operating point
and properties of the compressor and turbine by considering
the mass flow rate, engine temperature, engine efficiency and
pressure for all available operating points.

The model was considered under the following assumptions:

1. The main operating points of the cycle appeared in Fig. 1(a)
were considered including the filter before point No. 1.

2. The last point considered was the turbine exit.
3. The connections and casings of both the compressor and

the turbine had no leakages or bleeds.

The thermodynamic process considering the process from 1 to 2
or from 3 to 4, was governed by the following relations (Talaat
et al., 2018).

T(i+1)s = Ti ∗
(
πi :(i+1)

)±

(
γ−1
γ

)
(1)
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Table 1
Deterioration domain of engine components.
Component
degradation

Ideal case Max
deterioration

Case
1

Case
2

Case
3

Case
4

Case
5

Compressor
efficiency (ηc )
deterioration %

0.814
(or 0%)

0.06↓ (.765)
or (100%)

0.02↓
or
33.3%

0.04↓
or
66.6%

0.06↓
or
100%

0.02↓
or
33.3%

0.06↓
or
100%

Turbine efficiency
(ηt )
deterioration %

0.821
(or 0%)

0.04↓ (.788)
or (100%)

0.01↓
or
25%

0.02↓
or
50%

0.04↓
or
100%

0.02↓
or
50%

0.01↓
or
25%

Flow capacity
efficiency (ηflow)
deterioration %

1.0
(or 0%)

0.06↓ (.94)
or (100%)

0.03↓
or
50%

0.06↓
or
100%

0.03↓
or
50%

0.03↓
or
50%

0.06↓
or
100%

Combustion
efficiency (ηc.c )
deterioration %

0.92
(or 0%)

0.06↓ (.864)
or (100%)

0.06↓
or
100%

0.03↓
or
50%

0.03↓
or
50%

0.06↓
or
100%

0.03↓
or
50%

where, Ti, T(i+1)s, πi :(i+1) are the inlet temperature, the isentropic
discharge temperature and the pressure ratio of compressor or
turbine respectively, γ : is the isentropic index, for process from
1 − 2 (i = 1&+) and for process from 3 − 4 (i = 3&−).

T(i+1)cs = T(i+1)s ∗ e±

( si−s(i+1)
R

)
(2)

where, T(i+1)cs: is the corrected isentropic discharge tempera-
ture of compressor or turbine, s: represents the entropy and R:
represents the gas constant.⎧⎪⎨⎪⎩
h(i+1) = hi +

(h(i+1)cs−hi)
ηc

or
h(i+1) = hi +

(h(i+1)cs−hi)

η−1
t

(3)

where, h: represents the enthalpy, ηc: is the compressor effi-
ciency and ηt: is the turbine efficiency The values of h and s can
be obtained as functions of compressor temperature as given by
(Talaat et al., 2018; McBride et al., 2002).

h (t)
R

= −a1T−1
+ a2 ln (T) + a3T +

a4
2
T2 +

a5
3
T3 +

a6
4
T4

+
a7
5
T5 + b1 (4)

s (t)
R

= −
a1
2
T−2

− a1T−1
+ a3 ln (T ) + a4T +

a5
2
T 2

+
a6
3
T 3

+
a7
4
T 4

+ b2 (5)

Using the h2 by inverse to get T2, Eq. (6) represent the energy
balance

m•
a ∗ h2 + ηb ∗ m•

f ∗ HV = (m•
a + m•

f) ∗ h3 (6)

where, the m•
a: is the compressor flow rate, m•

f: is the fuel flow
rate ,HV: heating value and ηb: is the combustion efficiency. So,
by assuming that, the T3(turbine inlet temperature) then, the m•

f
has been calculated.

2.1. Engine main components degradation simulated

The main engine components were the axial compressor, com-
bustion chamber and axial turbine. The degradation of these
engine components represented the reducing of efficiency and
mass flow rate of each component. When degradation occurred
on the proposed model, the modify factors were used to iden-
tify the extent of engine component deterioration. The modify
factor (M.F) for this component is represented by the following
relation (Talaat et al., 2018; Roumeliotis, 2010).

M.F =
xdegrade
xIdeal

(7)

where, xdegrade and xIdeal are the engine component parameters
with degradation and ideal case respectively.

Specifically, for compressors and turbines, the degradation has
been represented by using two modify factors. The first factor
represents the component flow rate capacitance, and the second
represents the component efficiency.

The component flow rate capacitance factor is:

M.Fm• =
m•

degrade

m•
Ideal

(8)

The component efficiency factor is:

M.Fη =
ηdegrade

ηIdeal
(9)

where, m•: represents the mass flow rate component and η:
represents the efficiency component.

From previous equations, the industrial turbine thermody-
namic map was modified by using the new modifying factors
(mass flow rate and efficiency), and for the combustion section,
the degradation was represented by the efficiency factors (ηc.c).

2.2. Degradation data generation

The deterioration of the engine was represented by the degra-
dation of one or more of the engine’s components, so assessing
the probability of various deterioration cases of the components,
together with identifying the surrounding environmental con-
ditions and the air inlet system state was important. Table 1
illustrates the deterioration domain of engine components. The
analysis was applied to design point (full load) and conditions
of ambient temperature range between 288 and 308 K. These
variations of the ambient temperature were recorded at each case
to be used in the thermodynamic model considered as it affected
the operation of the compressor and hence affects the operation
of the cycle.

The turbine output temperature was estimated to be constant
during the simulation. This simulation generated 4788 fault data
points. 4095 cases for non-repeated combinations of 12 objects,
calculated by the function of (2n

−1 = 212
−1 = 4095), 592 data

cases were considered multi faults based on real measured data
and 101 data points were used for testing the model.

2.3. Proposed model matching procedure

At the design point, assumptions were made of four variables
in order to find the optimal operating point on the industrial
turbine map. Thus, four matching constraints had to be satisfied,
see Fig. 2.
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Fig. 2. The proposed model matching procedure.

2.3.1. The continuity of mass flow rate between compressor and
turbine

mt = mc + mf (10)

where, mt, mc and mf are the mass flow rate of turbine, compres-
sor and fuel respectively.

2.3.2. The generated power resulting from compressor and turbine
power

load = Pt − Pc (11)

where, load: represents the generated power, and Pt and Pc are
the power from turbine and compressor respectively.

2.3.3. Generator nominal frequency 50 Hz or 3000 rpm

Nt = Nc = 3000 rpm (12)

where, Nt and Nc are the rotational speed of turbine and com-
pressor respectively.

Assume combustion chamber pressure loss equal to 0.04 ×

Compressor pressure so, π1−2 = 0.96 ∗ π3−4
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Fig. 3. Training Algorithm of MFANN, (a) MFANN activation function and hidden layer of neurons, (b) MFANN training methodology.

2.3.4. The temperature limited

T4 = Tref = 838 K (13)

where, T4 and Tref are the output temperature of turbine and
control limit temperature respectively.

3. Proposed technique of MFANN

ANN training depended on multi-inputs or multi-outputs. The
least mean square (LMS) was used to train the multi-inputs that is
called MFANN while a back propagation artificial neural network
was used in case of multi-outputs training (Talaat et al., 2018,
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2020). The MFANN was used because it enhances the perfor-
mance and reduces the training time. In addition, the MFANN is
considered simple and convenient to most of the nonlinear and
complex problems with large number of inputs.

In the MFANN-based forecasting fault system diagnosis, a
MFANN with one hidden layer was used in this study. The input
layer had several neurons equal to the number of network inputs,
the hidden layer had N neurons and the output layer had M
neurons. The data was classified into three types in the MFANN
(training, testing and validation data set). The output of the
MFANN was the forecasted fault system diagnosis in the case of
fault detection or the efficiency performance in the case of degra-
dation detection. The transfer function for the hidden neurons
was the log-sigmoid transfer function (Talaat et al., 2020), and the
out-put transfer function was a linear activation function. Fig. 3
illustrates the algorithm process for training the MFANN.

The output of the hth hidden neuron is calculated by:

Ah =

N∑
h=1

f [(xi × mhi) + bh] (14)

where, mhi is the weights between the ith input neuron and hth
hidden neuron, bh is the base of the hidden layer neuron, xi is the
ith input, Ah is the output of the hidden layer, see Fig. 3.

The output outq layer is determined by:

Yq =

M∑
k=1

(
MqkAh

)
+ bk (15)

where, Mqk is the weights between the ith and the qth output
neurons.

To obtain the training algorithm performance, the error was
determined by finding the difference between MFANN output and
the target output.

Where, Ym is the input to the system as training and check
data, Y is the output target which represents the prediction of
the system degradation, i is the number of data sets and N is the
number of training patterns. Hence, the Mean Square Error (MSE)
is defined according to Eq. (16) as given by (Talaat et al., 2018;
Farahat and Talaat, 2012; Talaat et al., 2020),

MSE =
1
N

N∑
i=1

{
Ymi − Yi

Ymi

}2

(16)

The fitness value of the training pattern is computed by:

Fitness (Ri) = min(MSE) (17)

4. MFANN model for industrial turbine performance calcu-
lated

The function of MFANN model was similar to that of the
thermodynamic model, but the MFANN model was better for the
computation of time, because thermodynamic models carry out
different degrees of iterations of nonlinear equations, which takes
a long time relative to those performed by the MFANN. Moreover,
the MFANN was able to find errors in the operating points, which
is difficult to determine in thermodynamic models especially in
cases of multiple faults applications.

The required data for constructing the MFANN model was
generated in the available operating range of the engine using the
thermodynamic model. About 4788 data sets was employed for
the training of an accurate MFANN-based model for the identified
engine performance. The MFANN was used and accommodated
the degree of degradation of the four components with the corre-
sponding air inlet temperature and local air filter loss coefficient

Fig. 4. MFANN industrial turbine performance model structure.

Fig. 5. MFANN model for industrial gas turbine degradation detection.

for input. For output, the other seven measurements were used.
This data was utilized for the training and testing of the MFANN
while choosing the optimal structure – the number of hidden
layers, number of neurons, type of transfer function – that satis-
fied the minimum mean squared error. Fig. 4 shows the structure
of the MFANN industrial turbine performance model, which was
integrated from one hidden layer – sixty neurons of this hidden
layer – and an employed log-sigmoid transfer function.

5. MFANN model for industrial gas turbine degradation detec-
tion

Performance degradation in industrial gas turbine was used
to predict the engine component condition (efficiency and flow
capacity) for a given performance parameter. The MFANN model
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Fig. 6. Example of analytic MFANN models for the fourth input.

was developed to calculate the engine component characteristic

parameters when measurements were available. All the data used

to train and test MFANN is taken from the thermodynamic model.

The MFANN input selection was proportional to the mea-
surement sensors that were available in the real engine, and
therefore, the output represented the degradation percentage of
each engine component. The eight measurements represented
the MFANN input and the four components degradation degree
represented the MFANN output. The best MFANN structure was
based on the training and testing data considering the optimal
values of number of neurones and hidden layers with suitable
transfer function.

Fig. 5 shows structure of the MFANN model for industrial gas
turbine degradation detection, which was integrated from one
hidden layer, eighty neurons of this hidden layer and used logistic
transfer.

5.1. Input layer analysis system for the MFANN degradation detec-
tion model

The accuracy of the MFANN model’s performance depended
on the input data. Therefore, any imbalance in input could lead
to failure in the degradation detected. This proposal offers an
alternative solution to complete the degradation detected in the
case of a defect in only one element in the input layer. Each
element was compared with a maximum and minimum value to
determine the input elements defect.

The analysis system usually does not work in the case of a
defect in more than one of the input elements, or if the value of
any of the elements is greater than or less than the maximum and

Fig. 7. Flowchart for integrated degradation detected system.
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Fig. 8. The variation of engine output power with increased by deterioration
degree.

the minimum value, respectively. The MFANN used to build this
system was constructed to include a MFANN model for each input
element, thus the target for the MFANN model was one element
while the other seven inputs remained constant.

5.2. Analytic MFANN detection model

Fig. 6 shows an example of analytic MFANN models for the
fourth input element (pressure ratio), which was integrated from
one hidden layer, twenty neurons of this hidden layer and used
logistic transfer.

In this way, the eight MFANN models were developed. These
models were tested with all training data (about 4059 cases)
which gave accurate results with an accepted percentage error.

These eight MFANN models were merged with the degrada-
tion detected MFANN model to construct an integrated system
for industrial gas turbine engine degradation detection.

Fig. 7 illustrates the procedure flow chart for degradation
detected by input measurement analysis. This figure indicates the
flow chart for the degradation detection using the MFANN model
with eight sensor data inputs as shown in Fig. 5. Based on this

Fig. 9. MSE between thermodynamic model and MFANN performance model.

Fig. 10. MSE between thermodynamic model and MFANN degradation detection model.
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Fig. 11. MSE between engine model and degradation detection system (Air inlet temperature = 0).

Fig. 12. MSE between engine model and degradation detection system (at Air inlet filter differential pressure = 0).

data, the MFANN model detected the fault case. Then, it applied
the degradation upon the detected fault, detected the solution for
this specific fault and stored this information for this solution. If
the applied solution detected out of range data, it displayed the
following message: ‘‘degradation detection failed’’.

6. Testing of MFANN models

The testing data was generated by using the thermodynamic
model. During the duration of the training phase of the MFANN
models, the testing data was evaluated to 101 samples whenever
data was not in use. The results were as follows:

• The MFANN performance model was tested firstly by en-
tering the engine component’s degradation conditions and
then by comparing the MFANN results with the existing test

results from the real readings and finally by comparing the
measurement results with the corresponding testing data
measurements.

• The MFANN degradation detection model was tested by
entering the engine’s measurement parameters and by com-
paring the MFANN results with the corresponding degrada-
tion detected conditions in testing data.

• The integrated degradation diagnosis system was tested by
entering the eight measurement parameters and by forcing
the zero value to any one of them and then comparing the
output results of the system with the testing results.

This process was repeated for each individual element of mea-
surement.
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Fig. 13. MSE between engine model and degradation detection system (at Compressor discharge temperature = 0).

Fig. 14. MSE between engine model and degradation detection system (at Compressor pressure ratio = 0).

Fig. 15. MSE between engine model and degradation detection system (at Turbine inlet temperature = 0).
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Fig. 16. MSE between engine model and degradation detection system (at Engine mass flow rate = 0).

Fig. 17. MSE between engine model and degradation detection system (at Fuel mass flow rate = 0).

Fig. 18. MSE between engine model and degradation detection system (at Engine output load = 0).
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Fig. 19. The mean square errors between thermodynamic model and MFANN degradation detection model.

7. Results and discussion

7.1. Output load variation with different efficiency deterioration

Fig. 8 explains how the engine output load decreased with the
increase of all component’s efficiency deterioration levels.

7.2. Variation between thermodynamic model and MFANN

Fig. 9 illustrates the MSE between thermodynamic model and
MFANN performance model (4788 training dataset); it was given
the maximum MSE for seven output measurements about 7.81×

10−7 in T6 (fuel mass flow rate).
Fig. 10 illustrates the MSE between thermodynamic model and

the MFANN performance model (101 outside training dataset);
it was given the maximum MSE for seven output measurements
about 6.91×10−5 in T1 (Air inlet filter differential pressure). The
second maximum MSE was determined from the engine output
load.

7.3. Integrated degradation detected system testing result

Figs. 11 to 18 illustrate the performance of integrated degra-
dation detected system when it was tried with testing data (101
outside training dataset) eight times, for each state the com-
ponent degradation was calculated when one of measurements
parameter was blocked and given irrational values such as zero
value, which was the maximum MSE for all stats of component
degradation factors about 4× 10−4 in T4 (Combustion efficiency)
at input 7 = 0.

Fig. 19 illustrates the MSE between the thermodynamic model
and MFANN degradation detected system when it was tried with
testing data (101 outside training dataset) for four output compo-
nents degradation factor range about 1.97 × 10−7 in T2 (Turbine
efficiency state). However, the minimum MSE of 9.34 ×10−8

was achieved by compressor efficiency. Both MSE related to the
engine capacity and the combustion efficiency were about 1.3 ×

10−7.

Conclusion

The paper presents a model based on MFANN to develop
the detection of industrial gas turbine degradation for improving
energy efficiency and waste minimization. This is considered as a
robust fault diagnosis system with an acceptable error margin. It
is summarized as follows:

1. The simulation of the industrial gas turbine was investi-
gated by using a thermodynamic principle and the utiliza-
tion of alternative maps for the main engine components.

2. A review of the types of deterioration in industrial gas
turbines as well as a survey of the concepts, types and
construction phases of the MFANN model, achieved by:

• Constructing a thermodynamic model to calculate the
engine’s performance

• Constructing a MFANNmodel to calculate the engine’s
performance rapidly

• Constructing a MFANN model for diagnosis of the
engine’s component degradation, and

• Constructing an integrated degradation detection sys-
tem to diagnose the engine’s component degradation
(estimated at 4788 cases) when there was damage in
one of the measurement parameters.

3. Choosing the best structure for the MFANN model was de-
cided based on trial-and-error, to obtain a minimum mean
square error. In order to verify the proposed MFANNmodel,
the model was tested against a set of data that was not
used in the MFANN training. The result of this comparison
was satisfactory giving a MSE of 5 × 10−3 maximum.

4. Training and testing of the MFANN was done with all
training data (4788 case) with MSE about 6 × 10−4.
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