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a b s t r a c t

The current industrial context favors the generation of large amounts of data, most of which still
seems to remain unexplored by the majority of enterprises. This paper presents a literature review on
methodologies reported in the scientific literature exploring the potential value of industrial data via
the utilization of Machine Learning tools for energy efficiency related goals. This work identifies and
examines in detail the scientific contributions published up to date. A total of 42 published papers
are found to present original contributions in this field, and addressing multiple energy efficiency
challenges. A descriptive analysis is presented and demonstrates that the number of published works
in this field is rapidly growing. The majority of contributions address challenges in petrochemical
industries, and namely in ethylene production. There is still a very limited number of published papers
addressing the application of Machine Learning tools on energy related objectives in other types of
industries. The technical content of all identified papers is thoroughly reviewed and their key features
and objectives are highlighted. A number of important themes across the final list of papers emerges,
addressing challenges such as energy consumption forecast, energy analysis and energy optimization.
A framework identifying the key goals reported on the set of 42 papers and the tools proposed to
address them is suggested. This framework provides a summary on existing tools and facilitates the
identification of research needs in this field. Additionally, the proposed framework serves as a reference
guideline for the manufacturing and process industries on the selection of adequate Machine Learning
tools for energy efficiency objectives via the utilization of industrial data.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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List of acronyms — error metrics

ARE Average Relative Error
ARGE Average Relative Generalization Error
ARMSE Average Root Mean Squared Error
GRE Generalized Relative Error
MAE Mean Average Error
MAPE Mean Average Percentage Error
MCC Model Correlation Coefficient
MSE Mean Squared Error
R2 Coefficient of Determination
RGE Relative Generalization Error
RMSE Root Mean Squared Error
SD Standard Deviation

List of acronyms — general

AI Artificial Intelligence
BDP Best Demonstrated Practices
EE Energy Efficiency
EM Energy Management
EMS Energy Management Systems
EPI Energy Performance Indicator
ISO International Standard Organization
KPI Key Performance Indicator
ML Machine Learning

List of acronyms — tools

AHP Analytic Hierarchy Process
ALAMO Automated Learning of Algebraic Mod-

els for Optimization
ANFIS Adaptive Network Fuzzy Inference Sys-

tem
ANN Artificial Neural Network
AP Affinity Propagation
BE Backward Elimination
CC Correlation Coefficient
CCR Charnes–Cooper–Rhodes DEA model
CF Cross Feature
DA Discriminant Analysis
DEA Data Envelopment Analysis
DEACM DEA-cross model
DFA Discriminant Function Analysis
ELM Extreme Learning Machine
EMD Empirical mode decomposition
FAHP Fuzzy Analytic Hierarchy Process
FCM Fuzzy C-Means
FIE Fuzzy Inference Engine
FIS Fuzzy Inference System

FLNN Functional Link Neural Network
GA Genetic algorithm
GOA Genetic optimization algorithm
GP Gaussian Process
HVVF Hierarchical Variable Variance Fusion
I2S Intelligent Immune Systems
ICBR Intelligent Case Based Reasoning
IDA Index Decomposition Analysis
ISM Interpretative Structural Model
JIT Just In Time (Learning)
LSSVM Least Squares Support Vector Machine
LSSVR Least Squares Support Vector Regres-

sion
MAF Moving Average Filter
MC Monte Carlo
NIVSG Nonlinear Interpolation Virtual Sample

Generation
OLS Ordinary Least Squares
PCA Principal Components Analysis
PCR Principal Components Regression
PLS Partial Least Squares
PSO Particle Swarm Optimization
QES Quadratic Exponential Smoothing
RBFNN Radial Basis Function Neural Network
SMI Subspace Model Identification
SQP Sequential Quadratic Programming
SVC Support vector clustering
SVM Support Vector Machines
SVR Support Vector Regression
VPSO Vibration Particle Swarm Optimization
VSG Virtual Sample Generation

1. Introduction

A review on papers published over the last 20 years relating,
directly or indirectly, to the broad field of energy management
(EM) in industry shows that, almost without exception, all de-
scribe a pressing need for more effective ways to generate and
utilize available energy resources (Bunse et al., 2011; Schulze
et al., 2016). This is due to a growing consciousness on the
potential dangers of human activity on the environment, and
especially at a stage when the balance between human popula-
tion, providing adequate living conditions for all, and diminishing
natural resources raises important questions and challenges.

As a result, the number of scientific papers related to EM in
industry has been increasing and contributing with a myriad of
new developments in the field (Schulze et al., 2016; May et al.,
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2017). This has been further stimulated by governments world-
wide recognizing the importance of energy efficiency (EE) and
launching a variety of initiatives such as the Energy Star program
(US) (Energy Star, 1992), the 2020 climate & energy package
(EU) (European Commission, 2009), China’s 13th Five Year Plan
For Economic and Social Development (China) (Communist Party
of China, 2016) and others, each focusing on a specific geographic
context.

While the current context is favorable to the development
of energy efficient processes, there is still a generalized lack of
awareness, knowledge and experience in the industry on how to
implement these concepts (Prashar, 2017; Thollander and Palm,
2015). Industrial priorities are usually set towards more imme-
diate objectives, and EE is seldom one of the most important
priorities set out by enterprises (Sorrell, 2015; Reddy, 2013).

One of the most important challenges for the manufactur-
ing and process industries in this context is how to explore
the potential of recorded data. The amount of data is growing
rapidly across industry, owing to the widespread availability of
cheap sensors, and the need for improved process monitoring and
reporting (Diez-Olivan et al., 2019; Shang and You, 2019). The ac-
cumulation of large volumes of data presents huge opportunities
for all activity sectors, and as a result, enterprises are increasingly
turning their attention to Machine Learning (ML) tools as a path
to explore its potential. The dawn of Industry 4.0 and Artificial
Intelligence (AI) in particular has brought a renewed interest in
ML tools, and there is currently a great drive across all industries
to explore its potential (Alcácer and Cruz-Machado, 2019; Lu,
2017).

ML includes a variety of powerful tools (Bishop, 2006; Good-
fellow et al., 2016) facilitating the extraction of valuable insights
from raw data (e.g. class prediction, pattern recognition), which
can then be used to assist enterprises improve their operations
and strategic decisions.

This paper explores the utilization of ML tools in the manufac-
turing and process industries for EE goals, by examining relevant
works published in the scientific literature up to date. Through
a detailed literature search, it is the goal of this contribution to
present a state-of-the-art review on how ML tools have been
used to explore the value of data and address key issues relating
to industrial EE and EM. In particular, the following research
objectives are identified:

• Research objective 1: Identify relevant scientific articles
addressing the subject of EE in industry through the use of
ML tools (Section 4.1);

• Research objective 2: Capture research interest in this area
and identify trends and key applications (Section 4.2);

• Research objective 3: Describe strategies using ML tools for
EE related challenges in industry (Section 4.3);

• Research objective 4: Explain how these tools are used to
derive meaningful insights for EE problems (Section 4.3);

• Research objective 5: Identify patterns in the current re-
search and establish a framework and guidelines for appli-
cation of ML tools on EE problems by the manufacturing and
process industries (Section 5.1);

• Research objective 6: Identify open challenges and trends
in the current research (Section 5.2).

This paper aims to be a reference for both academia and industry.
On one hand, it aims to identify the strategies already in place
and the gaps in the literature, and thus paving the way for
new academic contributions in the field. On the other hand, it
aims to provide an outlook for industry on the features of each
contribution for a clear assessment on the potential benefits of its
utilization in a specific industrial context.

The rest of the paper is organized as follows: in Section 2, rele-
vant works on industrial EE are presented. Section 3 describes the
proposed literature review methodology. The literature search
results are presented in Section 4 and discussed in Section 5,
where a framework for the utilization of ML tools on industrial EE
is suggested. At last, the conclusions of this work are presented
in Section 6.

2. Literature review

2.1. Energy efficiency in industry

Until the 1970s, the subject of EM in industry was given
minimal attention (Petrecca, 2014). The turning points were the
oil crisis during the 1970s, which lead to concerns on energy
security, and thus strongly promoting more energy efficient tech-
nologies and operations (Kaya and Keyes, 1980). The present
panorama on energy utilization is significantly different from the
early 1970s. The mindset towards energy utilization is chang-
ing and increasingly aiming at eliminating unnecessary losses
and inefficiencies, and driven by both economic and environ-
mental reasons (Johansson and Thollander, 2018; Marimon and
Casadesús, 2017; Thollander and Ottosson, 2010).

The scientific community has been actively involved in ad-
dressing these issues, and as a result, the literature on the subject
is extensive, and addressing a plethora of topics related to indus-
trial EE (Schulze et al., 2016; May et al., 2017). This is intrinsically
a multidisciplinary field (Sorrell, 2015), and thus encompassing
contributions from a purely technical point of view, to contribu-
tions focusing on social or economic aspects. The development
of adequate EE key performance indicators (KPIs), for instance, is
of paramount importance to capture and track performance and
improvements, and a large range of KPIs have been reported in
the literature (Bunse et al., 2011; Benedetti et al., 2017). All these
EE indicators express a ratio between a delivered useful output and
a form of required energy input, fundamental to the concept of
energy efficiency.

An extensive review of all contributions in the field of in-
dustrial EM is beyond the scope of this paper. However, it is
worth pointing to some of the works focusing mostly on technical
functions for industrial EE and in line with the goals of this paper.
This includes, for instance, the works presented in Carpenter et al.
(2018), Pelser et al. (2018) and Ke et al. (2013), focusing on
the utilization of benchmark and baseline methods. A variety of
management strategies for promoting EE has been reported and
including multiple contributions as presented in Trianni et al.
(2019) and Porzio et al. (2013). Several contributions address
the implementation and effectiveness of energy audits in indus-
try (Fresner et al., 2017; Backlund and Thollander, 2015; Kabir
et al., 2010). In Zeng et al. (2018), Gahm et al. (2016) and Biel
and Glock (2016), the authors explore the potential of scheduling
and production planning in industry for improved EE. Mawson
and Hughes (2019) and Zhou et al. (2016) explore the potential
of modeling techniques for EE goals. Modeling further enables
the development of optimization-based techniques (Frangopou-
los, 2018; Cui et al., 2017), or the development of predictive
methods (Liao et al., 2018). Other topics of interest in this field
include, for instance, fault diagnostics (Yao et al., 2016), and EM
from the micro to the macro levels (Mancarella, 2014; Duflou
et al., 2012).

There is also a significant body of literature focusing on less
technical themes, but rather on the context around the imple-
mentation of EE measures. This includes, for instance, energy poli-
cies (Malinauskaite et al., 2019; Palm and Thollander, 2010), bar-
riers and drivers for EE (Sorrell, 2015; Andersson and Thollander,
2019; Thollander et al., 2013), technology adoption rates (Hanes
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Fig. 1. Typical steps used for insight extraction from data via ML tools.

et al., 2019), maturity profiles and adoption rates (Trianni et al.,
2019; Jovanović and Filipović, 2016), attitudes towards EM and
assessment of EE practices (Trianni et al., 2019; Dobes, 2013) or
the need for improving EE standards and tools to assist standards
implementation (Gonçalves and dos Santos, 2019; Gopalakrish-
nan et al., 2014).

The introduction of the ISO 50001 standard in 2011 (Interna-
tional Organization for Standardization (ISO), 2018) has been an
important step for EM, and providing a framework for the im-
plementation of Energy Management Systems (EMS) in industry.
This has further prompted research in this field and the develop-
ment of frameworks to capture the distinct and complementary
aspects to its implementation highlighted in the two previous
paragraphs. Bunse et al. (2011) proposes a top-level architec-
ture of themes for EMS, including: (i) Measurement, (ii) Con-
trol and Improvement, and (iii) Enablers. May et al. (2017) sug-
gests a more refined framework including 6 themes: (i) Drivers
and Barriers, (ii) Information and Communication Technologies,
(iii) Strategic Paradigms, (iv) Supporting Tools and Methods, (v)
Manufacturing Process Paradigms, and (vi) Manufacturing Perfor-
mances. There are currently several contributions in this field,
including for instance those reported in Bunse et al. (2011),
Schulze et al. (2016), May et al. (2017), Lee and Cheng (2016),
Sucic et al. (2016), Hall and Buckley (2016), Olanrewaju and Jimoh
(2014), Peng and Xu (2014), Drumm et al. (2013), Rudberg et al.
(2013) and Abdelaziz et al. (2011).

These frameworks cover a variety of subjects, but none fo-
cuses specifically on the utilization of ML methods to capture
the potential of industrial data for EE related goals. To the best
of the authors’ knowledge there are no papers in the scientific
literature providing a review on this subject. The present work
is thus proposed as an extension of the conceptual frameworks
reported for EMS, and with a specific focus on the utilization of
ML tools for EE goals.

2.2. Machine learning overview

ML encompasses a wide range of tools for insight extrac-
tion from data. This includes Artificial Neural Networks (ANN),
Support Vector Machines (SVM), Clustering techniques, Principal
Component Analysis (PCA) and many others. A detailed review
of ML is beyond the scope of this paper, and excellent reviews
on the subject may be found in Bishop (2006), Goodfellow et al.
(2016) and Raschka and Mirjalili (2017).

However, it is convenient to introduce a formal architecture
for the utilization of ML tools. The problem of generating insights
from data is often not a trivial one, and in fact requiring that a
number of steps are utilized to sequentially transform raw data
and obtain increasingly richer information. Fig. 1 illustrates a
typical data workflow for insight generation.

This workflow is merely a guideline and adapted from Good-
fellow et al. (2016) and Raschka and Mirjalili (2017). In fact,
each ML problem typically requires a customized set of steps,
depending on the data available and objectives defined. This
general architecture is offered as a reference, and the literature
review undertaken in this contribution will seek to assess which
of these steps are used in each contribution, their exact order and
which tools are used for each step.

3. Research methodology

Literature reviews are an essential part of any scientific con-
tribution. They provide the key background and motivation for
any such contribution, by pointing out related works in a re-
search field, as well as the limitations in the existing literature
to adequately frame the need for the proposed developments.

While all research papers include a literature review section,
review papers such as is the present case focus specifically on a
detailed literature review exercise. The main contribution of re-
view papers is offering a detailed assessment on the state-of-the-
art of any research field of interest, and enabling a critical review
of the latest developments, trends, outstanding issues and re-
search needs, as well as the development of general frameworks,
whereby papers are categorized according to some predefined
criteria (Tranfield et al., 2000).

Research papers are usually not subject to any predefined re-
quirements concerning literature review. They reflect the author’s
knowledge in the field and should ideally provide a fair as-
sessment of the state-of-the-art contributions. In review papers,
however, a more scientific approach towards literature review is
recommended, and extending beyond the authors’ knowledge of
the field. This ensures that literature reviews are: (i) impartial,
(ii) reproducible and (iii) comprehensive, and that the review
includes all relevant contributions from all backgrounds, and not
limited to the authors’ prior knowledge or predefined conceptions
of the research field.

The proposed literature review is adapted from Tranfield et al.
(2000) and Mayring (2000) for identifying papers and collecting
evidence from their contents in a systematic way. The proposed
architecture for this literature review is presented in Fig. 2, and
each step presented in sequence.

3.1. Search keywords definition

The first step defines the scope: only scientific papers making
use of the following three concepts simultaneously are relevant to
this literature review:

• Energy Efficiency;
• Manufacturing and Process Industries;
• Machine Learning.

While devising the ideal structure for the literature search, and
maximizing the number of found relevant contributions, several
combinations of keywords were tested in Science Direct’ search
engine. It was concluded that using only the keywords above was
very restricting. This is due to the fact that a number of relevant
contributions actually do not place the emphasis on ‘‘efficiency’’,
but rather on ‘‘saving’’. Or, instead of identifying ‘‘industry’’ as a
keyword, place the focus on ‘‘production’’.

These early observations illustrated how difficult it is to cap-
ture all relevant works in the field, and, additionally, provided the
necessary insight to refine and expand the original set of search
keywords. Energy is one of the key focus of this literature search,
and ‘‘energy’’ has therefore been selected as the basic search
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Fig. 2. Literature search strategy.

Table 1
Goal search keywords.
Efficiency Analysis Consumption Saving
Management Optimization Model Diagnosis
Prediction Evaluation Baseline Classification

Table 2
Context search keywords.
Industry Process Manufacturing
Plant Factory Production
System Case study Application

Table 3
Tools search keywords.
Machine learning Neural network
Fuzzy logic Artificial intelligence

keyword. The three general topics identified above actually cor-
respond to three characteristics of the papers of interest: ‘‘Energy
efficiency’’ represents the goal of the papers, ‘‘Manufacturing and
Process Industries’’ represents the context and ‘‘Machine Learn-
ing’’ stands for the group of tools used. Therefore, for a more
comprehensive literature search, a number of keywords were
defined within each of the topics: (i) goal, (ii) context, and (iii)
tools. These keywords are listed in Tables 1–3.

While this approach results unavoidably in a much larger
number of papers to assess, it is also expected to return a larger
set of relevant research papers, and thus enabling a more com-
prehensive assessment of this research field.

3.2. Acceptance criteria and search workflow

This step concerns the actual search activity. The literature
search was performed using Science Direct’ search engine, and
was restricted to return only review articles and research articles.
Scopus was also used to check cross referenced material. The
search was actually broken down in 18 literature searches to
avoid using – simultaneously – the full set of 25 keywords listed
in Tables 1–3; given the search engine’s architecture this is in fact

Fig. 3. Methodology used for identification of relevant papers.

not feasible, and thus requiring complementary searches to cover
all possible keywords combinations.

A number of screening and cross-reference checking steps
were introduced to identify relevant papers. The screening
methodology is schematically described in Fig. 3.

Upon completion of the keyword search (step 1 in Fig. 3),
all article’s titles identified by the search are read (step 2), and
only those suggesting a relevant contribution in line with the
search objectives are kept. The remaining articles are excluded
from further analysis. In step 3, all abstracts and keywords for all
papers identified in step 2 are read, to determine more precisely
the significance and contents of each contribution. Only those
articles reporting the use of at least one ML tool to process
industrial data for some EE related goal are added to the list of
relevant articles. The remaining articles are excluded from the
search. This completes the first iteration.

To minimize the risk of not identifying relevant contributions,
step 4 focuses on screening cross-references. This includes both
citations to and from papers identified in step 3. Each of these ex-
tra papers goes through the same screening strategy (steps 2 and
3) to identify relevant, and previously unidentified papers. Steps
2–4 are repeated as many times as necessary until all new papers
identified in step 3 include no new cross-references to previously
unidentified contributions, thus concluding the identification of
relevant contributions.

3.3. Descriptive and content analysis

In step 3 of the proposed literature search (Fig. 2), all papers
identified in step 2 are carefully read. This assessment step in-
cludes two complementary parts. Firstly, the key features of each
contribution are extracted. This provides the key ingredients for
a descriptive analysis and including the following information:
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Table 4
Distribution of papers per scientific Journals.
Energy 14 Computers & Chemical Engineering 1
Journal of Cleaner Production 6 Industrial & Engineering Chemistry Research 1
Energy Conversion and Management 5 IEEE Transactions on Systems, Man, and Cybernetics: Systems 1
Applied Energy 4 Journal of Analytical and Applied Pyrolysis 1
Applied Thermal Engineering 3 Measurement 1
Expert Systems with Applications 2 Advanced Engineering Informatics 1
International Journal of Energy Research 2

• Publication Years;
• Journals;
• Geographic contexts;
• Industry types.

The second part, a full content analysis, aims to extract specific
technical details on each contribution, namely which ML tools are
used and how they are used for EE goals.

3.4. Article categories and EE functions

After technical screening, common themes among the full list
of papers are identified (step 4). Results are presented separately
under each of the identified categories to evidence this structure
of themes. In Section 5, a critical review of all relevant papers
is conducted, and focusing on all the identified technical func-
tions for EE, and thus delivering a comprehensive framework of
contributions and available tools in the field.

4. Results

4.1. Literature search

Fig. 4 summarizes the results from the search stage. A final
redundancy check was made to ensure there are no repeated
references emerging from different individual searches. Abstract
and keywords screening, and a single cross referencing round
resulted in a total of 42 relevant papers.

4.2. Descriptive analysis

4.2.1. Publication years
Fig. 5 captures the distribution of identified papers per year. It

demonstrates that there has been an increased interest on these
topics over the last 10 years. In particular, there has been a sharp
increase in the number of related publications in 2017 and 2018.
The results for 2020 still do not reflect the real figures for this
year, as the literature review only includes papers published or
in press up to the end of March 2020.

4.2.2. Journals
Journal ‘‘Energy’’ is the most widely used for publication of

contributions in this field, including one third of all publications.
A total of 13 journals include all identified works. As expected,
these journals tend to be focused on technical applications in the
field of Energy. Table 4, presents the breakdown of publications
per journal.

4.2.3. Geographic contexts
China is the undisputed leader of contributions. This is not

surprising given the fact that China is presently the largest en-
ergy consumer in the World and that its industry represents a
very significant share of total energy consumption (International
Energy Agency (IEA), 2018; Enerdata, 2019), thus providing a
very favorable context for EE developments. There are a total
of 7 contributions from Europe, 5 contributions using data from
an unidentified geographical source and another contribution
working with emulated data. These results are summarized in
Table 5.

Table 5
Distribution of papers per geographic context.
China 29
Europe 7
Not specified 5
Emulated data 1

Table 6
Distribution of papers per industry type.
Ethylene 19 Propylene oxide 1
Ethylene & PTA 8 Carbon fiber production 1
Machining processes 2 Cement 1
Additive manufacturing 2 Clothing industry 1
PTA 1 Turbine condenser air extraction system 1
Naphtha reforming 1 Steel plant 1
Petrochemical plant 1 Components 1
HDPE & PTA 1

4.2.4. Industry types
Ethylene, and the petrochemical industry, is the main focus

of research activities as shown in Table 6. These figures track
closely the number of publications originating from China and
highlight the huge effort Chinese researchers are devoting to
energy optimization of the petrochemical industry. A collection
of works in nine other industry types was also identified, though
including a limited number of contributions.

4.3. Content analysis

The contents of all papers were firstly assessed, and then
general themes in the literature were identified based on the
common features of this group of papers, using the inductive
approach presented in Mayring (2000). The categories identified
capture the key goals towards EE found in the group of 42 papers,
as listed below:

• EE Ranking and Analysis;
• EE Analysis;
• Production Forecast and EE analysis;
• Energy Consumption Forecast;
• Energy Consumption Optimization;
• Technology and Scale for EE;
• EE Multi-objectives.

All papers were assigned to a single category and results are
reported on two distinct levels. Firstly, a general overview of all
categories is presented in the following subsections, and high-
lighting specific contributions in each category. Then, the key
technical features of all contributions are summarized in Ta-
bles 7–13, one table per each of the categories presented above.
Two important pieces of information are presented in these set
of tables:

• ML tools and other relevant tools used in each contribution,
and the data workflows used for information extraction;

• Tools, metrics or useful insights for the purpose of industrial
EM.
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Fig. 4. Literature review screening results.

Fig. 5. Distribution of papers per year.

4.3.1. EE ranking and analysis
The contributions in this group fall also on the very broad

group of papers utilizing Data Envelopment Analysis (DEA) tools
(Cooper et al., 2007) for the purpose of EE assessments. One of
the key difficulties with this group of tools is to provide a clear
meaning to the efficiency indexes obtained as a result of their
application, and how to select adequately data for meaningful
DEA studies capturing EE. A large range of variables may often be
available, but only a few may be significant for the EE problem.
The literature on this subject is extensive, and in the specific
context where ML provide extra insights into this challenge, two
papers were identified (Geng et al., 2019b; Han et al., 2019b).
Both work on a similar principle, and use Affinity Propagation
(AP) for a more focused selection of input variables. While there
are differences between the two, generally, both aim at providing
greater resolution power to the DEA analysis.

4.3.2. EE analysis
Relevant contributions in this category are diversified, both

concerning the set-up of a modeling approach, as well as the
type of EE objectives defined. Beisheim et al. (2019) suggests a
very comprehensive framework for the utilization of industrial
data for EE related goals. In Zhu et al. (2018) an ANN model
is used to enable the prediction of an EE level as a function of
process inputs. The utilization of fuzzy logic is a trend in this type
of contributions; it enables a more structured energy analysis
in face of the problem of measurement uncertainty. Gong et al.
(2017b) provides a framework for identification of key patterns
in energy utilization, and targets the identification of variables
with highest impact on EE. A common theme across these papers
is the identification of improved process inputs for optimal EE.

4.3.3. Production forecast and EE analysis
All papers in this category share the same basic strategy: they

focus on the utilization of a neural network model to forecast
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Table 7
Key paper contents on EE Ranking and Analysis.
Reference Tools and data workflows EE insights

Geng et al.
(2019b)

Transformation: Data normalization.
Selection: AP algorithm to filter non-critical and redundant information.
Model: Charnes–Cooper–Rhodes (CCR) DEA model to build EE model.

 AP improves ranking resolution power of DEA tools.
 CCR model requires data from multiple units.
 Calculation of relative EE metrics, ranking of units and
identifying potentials for improvement.

Han et al.
(2019b)

Pre-processing: Data normalization.
Selection: AP algorithm to filter non-critical and redundant information.
Model: DEA-cross model (DEACM) to build EE model.

 DEACM model provides greater ranking power than classic
DEA tools.
 Data taken from multiple units.
 Enables analysis of units’ performance, via comparison
against benchmark and assessment of potentials for plant
performance improvement.

Table 8
Key paper contents on EE Analysis.
Reference Tools and data workflows EE insights

Beisheim
et al. (2019)

Pre-processing: Outlier removal and data classification.
Transformation: Data centering and scaling.
Selection I: Clustering with k-means++ to select representative points and
identify characteristic points for operation.
Model: Surrogate model with Automated Learning of Algebraic Models for
Optimization (ALAMO) software package.
Selection II: A final Backward Elimination (BE) step is applied to identify the
most important factors on plant performance.

 Focus on identifying Best Demonstrated Practices (BDP) for
different operating regimes as baselines for efficiency
assessment.
 Group of data points among the top percentiles (according
to some predefined Energy Performance Indicator (EPI))
identified as BDP.
 Enables online tool to assess EE in operation against BDP,
and under similar operating conditions.
 Insights on most important factors for driving process
towards BDP.

Zhu et al.
(2018)

Transformation I: EPI calculated from input and output data variables using a
variable fusion approach.
Transformation II: Input data normalization.
Transformation III: Data fuzzification using Mamdani type Fuzzy Inference
System (FIS) as ‘‘low’’, ‘‘median’’ and ‘‘high’’.
Model I: ELM-FIS model predicts membership of each of the three defined EE
levels as a function of process inputs.
Model II: DEA with process inputs and outputs.
Validation: Validation against other ANN schemes. Calculation of Root Mean
Squared Error (RMSE) and Coefficient of Determination (R2).

 EPI is a tailored EE metric.
 Predicts EE of any given operating point in one of the three
levels.
 Subsequent DEA calculations enables energy saving
opportunities and directions for improvement.

Geng et al.
(2018a)

Transformation: Data converted to fuzzy equivalent.
Correlation/Model: Correlation via Interpretative Structural Model (ISM).
Three scenarios defined using fuzzy logic to quantify energy consumption
inputs: ‘‘minimum’’, ‘‘most likely’’ and ‘‘maximum’’.

 Correlations based on ISM to identify most relevant process
inputs.
 Comparing curves for each of the three scenarios as the key
elements for energy related insights: ‘‘Most likely’’ and
‘‘maximum’’ scenarios used to quantify energy saving
potentials.
 Useful for systems subject to measurement uncertainty.

Gong et al.
(2017b)

Pre-processing: Data consistency test (Grubbs test).
Correlation: Most significant variables for energy consumption determined via
Principal Components Regression (PCR).
Selection: Classes defined for each of the key process variables, and dataset
grouped into each of the available classes, via k-means.
Model: EE calculated via DEA tools within each identified class.

 Cluster analyses enables the identification of several modes
of operation.
 EE analysis takes into account the influence of key
operating variables.
 By clustering data in groups of reference operating
conditions, EE is put in a specific context, making such
assessments more precise and fair.
 Clues for process optimization via DEA slacks.

Han et al.
(2015)

Pre-processing: Data consistency test (Grubbs test).
Transformation: Data fuzzified in three levels: ‘‘well’’, ‘‘median’’ and ‘‘bad’’.
Model: DEACM for EE calculation using fuzzified inputs and outputs.

 Takes data from several units and from different years of
operation.
 DEACM slacks to analyze performance in greater detail and
identify possible improvements with respect to most effective
units.
 Based on a graphical analysis for the three identified
scenarios/levels.

some industrial key output. The Extreme Learning Machine (ELM)
architecture is the most common ANN choice, while specific
details for setting the architecture parameters and finding the
function parameters vary. The predicted output is in most cases
industrial production.

While all ANN architectures are set up to achieve similar
goals, there are many variations to their specific set-ups, and
particularly: (i) which input variables to select, and, (ii) which
data to feed the ANN for model training. This is the key difference
observed across this group of papers and resulting in a consider-
able set of approaches to deal with these challenges. Two papers
(He et al., 2018; Gong et al., 2017a) also focus on the generation

of virtual samples, when data available is deemed insufficient for
accuracy.

This group of papers explains in detail both the tools used and
how to combine them to achieve the defined goals, but generally
provide limited information on how the developed models are
used for EE related challenges. Generally, they provide a view
on EE, which does not necessarily focus on the utilization of
standard EE metrics, but rather, on providing a richer insight
based on saving potentials and directions for improvement. This
is achieved via comparison and benchmarking, and using pre-
dicted and experimental results – typically in the form of graphs
– for extracting relevant insights.
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Table 9
Key paper contents on Production Forecast and EE Analysis.
Reference Tools and data workflows EE insights

Geng et al.
(2020)

Pre-processing: Outliers removal.
Transformation: Data normalization. New dataset created via Cartesian
Product under the Cross Feature (CF) method.
Model: Input matrix constructed in a convenient format to satisfy the
requirements of the Convolutional Neural Network and model learning using
input and output data.
Validation: Data divided in training and testing datasets. Relative
Generalization Error (RGE) and Average Relative Generalization Error (ARGE)
calculation.

 Method applied to ethylene plant, taking crude oil, fuel,
steam, water and electricity and output is ethylene production.
 Indirect EE assessment based on graphical analysis of data
and comparisons between predicted and actual plant data.
 Insights for EE improvement based on comparisons
between distinct operating points.

Han et al.
(2019c)

Transformation: AP algorithm identifies clusters in original dataset, capturing
its variability in a compact form.
Model: ELM used to build model, using the clusters from the previous step.
Validation: Data split in training and test sets. Calculation of error metrics.

 Concept of improved plant suggested. Few details presented
on this concept, and results suggest it derives from further
simulation activities using developed model and comparisons
against benchmark points.
 Works on historical data to capture the potential for
improvement on each data point, therefore providing a path
for capturing EE without utilizing a formal EE indicator.

Han et al.
(2019a)

Transformation I: Data normalization. Data transformed in a convenient
format for modeling step.
Model: Recurrent Neural Network with Long Short Term Memory and
Attention Mechanism modules to predict production.
Validation: Comparison of actual and expect output to calculate error
metrics: ARGE and RMSE. Data split in training and test sets.

 EE insights from comparisons between plant data and
model predictions.
 Comparison of performance between different time samples
to obtain insights into how EE may be improved.

Geng et al.
(2018c)

Correlation: Pairs of process variables assessed via ISM.
Transformation/Selection: Small set of variables fused via Analytic Hierarchy
Process (AHP).
Model: Prediction of plant production using ELM neural networks.
Validation: Computation of Mean Squared Error (MSE). Data split in training
and test sets.

 Prediction model for plant production.
 EE is captured qualitatively by comparison of real and
predicted production.
 Suggests a route for energy analysis and process
performance optimization via comparison of real and
predicted points.

He et al.
(2018)

Transformation: Data normalization.
Correlation: Nonlinear Interpolation Virtual Sample Generation (NIVSG) to
interpolate on dataset points to generate new virtual data points.
Model: ELM neural network used to train model using original and virtual
data points from NIVSG.
Validation: Mean Average Percentage Error (MAPE) computed to check
accuracy of prediction model. Data split in training and test sets.

 Model enables prediction of production as a function of key
process inputs.
 NIVSG algorithm promotes accuracy of prediction. This
technique is useful for small datasets.
 Strategy for EE based on comparison of a group of plants
operating in the same industry, and identifying the most
efficient as reference for less efficient units.

Geng et al.
(2018b)

Selection: Five key process inputs selected for model development based on
experience.
Transformation: Data normalization.
Model: Prediction model for production based on ELM structure. Model
trained using historical data.
Validation: Model error with ARGE.

 Data gathered from multiple ethylene manufacturing units.
 EE studies based on comparison of distinct data points to
provide a relative assessment on EE and potentials for
improvement.
 Two types of EE studies performed: ‘‘same scale, different
technologies’’, and ‘‘same technology, different scale’’.
 Contribution also relevant for category ‘‘Technology and
Scale’’.

Han et al.
(2018)

Transformation: Data series fuzzified along time axis.
Pre-processing: Data consistency using Grubbs test.
Selection: Data divided in three performance categories: ‘‘worst’’, ‘‘median’’
and ‘‘optimal’’.
Model: Production prediction for each of the three performance scenarios
using Fuzzy Extreme Learning Machine neural network.
Validation: Data split in training and test sets. Model error with ARGE.

 Predictive capability for plant production.
 EE inferred by comparison of worst, median and optimal
performance curves.
 Energy analysis is also possible by comparison of energy
figures associated with the identified scenarios.

Geng et al.
(2017b)

Transformation: Data clustering based on degree of similarity using Fuzzy
C-means (FCM)
Selection: Inputs in each cluster are fused to create a single representative
variable per cluster using AHP.
Model: ELM to predict production as a function of selected variables.
Validation: Data split in training and test sets. ARGE and RMSE for model
prediction accuracy check.

 EE analysis and energy saving potential obtained indirectly
via comparison of predicted results against measurements, or
by comparison between two units.

Geng et al.
(2017c)

Transformation: Data used to calculate activity, structure and intensity using
Index Decomposition Analysis (IDA).
Model: ELM uses outputs from transformation step as inputs to predict total
production.
Validation: Generalized Relative Error (GRE) for model accuracy check. Data
split in training and test sets.

 EE obtained indirectly through graphical analysis of results.
 Enables energy analysis as a function of activity, structure
and density.

(continued on next page)

4.3.4. Energy consumption forecast
There are few variations on the objectives of the contributions

assessed. Most of them focus on deriving a predictive model for
energy consumption as a function of process inputs. The only
exception is Liu et al. (2019) which focuses on future prediction

of consumption based on recent energy consumption trends. Ko-
vačič and Šarler (2014) also integrates the concepts of production
plan and thus allowing for some scheduling based opportunities
for energy optimization.

The frameworks used to achieve the objectives identified are
diversified: not only ANN based models are used, but also signal
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Table 9 (continued).
Reference Tools and data workflows EE insights

Han et al.
(2017b)

Pre-processing: Data consistency with Grubbs test.
Transformation: Data normalization.
Correlation/Selection: Correlation between pairs of variables using ISM and
selection of reduced set of variables for model development.
Model: Production prediction using ELM.
Validation: ARGE and RMSE for model accuracy check. Data split in training
and test sets.

 ISM reduces set of inputs and facilitates energy analysis.
 EE inferred by comparison of real and estimated production
values.
 Qualitative comparison and analysis possible by comparison
of two units operating in similar conditions.

Geng et al.
(2017a)

Transformation: Data normalization.
Selection/Transformation: Principal Components Analysis (PCA) to transform
original data, and restricted subset of principal components used for further
modeling activities.
Model: Prediction model for total production, based on Radial Basis Function
Neural Network (RBFNN) structure. FCM used to set architecture parameters of
RBF neural network.
Validation: Data split in training and test sets. ARGE, RGE, MSE and RMSE
error criteria used for accuracy assessment.

 EE and analysis results from a set of comparisons. Details
on analysis framework developed are scarce.
 No formal metric for EE provided. Insight on the subject is
derived purely on comparisons between data points.

Gong et al.
(2017a)

Correlation: Virtual Sample Generation (VSG), using Monte Carlo (MC) and
Particle Swarm Optimization (PSO). Utilizes available data points to infer new
points for model training.
Model: Prediction model for feedstock consumption, using ELM.
Validation: Data split in training and test sets. MAPE for accuracy assessment.

 EE analyses via comparison of predicted and actual plant
data.
 Best performing units identified as benchmark. EE analysis
for optimized performance based on comparisons against
benchmark.

Han et al.
(2016)

Pre-processing: Data consistency (Grubbs test).
Selection: All process energy inputs and main production outputs selected as
the main variables of interest.
Model I: C2WH – DEA model used to assess efficiency scores and slack
variables for a group of decision units.
Model II: Efficient units and projection of inefficient units on efficiency
frontier used as input for prediction of production using Back Propagation
neural networks.
Validation: ARGE and RMSE for accuracy checks. Data split in training and
test sets.

 EE inferred by comparison of real and estimated production
values.
 Qualitative comparison and analysis also possible by
comparison of two units operating in similar conditions.
 Slacks of DEA used for providing clues on opportunities for
process optimization.

processing, genetic algorithms and Least Squares Support Vector
Machine (LSSVM). One of the key drivers for this type of estima-
tion resides in the need for matching as closely as possible energy
supply and demand.

4.3.5. Energy consumption optimization
The majority of contributions in this category focus mainly

on defining and solving an optimization problem. The result is
a set of optimal inputs for improving EE. The exception to this
pattern is Monedero et al. (2012) where optimization focuses on
searching a database of historical points to find a neighbor point
to the current operation point for improving performance. All
approaches use a modeling step to capture system behavior, and
including a variety of ML tools. The obtained optimal solutions
focus also on different paths for optimal EE. Wang et al. (2018)
and Liang et al. (2018) aim to obtain optimized schedule settings,
and therefore maximizing the utilization of available resources,
where Golkarnarenji et al. (2018) focus on updates to input
variables of continuous processes.

4.3.6. Technology and scale for EE
In this set of contributions, production extension is identified

as a key factor on EE. To capture its impact, a set of data fusion
tools are proposed to obtain representative EE metrics for a num-
ber of technology/scale pairs. The obtained results provide good
insight for technology selection based on EE criteria. Strušnik
et al. (2016) suggests an alternative approach: pilot plant data are
processed to develop input–output models, which are then used
to create a reference operation scenario and identify the most
promising technology.

4.3.7. EE multi-objectives
To some extent, all contributions assessed in the previous sec-

tions do provide insight into more than one energy related chal-
lenge. For instance, the result of a contribution focusing mostly on
optimization may offer useful elements for energy analysis. The

distinction between the previous categories and this category is
that the contributions in the present category do not necessarily
focus on a single feature, but provide key results on at least two
different types of objectives.

Unlike the previous categories, there are a significant vari-
ety of tools, workflows and objectives in the present group of
contributions. They address several challenges in EM, including
definition of adequate EE metrics, prediction, analysis and opti-
mization, with ties to the groups previously identified. Most of
the contributions in this group present an optimization feature,
including either a formal mathematical optimization framework,
or a qualitative insight extraction approach for process control.

5. Framework for utilization of ML tools on EE related prob-
lems in industry

5.1. Framework

In this chapter, results from Section 4 are presented from
a different perspective: firstly, the contents of Tables 7–13 are
reviewed to identify all EE objectives reported in the 42 pa-
pers found during the literature search. Then, EE objectives are
grouped in high-level EE functions, according to the specific aims
of each EE objective. At last, for all identified EE objectives, a set of
remarks and guidelines, tools and relevant papers is suggested. It
is expected that this alternative presentation of results facilitates
the selection and implementation of relevant tools for EE re-
lated objectives in industry. Furthermore, the development of this
framework enables a comprehensive overview of the reported EE
objectives and a critical review of the field.

A total of 5 high-level EE functions were identified, each in-
cluding a varying number of EE objectives. Results from Tables 7–
13 also show that there are another two important high-level
themes across the literature: (i) data pre-processing & transfor-
mation, and (ii) data correlation & selection. They do not classify
as EE objectives or functions, but rather, play a very important
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Table 10
Key paper contents on Energy Consumption Forecast.
Reference Tools and data workflows EE insights

Liu et al.
(2019)

Transformation: Empirical mode decomposition (EMD) transforms historical
series of energy consumption into a number of quasiperiodic intrinsic mode
functions.
Pre-processing: Moving Average Filter (MAF), smooths intrinsic mode
functions, minimizing the effect of noise on data.
Model: LSSVM and Quadratic Exponential Smoothing (QES) take intrinsic
mode functions to predict future energy consumption.
Validation: RMSE and MAPE used to check model accuracy.

 Approach utilized online during industrial operations.
Processes a finite number of energy consumption points to
forecast future energy consumption.
 Predictions for energy consumption are made for 1 to 4
steps ahead. As expected, the larger the number of steps
ahead, the largest the prediction error.

Zhang et al.
(2018a)

Transformation I: Data normalization.
Transformation II: Nonlinear function expansion from original set of input
variables.
Selection: PCA on original set of data and set of nonlinear variables from the
transformation step to extract the most significant.
Model: Functional Link Neural Network (FLNN) takes outputs from PCA as
inputs to model energy consumption.
Validation: RMSE for accuracy checks. Data split in training and test sets.

 This tool is an adaptation from the standard FLNN
architecture. It uses PCA as a middle step to reduce the
potential large number of inputs to the neural network.
 Two alternative ANN configurations proposed for
comparison.
 Model obtained enables to estimate energy consumption as
a function of process inputs.

Zhang et al.
(2018b)

Transformation: Data normalization.
Selection: Input variables selected based on process insight.
Model: Five parallel ELM neural networks, each using a different nonlinear
function to transform process inputs. A weight from each network is
determined using least squares, to map energy consumption to selected
process inputs.
Validation: Data split in training and test sets. Average Relative Error (ARE),
Average Root Mean Squared Error (ARMSE) and Standard Deviation (SD) for
testing prediction accuracy.

 Five standalone ELM neural networks used for prediction
and all results compared.
 Energy consumption estimated indirectly via monitoring
other process variables.
 Model obtained enables to estimate energy consumption as
a function of process inputs.

Qin et al.
(2018)

Transformation: Collected data is categorized in two datasets, according to
the nature of data.
Selection: Clustering applied to multidimensional dataset to compress and
obtain representative information from the original dataset.
Model: Merged Neural Network used one of the original datasets as the first
set of inputs, and the results from clustering as the second set of inputs to
model energy consumption.
Validation: RMSE and Model Correlation Coefficient (MCC) for accuracy
checks. Comparison other ML algorithms.

 The number of clusters is customizable, and may be used
as a parameter for fine tuning of performance.
 Approach is developed to predict energy consumption and
obtain insights for operation of Additive Manufacturing
machines.

Kovačič and
Šarler
(2014)

Selection: Key units contributing to overall process energy consumption
identified, and their consumptions over a period of 3 months collected.
Model: Genetic algorithm (GA) applied, enabling total energy consumption
forecast, and expressed explicitly as a function of key process inputs.

 Steel plant application. Strong focus on production plan,
which may result in significant variations in electric energy
demand for process operation.
 This tool is integrated with the production plan to adjust
contracted power supply and enhancing economic
performance and rational electric energy generation and
distribution.

role in the development of methodologies for EE objectives. Given
the importance of these subjects on data workflows within ML for
insight extraction, they were also included in the proposed frame-
work as supporting tools. Fig. 6 describes all high-level functions
identified and their specific objectives.

Tables 14–20 provide details for all EE objectives identified in
Fig. 6. Each table focuses on a single high-level EE function, and
reports ML tools and other tools used to achieve the identified EE
objectives, and relevant works from the literature search.

5.2. Critical review and research trends

Analysis and prediction EE functions seem to capture the
most attention from the research community. They are vital for
understanding the usually complex interactions between energy
consumption and industrial plants. In this context, optimiza-
tion is the most advanced EE function, as it requires in-depth
understanding of the more basic functions. Optimization activ-
ities enable actual energy savings in industry, and thus it is
expected that this function will receive a growing attention in
future research.

Aside from EE functions, two issues that stand out from the
proposed framework are: (i) noise and data uncertainty, and (ii)
input variable selection. The first is vital to draw valid and useful
results from the methodologies implemented. The second issue
relates to what information should be selected for the develop-
ment of EE methodologies. In large manufacturing and process

industries, the available information is often very extensive, and
posing important challenges on what information to use. The
strong focus of research on these activities is an indication that
industry is only recently turning its attention to the potential of
ML: these are among the first steps required in any data workflow
using ML tools. Many more contributions across all identified
categories are expected to enrich this field in a near future. In
particular, there are several important concepts around Industry
4.0, such as Big Data and Internet of Things, which relate directly
to Machine Learning and which will likely play an important role
on future research.

As a final comment on results presented in Sections 4 and 5, it
is worth noting that hundreds of papers beyond the set of 42 pa-
pers included in this framework were scanned, as schematically
depicted in Fig. 4. Many of these include important contributions
in the fields of EE, manufacturing and process industries or ML.
These include, for instance, the works of Zou et al. (2019) using
optimization for improved industrial EE, Geng et al. (2019a) us-
ing ML tools in an industrial setting for fault detection, or Han
et al. (2020), where a more deterministic type of approach is
used for industrial EE via the utilization of data. While there
are in fact multiple additional publications dealing with these
concepts, it must be stressed that only those papers articulating
simultaneously these 3 key concepts were considered in this
work.
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Table 11
Key paper contents on Energy Consumption Optimization.
Reference Tools and data workflows EE insights

Shen et al.
(2020)

Model: Hybrid model of plant.
Selection: Support vector clustering (SVC) applied to two process variables
subject to uncertainty to capture the variability of the pair in the
corresponding 2D space.
Optimization: Energy consumption problem formulated as a MINLP and
solved for a set of process flowrates while satisfying process steam and power
demands.

 Deterministic and robust optimization problem
formulations.
 Regularization parameter from SVC may be tuned to set
how conservative is the robust optimization problem.
 Method targets energy saving and has important ties with
the field of energy systems.

Qin et al.
(2020)

Transformation: Design dataset used to predict process dataset and build a
second dataset, using deep learning techniques.
Model: Design and process datasets used in second deep learning ANN model
to predict energy consumption as a function of relevant process inputs and
for distinct production objectives (modes).
Validation: RMSE and MCC for accuracy checks.
Optimization: PSO to optimize ANN energy consumption model.

 Methodology enables prediction, but focus mainly on
process optimization.
 Restrictions on process operation carefully identified.
 Analysis of ANN parameters to identify most important
process inputs.
 It provides a way to find a set of process inputs delivering
the desired production objectives, while minimizing energy
consumption.

Wang et al.
(2018)

Selection: Industrial data on consumption power partitioned according to a
set of operating regimes.
Model: Multi-Layer Feed-Forward Neural Network used on partitioned data for
classification purposes.
Validation: MAPE for accuracy checks.
Monitoring: Power consumption profiles are monitored during online
operation to identify key patterns useful for process management.
Optimization: Optimization problem aiming at minimization of energy
consumption is developed. The optimization problem is triggered during the
monitoring stage when a set of conditions is observed.

 Methodology encompasses the concepts of Big Data, Cyber
Physical Systems, Computer Numerically Controlled and
Intelligent Immune Systems (I2S).
 This contribution is also related with fault detection, but
with a great focus on energy optimization.
 The online monitoring procedure is framed around the
concept of I2S, responsible for the management of the control
strategy.
 The outcome of the optimization problem is a rescheduling
of operations aiming at an improved performance.
 Warnings and scheduled maintenance tasks are also
obtained as a result of this strategy.

Golka-
rnarenji
et al. (2018)

Model: Support vector regression (SVR) used to predict key product property.
First-principles/empirical modeling used to predict a second product property.
Validation: MSE for accuracy checks. Data split in training and test sets.
Optimization: Genetic optimization algorithm (GOA), defining energy
consumption as the objective function and using the defined models and
enforcing a set of constrains as minimal specifications for product quality.

 Two distinct optimization scenarios defined.
 Alternative tool based on the use of neural networks also
proposed for comparison.
 Approach enables identification of inputs for optimal energy
performance. Enables also to quantify the energy saving
potentials.

Liang et al.
(2018)

Selection: Industrial data on consumption power partitioned according to a
set of operating regimes.
Model: ANN used on partitioned data for classification purposes.
Validation: RMSE for accuracy checks.
Monitoring: Power consumption profiles are monitored during online
operation to identify key patterns useful for process management. Model
encompasses the concept of an aging factor for equipment.
Optimization: Optimization problem aiming at minimization of energy
consumption is developed. The optimization problem is used in two
instances: (i) optimal process scheduling, and (ii) rescheduling based on
identified patterns.

 Methodology similar to the one proposed in Wang et al.
(2018).
 Aging factor is identified as a differentiating factor.
 Scheduling and rescheduling activities for best utilization of
energy and for general process performance.

Monedero
et al. (2012)

Pre-processing: Outliers identification and deletion from databank.
Selection: Only points satisfying a technical pre-requisite are kept for
modeling activities.
Correlation: Chi square tests between pairs of variables to identify subset of
most relevant variables for modeling.
Model: Discriminant Analysis (DA) to capture EE in a detailed way as a
function of relevant process variables.
Validation: Data split in training and test sets.
Optimization: Online search within stored databank of neighbor point for
improving EE. ANN model included to provide additional optimization insight
into operating domains not covered by recorded data.

 EE calculated as a ratio between plant energy consumption
and material plant input.
 Strategy also takes into account which variables are
controllable and which are not controllable, given control
structure imposed on the system.
 Controls are set to the controllable variables of the
identified neighbor point.
 Optimization focus on identifying historical points capable
of improving current state.
 Interpolation tools based on the ANN framework are used
to estimate further EE improvements beyond the known data.

6. Conclusions

In this paper, a review of contributions in the field on in-
dustrial Energy Efficiency using Machine Learning tools was pre-
sented. The first literature scans suggested that literature is sig-
nificantly fragmented. This required a more elaborate literature
review to ensure the majority of contributions in this field is
captured in a systematic way. While it is unclear whether this was
achieved in full, the utilization of cross references checks suggests
that a very good picture of the current published works in the
field was achieved, with a total of 42 papers found.

An analysis on the number of papers published per year shows
that the number of publications has been increasing. This is most
likely due to the emphasis put on rational energy utilization
promoted recently by a number of agencies and governments

worldwide. It is also not surprising that this number is growing
given the multiple capabilities ML tools offer for data processing
and insight extraction, and the dawn of Industry 4.0 which is
extensively promoting the use of such tools and supported on
ever growing databases.

Petrochemicals, and namely ethylene production, dominates
the attention of researchers with the vast majority of publications
addressing the related energy challenges in this industry. China
also dominates the contributions presented in this field and inti-
mately related with the challenges on the Chinese petrochemicals
industry. Only a small number of publications were found and
addressing energy challenges in other industries, which is a clear
indication that industry is only recently turning its attention to
this topic.
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Table 12
Key paper contents on Technology and Scale impact on EE.
Reference Tools and data workflows EE insights

Han et al.
(2017a)

Transformation I: Data normalization.
Transformation II: FCM to obtain a set of clusters from plant data and from a
number of units within the same sector (different technologies and scales).
Model: Data fusion, based on all observations and defined clusters. Enables
the calculation of weights for clusters and identifying an average or
benchmark reference for a given set of technology and scale. Values
calculated for various combinations of scale and technology.

 Benchmarks obtained for different combinations of
technology and scale.
 A set of graphs are produced to illustrate the impact of
scale and production on the key process inputs and outputs.
 The approach does not allow for a formal EE indicator, but
does provide useful information for technology and scale
selection.

Strušnik
et al. (2016)

Pre-processing: Outliers removal.
Model: Adaptive Network-based Fuzzy Inference System (ANFIS) and
first-principles model for computation of expected power consumption for
two distinct technologies given a set of operating requirements.

 Quantified power consumptions used as key factors for
decision on most efficient technology.

Geng et al.
(2012)

Pre-processing: Data consistency test using Grubbs test.
Transformation: Daily data are fused into monthly and yearly data using
Hierarchical Variable Variance Fusion (HVVF), yielding energy consumptions
for the same technology.
Model: Fuzzy Analytic Hierarchy Process (FAHP) and HVVF enable estimation
of representative EE values per technology and scale.

 EE is defined as a (relative) specific energy consumption.
 Scale and technology decisions based on EE.

Table 13
Key paper contents on EE Multi-objectives.
Reference Tools and data workflows EE insights

Xu et al.
(2020)

Transformation: Data normalization.
Model I: ANN model and Intelligent Case Based Reasoning (ICBR) model used
to estimate machine cutting power as a function of relevant model inputs and
identifying distinct operation modes.
Model II: Based on ANFIS architecture, to deliver three complementary
models on cutting machine performance.
Validation: MAPE, R2 and RMSE for accuracy checks.
Optimization: Multi-objective optimization to deliver the optimal process
inputs for operation, using Vibration Particle Swarm Optimization (VPSO).

 Features: energy consumption prediction and optimization.
 The ICBR framework is particularly adequate for the
objectives proposed, as process operation includes distinct
operation modes for different jobs.
 The first model predicts cutting power.
 The second model is optimized via VPSO to deliver optimal
process settings for minimal energy consumption.

Zhu and
Chen
(2019b)

Selection: Partial Least Squares (PLS) to identify most significant input
variables.
Model: Gaussian Process (GP) to map input to output data. Prediction includes
both an output estimate and associated uncertainty (estimated standard
deviation). Additional samples added when uncertainty exceeds a predefined
limit.
Validation: RMSE for accuracy checks.

 Features: EE estimation, production capacity forecast and
energy optimization.
 Explicit definition of EE indicator, as a quotient between
total products and total energy consumption.
 Ethylene yields predicted as a function of process inputs.
 Average efficiency level determined and used as benchmark
for process operations.
 Criteria defined for unacceptable EE performance, triggering
a set of corrective actions in the plant.

Zhu and
Chen
(2019a)

Selection: Neighboring database points to current process state are selected
using Just In Time (JIT) learning / Least Squares Support Vector Regression
(LSSVR).
Pre-processing: Noise handling via QR decomposition.
Model: State–space model identification relating inputs to outputs with
Subspace Model Identification (SMI).
Validation: Average accuracy for accuracy checks.

 This contribution deals with EE estimation and production
capacity forecast.
 EE calculations based on explicit indicator using input
energy consumption and production output.
 Online data measurement, and continuous update of
state–space model with the aim to forecast production
accurately.

Gong et al.
(2019)

Benchmark: EE metric for total production and ethylene production using
input–output data. DEA may be used to identify benchmarks.
Transformation: Data normalization.
Model: FLANN used to map input–output data.
Validation: Data split in training and test sets. RMSE and Mean Average Error
(MAE) for accuracy checks.
Optimization: Optimization problem formulated to minimize the distance to
the EE benchmark metric and subject to the FLANN model developed. Set of
constraints imposed to reflect technical specifications. PSO is the optimization
engine.

 Features: energy consumption optimization and EE analysis.
 Optimization enables optimal operation from an EE point of
view.
 A set of plots are generated and allowing additional EE
insights.

Meng et al.
(2018)

Model I: RBFNN model of cracking furnace, including a total of 7 inputs and 8
outputs.
Validation: Data split in training and test sets. ARE for accuracy checks.
Selection: Four EE indicators developed based on engineering insight using
available process variables.
Baselines: Calculation of dynamic baselines (worst and optimal performance)
for EE indicators using Sequential Quadratic Programming (SQP) and subject
to developed ANN model.
Model II: Calculation of global EE indicator, by assignment of weights to
individual indicators using AHP or Correlation Coefficient (CC).

 Features: predictive capabilities for plant performance, and
a useful framework for analysis and optimization.
 It is one of the most elaborate contributions articulating
several tools and objectives.
 One of the key focus is assessment of the impact of
production load on EE and obtaining meaningful baselines for
EE calculation.
 RBFNN model enables prediction of all output variables of
interest.
 Baselines are used for EE analysis and optimization
opportunities.
 A tailored EE index is suggested.
 DEA models used for comparison.

(continued on next page)
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Table 13 (continued).
Reference Tools and data workflows EE insights

Zhu and
Chen (2018)

Transformation: Data normalization.
Correlation: Ordinary Least Squares (OLS) to estimate energy consumption
associated with each manufactured product.
Selection/Model: PCA used to select only most significant energy streams,
hence resulting in a simplified production model.
Model: Efficiency index calculated based on developed models.

 Features: prediction, analysis and optimization.
 EE analysis by comparing present EE indicator against
benchmark.
 When efficiency index falls below a defined threshold, it
triggers corrective actions for fault inspections, and additional
data mining activities to promote energy optimization.
 Utilization of OLS/PCA approach to deal with noise and
redundant data.

Velázquez
et al. (2013)

Pre-processing: Outliers deletion, selection of variables within specified range.
Transformation: Categorization of continuous variables into classes (e.g. ‘‘very
high’’, . . . , ‘‘very low’’). Data normalization.
Selection/Model: Selection of key influence variables via Discriminant Function
Analysis (DFA) for specific consumption model.
Validation: Data split in training and test sets. R2 for accuracy checks.

 Features: estimation, analysis and optimization.
 EE indicators derived for three plant sections and expressed
as specific energy consumptions.
 Enables the calculation of three energy related indicators,
using baseline and target reference, as well as actual
consumptions: (i) achieved savings, (ii) potential savings and
(iii) efficiency ratio.
 Model results enable identification of key variables for
performance and provides valuable information for plant
optimization.

Lau et al.
(2008)

Transformation: Data fuzzyfication.
Model: Fuzzy inference engine (FIE), maps key process inputs to process energy
consumption change.
Transformation: Defuzzyfication to obtain predictions for (crisp) energy
consumption change.

 Features: forecast energy consumption and guidelines for
optimization.
 Prediction of energy consumption trend in the context of
clothing industry where activity levels undergo regular
fluctuations.
 Application enables switching off idle machines, adjusting
production plan, and providing key information to review
contracted power.

Table 14
Objectives and remarks relating to EE Estimation.
Objective Remarks and guidelines

Energy efficiency
metrics resolution

 Common issue for all DEA based tools, where typically a large number of units are close to 100% efficiency.
 Tools are required to provide more resolution into efficiency metrics and allow managers to identify more clearly the
most efficient units, process configurations or input specifications.
 ML tools: AP.
 Other tools: DEACM.
 Relevant contributions: Geng et al. (2019b) and Han et al. (2019b).

Benchmark &
Baseline identification

 Benchmarks are often used to provide context for EE calculations.
 This includes identification of baselines, best performing units for purposes of EE assessment and often relying on
comparisons between two or more reference points.
 ML tools: Fuzzy logic, FCM.
 Other tools: BDP, DEA, DEACM, FAHP, HVVF, SQP.
 Relevant contributions: Geng et al. (2019b), Han et al. (2019b), Beisheim et al. (2019), Zhu et al. (2018), Geng et al.
(2018a), Gong et al. (2017b), Han et al. (2015), Geng et al. (2020), Han et al. (2019c,a), Geng et al. (2018c), He et al.
(2018), Geng et al. (2018b), Han et al. (2018), Geng et al. (2017b,c), Han et al. (2017b), Geng et al. (2017a), Gong et al.
(2017a), Han et al. (2016, 2017a), Geng et al. (2012), Zhu and Chen (2019b), Gong et al. (2019), Meng et al. (2018), Zhu
and Chen (2018) and Velázquez et al. (2013).

Fig. 6. Framework for industrial EE related goals using ML tools.

The papers found in this literature search were analyzed for
their technical content and results summarized in a series of
tables. The contributions in the field of industrial EE via ML tools
is fully captured in these tables. This includes both information on

ML and other tools used in each contribution, as well as specific

information on how these methodologies are used to extract

valuable EE insights.
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Table 15
Objectives and remarks relating to EE Analysis.
Objective Remarks and guidelines

Operating modes
classification and
identification

 This topic less frequent for steady-state type processes, but frequent on industries where different stages are
implicitly identified.
 Identifying these stages or process modes provide key insights for process analysis and supporting
corrective\optimization actions.
 ML tools: ANN, k-means.
 Other tools: BDP, ICBR.
 Relevant contributions: Beisheim et al. (2019), Gong et al. (2017b), Qin et al. (2020), Wang et al. (2018), Liang et al.
(2018) and Xu et al. (2020).

Identifying saving
potentials and energy
savings

 Saving potentials quantify the present excess of energy consumption, therefore providing a driving force for
improvement.
 Energy savings analysis compares current energy consumption with projected scenario before EE action put in place.
 ML tools: ANN, Fuzzy logic.
 Other tools: DEA, DEACM, GOA, ISM, results/graph analysis.
 Relevant contributions: Geng et al. (2019b), Han et al. (2019b), Beisheim et al. (2019), Zhu et al. (2018), Geng et al.
(2018a), Gong et al. (2017b), Han et al. (2015), Geng et al. (2020), Han et al. (2019c,a), Geng et al. (2018c,b), Han et al.
(2018), Geng et al. (2017b), Han et al. (2017b), Geng et al. (2017a), Gong et al. (2017a), Han et al. (2016), Golkarnarenji
et al. (2018), Liang et al. (2018), Gong et al. (2019), Meng et al. (2018) and Velázquez et al. (2013).

Identify key variables
for energy efficiency

 Relates to the variable selection problem identified in Table 20.
 When possible, it is desirable to find a restricted group of variables with the highest impact on EE.
 ML tools: ANN, DFA, GP.
 Other tools: BE, DEA, ISM, results/graph analysis.
 Relevant contributions: Beisheim et al. (2019), Zhu et al. (2018), Geng et al. (2018a), Gong et al. (2017b), Han et al.
(2015), Geng et al. (2020), Han et al. (2019a), Geng et al. (2018c,b), Han et al. (2018), Geng et al. (2017c), Han et al.
(2017b), Geng et al. (2017a), Gong et al. (2017a), Han et al. (2016), Qin et al. (2020), Xu et al. (2020), Zhu and Chen
(2019b), Meng et al. (2018) and Velázquez et al. (2013).

Quantify energy
consumption per
product

 Large industrial processes include many energy sources and produce a variety of products.
 Estimating energy spent on each product is not a trivial problem, though a very useful piece of information.
 ML tools: OLS.
 Relevant contributions: Gong et al. (2019) and Zhu and Chen (2018).

Table 16
Objectives and remarks relating to EE Prediction.
Objective Remarks and guidelines

Input–output model
development

 Most common theme across all identified papers.
 Prediction may focus on a variety of objectives, including production, energy consumption and EE prediction.
 ML tools: ALAMO, ANN (multiple ANN architectures), DA, DFA, FCM, FIS, GA, GP, LSSVR, SVR.
 Other tools: AHP, CC, CF, DEA, First-principles modeling, IDA, JIT, Hybrid modeling, SMI.
 Relevant contributions: Beisheim et al. (2019), Zhu et al. (2018), Geng et al. (2020), Han et al. (2019c,a), Geng
et al. (2018c), He et al. (2018), Geng et al. (2018b), Han et al. (2018), Geng et al. (2017b,c), Han et al. (2017b),
Geng et al. (2017a), Gong et al. (2017a), Han et al. (2016), Zhang et al. (2018a,b), Qin et al. (2018), Kovačič and
Šarler (2014), Shen et al. (2020), Qin et al. (2020), Golkarnarenji et al. (2018), Monedero et al. (2012), Strušnik
et al. (2016), Xu et al. (2020), Zhu and Chen (2019b,a), Gong et al. (2019), Meng et al. (2018) and Velázquez
et al. (2013).

Energy consumption
trend prediction

 Focus on past energy consumptions to forecast energy consumption trend.
 Relates with supply and demand for adequate EM.
 ML tools: FIE, LSSVM.
 Other tools: EMD, QES.
 Relevant contributions: Liu et al. (2019) and Lau et al. (2008).

Table 17
Objectives and remarks relating to EE Optimization.
Objective Remarks and guidelines

Corrective actions  Corrective actions to be implemented as a result of some optimization activity to improve EE. This includes
fault detection checking or raising warnings for undertaking general system troubleshoot.
 Custom made tools reported.
 Relevant contributions: Zhu and Chen (2019b, 2018) and Lau et al. (2008).

Optimal scheduling  Particularly useful to industries operating on varying production plans.
 Tools allow for optimal selection of scheduling and idle machines switching off for enhanced energy
performance.
 Tools: I2S.
 Relevant contributions: Wang et al. (2018) and Liang et al. (2018).

Optimal control  Set of tools based on formal optimization tools or database assessment for finding optimal process inputs
minimizing energy consumption.
 ML tools: ANN, GOA.
 Other tools: MINLP, PSO.
 Relevant contributions: Shen et al. (2020), Golkarnarenji et al. (2018), Monedero et al. (2012), Gong et al.
(2019) and Velázquez et al. (2013).

(continued on next page)
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Table 17 (continued).
Objective Remarks and guidelines

Optimal process
settings

 Applies mostly to batch type processes and with focus on finding the best process inputs for a specific
production objective and improving EE.
 Tools: PSO, VPSO.
 Relevant contributions: Qin et al. (2020) and Xu et al. (2020)

Robustness  Address the challenges associated with uncertainty or disruptive events in optimization, to ensure feasible
optimization solutions.
 ML tools: SVC
 Relevant contributions: Shen et al. (2020)

Table 18
Objectives and remarks relating to EE Technology.
Objective Remarks and guidelines

Technology assessment  Tools process historical and lab scale data to obtain insight on most EE technologies.
 ML tools: ANN, FCM.
 Other tools: FAHP, HVVF, results/graph analysis.
 Relevant contributions: Geng et al. (2018b), Han et al. (2017a), Strušnik et al. (2016)
and Geng et al. (2012).

Scale assessment  Drawing insight into this subject promotes efficient design, and plant management, via
scheduling, for improved performance.
 ML tools: ANN, FCM.
 Other tools: FAHP, HVVF, results/graph analysis.
 Relevant contributions: Geng et al. (2018b), Han et al. (2017a) and Geng et al. (2012).

Table 19
Objectives and remarks relating to Data pre-processing & transformation.
Objective Remarks and guidelines

Noise and data
uncertainty

 Noise affects reliability of results and the confidence of decisions taken. Relates to data
measurement and pre-processing.
 ML tools: Fuzzy logic, OLS, PCA, SVC.
 Other tools: MAF, QR decomposition.
 Relevant contributions: Zhu et al. (2018), Geng et al. (2018a), Han et al. (2015, 2018),
Geng et al. (2017b), Liu et al. (2019), Shen et al. (2020), Geng et al. (2012), Zhu and Chen
(2019b,a, 2018) and Lau et al. (2008).

Data consistency  Some processes may experience dynamic/delay effects, where others may include a
huge number of measurements, and possibly subject to systematic bias, or data acquisition
errors.
 Consistent data is key for model development and model accuracy.
 Tools: Data checks (e.g. mass balances), Grubbs test.
 Relevant contributions: Beisheim et al. (2019), Gong et al. (2017b), Han et al. (2015,
2018, 2017b, 2016), Monedero et al. (2012), Strušnik et al. (2016), Geng et al. (2012) and
Velázquez et al. (2013).

Table 20
Objectives and remarks relating to Data correlation & selection.
Objective Remarks and guidelines

Input variable selection  One of the key difficulties reported across the majority of contributions, especially in the context of large scale
industries.
 It is highly desirable to identify the minimum set of variables with relevance for the EE objectives defined.
 Removing redundancy, facilitating analysis and attaining computationally and time efficient tools is a key motivation
for this.
 Two important trends identified: the first, focuses on manual variable selection based on experience, and the second
on using a wide range of mathematical tools.
 ML tools: AP, PCA, PCR, PLS.
 Other tools: AHP, based on experience, ISM.
 Relevant contributions: Geng et al. (2019b), Han et al. (2019b), Zhu et al. (2018), Gong et al. (2017b), Geng et al.
(2018c,b, 2017b), Han et al. (2017b), Geng et al. (2017a), Zhang et al. (2018a,b), Zhu and Chen (2019b), Meng et al.
(2018) and Zhu and Chen (2018).

Limited available data
(low fidelity)

 Data available may be insufficient to obtain desired fidelity.
 In this case, tools are required to extract the most value from available data.
 ML tools: NIVSG.
 Other tools: MC, PSO.
 Relevant contributions: He et al. (2018) and Gong et al. (2017a).

Data compression  Transformation of a large set of data points in a smaller and representative set of points.
 Large datasets can often be represented using much smaller datasets which include important information and
enable much faster computations.
 ML tools: AP, FCM, k-means.
 Relevant contributions: Beisheim et al. (2019), Han et al. (2019c), Geng et al. (2017b) and Qin et al. (2018).

At last, a framework for the utilization of ML tools on indus-
trial EE problems was suggested, where a number of high-level

themes and specific EE objectives are identified. This serves as a
snapshot of the present development of this field and also offers
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guidance for industry on selection of relevant ML and other useful
tools to address energy related challenges.
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