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a b s t r a c t

A novel method for estimating the rotor blade life cycle of an industrial gas turbine (GT) by the use of
artificial Neural Network is proposed in this paper At the first step the blade life cycle is obtained by
the use of Larson–Miller method which uses output results of GT performance modeling and blade
thermal-mechanical data. Then results of rotor blade life cycle analysis by the above method are
compared with results of stress factor curve (which is provided by manufacturers). Comparison of
results revealed an average difference value of 9.7 % between blade life cycle estimation by two above
mentioned methods. In the next step, by input data such as mass flow rate, temperature and pressure
of hot flue gas, the output data such as blade cooling air and turbine shaft rotational speed are obtained
from GT modeling. Then blade life cycle are also obtained by Larson–Miller method for 811 sample
points of GT operating conditions for various ambient temperatures and load ratios. These data are
used for neural network training. Results show that life cycle estimated values by neural network
method in comparison with life cycle estimated values by Larson–Miller method, had about 4.8% error
value in maximum (with 10-4 as mean square error, MSE). Finally, by the use of neural network
method, the effects of gas turbine operating and health conditions (at various ambient temperatures,
GT load ratios and compressor fouling levels) on blade life cycle are investigated. If we expect to get
the nominal power output of clean blade at ISO ambient condition, in ambient temperature range of
15 to 45 oC, the GG turbine first rotor blade life cycle reduces from 4.85 to 0.07 and in the range of
0 to 7% compressor fouling, turbine blade life cycle reduces from 4.85 to 0.68 years.

© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Industrial gas turbines play a key role in process plants (as
mechanical driver for compressors or pumps) and in distributed
generation power plans (as turbo-generator). Thus, the reliability
and availability of these machines are of vital importance for the
plant owners. The engine reliability and availability are directly
related to the engine working hours (ISO 3977-9 Internal Stan-
dard, 1999) which mainly depends on the engine hot section part
life cycle. Due to this fact, even online estimation of engine part
life cycle is required for making appropriate control and operation
decisions as well as to perform condition based inspection and
maintenance.

Tahan et al. (2017) reviewed different methods for prognostic
and condition based operation and maintenance of gas turbine.
They mentioned that the intelligent methods such as Artificial

∗ Correspondence to: Iran University of Science and
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E-mail address: sepehr@iust.ac.ir (S. Sanaye).

Neural Network and Genetic algorithm are among useful methods
for gas turbine fault detection, fault isolation and developing con-
dition based maintenance system. Li and Nilkitsaranont (2009)
proposed a novel method to estimate the gas turbine remain-
ing useful life before major overhaul for performing condition
based maintenance instead of time-scheduled maintenance. The
method was based on combined linear and quadratic regression
methods to fit a model to the historical engine operating data
(which included different engine health and operating conditions)
for computing the gas turbine remaining life cycle.

Furthermore, in order to apply the method of prognostic and
condition based inspection and maintenance of gas turbine; mod-
els are developed for estimating the life cycle of the engine hot
section parts based on the engine operating conditions. Ghafir
et al. (2014) also used Neural Network Algorithm for proposing an
improved life cycle estimation model for turbine blade of an aero-
engine. They applied engine off design modeling results for ther-
mal analysis of blades by conjugate heat transfer method and life
cycle analysis by the use of Larson–Miller method. The results in
the next step are used for training the Neural Network Algorithm.

https://doi.org/10.1016/j.egyr.2020.05.008
2352-4847/© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

C Velocity (m/s)
CFD Computational fluid dynamic
Cp Specific heat (kJ/kg ◦K)
Eff Efficiency
EOH Equivalent operating hours
EOC Equivalent operating cycles
FAR Fuel air ratio
GG Gas Generator (rpm)
GC Gas compressor
H Engine real operating hours (h)
IGV Inlet guide vane
LHV Lower heating value (kJ/kg)
LMP Larson–Miller Parameter
Ma Mach number
M Non-dimensional corrected inlet mass

flow rate
ṁ Mass flow rate (kg/s)
MSE Mean square error
N Non-dimensional corrected shaft speed
NGG Gas generator speed (rpm)
NGV Nozzle Guide Vane
NPT Power turbine speed (rpm)
Ns Number of samples
P Pressure (bar)
PR Pressure ratio
PT Power turbine
R Universal gas constant (J/mole K)
T Temperature (K)
TIT Turbine inlet temperature (K)
TET Turbine exit temperature (K)
tf Turbine blade life (years)
U Rotor tangential velocity
xj Neural Network input parameter
Y Momentum loss parameter
y Mole fraction
yk Neural Network output parameter
Znorm Neural Network predicted target

Greek letters

Φ Cooling effectiveness
η Efficiency (%)
β Metal angle
βs Beta line slop
α Absolute flow angle
ρ Density (kg/m3)
ω Rotational speed (rad/s)
π Corrected pressure ratio
γ Specific heat ratio
Γ Compressor fouling percent
τx Stress factor
τf Fuel factor
τw Water injection factor

In another research by the same authors (Abdul Ghafir et al.,
2010), a model named Creep Factor (CF) is proposed which could
estimate the blade life cycle based on the deviation of GT op-
erating conditions from those at the design point. Parthasarathy

Subscripts

A Axial
Av Average
B Blade
C Coolant
Comb Combustion chamber
Comp Compressor
Corr Corrected
Ex Exit
F Fuel
G Gas
GC Gas compressor
In Inlet
Isent Isentropic
M Metal
Max Maximum
Min Minimum
Pt Power turbine
Ref Reference
S Static
Sh Shaft
Stoich Stoichiometric
Th Thermal
Tot Total
Turb Turbine

et al. (2008) also used Neural Network modeling for estimation
of thermal stress as well as the maximum temperature in tur-
bine blades by the use of turbine rotating shaft speed and inlet
hot gas temperatures. Zaretsky et al. (2012) proposed a relation
for fast estimation of blade life cycle based on using real data
obtained from an aero-engine in various operating conditions.
With gathering the real engine data, they categorized different
reasons of aircraft engine turbine blade failures such as thermal-
mechanical fatigue and oxidation/erosion. Then they formulated
the turbine blade life cycle from classified field data. Vaezi and
Soleymani (2009) computed the creep life of an industrial gas
turbine via experimental and analytical (by the use of Larson–
Miller formula) methods. They proved that Larson–Miller method
has good accuracy in predicting the life cycle of a turbine blade
(which is made from INC 738 super alloy).

Wood (2000) reviewed different methods and technologies for
measuring the remaining life of gas turbine components. These
methods were non-destructive (such as detecting damages and
cracks using radiography test of specific components) exami-
nations, destructive evaluation and to compute the remaining
life cycle. The third investigated method requires the detailed
modeling of heat transfer and stress distribution in the turbine
blade. They justified that the creep is the main cause of life cycle
reduction in hot section parts of industrial gas turbines operating
at base and peak load conditions (Wood, 2000). Marahleh et al.
(2006) used the stress rapture tests for predicting the remaining
life cycle for turbine blade of an industrial gas turbine. The test
specimens were prepared from the first stage turbine blade of an
industrial gas turbine (which had been in service from 30000 to
80000 h) and all tests were performed by applying 400 to 600
MPa tensile stresses in 850 ◦C of test temperature. Finally the
Larson–Miller parameter was used to correlate the test results
to the actual operating condition of the GT. Also, Mino et al.
(2001) proposed a method to predict the turbine blade life cycle
of an aero derivative gas turbine by measuring the turbine blade
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elongation during engine maintenance. This proposed method
could be categorized as a nondestructive testing.

Researchers also investigated the effect of different engine
performance parameters on the turbine blade life cycle using
blade life analysis models.

Hay and Taylor (1984) used analytical correlations for esti-
mating the turbine blade metal temperature and life cycle and
investigated the effect of turbine blade cooling air temperature
reduction on the turbine blade life cycle and engine thermal
efficiency. They found that reducing the turbine cooling air tem-
perature can reduce the cooling air mass flow rate up to 40%
(without sacrificing the turbine blade life cycle) and could also
increase the engine thermal efficiency. Eshati et al. (2013) pro-
posed an analytical model to investigate the effect of water–air
ratio on an industrial gas turbine blade life cycle in case of high
water content in compressor intake air. This condition occurs
when GT is working in a humid climate or when a water spray
in compressor intake is used for compressor inlet air cooling
for increasing the power output. The model is based on the
turbine blade metal temperature estimation (by convective and
conductive heat transfer modeling and assuming a simplified
geometry for the turbine blade) and the use of Larson–Miller
creep model for turbine blade life cycle estimation. The use of
Larson–Miller model in this reference was due to considering
creep as the dominant mechanism for the reduction of life cycle
for industrial gas turbines working at high load ratios. In the
above mentioned references the developed models for estimating
the turbine blade life cycle is based on the engine performance
parameters such as turbine exit temperature, engine load ratio
(the ratio of power output at a certain ambient condition to
the GT nominal power output) and engine operating conditions
such as ambient temperature. However, a model is developed
here to estimate the industrial gas turbine rotor blade life cycle
as a function of effective parameters on the turbine blade heat
transfer and thermo-mechanical stresses. This model provides
an accurate assessment of turbine blade life cycle in different
engine operating and health conditions. Thus, a procedure for
estimating an industrial gas turbine rotor blade life cycle is pro-
posed. This procedure is based on blade thermal analysis (by
conjugate heat transfer method) besides applying Artificial Neural
Network method. The effects of ambient air temperatures, load
ratios and compressor fouling percent on the turbine blade life
cycle are used to train an artificial neural network model. Since
the operation of GT at base and peak loads is associated with
high turbine inlet temperatures and huge centrifugal stresses in
the turbine blade, the main focus of this paper is blade life cycle
analysis in these conditions.

The novelty of the proposed procedure for the life cycle esti-
mation is summarized in the following:

• Developing a trained neural network model for estimat-
ing the turbine blade life cycle as a function of parame-
ters which affect the blade metal temperature and thermo-
mechanical stresses. These parameters are turbine inlet gas
temperatures and cooling air pressures, temperatures and
mass flow rates together with turbine shaft rotational speed
which are computed using gas turbine performance model-
ing.

• Investigating the effect of variable geometry turbine and
compressor (variable NGV and IGV angles) on the turbine
blade life cycle by the use of GT cycle modeling and the
trained Neural Network output.

• Investigating the effects of engine operating conditions
(such as different ambient temperatures, various load ratios
or GT power output, and different levels of compressor
fouling) on turbine blade life cycle.

Fig. 1. Twin shaft gas turbine.

The developed model is able to take into account engine geo-
metrical parameters (various IGV and NGV angles) and different
engine health conditions (various compressor fouling percent) for
estimating the turbine blade life cycle which is a novel approach
in this field.

2. Gas turbine performance modeling

The twin shaft gas turbine (as shown at Fig. 1) performance
modeling is developed based on thermodynamic matching
method and using the compressor and turbine characteristics
data which are provided in Rashidzadeh et al. (2015).

Therefore as the first step, mass and energy balance equations
for the gas turbine components (such as compressor, combustor
and 4 turbine stages) are solved by iterative Newton–Raphson
method (Deuflhard, 1974; Ben-Israel, 1966). The method starts
with using initial values for parameters. These values then be-
come modified and reach the final values of parameters which
satisfy the system of conservation equations.

The unknown parameters for simulating the twin shaft gas
turbine are:

• Gas turbine cooling streams (five parameters for five
streams)

• Compressor pressure ratio (one parameter)
• Gas generator(GG) & Power turbine(PT) pressure ratios (four

parameters for two stages of GG and two stages of PT)
• GG turbine rotating speed (one parameter)
• PT turbine rotating speed (one parameter) in case of mod-

eling the GT as mechanical driver.
• fuel mass flow rate (one parameter)

In each iteration compressor and turbine corrected inlet mass
flow rates and the isentropic efficiency are computed by fitting a
third order polynomial to the characteristic maps of compressor
and turbine in form of the following equations:

Ṁin(π,N) = c1(N)π3
+ c2(N)π2

+ c3(N)π + c4(N) (1)

ci = ci1N3
+ ci2N2

+ ci3N + ci4 (2)

ηis(π,N) = b1(N)π3
+ b2(N)π2

+ b3(N)π + b4(N) (3)

bi = bi1N3
+ bi2N2

+ bi3N + bi4 (4)

For compressor map π is the compressor corrected pressure
ratio (PR/PRdesign) and N is compressor non-dimensional corrected
rotating shaft speed (which is equal to NGG/

√
T0/
(
NGG/

√
T0
)
design

and Ṁ is compressor non-dimensional corrected inlet mass flow

rate (which is equal to
ṁin,comp×

√
Tin,comp

Pin,comp
/

(
ṁin,comp×

√
Tin,comp

Pin,comp

)
design

).

Furthermore, for GG and PT turbine maps, π is the turbine
stage corrected pressure ratio (PR/PRdesign) and N is turbine non-
dimensional corrected rotating shaft speed (which is equal to
NGG/

√
Tin,GG/

(
NGG/

√
Tin,GG

)
design for GG and NPT

/√
Tin,pt

/
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NPT

/√
Tin,pt

)
design

for PT turbine). Also, Ṁ is turbine stage non-
dimensional corrected inlet mass flow rate (which is equal to
ṁin,turb×

√
Tin,turb

Pin,turb
/

(
ṁin,turb×

√
Tin,turb

Pin,turb

)
design

). Moreover, ci,j, bi,j are co-

efficients of polynomial fitting to the compressor or turbine
characteristic maps (which are obtained by fitting third order
polynomials to compressor and turbine maps).

After computing inlet mass flow rate (ṁ) and isentropic effi-
ciency (ηis) with initial values of N and π , the compressor exit
temperature, Tout,comp, compressor discharge pressure Pout,comp
and compressor power consumption is computed from following
equations:

Tex,comp = Tin,comp

[
1 +

1
ηcomp

(
PR

γ−1
γ

comp − 1
)]

(5)

Pex,comp = Pin,comp × PRcomp (6)

Wcomp = ṁin,comp × Cp,a × (Tout,comp − Tin,comp) (7)

Also, each turbine stage exit temperature, Tout,turb, exit pressure
Pout,turb and turbine power output Wturb are computed by the use
of Eqs. (8) to (10):

Tout,turb = Tin,turb

(
1 − ηturb

[
1 − PR

1−γ
γ

turb

])
(8)

Pout,turb = Pin,turb/PRturb (9)

Wturb = ṁin,turb × Cp,g × (Tin,turb − Tout,turb) (10)

The variable geometry turbine (variable NGV angle) and com-
pressor (variable IGV angle) are entered in the GT modeling code
using linear map scaling method. The detail of this method is pre-
sented in Appendix A. Furthermore, power turbine shaft rotating
speed is fixed when PT is connected to a generator. In case of
using turbo-shaft as mechanical driver (such as gas compressor
in natural gas transportation pipeline), PT shaft speed should be
estimated. The details of gas compressor modeling and estimation
of NPT are covered in Appendix B.

It should be mentioned that for cooling turbine blades in our
studied turbo-shaft, air is extracted from the end of compressor
(Fig. 1). The cooling air flows through turbine blade internal pas-
sages which is called internal convective cooling method (Sanjay
et al., 2009). Coolant mass flow rates for each turbine row is
computed using the method proposed in Refs. El-Masri (1988)
and Kim et al. (1996). According to this method, the cooling air
mass flow rates at various engine operating ranges (all off design
conditions such as various ambient conditions, part loads and
compressor fouling levels) can be estimated using Eq. (11).

Mc = KcPcomp

√
2(1 − Pturb/Pcomp)

R × Tcomp
(11)

Tcomp, Pcomp and Pturb in Eq. (11) are total temperature and total
pressure values for cooling stream exit from compressor and
cooling stream inlet into the turbine. Also, Kc is turbine cooling
path flow coefficient which is computed based on the maximum
temperature tolerable by the turbine blade metal by the use of
relations given in Ref. El-Masri (1988).

The studied engine as is shown in Fig. 1 has a Gas Generator
Turbine (GG) and a Power Turbine (PT). Each turbine has two
stages and each stage includes a stator and a rotor blade row.
Both GG turbine stages and the first PT turbine stage are cooled
by the use of air extracted from the compressor discharge. Thus
power output, hot gas mass flow rate, temperature and pressure
in each turbine stage are computed by the effect of mixing hot
gases with stator and rotor cooling air. This is performed by
the method proposed by Refs. El-Masri (1988) and Camporeale
et al. (2006). Thus to compute each turbine stage power output,

and for each exhaust mass flow rate, temperature and pressure,
the effect of mixing hot gases with stator and rotor cooling air
is modeled using the method proposed in Refs. El-Masri (1988)
and Camporeale et al. (2006).

The flowchart in Fig. 2 shows the details of computation
procedure in each turbine stage. Fig. 2 shows modeling procedure
of flow in turbine rotor and stator which is performed by mixing
the main hot gas stream with cooling air in both stator and rotor
besides an expansion process in a turbine stage. This process re-
sults in the hot gas main stream enthalpy reduction and pressure
drop. The mixing control volume outlet pressure and enthalpy are
computed using the following equations:

hout =
ṁcooling air × hcooling air + ṁhot gas × hhot gas

(ṁcooling air + ṁhot gas)
(12)

Pout = Pin.
[
1 −

ṁcooling air

ṁhot gas
(1 − Y ).γ .Ma2

]
(13)

where Ma is Mach number computed at the blade throat sec-
tion. This section is the gas flow frontal area between two tur-
bine blades at the blade exit (or blade trailing edge). Y is the
momentum loss parameter (Camporeale et al., 2006):

Y = γMa2/2
(
1 +

γ − 1
2

Ma2
) γ

γ−1

(14)

Thus the effect of turbine cooling air on mass flow rate, temper-
ature and pressure of hot gas streams as well as various turbine
stage power output are taken into account.

Combustion chamber exit temperature and the flue gas com-
position are computed via the energy balance by the use of initial
value for fuel mass flow rate as below:

ṁairhin,comb + ṁfuelLHV = ṁghin,turb + (1 − ηcomb)ṁfuelLHV (15)
Pex,comb

Pin,comb
=
(
1 − ∆Pcomb

/
100

)
(16)

The combustion reaction equation in combustor is:

λCx1Hy1 +
(
xO2O2 + xN2N2 + xH2OH2O + xCO2CO2

)
→ yCO2CO2

+yN2N2 + yO2O2 + yH2OH2O + yNONO + yCOCO
(17)

yCO2 =
(
λ × x1 + xCO2 − yCO

)
yN2 = xN2 − yNO

yH2O = xH2O +
λ × y1

2
yO2 = xO2 − λ × x1 −

λ × y1
4

−
yCO
2

−
yNO
2

(18)

In above equations λ is combustion equivalent ratio which is
defined as actual fuel to air ratio to stoichiometric fuel to air ratio:

λ =
FAactual

FAstoich
(19)

The combustion chamber pressure drop is computed using fol-
lowing correlations provided at Rashidzadeh et al. (2015) for the
studied gas turbine.

∆Pcomb = 0.000404 ×

(
ṁin,comb

√
Tin,comb

Pin,comb

)2

+ 0.00758

×
ṁin,comb

√
Tin,comb

Pin,comb
(20)

The following thermodynamic relations for computing the air and
combustion gas properties were used from correlations provided
in Ref. VanWylen et al. (1998).
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Fig. 2. The procedure of flow modeling in turbine with cooling of both stator and rotor blades.

For air:

Cp,air (T ) = 1.04841 −

(
3.8371T

104

)
+

(
9.4537T 2

107

)
−

(
5.49031T 3

1010

)
+

(
7.9298T 4

1014

)
(21)

For combustion gases:

Cp,gas(T ) =

∑
yiCPi (22)

In Eq. (22) yi is the mole fraction of species in combustion product
which are computed by Eq. (18).

Compressor fouling
Compressor fouling, changes the compressor blade geometry

and reduces the compressor isentropic efficiency as well as re-
ducing inlet mass flow rate and pressure ratio (Fouflias et al.,
2010). These drawbacks affect the engine performance and life
cycle of components as well. To model the compressor fouling,
the compressor characteristic map (corrected inlet mass flow
rate, isentropic efficiency and pressure ratio) are modified for
a specified percent of compressor fouling based on the method
presented in Ref. Mohammadi and Montazeri-Gh (2014).

In this method, the change in compressor air mass flow rate
at the fouled condition in comparison with that for the clean

condition is equal to the compressor fouling percent. Further-
more, the change of compressor isentropic efficiency at the fouled
condition in comparison with that for the clean condition is one
third of the fouling percent. This fact is justified by the use of
experimental data and turbo-machinery analysis as is described
in Ref. Mohammadi and Montazeri-Gh (2014). Thus the reduced
compressor inlet mass flow rate due to existing fouling can be
related to ṁin,comp, at clean condition with Eq. (23) and the com-
pressor isentropic efficiency can be related to its value at clean
condition, ηis,comp, with Eq. (24).

ṁin,comp,f = ṁin,comp ×

(
1 −

ΓC

100

)
(23)

ηis,comp,f = ηis,comp ×

(
1 −

ΓC

3 × 100

)
(24)

ΓC , is the compressor fouling in percent (with a positive value).
ṁin,comp,f , and ηis,comp,f are compressor inlet mass flow and isen-
tropic efficiency in the fouled condition respectively. As Eq. (23)
explains, the value of ΓC in percent, shows the percent of re-
duction in air inlet mass flow rate of compressor at the fouled
condition.

The reduction in compressor pressure ratio PR (due to fouling)
can be also expressed by the use of fouling percent, Beta line
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Fig. 3. Compressor map at clean and fouled conditions.

slop (as shown in Fig. 3) and the compression ratio for the clean
compressor, PR comp, at each specific location in the compressor
map (Eq. (25)).

PRcomp,f = PRcomp ×

(
1 −

ΓC × βs

100

)
(25)

For example if the compressor fouling is 3% and the Beta line slop
(βs) is 0.8, the compressor pressure ratio reduction is 2.4%. Fig. 3
compares the compressor map in clean and fouled conditions. As
per this figure, compressor fouling moves the compressor map
toward lower non-dimensional corrected inlet mass flows and
lower corrected pressure ratios.

3. Life cycle analysis

Only the first row blade of high pressure turbine (Gas Gener-
ator turbine of the studied industrial gas turbine) is selected for
life cycle analysis by Refs. Abdul Ghafir et al. (2010), Eshati et al.
(2013) and Eshati (2012). The first row blades are adjacent to the
combustion chamber exit and are exposed to high temperature
and pressure flue gases. Thus at these critical operating conditions
the highest thermal and mechanical stresses exist for the first
row of the HP turbine blade in comparison to other turbine parts
such as stators and disks. It should be noted that the turbine
stator blades are fixed without exposing to centrifugal stress.
Furthermore, turbine disks are thick and back to back welded
together, so they are not directly and fully exposed to the hot
flue gases.

3.1. Gas turbine blade life cycle estimation by Larson–Miller method

Industrial gas turbines mostly operate at base and peak load
conditions which associate with the high turbine inlet tempera-
ture together with the high mechanical stresses which are caused
by shaft rotational speed. As is also justified in Refs. Wood (2000)
and Eshati et al. (2013), the main reason of turbine blade life
cycle reduction when GT is working at base and peak load con-
ditions (load ratio equal to or greater than 100%) is creep. This
is due to working the engine hot section parts at high thermal
and mechanical stress conditions. Thus for modeling blade life
cycle analysis, Larson–Miller method (Eq. (26)) is applied (Eshati,
2012). Larson–Miller is an accurate method for estimating the
time of the creep failure which occurs as the result of simul-
taneous effect of mechanical and thermal stresses for different
materials. The plot of Larson–Miller parameter (LMP) versus the

total stress is named the creep curve which can be obtained
from experimental data and are available for each specific ma-
terial. LMP has an inverse relation with the total stress (LMPα 1

σ
).

Larson–Miller relation is shown in Eq. (26) (Eshati et al., 2013;
Evans and Wilshire, 1993).

log tf =
LMP
Tm

− CLMP (26)

Eq. (26) shows that the blade creep life cycle (tf) is a function of
blade metal temperature Tm and LMP value which is a function
of total mechanical and thermal stresses. In this relation CLMP is a
constant parameter. The value of CLMP can be obtained by creep
test of super alloy specimens of gas turbine blade and can be
selected as a fixed number (20) (Eshati et al., 2013).

Fig. 4 shows the procedure of estimating the blade creep life
cycle. The procedure starts with creating 3D model of the blade
in CAD software which is imported by ANSYS (which is software
for stress analysis using finite element method). Then, the 3D
model is discretized by using unstructured grids. By specifying
input data such as density, thermal conductivity and by exerting
boundary conditions, ANSYS computes the stress (total stress)
distribution through the blade.

The followings boundary conditions are applied:

• The blade rotational speed creates centrifugal stresses inside
the blade

• 3D metal temperature distribution throughout the blade
may result in expansion and contraction as well as thermal
stresses in some regions (Alizadeh et al., 2014).

• The pressure distribution on the blade surface and cooling
air pressure inside the blade, result in mechanical stresses
in the blade metal (Alizadeh et al., 2014).

• The blade is supported at root with free movement at tip.

After stress analysis, the creep life cycle is computed at each
computation node using the computed total stress, stress-LMP
curve and blade metal temperature by Eq. (26). The minimum
amount of the creep life in the solution domain is taken to
be the blade creep life. In this paper, the results of the flow
and heat transfer analyses for the studied rotor blade life cycle
is used from Ref. Alizadeh et al. (2014). In this reference, the
blade heat transfer analysis is performed using conjugate heat
transfer method. Thus, simultaneous solution of the fluid flow and
convective heat transfer on the blade outside and inside surfaces
as well as conduction heat transfer inside the blade metal are
performed using CFD analysis.
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Fig. 4. Flow chart of rotor blade creep life cycle analysis.

For the above flow and thermal analyses, one stage of turbine
(from the beginning of the stator entrance to the end of the first
rotor blade exit) is modeled. The 3D flow domain is analyzed
using unstructured grids and SST-kω two equations turbulence
model is selected in ANSYS CFX. Turbine blade cooling air flow
analysis is also performed by one dimensional flow modeling
based on theories mentioned in Ref. Meitner (1990). The bound-
ary conditions are stage inlet total pressure, total temperature,
stage outlet static pressure, cooling passage inlet total pressure
and total temperature, and rotor blade rotational speed. These
data are extracted by the use of GT simulation program. Since
the developed GT modeling code just computes the total gas
properties such as total pressures and total temperatures, thus
the stage outlet static pressure is computed by the use of stage
exit mass flow rate and exit total pressure (which is computed
from GT simulation program). The procedure for computing the
static pressure at the rotor blade exit (or stage outlet) uses the
following turbo machinery and thermodynamic relations:

φ =
Ca

U
=

Ca

rω
(27)

tanαout = tanβout −
1
φ

(28)

C =
Ca

cos(αout )
=

ṁg + ṁc
ρAout cos(αout )

(29)

where φ is the flow coefficient, Ca is the axial velocity of the flue
gas at the stage rotor exit (Fig. 5), U is blade tangential velocity
which is equal to rotor angular velocity (ω) multiplied by rotor
radius (r), ṁg and ṁc are the flue gas and cooling air mass flow
rate respectively. Moreover, αout is the flow angle at the blade
exit, βout is the metal angle (Fig. 5), ρ and A are flue gas density
and flow frontal area at the blade outlet. After computing the flow
absolute velocity at the blade outlet, the flow Mach number and
static pressure are computed by the use of Eqs. (30) and (31):

Ma =
C

√
γ RT

(30)

Ps =
Ptot(

1+ γ−1
2 Ma2

) γ
γ−1 (31)

Fig. 5. Velocity triangle for turbine rotor blade.

Regarding input and output values of blade thermal analysis in
Ref. Alizadeh et al. (2014), the following parameters are selected
as effective parameters in GG turbine rotor blade life cycle:

• The hot flue gas total temperature, total pressure and mass
flow rate (Tg, Pg, ṁg) affect the flow Reynolds number and
consequently change the Nusselt number and convective
heat transfer coefficient on the blade airfoil surface.

• The cooling air total temperature, total pressure and mass
flow rate (Tc, Pc, ṁg) inside rotating blades affect the heat
transfer parameters inside the blade cooling passages.

• Turbine shaft rotating speed (NGG)

Heat transfer coefficients at both blade outside and inside sur-
faces determine the blade metal temperature and affect the blade
creep life cycle (Eshati et al., 2013). Furthermore, the temperature
difference between the blade inside and outside surface creates
thermo-mechanical stresses in the blade wall which affect the
blade creep life (Eshati, 2012).

Thus the effective parameters for the rotor blade life cycle
modeling are hot flue gas mass flow rate (ṁg), temperature (Tg),
pressure (Pg) and cooling air mass flow rate (ṁc), temperature
(Tc) and pressure (Pc) and also GG turbine shaft rotational speed
(NGG). It should be noted that the ṁg, Tg, Pg, ṁc, Tc, Pc, NGG
parameters are computed by GT modeling program (Rashidzadeh
et al., 2015) and are used as input values for conjugate heat
transfer modeling in CFD setup presented in Ref. Alizadeh et al.
(2014). Blade conjugate heat transfer analysis is then used as
boundary conditions for stress and life cycle analysis using finite
element method. Thus the blade life cycle is assumed to be a
function of ṁg, Tg, Pg, ṁc, Tc, Pc, NGG parameters.

The above mentioned procedure for turbine blade heat trans-
fer and life cycle analysis are very time consuming. However we
require preparing a model for fast estimation of the turbine blade
life cycle as a function of mentioned effective parameters. Thus
after verification of results for life cycle analysis, the learning
procedure for Artificial Neural Network is performed with various
engine operating parameters (as input data) and then life cycle
estimation (as output data).

3.2. Gas turbine blade life cycle estimation by artificial neural net-
work

Artificial neural network is a suitable algorithm for investi-
gating multi variable problems. This algorithm includes various
parallel computations (processors) which speeds up the computa-
tion process and imitates the living organism neural system. The
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Fig. 6. Multi-layer feed forward back propagation artificial neural net-
work (Rumelhart et al., 1985).

most commonly used type of neural network is Multi-layer Feed
forward Back Propagation (MFBP) (Rumelhart et al., 1985).

As it is shown in Fig. 6, the algorithm includes two processors.
The first processor sends input signals in forward direction and
the second one sends the error signal (training error) in backward
direction. As Fig. 6 shows, x, w, b and y parameters are inputs,
synapse weight, bias and output signals respectively. The kth
output in MFBP algorithm can be computed with relation 32.

yk = ϕk

⎛⎝ n∑
j=1

(
wk,jxj + bk

)⎞⎠ (32)

In Eq. (32) ϕ is neuron activation function that controls the
variation domain of neural network output signals and also gives
the algorithm a nonlinear behavior. There are three types of
the activation functions including Threshold function, Piecewise-
Linear Function and Sigmoid Function (Haykin, 2001). Also Wk in
Eq. (32) is synapse weights that link the output values to input
values.

Artificial neural network training
Neural network training is an iterative process that adjusts the

synapse weights to reach the intended outputs using specified
input signals. In this paper the turbine blade life cycle has been
computed for various amounts of effective parameters (ṁg, Tg,
Pg, ṁc, Tc, Pc, NGG). For this purpose, the neural network is
trained. The input parameters for neural network training (Xj’s in
Fig. 6) are (ṁg, Tg, Pg, ṁc, Tc, Pc, NGG) and output parameters (Yj’s
in Fig. 6) is the turbine rotor blade life cycle (tf in Eq. (26)) which
is obtained from finite element analysis. During the training,
validating and testing processes, the amount of the Mean Square
Error (MSE) was computed and monitored by the use of Eq. (33).

MSE =

∑Ns
i=1

(
ẑnorm − znorm

)2
Ns

(33)

where Ns, ẑnorm, represent the number of samples in each training,
validation, and testing samples and the normalized predicted and
targeted output, respectively. In neural network training, synapse
weights are adjusted in an iterative process until the Mean Square
Error (MSE) reduces to an acceptable tolerance. It should be noted

that epoch is the number of steps that the neural network iterates
until the MSE reaches to an acceptable tolerance. The neural
network method updates the synapse weights at each epoch.

For reducing the numerical error during neural network train-
ing the input parameters (ṁg, Tg, Pg, ṁc, Tc, Pc, NGG) are made
non-dimensional and normalized by dividing by their corre-
sponding values at GT design point. The design point values are
GT modeling program output at ISO condition.

3.3. Gas turbine blade life cycle estimation by stress factor curve

There is another method for predicting the GT blade life cycle
for an industrial gas turbine. This method is based on computing
engine Equivalent Operating Hours (EOH) together with using
engine stress factor curve. However, this method is just applicable
for a specific engine configuration (such as specific IGV and NGV
values) and GT clean health condition for which the proposed
stress factor curve is given by engine manufacturer. The equiv-
alent operating hours is presented in Eq. (34) (Nyberg, 0000).

EOH = τx.τf .τw.H + 5 × EOC (34)

One may consider EOH as the blade life cycle at the engine design
point. Where H is the real operating hours (or real life cycle tf
in Eq. (26)) and τx is the stress factor. EOH is proposed by the
engine manufacturers for different engine loads as presented in
Fig. 7 (Nyberg, 0000) for ISO conditions. Typical figures exist from
other manufacturers.

In Eq. (34), τf , τw show the coefficients for fuel type and water
injection respectively. In case of no water injection and with
natural gas as fuel, τf , τw are equal to one (Nyberg, 0000). EOC
in Eq. (34) represents the total number of starts and stops for the
studied engine. In case of GT operating at base and peak loads and
the stable operation for the studied engine, EOC can be ignored
in comparison with other terms in Eq. (34) (Rinman, 0000).

By omitting EOC and considering τf , τw equal to one and a
fixed value for EOH in Eq. (34) (as a specific life time is expected
from a part), then EOH =

(
τx.tf

)
design = τx.tf . Thus tf, the turbine

blade life cycle is estimated from tf =
EOH
τx

for an off-design
condition. Eq. (34) as well as EOH and τx parameters which are
introduced here, can be applied in Section 5.1 for verification of
blade life cycle estimation.

According to Fig. 7 for GT load ratios (the ratio of power output
at a certain ambient condition to the GT nominal power output
at ISO ambient conditions) equal or higher than 100% (base and
peak load conditions), the stress factor (τx) increases dramatically
and with considering a fixed value for EOH (with omitting EOC
term and substituting one for τf , τw), H in Eq. (34) (which is tf)
decreases sharply (Eq. (34)).

This is due to increase of turbine inlet temperature as well
as increase of turbine blade metal temperature in GT base and
peak loads that activates the creep phenomena in the turbine
blade as also reported in Ref. Wood (2000). However in GT
load ratios lower than 100% the stress factor has no significant
change and no severe change in turbine blade life cycle occurs.
However, as ambient temperature increases, compressor inlet air
mass flow rate and the power output of GT reduce. In this case
if we expect to get the same power output as that value for ISO
ambient condition, the creep phenomena activates and reduces
the turbine blade life cycle. This occurs due to the fact that at
high ambient temperatures and with lower air mass flow rate,
the fuel to air ratio raises which results in increase turbine inlet
and exit temperatures (TIT and TET).

Thus, the stress factor is better to be presented as a function of
deviation in turbine exit temperature (TET) from its correspond-
ing value at the design condition (TET–TET_design). In this way
increasing TET, more than that for the design value (TET_design),
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Fig. 7. SGT-600 gas turbine stress factor curve (Nyberg, 0000) at ISO condition and various partial loads.

means increasing the turbine inlet gas temperature more than
that for the design value. This increases the stress factor (Fig. 7)
which finally results in reducing the turbine blade life cycle.

Thus, if at each engine operating condition the turbine exit
temperature is computed by the GT modeling code, with knowing
difference of TET and TET_design, the stress factor (τx) can be
computed from Fig. 7.

However, it should be noted that in case of change in com-
pressor and turbine geometries (changing IGV and NGV angles
for the engine upgrading or engine performance optimization) or
change in engine health condition (such as compressor fouling
which affect the compressor geometry), the rotor blade effective
parameters also change and consequently the τx curve which
is shown in Fig. 7, will not be applicable for the new IGV and
NGV angles or faulty engine. Thus, for still being able to estimate
the life cycle for all geometrical and fouling situations, a life
estimating Neural Network model which works based on engine
modeling results is developed here to be used for the entire
range of ambient conditions, GT IGV and NGV angles and health
conditions.

4. Case study

The studied turbine blade is the first rotor blade of SGT-600
gas turbine which is made from IN738 super alloy with tensile
modulus of 148 GPa and Poisson ratio of 0.34. From SGT-600
maintenance plan (Siemens, 2006), the rotor blade design life
cycle (or EOH in Eq. (34)) is 40000 h or 4.56 years (each year
is 8760 h).

GG turbine in this engine has two stages (i.e. two stators and
two rotors, i.e., four rows), power turbine in this engine has also
two stages (with four rows), and it also has an annular combustor
with 18 burners. In the studied engine, the IGV angle varies from
−8 to 36◦ and the NGV angle is fixed at 21◦ (NGV angle can be
adjusted from 18 to 27◦ by opening the power turbine flange
and changing the nozzle blade angle manually). The turbine exit
temperature for the studied engine at the design point and ISO
condition is 813 ◦K (Mohammadi and Montazeri-Gh, 2014).

Table 1
Input data for modeling validation at three different GT operating conditions.

A B C

T0 (◦C) 10.6 19.8 29.6
P0 (bar) 0.8 0.8 0.8
RH (%) 27.7 15.2 4.1
Pout_GC (bar) 77.6 70.9 72.4
Pin_GC (bar) 55.5 51.3 52.4
Tin_GC (◦C) 32.1 31.9 31.4

As mentioned in Section 3.1, the turbine blade life cycle anal-
ysis is performed using CFD and finite element modeling for the
GG turbine stage. The following steps are performed:
1—-The turbine stage geometry was created in CATIA mechanical
drawing software. The intended solution domain was from stator
inlet to rotor exit.
2—Blade-gen software sent geometry points of the above stage to
Turbo-grid software for mesh generating of solution domain. The
generated mesh was unstructured.
3—After sending the mesh structure to ANSYS CFX software,
boundary conditions were also defined. Turbine stage boundary
conditions were temperature, pressure at the flow inlet (i.e. stator
inlet), rotor shaft speed and pressure at flow exit (i.e. rotor exit)
and also cooling passage inlet total pressure and total temper-
ature. The flow simulation was performed by the use of k-ε
turbulent model.
The output results were checked for grid numbers from 1,200,000
to 1,800,000. Comparison of results showed that 1300,000 grids
provided enough precision and uniqueness.

The combustion efficiency (in Eq. (15)) is considered to be 99%.
Moreover, the natural gas fuel lower heating value is 46760 kJ/kg.
Moreover, in case of driving a gas compressor in natural gas trans-
mission pipeline (turbo-compressor), the driven gas compressor
has two stages with pressure ratio of 1.5.
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Table 2
Comparison of output results for GT modeling (for input data given in Table 1) with experimental data.
GT operating condition (Table 1) A B C

Site data Modeling Error (%) Site data Modeling Error (%) Site data Modeling Error (%)

Tex,comp (◦C) 395.9 381.3 3.7 385.5 370.0 4.0 409.7 397.1 3.1
Pex,comp (bar) 11.6 11.2 3.6 10.2 9.7 4.7 10.3 10.0 2.6
NGG (rpm) 9961.4 9876.5 0.9 9661.0 9480.0 1.9 9850.0 9547.6 3.1
NPT (rpm) 7300.9 7347.2 0.6 7098.4 7098.4 0 7101.1 7101.1 0
TET (◦C) 531.0 537.4 1.2 513.5 515.9 0.5 542.7 554.0 2.1
ṁin,GC (MMD) 34.0 35.0 3.4 28.0 28.0 0 29.0 29.0 0
IGV (degree) 34 33 2.9 21 20 4.8 22 21 4.5
NGV (degree) 21 21 0 21 21 0 21 21 0
Heat flow (mJ/s) 51.4 54.6 6.3 43.8 44.6 1.7 44.6 47.4 6.4

5. Discussion and results

5.1. Model verification

5.1.1. Verification of GT modeling results
The modeling results for SGT-600 engine operating conditions

at a gas pressure boosting station at southern region of Iran are
compared with the corresponding experiment data. The modeling
input data are presented in Table 1 for three different operating
points named A, B, C.

Table 2 compares the modeling and experimental (measured)
data at the site ambient condition. Table 2 shows that, the Max-
imum error (6.4 percent) occurs for the engine Input heating
power (multiplying the fuel mass flow rate in kg/s, by fuel heating
value in kJ/kg) at point C. This error either belongs to the model-
ing results (numerical errors in engine modeling) or the site fuel
mass flow rate measurement. The average error for all parameters
in this table is about 2.7 percent, thus the developed model
for prediction of the GT performance here has an acceptable
accuracy.

Fig. 8 compares the GT modeling results with 7.5 percent
compressor fouling (in ISO condition and engine load ratios from
50 to 90%) with data provided in Ref. Mohammadi and Montazeri-
Gh (2014) at the same operating conditions. The results are
non-dimensional with the corresponding values at the clean com-
pressor conditions. Fig. 8 shows a good compliance between the
results provided here and the results of Ref. Mohammadi and
Montazeri-Gh (2014). The maximum error occurs in TET param-
eter which is about 0.38%. Thus, it can be concluded that the
compressor fouling is modeled with acceptable accuracy.

5.1.2. Verification of life cycle modeling results of Larson–Miller
method

A sample of GG turbine rotor blade life cycle (tf) distribution
computed via finite element method (FEM) is analyzed in this
section. The input parameters (turbine stage inlet total pressure
and temperature, cooling passage inlet total pressure and tem-
perature, stage outlet static pressure and turbine rotational shaft
speed) for this blade life cycle analysis are extracted from the GT
modeling code at ISO condition (ambient temperature of 15 ◦C,
ambient barometric pressure of 1.013 bar and relative humidity
of 60%) for the GT load ratio of 100%. Then results of the blade
conjugate heat transfer analysis (which is used in GT modeling
as boundary conditions by the method provided at Section 3)
are then imported as boundary and initial conditions into finite
element analysis with which finally the blade life analysis is
performed. Results show that the minimum value of the blade life
cycle occurs at the leading edge and near the blade tip. This is due
to increase of turbine cooling air temperature from blade root to
tip (as a result of heat transfer with the hot flue gases from blade
walls) and consequently higher turbine metal temperature near
the blade tip. The same results are reported for the gas turbine
blade life cycle analysis in Ref. Eshati et al. (2013).

Prior to initiate the process of creating a data base for training
the Neural Network, the results of the blade life cycle analysis are
verified at some GT operating points. For this reason, the engine
modeling is performed at ISO condition and the blade effective
parameters (ṁg, Pg, Tg, ṁc, Pc, Tc, NGG) are computed at GT load
ratios from 100 to 105% (which are named D, E, F, G, H engine
operating points as presented in Table 3). Then the boundary
conditions for the blade life cycle analysis are determined with
the use of the mentioned effective parameters. Finally, the blade
life cycle are computed at the corresponding operating conditions
(by the procedure provided in Section 3) as well as by the method
provided in Section 4 (by τx curve and Eq. (34)).

Fig. 9 compares the blade life cycle computed by ANSYS (via
thermal and stress analyses) at ISO condition and the computed
blade life by the use of stress factor curve (Eq. (34)). The above
figure shows a good agreement between life cycle analysis using
Larson–Miller method and results of stress factor curve (with the
average difference of about 9.7%).

5.1.3. Verification of life cycle modeling results by neural network
method

After verification of results for rotor blade life cycle analy-
sis (by comparing the blade life cycle results with stress factor
curve), rotor blade life cycle was estimated for 811 samples. This
procedure is performed by running the GT modeling code for 811
GT operating points including GT load ratio variation from 100 to
105% (ratio of GT load to the GT nominal load, W/Wref), different
ambient temperature (from 15 to 45 ◦C) and also different values
of the engine control variables IGV and NGV (IGV from −8 to
36 degrees and NGV from 18 to 27 degrees which was modeled
using the method presented at Appendix A). The reason behind
using 100 to 105% for GT load ratio range is due to the fact
that the mentioned power range is the most critical condition
for the turbine blade life cycle which can be estimated based
on the engine τx curve (Fig. 7). It is worth mentioning that the
effects of fouling on life cycle are through the change in input
parameters to Neural Network model. Thus GT model provides
effective parameters (ṁg, Tg, Pg, ṁc, Tc, Pc, NGG) with existing the
fouling effects which will be the input to Neural Network model
for estimating the life cycle value.

With knowing the GT model output (ṁg, Pg, Tg, ṁc, Pc, Tc,
NGG), the blade temperature distribution and pressure distri-
bution are computed (which are performed via conjugate heat
transfer modeling using the method presented at Ref. Alizadeh
et al. (2014)). These data are used as boundary conditions of stress
and life cycle analyses which finally provided the blade life cycle
at 811 operating points.

In the next step, Artificial Neural Network is trained for pre-
dicting the blade life cycle as a function of seven above GT
effective output parameters which should be entered as the input
to Neural Network. In the training procedure, 60% of samples
are randomly selected for training and the rest of the samples
are evenly used for validation and testing purposes. Also, Multi-
layer Feed Forward Back Propagation (MFBP) algorithm with one
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Fig. 8. Comparison of engine modeling results with 7.5% compressor fouling with results reported in Ref. Mohammadi and Montazeri-Gh (2014).

Table 3
Engine modeling results at various load ratios which are used as input parameters for rotor blade life cycle analysis (Fig. 9) at ISO condition and clean
compressor.
GT operating points Effective parameters on turbine blade life cycle

GT operating points Wnet (kW) GT load ratio (%) ṁg (kg/s) Tg (◦K) Tc (◦K) ṁc (kg/s) NGG (rpm) Pc (bar) Pg (bar)

D 24630 100 76.04 1424.14 658.53 3.89 9779.04 14.07 12.2
E 25122.6 102 76.57 1433.81 661.32 3.92 9821.06 14.21 12.33
F 25368.9 103 76.71 1441.26 663.52 3.93 9864.87 14.27 12.39
G 25615.2 104 76.85 1448.52 665.68 3.94 9911.8 14.33 12.45
H 25861.5 105 77 1455.6 667.82 3.95 9962.32 14.4 12.5

Fig. 9. Comparison of rotor blade life cycle obtained from Larson–Miller method and stress factor with input data at ISO ambient conditions at different GT operating
points (for load ratios of 100 to 105% listed in Table 3).

hidden layer (Fig. 6) is selected and number of neurons in the
hidden layer is specified. Here, the number of neurons is 14 (twice
the number of input parameters) that lead to acceptable accuracy
in training process. The input samples for training, testing and
validating are selected (by MTLAB) randomly from input data
base. The Neural Network training process is repeated until the
randomly selected samples cover the entire range of the variation
domain for input parameters (ṁg, Pg, Tg, ṁc, Pc, Tc, NGG) as well
as for corresponding output parameter (tf).

In each epoch (step) of training phase of Neural Network, the
coefficients of all vectors connecting input to output parameters

become updated until reaching the mean square error (MSE)
equal to its acceptable lowest value.

Fig. 10 shows an example of MSE (Eq. (33)) variation with
increasing epochs. As per this figure, the training continues un-
til MSE value decreases to an acceptable value (which named
the Best point in this figure). MSE of final trained network for
estimation of blade creep life cycle is shown in Table 4.

Fig. 11 presents the regression plots of predicted turbine rotor
blade life cycle (by the trained neural network) versus the target
values (target values are input values for training, testing and
validation of the neural network). In these plots Y = T line,
expresses the situation that the network results are equal to the
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Table 4
MSE for the trained network.

Blade creep life cycle

MSE for training sample 1.46 × 10−4

MSE for validation samples 3.96 × 10−4

MSE for testing samples 4.1 × 10−4

Fig. 10. The computed MSE for the training, validation, and testing. The best fit
is for the values of mean squared error (MSE) which shows the convergence of
the estimated and existing results for the output.

target values (in the neural network toolbox of MATLAB software
the T and Y represent the target output and the neural network
produced results respectively). Thus, the more accurate neural
network training, the more regression plots are close to Y =

T line. This means that in a well-trained neural network, the
coefficient of linear regression between neural network outputs
and target values is more probably close to 1. From Fig. 11, the
average value the coefficients of regression in training, validation
and testing phases of the neural network is about 0.99 which
proves an acceptable precision of the trained network. Some
minor differences between the target values and the results of
trained neural network output are observable in Fig. 11. Results
showed that neural network output estimation of blade life cycle
in comparison with Larson–Miller method had about 4.8% error
value in maximum. The mean square error (MSE) value for this
comparison was about 10−4

5.2. Modeling results

5.2.1. Effect of ambient temperature on the blade life cycle results
For investigating the effects of ambient temperatures (from 15

to 45 ◦C) on turbine blade life cycle, the data at GT load ratios
from 100 to 105% (the ratio of GT power output to the GT nominal
power output at ISO conditions i.e., 24 630 kW) are obtained from
the modeling code. Then output parameters such as ṁg,Tg, Pg,
ṁc, Tc, Pc, NGG are introduced into the trained neural network
which predicted the turbine blade life cycle for each engine oper-
ating point. Fig. 12-d shows the estimated turbine blade life cycle
by the neural network for the corresponding input parameters
presented in Fig. 12-a to c. These figures show that in a specific
GT power output, the blade life cycle reduces exponentially by
increasing the ambient temperature due to following reasons:

By increasing the ambient temperature the GT inlet air mass
flow rate reduces (due to decreasing the air density), thus for
gaining the same engine power output as that for ISO condition,

the fuel mass flow rate should be increased which increases
the fuel to air ratio as well as turbine inlet gas temperature
Tg and turbine blade Tm. Furthermore, increasing the ambient
temperature increases the blade cooling air temperature Tc (as
is shown in Fig. 12-a) due to increasing compressor inlet and
outlet air temperatures. It should be mentioned that the turbine
blade cooling air is extracted from compressor discharge. Fig. 12-
a, shows that the amount of increased Tg and Tc for the engine
load ratios of 100%, and ambient temperature variation of 15 to
45 ◦C are 7.0% and 8.0% respectively.

Another point that can be deduced from Fig. 12-a, is the fact
that by increasing the ambient temperature, the turbine inlet
gas mass flow rate (ṁg) decreases (due to lower compressor
inlet air mass flow rate at higher ambient temperatures). Also,
the turbine blade coolant mass flow rate decreases by increasing
the ambient temperature (T0) at fixed engine net power output.
This is due to decreasing the compressor corrected shaft speed
(NGG/

√
T0) which leads to decreasing the compressor discharged

pressure (Pc). With decreasing Pc which is approximately the
turbine cooling air supply pressure, the turbine blade cooling air
mass flow rate (ṁc) reduces. Thus at engine nominal load (load
ratio equal to 1.) in the studied ambient temperature range (15
to 45 ◦C) ṁg and ṁc change for −5.8% and −7.0% respectively.

The summary of the mentioned effects reduces the turbine
blade life cycle severely in GT fixed power output (load ratio
from 100% to 105%). To prevent this drawback, the engine control
system reduces the net power output by controlling the turbine
exit temperature (TET).

At 45 ◦C ambient temperature, increasing the fuel injection in
combustion chamber for providing the nominal load by GT, raises
TIT significantly which as Larson–Miller relation predicts, results
in decreasing the turbine blade life cycle exponentially.

5.2.2. Effects of change in NGV and IGV values on the blade life cycle
results

Change in compressor and turbine geometries (i.e. change
in IGV and NGV angles) not only is a method for improving
engine key performance parameters such as thermal efficiency
and power output (Haglind, 2011), but also it serves as preserving
the life cycle of GT hot section parts. In this section the output
results of GT modeling for change in NGV and IGV angles (in
which NGV varies from 19 to 23◦ and IGV varies from 17 to 25◦)
at various GT power output values (load ratios from 90 to 95%)
at ambient temperature of 30 ◦C as input values for the trained
Neural network are presented. These operating points are named
J to X letters in Table 5. The above mentioned ambient tempera-
tures and GT load ratios are the average values for the studied
GT operating conditions in our country. Fig. 13 Shows Neural
Network results of life cycle analysis for the above mentioned
operating conditions. Fig. 13 shows that at a fixed GT power out-
put, increasing opening of NGV and IGV raises the turbine blade
life cycle. This is due to the fact that by increasing NGV opening
the power turbine chocking mass flow rate as well as compressor
inlet mass flow rate and NGG increase (Appendix A). Rising NGG,
results in increase of compressor pressure ratio (PRcomp) as well
as raise in both turbine blade air cooling pressure (Pc) and air
cooling mass flow rate (ṁc). Furthermore, increasing ṁin,comp
decreases the fuel to air mass flow rate ratio and turbine inlet gas
temperature (decreasing Tg as is shown in Table 5). The reason for
this observation as mentioned before is that at a fixed GT power
output when NGV opens (increases) the turbine chocking mass
flow rate increases. This results in increasing the compressor
inlet mass flow rate and NGG. Rising NGG, results in increase of
compressor pressure ratio (PRcomp) as well as rise in both Pc and
ṁc.

The above mentioned effects lead to reduction in turbine blade
metal temperature.
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Fig. 11. Regression plots of predicted turbine rotor blade life cycle versus the target values (obtained from Larson–Miller method).

Table 5
Engine modeling results at various load ratios as well as various NGV and IGV values which are used as input parameters to neural network trained model for rotor
blade life cycle estimation (Fig. 9) at 30 ◦C of ambient temperature and clean compressor and GT load ratio from 90 to 95%.
GT operating
points

GT net
power (kW)

GT load
ratio (%)

NGV
(degree)

IGV
(degree)

ṁg
(kg/s)

Tg
(◦K)

Tc
(◦K)

ṁc (kg/s) NGG
(rpm)

Pc
(bar)

Pg
(bar)

TET–
TET_design

J 22167 90 23 22 72.17 1430 681 3.65 9676 13.4 11.6 12.88
K 22462.6 91 23 23 72.53 1435 682 3.67 9695 13.5 11.7 15.26
L 22758.1 92 23 24 72.88 1440 684 3.69 9713 13.6 11.8 17.57
M 23053.7 94 23 24 73.24 1446 685 3.71 9731 13.7 11.9 19.88
N 23349.2 95 23 25 73.59 1451 687 3.73 9749 13.8 11.9 22.16

O 22167 90 21 19 70.52 1437 675 3.59 9591 13.1 11.4 19.84
P 22462.6 91 21 20 70.88 1442 677 3.61 9607 13.2 11.5 21.99
Q 22758.1 92 21 21 71.23 1448 678 3.63 9626 13.3 11.5 24.25
R 23053.7 94 21 21 71.58 1453 680 3.65 9645 13.4 11.6 26.51
S 23349.2 95 21 22 71.93 1458 681 3.67 9663 13.5 11.7 28.77

T 22167 90 19 17 68.74 1448 670 3.52 9517 12.8 11.1 29.12
U 22462.6 91 19 17 69.09 1453 671 3.53 9531 12.9 11.2 31.28
V 22758.1 92 19 18 69.43 1458 673 3.55 9546 13 11.3 33.5
W 23053.7 94 19 18 69.78 1463 674 3.57 9560 13.1 11.4 35.71
X 23349.2 95 19 19 70.12 1469 675 3.59 9574 13.2 11.4 37.89

By reducing the turbine blade metal temperature the turbine
blade life cycle rises (Eq. (26)).

For example in GT power output of 22167 kW, opening the
NGV/IGV from 17◦/19◦ to 22◦/23◦ improves the turbine blade life
from 1.96 to 3.03 years which is mainly caused by reducing Tg
from 1448 to 1430 ◦K and increasing the turbine cooling air mass
flow (ṁc) from 3.52 to 3.65 kg/s (Table 5).

5.2.3. Effect of compressor fouling on life cycle results
In addition to variation of the ambient temperature, the GT

component faults such as compressor and turbine fouling may af-
fect the turbine blade life cycle. The mentioned problems change
the engine performance parameters (such as compressor and

turbine efficiency, compressor inlet mass flow rate, turbine inlet
temperature and etc.) which results in turbine blade life cycle
variation. The fouling effects on the engine performance param-
eters are studied in Mohammadi and Montazeri-Gh (2014), but
in this paper the fouling effects on both GT operating parameters
and the turbine blade life cycle are investigated.

In this section the effects of compressor fouling on the turbine
blade life cycle is investigated. Thus, the amount of compressor
fouling is entered to the engine modeling code (using the method
provided at Section 2) which enables modeling gas turbine even
when its compressor is fouled. Then the effective parameters on
the blade life cycle (ṁg, Tg, Pg, ṁc, Tc, Pc, NGG) are computed by
running the gas turbine model including the fouled compressor.
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Fig. 12. Rotor blade life at different ambient temperatures and different GT load ratios.

Fig. 13. Rotor blade life cycle obtained from neural network model which is trained for various NGV and IGV values and other input parameters (listed in Table 5)
at ambient temperature of 30 ◦C.

The range of change in compressor fouling is 0 to 7.5%. Then
the GT modeling output is used as input for the trained neural
network to estimate the blade life cycle.

Fig. 14-d presents the turbine blade life cycle at different com-
pressor fouling levels in an engine running at 100% load ratio and
various ambient temperatures. As Fig. 14-d shows, in a specific
engine load and ambient temperature, increasing the compressor
fouling percent leads to decrease the turbine blade life cycle
sharply. This is due to decreasing the compressor inlet air mass
flow rate with increasing the compressor fouling (Section 2).

Furthermore in this situation the discharge pressure (Pc) de-
creases. This is due to shifting the engine operating point on the

compressor map from clean to fouled condition as is shown in
Fig. 3. This figure illustrates that for an approximate fixed non-
dimensional compressor corrected speed (defined in Section 2),
compressor discharged corrected pressure ratio and corrected
mass flow rate reduce. Fig. 14-a to c show that with increasing
the fouling percent up to 7.5% at various ambient temperatures,
the increase in NGG is small and for 15 ◦C ambient temperature
(Fig. 14-a), NGG variation is just about 1.5%. With decreasing
the Pc value the turbine blade cooling air mass flow rate (ṁc)
drops. This is due to the fact that the turbine blade cooling air is
extracted from the compressor discharged air and thus decreasing
the Pc, decreases the turbine cooling air supply pressure. For
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Fig. 14. Rotor blade life cycle at different compressor fouling percent values at GT load ratio of 100% and different ambient temperatures.

instance in the ambient temperature of 15 ◦C, both Pc and ṁc
reduce for 6% (relative to the clean condition).

Moreover, the turbine blade cooling air temperature (Tc) rises
when the compressor fouling increases. Results show that for
the compressor fouling of 7.5%, Tc increases by 3.0%. Increase
in Tc is due to increasing the compressor shaft speed (NGG) and
also decreasing compressor efficiency in the compressor fouled
condition. Decreasing the compressor isentropic efficiency also
leads to more entropy generation in air compression process in
compressor and consequently boosts the compressor discharge
air temperature.

The mentioned effects increase the turbine metal tempera-
ture (caused by increasing the ṁg, Tg and reduced ṁc) and
also increase centrifugal stress in the turbine blade (caused by
increase in NGG) which finally reduces the turbine blade life cycle
(Eq. (26)).

It should be noted that in real life and at the above conditions
the fuel mass flow rate decreases to maintain the required life
time of the engine hot parts (mainly the first GG turbine rotor
blades). Thus the GT power output at base load condition de-
creases (by limiting the fuel mass flow rate) from 24600 kW to a
lower value at high ambient temperatures or compressor fouling
condition. In this situation if the engine runs to produce nominal
power output, the operating conditions damages the rotor blades.

Therefore it can be concluded that the compressor fouling
has a profound effect on the life cycle of the engine hot section
parts, this effect is mainly due to increasing the engine firing
temperature (Tg). The reason is decreasing compressor inlet air
mass flow rate and consequently increasing fuel to air ratio for
reaching the same specific GT power output when compressor is
not fouled. At this situation with cooling air mass flow reduction,
the turbine cooling air temperature also rises.

6. Conclusion

Industrial gas turbine first rotor blade life cycle analysis is
performed at the engine base or peak load conditions and 15 to
45 ◦C ambient temperatures. Then the blade life cycle analysis is
performed for various GT operating conditions including change
in the ambient temperature, compressor and turbine geometries
(different IGV and NGV angles), as well as various load ratios
(which produced 811 samples of blade life cycle analysis). Based
on the blade thermal and stress analysis, the blade life cycle
was assumed to be a function of some key engine operating
parameters (ṁg, Tg, Pg, ṁc, Tc, Pc, NGG). These parameters mainly
affect the convective heat transfer coefficients in the blade inside
and outside surfaces and in this way change the blade metal
temperature together with thermo-mechanical stresses in the
blade walls which finally affect the blade life cycle (as Larson–
Miller relation Eq. (26) shows). These parameters are normalized
and used for training a neural network. This is performed us-
ing Multi-layer Feed forward Back Propagation (MFBP) algorithm
with mean square error of about 10−4. The results of the blade
life cycle analysis obtained from GT modeling as well as thermal
and stress analyses are compared with the engine manufacturer
stress factor curve. Results show that for the GT nominal and
peak loads, the estimated blade life cycle is in good agreement
with the creep factor curve results (with an average error of
9.7%). Then the effects of GT operating and health conditions
(such as different ambient temperatures, various IGV and NGV
angles, various GT load ratios and also different compressor foul-
ing percent values) on the blade life cycle are studied using
the trained neural network. Results show that in a specified GT
load ratio and by increasing the ambient air temperature, or by
increasing the compressor fouling percent, the rotor blade life
cycle decreases exponentially (as Larson–Miller relation Eq. (26)
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predicts). For example in ambient temperature range of 15 to 45
oC and GT load ratios of 100% to 105%, the GG turbine first rotor
blade life cycle reduces from 4.85 to 0.07 years if we expect to
get the same power output as that for ISO ambient condition.
Similarly due to the compressor fouling, the life cycle changes
in range of 0 to 7.5% at ambient temperature of 15 oC and for
engine load ratio of 100%, the turbine blade life cycle varied
from 4.85 to 0.68 years if we expect to get the same power
output as that for clean condition. These results are obtained
by the trained neural network model. The model can be also
used for conditional monitoring, maintenance and operation to
prevent the unexpected engine failure and unplanned engine shut
down.
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Appendix A. Variable geometry compressor modeling (using
compressor map scaling)

The variable geometry compressor modeling was done using
the linear map scaling method (Bringhenti and Barbosa, 2004;
Haglind, 2010; Kim and Hwang, 2006; Silva et al., 2005). In this
method the variation of the compressor inlet mass flow rate,
pressure ratio and isentropic efficiency (at each specific rotational
speed) as function of changing the compressor inlet guide vane
angle (i.e. IGV) were formulated as following relations:

Ṁin,comp,cor = Ṁin,comp

(
1 +

c1 × ∆γIGV

100

)
(A.1)

πcomp,cor = πcomp

(
1 +

c2 × ∆γIGV

100

)
(A.2)

ηcomp,cor = ηcomp

(
1 −

c3 × ∆γIGV

100

)
(A.3)

where ∆γIGV , is the variation in IGV angle. In another word, the
compressor map of a GT engine has different non-dimensional
corrected compressor shaft speed lines (NGG/

√
Tin,GG/(

NGG/
√
Tin,GG

)
design) and each speed line associates with a specific

IGV opening angle named IGVselected. To take into account the
effects of change of IGV opening angles in compressor map and to
perform GT modeling as well as turbine blade life analysis, some
small step variations about each IGVselected angle (for each specific
compressor speed line) are considered. Then ∆γIGV , which is the
difference between IGVstep and IGVselected is defined as:

∆γIGV = IGVstep − IGVselected (A.4)

Moreover, c1, c2 and c3 are constant coefficients which were
obtained from analysis of CFD results for compressor maps at
different IGV opening angle (using the CFD setup provided in
Rashidzadeh et al. (2015) for the studied engine CFD analysis).
Fig. A.1 compares the compressor maps for three different ∆γIGV
values (∆γIGV = −3, 0, +3). In this figure the air flow direction
is shown and the maximum IGVselected opening (i.e., maximum air

flow frontal area) occurs at angle +36◦ and minimum IGVselected
opening (i.e., minimum air flow frontal area) occurs at −8◦.

Variable turbine geometry (NGV) modeling
The same procedure as the compressor variable geometry

modeling was implemented for modeling the turbine variable
geometry. The variation of the power turbine inlet mass flow rate
and isentropic efficiency were formulated as a function of the
changing the power turbine nozzle guide vane angle (Eqs. (A.5)
and (A.6)):

Ṁin,turb,cor = Ṁin,turb

(
1 −

c4 × ∆γNGV

100

)
(A.5)

ηturb,cor = ηturb

(
1 +

c5 × ∆γNGV

100

)
(A.6)

where ∆γNGV is change in power turbine inlet nozzle vane angle
and c4., c5 are constant coefficients which were obtained from
analysis of CFD results for PT turbine first stage and various NGV
angles(using the CFD set up that presented at Rashidzadeh et al.
(2015) for the studied engine CFD analysis). Fig. A.2 presents the
power turbine first stage characteristic map for different inlet
nozzle vane angles. This figure shows that the selected opening
angle of NGV relative to the turbine shaft axis (in the studied
engine) is 21◦ degrees. With decreasing and increasing of opening
angle at different steps (∆γNGV = NGVstep−NGVselected = NGVstep−

21) the turbine map shifts up and down. In this figure the flue
gas flow direction is shown and the maximum NGV opening
(i.e., maximum flue gas flow frontal area) occurs at angle +27◦

and minimum NGV opening (i.e., minimum flue gas flow frontal
area) occurs at 18◦.

Appendix B. Gas compressor (GC) modeling

When the gas turbine is used as a driver for natural gas com-
pression, it is named turbo-compressor. In this case the GT power
output will be used for running gas compressor (GC) and provide
GC power consumption. Input parameters for GC modeling are
GC pressure ratio (the ratio of natural gas compressor station
outlet to inlet pressure) as well as natural gas inlet pressure and
temperature. At the first step, the GC shaft rotational speed is
guessed and then the GC inlet gas mass flow rate and isentropic
efficiency are computed using the characteristic maps:

Ṁin,comp,GC (πcomp,GC ,NPT ) = c1(NPT )π3
comp,GC + c2(NPT )π2

comp,GC

+ c3(NPT )πcomp,GC + c4(NPT ) (B.1)

ci = ci1NPT 3
+ ci2NPT 2

+ ci3NPT + ci4 (B.2)

ηcomp,GC (πcomp,GC ,NPT ) = b1(NPT )π3
comp,GC + b2(NPT )π2

comp,GC

+ b3(NPT )πcomp,GC + b4(NPT ) (B.3)

bi = bi1NPT 3
+ bi2NPT 2

+ bi3NPT + bi4 (B.4)

In the above equations πcomp,GC ,NPT are GC pressure ratio and
PT (or GC shaft) rotational speed respectively. Also, ci1, ci2, ci3, ci4
are the coefficients of the GC map (mass flow rate vs. pressure
ratio map) which are obtained by third order curve fitting. bi1,
bi2, bi3, bi4 are also coefficients of third order curve fitting for GC
map. After computing the GC inlet mass flow rate and isentropic
efficiency, the absorbed power was computed from Eqs. (B.5) and
(B.6).

Tex,comp,GC = Tin,comp,GC

[
1 +

1
ηcomp,GC

(
PR

γ−1
γ

comp,GC − 1
)]

(B.5)

Wcomp,GC = ṁin,comp,GC × Cp,g × (Tex,comp,GC − Tin,comp,GC ) (B.6)
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Fig. A.1. Compressor map at different IGV values.

Fig. A.2. PT fist stage map at different NGV values.

Another auxiliary equation was equality of GC absorbed power
and power output of PT turbine which was solved in the system
of governing equations for the whole turbo compressor assembly
(Eqs. (B.1) to (B.6)). Newton–Raphson algorithm corrects the PT
rotational speed in try and error scheme to fulfill the auxiliary
equation.
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