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a b s t r a c t

This paper presents an exergy assessment for a proposed power generation system that is used the
organic Rankine cycle to recycle the waste heat from a high-temperature proton exchange membrane
fuel cell (HT-PEMFC). To do so, mathematical model for the studied PEMFC along with the water
management system have been introduced. Parametric analysis has been directed to study the impact
of different economic and thermodynamic parameters, like the fuel cell irreversibility, exergy efficiency,
and its work. For optimal designing the PEMFC, its parameters have been optimized by considering
three objective functions, i.e. irreversibility, exergy efficiency, and its work. The optimization process
has been performed based on a new model of fibrous root optimization algorithm improved. Simulation
results of the presented algorithm have been compared with empirical results, genetic algorithm,
and the basic of fibrous root optimization algorithm. The optimized values of irreversibility, exergy
efficiency, work for the proposed algorithm are achieved 0.012, -0.439, and -0.4993, respectively which
has the best values compared with the other analyzed algorithms.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Energy and different ways for access to it, is one of the most
important concerns of 21st century. The competition for provid-
ing the required energy is not only a concern among the advanced
countries, but also it is important for the developing and the
third world countries as global communities (Ghadimi, 2012).
The rising energy prices of fossil fuels in the last decade, the
environmental difficulties and difficulties of using nuclear energy
and the limited and non-renewable nature of conventional fuels
are some reasons that have expanded research into finding new
sources of energy (Fei et al., 2019; Liu et al., 2020; Shamel and
Ghadimi, 2016). These resources must have some characteris-
tics, such as easy accessibility, renewability, no environmental
pollution, high energy, low cost, easy storage, and economical
portability (Eskandari Nasab et al., 2014; Fan et al., 2020). A
small group of energy resources currently falls into this category.
One of the energies that has been extensively studied for many
years is fuel cell energy. A fuel cell is a battery-like device that
converts electrochemical energy directly into electricity (Chang
et al., 2019; Aghajani and Ghadimi, 2018). The overall structure

∗ Corresponding author.
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and the basis of the fuel cell work is consistent with the reac-
tions occurring in a galvanic or voltaic cell, albeit with a slight
difference (Fei et al., 2019). The fuel cell simply includes two
porous electrodes and a solid or liquid electrolyte that creates
these closed orbital components for conducting ions (the same
structure of our galvanic cell). But the source of energy in the
fuel cell is the hydrogen element. Hydrogen as energy carrier in
fuel cell comes from various sources such as petroleum products
(about 77%) coal (about 18%), water electrolysis (4%) and (1%)
other sources. The major contributors to hydrogen carriers are
hydrocarbons that are commonly found in fossil fuels, but the
difference in their use in fuel cells is that there are no direct
hydrocarbons burning in the machine and electricity generated
by hydrogen interactions of Fossil fuel and air oxygen happens
without combustion (Cold combustion process). Several kinds of
fuel cells have been made that their difference is in their type of
electrolyte. In addition, various combinations of fuel and oxidizer
as well as anodic and cathode catalysts are also possible. Fuels
can be diesel, gasoline, or methanol, and even natural gas and
methane. Air, chlorine or dioxide-chlorine can be used as oxidants
in the cell.

A popular model of fuel cells is proton-exchange membrane
fuel cell (PEMFC). The PEMFC is a good alternative to internal
combustion engines in the transmission system. The PEMFC has
higher efficiency than the other types of fuel cells with fast
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Nomenclature

A Membrane activity
a ohmic loss
Ėx Exergy ratio (kw)
F Faradays constant (Cmol−1)
h Enthalpy (J/mol)
I Irreversibility (kw)
i Current density (A/cm2)
i0 Exchange current density (A/cm2)
P Pressure (atm)
Q̇ Heat generation
R Universal gas constant (1/

(
mol × K−1

)
)

rf Molar flow rate (Kmol/s)
T Temperature (◦C)
tmembrane Membrane thickness (cm)
V Cell potential (v)
Vrev Reversible voltage
Vo Ohmic voltage
Va Activation voltage
Vc Concentration voltage
W Power (w)
x Mole fraction

Greek letters:

α Transfer coefficients
β overvoltage constants of the concentra-

tion
η Efficiency
λmembrane Membrane water content
µ Chemical potential (J/mol)
ς Stoichiometric ratio
σmembrane Membrane conductivity (1/(U−1

×

cm−1))

Subscripts:

A Anode
Act Activation
C Cathode
Ch chemical
FC Fuel cell
H2 Hydrogen
H2O Water
in Inlet
O2 Oxygen
out Outlet
ph Physical
ra Random value
rev Reversible
s Specific entropy, Jmol−1K−1

reaction and no contamination. These characteristics make the
PEMFC as a popular fuel cell model in different applications.
Generally, the mathematical model of the PEMFC is a critical case
that should be considered for optimal designing and analysis of
the fuel cell (Yu and Ghadimi, 2019; Liu et al., 2017). There are
various kinds of works have been done in this category in the
literature.

Cao et al. (Gollou and Ghadimi, 2017) introduced an optimal
model for the PEMFC stack. The main purpose was to present a

developed model of seagull optimization algorithm to achieve the
optimal parameters for PEMFC identification. The algorithm de-
veloped different mechanisms for increasing the algorithm con-
vergence speed. The results were applied and compared with
the empirical data from NedStack PS6 and BCS 500-W. The com-
parison results indicated that the presented technique gave well
results from some other similar algorithms from the literature.

Yu et al. (Aghajani and Ghadimi, 2018) presented a parameter
identification for the PEMFC using a developed Elman neural
network and a combined version of the World Cup Optimiza-
tion algorithm and the Fluid Search Optimization algorithm. The
method was proposed for modifying the method efficiency for
identifying the model parameters. Afterwards, four different op-
erational conditions were adopted for the model analysis. Final
results indicated the method excellence toward the others.

Wang et al. (Mirzapour et al., 2019) presented a stacked long–
short term memory (S-LSTM) model to fit the PEMFC stack degra-
dation. In addition, the method presents the remaining useful
life (RUL) estimation. The hyper parameters of the S-LSTM model
were optimized based on a differential evolution algorithm. Sim-
ulation results showed that the presented model efficiency in
comparison with other compared methods.

Guo et al. (Hosseini Firouz and Ghadimi, 2016) applied energy
and exergy analysis for a hybrid HT-PMEFC system along with
a two-stage thermoelectric generator (TTEG) by considering the
Thomson effect. The paper achieved the relationships between
the electric current and the inter-stage temperature of the TTEG
and the working current density of HT-PEMFC. Simulation re-
sults showed that the proposed HT-PEMFC/TTEG system gives
the maximum exergetic efficiency, electric efficiency, and power
density compared with the basic HT-PEMFC system.

Nalbant et al. (Hamian et al., 2018) proposed another arrange-
ment for HT-PEMFC to give a satisfying technology for cogenera-
tion usages. The research presented a mathematical model along
with energy and exergy analysis based on the principles of elec-
trochemistry and thermodynamics. Finally, some key operating
parameters were examined.

When energy has been converted in a PEMFC, a determina-
tive value of heat has been generated. During this process, the
most extractable work is called exergy, i.e. exergy determines the
reversibility of a process during the enhancing of the entropy.
However, exergy does not include system features, it character-
izes the system and its environment. The reference state of the
system is adopted to measure enthalpy and entropy, and the
input energy can be changed by varying different parameters like
input mass flow rate, pressure, and temperature. Furthermore,
internal energy difference between the inputs and the outputs,
and also the mechanical work of the system are the principal
cases in exergy calculation (Leng et al., 2018). In other words,
exergy is the maximum produced work of a fuel cell (Akbary et al.,
2019; Ebrahimian et al., 2018). This research performs an ener-
getic analysis and the effect of its parameters on thermodynamic
irreversibility will be implemented (Saeedi et al., 2019; Gao et al.,
2019). In this research, a methodology has been introduced an
exergy synthesis for optimizing the fuel cell function. A PEMFC
unit consists of three distinct parts. Anode (negative electrode),
electrolyte and cathode (positive electrode). The way the fuel cell
reacts is that the hydrogen (H2) loses its electron at the anode
with the intervention of a catalyst and becomes a proton ion
(H+) and free electron (e−). The proton moves to the cathode via
electrolyte. The electrolyte is a solid or liquid compound designed
to allow only the proton (and not the electron) to pass through it.
Platinum is usually used as a catalyst in the vicinity of anode or
hydrogen ion. The electron is also directed to the cathode through
an external circuit (here a wire connected to a light source such
as a lamp). The ions and electrons then react with the cathode
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to produce oxygen. The movement of electrons over the external
circuit generates a current that is usable in electrical devices and
the water in the cathode can also be reused. Nickel is usually
used as a catalyst at the cathode pole (Kwon et al., 2015). For
handling the performance of the fuel cell, diffusion and reaction
rates are adopted that must be compatible with together. There
are several works that have been introduced about the optimizing
the exergy for the fuel cells. These methods are usually cate-
gorized into two different classes: empirical-based approaches
and mechanistic models (Ehyaei and Rosen, 2019). The optimal
identification of the fuel cell parameters are like momentum, heat
transfer, mass, and diffusion electrochemical reactions (Haghighi
and Sharifhassan, 2016). In addition, analyzing the exergy of the
system principally increases the fuel cell efficiency. due to the
complexity of these kinds of problems, most of the performed
optimization algorithms stuck in the local minimum value that
gives a weak or even wrong solution. To resolve this shortcoming,
in this paper, a new improved version of Grass Fibrous Root
Optimization Algorithm (GRA) has been presented. The objective
of this study is to optimize and synthesis of the exergy for a
PEMFC based on optimal control of some characteristics of the
PEMFC. To do so, the study uses three main objectives in the
optimization: the exergy efficiency, the work efficiency, and the
thermodynamic irreversibility. The contributions of the paper are
summarized below:

– A technique is adopted for Exergy analysis on a PEMFC.

– A modified metaheuristic method is used for the model opti-
mizing.

– The metaheuristic is used for the PEMFC optimal identification.

– The algorithm is validated by metaheuristics.

– The method has compared with three different methods from
the literature.

2. System model

For modeling and synthetizing performance of the exergy for
the analyzed HT-PEMFC, some considerations have been pre-
sented. In the system, the gases are considered ideal and the
analyzed fuel cell is considered to be worked under steady-
state conditions. Because the value of the produced water is
too low, it has been neglected in the evaluations. Here, the ki-
netic energies and the potential have been neglected. During
the exergy calculation, the humidity in the input H2 and O2 is
ignored. Table 1 indicates the studied PEMFC thermodynamic
characteristics (Akkar and Mahdi, 2017).

In the following, by considering the Faraday’s constant, we
can determine the value of the generated H2 by electrical current
and the value of O2 generated by the achieved H2 and humidity
quantity. The exergy is a proper economical criterion to analyze
the system that depends to the irreversibility, enthalpy, work,
and entropy of a system. Here, an optimal designing for exergy
based on three functions with some predefined constraints has
been introduced. Fig. 1 shows the exergy process in the PEMFC.

As can be seen from Fig. 1, the electrochemical reaction be-
tween H2 and O2 at the catalyst layer is obtained as follows
(Reddy and Jayanti, 2012):

H2 + O → H2O + Heat + Electricity (1)

The exergy of the fuel cell during the operation, mass, and heat
is as follows:∑

Ėxin =

∑
Ėxout + İ (2)

Table 1
Thermodynamic characteristics of the considered HT-PEMFC (Akkar and Mahdi,
2017).

Parameter Value Unit

The temperature for
humidification
of the feed gases

28 ◦C

O2 utilization ratios 50 %

H2 utilization ratios 80 %

The thickness for the
membrane

0.018 and 0.022 cm

The current density range [0.02, 1.2] A × cm2

The temperature of the
dead state

25 ◦C

Dead state pressure 1 atm

Heat loss ratio (rHL) 20 %

The pressure of the Exergy
for the analysis

1, 2 and 3 atm

Operating temperatures of
the cells

119.85, 139.85, 159.85 and 179.85 ◦C

∑
Ėxinmass =

∑
Ėxwork +

∑
Ėxoutmass −

∑
ĖxHeat + İFC (3)

And the exergy value for the input and the output of the system
are:∑

Ėxinmass = ĖxinO2
+ ĖxinH2

=
(
ṙf × ex

)in
H2

+
(
ṙf × ex

)in
O2

(4)∑
Ėxmass,out = ĖxoutO2

+ ĖxoutH2
+ ĖxoutH2O =

(
ṙf × ex

)in
H2

+
(
ṙf × ex

)in
O2

+
(
ṙf × ex

)in
H2O

(5)

There are several parameters that are adopted for determining
the exergy. For instance, potential exergy, kinetic exergy, physical
exergy, and chemical exergy. The physical and chemical exergies
can be considered by the following (Ishihara et al., 2004):

Ex =

∑
j

xjECH
j + RT0

∑
j

xj ln xj  
ExCH

+ (h − h0) − T0(s − s0)  
ExpH

(6)

The rate of molar flow for O2, H2, and the produced water are
achieved as follows (Reddy and Jayanti, 2012):

ṅout
H2O =

1
2

× i × F−1
= ṅreacted

O2
= 2̇n

reacted
O2

(7)

ṅin
H2

= ṅreacted
H2

+ ṅout
H2

(8)

ṅin
O2

= ṅreacted
O2

+ ṅout
O2

(9)

The following equation describes the wasted exergy over the
work (Reddy and Jayanti, 2012):

ẆFC =

∑
Ėxwork (10)

And the Nernst equation adopted for obtaining the reversible cell
voltage is as follows (Lee et al., 2004):

Vr = 1.2 + 43.1 × 10−5
× TFC ×

[
ln
(
PH2

)
+ ln PO

]
− 85 × 10−5 (TFC − 298.15) (11)

Furthermore, the partial pressure of the H2 and the O2 are ob-
tained as follows (Amphlett et al., 1995):

PH2 =

1 −
Psat
PA

1 +

(xA
2

)
×

(
1 +

ςA

(ςA − 1)

) × PA (12)
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Fig. 1. The PEMFC exergy balancing.

PO2 =

1 −
Psat
PC

1 +

(xC
2

)
×

(
1 +

ςC

(ςC − 1)

) × PC (13)

The irreversibility reduces the voltage value of the real cell volt-
age than the equilibrium state. in this study, ohmic loss, activa-
tion loss, and concentration loss are considered and modeled that
are consequently given below (Rowe and Li, 2001):

VO = tmembrane × i ×
[
(0.005 × λmembrane − 0.003) exp

(
4.2 − T−1

FC

)]−1

(14)

Va =

(
αA + αC

αA × αC

)
×

RTFC
F × rf

× ln
(

i
i0

)
(15)

VC = i ×
(

β1 ×
i

imax

)β2

(16)

where,

λmembrane

=

{
0.043 + 17.81 × a − 39.85 × a2 − 39.85 × a3 0 < a ≤ 1

14 + 1.4 × (a − 1) 1 < a ≤ 3
(17)

and i0 stands for the exchange current density as follows (Alberro
et al., 2015):

i0 (T ) = 10.8 × 10−22
× exp (0.086 × TFC ) (18)

The ohmic loss model is as follows (Berning et al., 2002):

a =
xH2O × P

Psat
(19)

The constants for the overvoltage concentration (β1 and β2) are
obtained as follows (Haghighi and Sharifhassan, 2016):

β1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if
PO2

0.12
+ Psat < 2atm(

71.6 × 10−5
× TFC − 0.62

) ( PO2

0.12
+ Psat

)
+
(
1.68 − 14.5 × 10−4

× TFC
)

else(
86.6 × 10−6

× TFC − 0.07
) ( PO2

0.12
+ Psat

)
+
(
0.54 − 16 × 10−5

× TFC
)
(20)

In addition, the fuel cell consuming work, i.e. ẆFC based on Akkar
and Mahdi (2017) is considered by the following:

ẆFC = V (i) × i = i × [Vrev − VO − Va − VC ] (21)

Therefore, the exergy for the heat loss is obtained by the follow-
ing (Alberro et al., 2015):∑

ĖxHeat = rHL × Q̇FC (22)

where, Q̇FC stands for the heat generation in the fuel cell and is
obtained by the following:

Q̇FC = Q̇irrev + Q̇rev (23)

where (Alberro et al., 2015):

Q̇irrev =

(
−VCell −

∆GT

F × rf

)
× i (24)

Q̇rev = −
i × TFC × ∆ST

F × rf
(25)

where, ∆GT represents the difference of the Gibbs free energy
and ∆ST stands for the entropy change and is obtained as fol-
lows (Tian et al., 2020):

∆ST = 12414.8 − 9967.35 × ln TFC (26)

With regardless of the amount of the generated water by the
electrolyte, the enthalpy of water generation can be achieved as
follow (Akkar and Mahdi, 2017):

∆Hg,T = ∆H f
i − ∆Hvap

T (27)
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where,

∆Hvap
T = 68260.58+3.70×10−4

×T 3
FC −0.48×T 2

FC −152.43×TFC
(28)

And the overall produced heat by a PEMFC is as follows (Akkar
and Mahdi, 2017).

Q̇FC = −VCell × i −
∆Hg,T × i
F × rf

(29)

Therefore, the thermodynamic irreversibility of the system will
be as follows (Akkar and Mahdi, 2017):

İFC =

(∑
Ėxmass,in +

∑
ĖxHeat

)
−

(∑
Ėxmass,out +

∑
Ėxwork

)
(30)

And the exergy performance of the fuel is formulated as fol-
lows (Akkar and Mahdi, 2017):

ηexergy =
ẆFC

Ėxmass,in
(31)

3. Improved Grass Fibrous Root Optimization Algorithm

Generally speaking, in solving optimization problems, the
problem we face has infinite solutions which make us to find the
best solution among them. Indeed, different search mechanisms
have been performed to these problems and are of the same kind
and as such, the algorithms are so useful that explore a large
part of the answers to achieve the final solution. The best and
most efficient algorithms must have a number of features. For
example, high exploration and exploitation that classical opti-
mization algorithms often lack these capabilities in a balanced
way. For instance, they do not have the capability of Global search
to extract. The mechanism of such algorithms is Local search.
Random search algorithms also have a good global search but ulti-
mately cannot achieve the required convergence. In fact, the way
in which these algorithms operate intelligently and ultimately
converge is the same as meta-evolutionary and evolutionary
algorithms. There are different types of metaheuristics which
have been proposed in the field of optimization, such as: pigeon-
inspired optimization algorithm (Springer et al., 1991), quantum
invasive weed optimization (QIWO) (Cui et al., 2019), Emperor
Penguin Optimizer (EPO) (Razmjooy and Ramezani, 2014), world
cup optimization (WCO) (Dhiman and Kumar, 2018; Bandaghiri
et al., 2016; Razmjooy et al., 2017; Shahrezaee, 2017), Collective
Animal Behavior (CAB) (Tian et al., 2020), states of matter search
(SMS) (Cuevas et al., 2020), and Grass Fibrous Root Optimization
Algorithm (GRA) (Cuevas et al., 2018). The common point of these
algorithms is to refer to a natural and real phenomenon or social
reactions. For example, the QIWO algorithm is derived from inva-
sive growth of the weeds, and the WCO is inspired by the social
and humankind challenges to achieve the champion cup, which
makes these phenomena a mathematical model and a problem-
solving method. In 2017, Akkar and Mahdi (Cuevas et al., 2018)
introduced a new metaheuristic algorithm based on the fibrous
root system of the grass. The GRA is significantly inspired by the
grass plants regeneration, progress, and their fibrous root system.
The grass plants are basically replicated based on two procedures.
The first one is based on the subterranean stems that is often
performed underground by sending out roots and shooting the
nodes that is called rhizomes. The second procedure is based on
the stems which grow below the surface. The mentioned proce-
dures are continuously developing the secondary roots to replace
the vanished primary roots. The hair roots have been produced
by the secondary roots. The explained roots are often adopted for

local and global searching of the mineral and the water resources.
These mechanisms are utilized to model the optimal searching
of the GRA. This algorithm gives two different procedures for
global search based on the survived grasses and the best achieved
grass developed and reproduced. Besides, the local has also two
different searching methods including secondary hair roots and
regenerated secondary roots. The following subsection, explains
briefly about the basic and the improved model of GRA.

3.1. Mathematical model of GRA

The GRA algorithm, just like other metaheuristics, starts by
an initial population swarm (grass swarm) that is generated ran-
domly and uniformly in the solution space that is initiated by
seeding process (pop). After starting the optimization process, a
new population (PopNew) has been generated that is limited in
the rangePopLNew ≤ PopNew ≤ PopHNew , where PopLNew and PopHNew
represent the lower and the upper ranges of the population
variables. The new swarm contains some parameters, such as the
best value (Gbest ):

Gbest = min (f (swarm)) ∈ Rd (32)

where, d describes the problem dimension, and f stands for the
mean square error (MSE) function.

Another element for the PopNew is the number of grasses (Gr)
that is obtained by the Gbest by stolons that are often deviated
by the basic grass (GrN ) including a step size less than PopHNew as
follows:

Gr =

(0.5 × pop) ×

(
Avg (MSE)

Avg (MSE) + min (MSE)

) (33)

where, Avg and the mindescribe the average value and the mini-
mum value, respectively.

It can be observed that the maximum generated new grass
branches are equal to (0.5 × pop) and obtained when the min-
imum of MSE is too small. The final mechanism of the PopHNew is
the new grass equal to (pop–Gr −1) that is deviated randomly by
the survived best initial grasses (Sde). All the new branch grasses
deviated by the Gbest are considered as follows:

GrN = ones (Gr, 1)×Gbest +2×max
(
PopHNew

)
×(σ (Gr, 1) − 0.5)×Gbest

(34)

And the survived best initial grasses are formulated as follows:

Sde = GrN+2×max
(
PopHNew

)
×(σ (pop–Gr − 1, 1) − 0.5)×PopHNew

(35)

where, σ stands for a random value between 0 and 1, ones (.) de-
termines the one’s column vector, and GrN describes the
(pop–Gr − 1) highest MSE initial population. The new population
(PopNew) can be also modeled as follows:

PopNew = [Gbest;GrN ; Sde] (36)

The new regenerated population (PopNew) have been evaluated
to obtain the minimum valued MSE grass and limited it in the
range PopLNew and PopHNew . Here, if new Gbest gives better value
than the previous one, it will be substituted by the best new grass
(solution), else, the absolute rate of decrease in MSE has been
evaluated. If the rate gives less value than or equal to a predefined
tolerance value (ε), a global stack (stackg ) has been increased and
after the stackgreached to its maximum predefined value, then
the next local search starts as follows:

M = min
i=1,...,pop

(MSE) (37)
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bestmin = min
j=1,...,iter

(M) (38)⏐⏐⏐⏐mini=1,...,pop (MSE) − Gbest

mini=1,...,pop(MSE)

⏐⏐⏐⏐ ≤ ε (39)

As before mentioned, there is also local search mechanism in
the optimization that contains two parts, hair roots loop and
secondary roots loop. The secondary roots are defined by random
numbers which will have a number of hair roots equal to d. The
updating model of hair root location equal to the secondary roots
number (S) is given below.

mGbest (1, i) = Avg (Gbest) + Gbest (1, i) + C2 × (σ − 0.5) (40)

C = [C1, C2, . . . , C10] (41)

C2 = C × (1 + (∥σ × 10∥)) (42)

i = 1, 2, . . . , d, k = 1, 2, . . . , S (43)

where, mGbest describes the locally modified Gbest , S ∈ [0, d]
stands for the number of secondary generated roots, C describes
the analyzed step size vector equation, and C2 will be a random
element of C . If the calculated mGbest gives a value less than the
Gbest value, it will be replaced by it, otherwise, MSE absolute rate
of decreasing has been evaluated. if the rate is less than ε, then
the local stack counter (stackl) will be increased by one, if stackl
gives the maximum predefined value, the hair root loop will be
stopped and a new secondary root loop has been started. At the
final of each iteration, the stopping criteria (εSC ) will be checked.

3.2. Improved Grass Fibrous Root Optimization Algorithm (IGRA)

However, GRA gives good results in optimization, it has a big
drawback in providing a proper convergence, i.e. it has prema-
ture convergence for some problems. To resolve this problem,
two mechanism have been adopted that are explained in the
following:

The first mechanism is Opposition-Based Learning (OBL). The
OBL is a technique based on the oriental philosophy concep-
tion (Tizhoosh, 2005). By considering the OBL mechanism, op-
posite positions are obtained based on candidate solutions that
helps to enhance the exploration in the algorithm to escape from
the local optima for selecting the best solution for the next-
generation candidate. Let us consider an integer, x in the range
xϵ [xl, xu]. x is the opposite value of the integer x and can be
formulated as follows:

x = xl + xu − x (44)

With extending the above equation into n dimensions,

xi = xil + xiu − xi (45)

where, x, x ∈ Rn.
After optimization, the best grass in the range x and x obtained

from the objective function has been extracted and saved as the
main solution candidate and the other has been removed, i.e. if
f (x) > f (x), x will be stored and x will be removed and if
(x) < f (x), x will be stored and x will be removed. Here, 60% of
the population has been generated by the OBL mechanism. There
is also a filtering for removing

In this step, the out-of-range solutions to obtain the optimal
values.

The second mechanism is Lévy flight (LF) that is regularly
adopted for developing metaheuristics (Choi and Lee, 1998). Ran-
dom walk technique is the heart of the LF mechanism which is
used for modifying the search capability. The mathematical model
of LF mechanism is given below:

LF (w) ≈ w−(τ+1) (46)

Fig. 2. The flowchart diagram of the proposed IGRA.

w = A × |B|−
(
1
τ

)
(47)

σ 2
=

{
sin(π × τ/2)

2(1+τ )/2 ×
Γ (1 + τ )

τ × Γ ((1 + τ )/2)

}2τ−1

(48)

where, w describes the step size, τ stands for the LF index (her,
τ = 1.5) (Li et al., 2018), A ∼ N(0, σ 2), B ∼ N(0, σ 2), and Γ (.)
indicates the Gamma function.

By considering the above assumptions, the updated formula
for the new branch grasses, survived best initial grasses, and hair
root location are consequently as follows:

Gr+

N = ones (Gr, 1) × Gbest + 2 × LF(δ) × max
(
PopHNew

)
× (σ (Gr, 1) − 0.5) × Gbest (49)

S+

de = GrN + 2 × max
(
PopHNew

)
× LF(δ)

× (σ (pop–Gr − 1, 1) − 0.5) × PopHNew (50)
mGbest (1, i) = Avg (Gbest) + Gbest (1, i) + C2 × LF(δ) × (σ − 0.5)

(51)

Fig. 2 indicates the flowchart diagram of the presented IGRA.

3.3. The performance verification of the proposed algorithm

To verify the efficiency of the presented IGRA, some bench-
mark functions have been adopted and the results compared
with some other optimization algorithms from the literature.
The iteration number for all the algorithms is considered 100.
The compared algorithms are States of Matter (SMS) (Cuevas
et al., 2020), Lion Optimization Algorithm (LOA) (Yazdani and
Jolai, 2016), Thermal Exchange Optimization (TEO) (Kaveh and
Dadras, 2017), Socio Evolution and Learning Optimization Algo-
rithm (SELO) (Kumar et al., 2018), and the basic Grass Fibrous
Root Optimization Algorithm (GRA) (Cuevas et al., 2018). The
formulation for the adopted test functions has been explained
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Fig. 3. The polarization diagram for the analyzed algorithms with considering
P = 1 and T = 199.85 ◦C.

below:

F1 (x) =

D−1∑
i=1

(
100

(
x2i − xi+1

)
+ (xi − 1)2

)
(52)

F2 (x) =

D∑
i=1

x2i (53)

F3 (x) = 10D +

D∑
i=1

(
x2i − 10cos (2πxi)

)
(54)

F4 (x) = −20exp

⎛⎝−0.2

√ 1
D

D∑
i=1

(
x2i
)⎞⎠

− exp

(
1
D

D∑
i=1

(cos (2πxi))

)
+ 20 + e (55)

In the above equations, F1 is the Rosenbrock function that is
restricted in the range [−2.045, 2.045], F2 and F3 describe the
Sphere function and the Rastrigin function in the range in the
interval [−512, 512], respectively, and F4 determines the Ackley
function in the interval [−10, 10].

Table 2 shows the median value (MV) and the standard de-
viation value (SD) for the algorithms. As can be observed, the
value of both MV and SD for the proposed IGRA is lower than
the other compared algorithms which shows its higher accuracy
and precision toward the others.

4. Simulation results

This section presents the results and the discussion of the
parametric studies using the mathematical model in details. The
performance assessment parameters are taken as fuel cell irre-
versibility, exergy efficiency, and its work. To analyze of the pro-
posed system efficiency, it is simulated based on Matlab Simulink
software. The method is first coded and simulated in the Matlab
platform and then, its results are compared with some other
methods including Genetic Algorithm (GA) (Haghighi and Shar-
ifhassan, 2016), the basic Grass Fibrous Root Optimization Al-
gorithm (GRA) (Cuevas et al., 2018), and also the experimental
results extracted from Ubong data (Ubong et al., 2009). The po-
larization diagram for the analyzed algorithms with considering
T = 199.85◦C and P=1 is given in Fig. 3. Indeed, Fig. 3 shows the
performance of PEMFC by different algorithms. The cell perfor-
mance is slightly improved from IGRA to GA based method, but
it is clear that the best state for the real output among the all
compared methods is the suggested IGRA.

Fig. 4. The impact of pressure and temperature on the exergy performance.

Fig. 5. The simulation results for the thermodynamic irreversibility toward the
current density.

As it is clear, the proposed IGRA gives the best fittest results
to the empirical data. This can be observed in Fig. 4. As can be
seen, by assuming the constant membrane thickness of 0.017 cm,
enhancing the current density makes the efficiency of the exergy
to get decreased, while enhancing the temperature increases the
efficiency of the exergy.

As can be observed, increasing the temperature makes a sen-
sible rising on the mass exergy and the ẆFC of the feed and
consequently the ratio of ẆFC/Ėxinmass. Here, the effect of the pres-
sure on the exergy efficiency has been neglected. More analysis
has been done by analyzing the thermodynamic irreversibility
that is determined by the input and the output consumed ex-
ergy and work. The simulation results for the thermodynamic
irreversibility (İFC) toward the current density have been shown
by different pressure and temperature values in Fig. 5. As can be
seen, the more the current density value increased, the more the
thermodynamic irreversibility value increases. Figure also shows
that at the same temperature, the thermodynamic irreversibility
is proportional to the pressure.

The study also analysis the effect of membrane thickness and
the current densities changes on the exergy efficiency. Fig. 6 gives
the simulation results for the effect of the membrane thickness
variations on the exergy efficiency by operating pressure fixed
on 3 atm. As it is clear from Fig. 6, increasing of the temper-
ature makes the exergy efficiency increasing. Besides, due to
the increasing of Eẋmass,in which makes the work decreasing to
input exergy ratio, increasing the current density, enhances the
thermodynamic irreversibility.

In this study, 3 single-objective optimizations are adopted for
the system and the results are optimized by the proposed IGRA.
Table 3 indicates the feasible range of parameters for the studied
system (Akkar and Mahdi, 2017). Based on Akkar and Mahdi
(2017), the pressure of the system is considered in the range 1
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Table 2
The numerical results of the analyzed algorithms on the adopted functions.

Benchmark IGRA GRA
(Cuevas
et al.,
2018)

LOA
(Yazdani
and Jolai,
2016)

SMS
(Cuevas
et al.,
2020)

SELO
(Kumar
et al.,
2018)

SMS
(Cuevas
et al.,
2020)

F1 MV 0.00 0.00 1.42e−4 4.38e−4 1.17e−9 0.00

SD 0.00 0.00 4.29e−5 9.44e−4 5.24e−9 0.00

F2 MV 4.28 5.16 52.45 42.15 12.30 11.85

SD 2.86 5.19 32.08 40.25 4.92 6.34

F3 MV 0.00 2.12 30.11 45.27 10.52 3.82

SD 0.00 1.50 7.25 15.46 4.83 3.17

F4 MV 0.00 2.89e−17 4.62e−2 7.41 3.98e−4 4.86e−16

SD 0.00 0.00 3.72e−2 3.83 3.15e−4 0.00

Table 3
The Optimization results of the Irreversibility, Work, and Exergy efficiency.
The objective
Function

Current density
(A/cm2)

Pressure
(atm)

The fitness value (W/cm2)

GA GRA IGRA

Irreversibility 0.06 3 0.015 0.012 0.012
Work 1 2 −0.4490 −0.4899 −0.4993
Exergy efficiency 0.06 3 −0.437 −0.439 −0.439

Fig. 6. The simulation results for the temperature toward exergy efficiency
during the membrane thickness variations.

atm and 3 atm, temperature is limited in the range 125 ◦C and
185 ◦C, current density is considered in the interval 0.05 A/cm2

and 1.3 A/cm2, and membrane thickness is limited between 0.02
cm and 0.03 cm.

In this research, the population size and the number of itera-
tions for all the algorithms are considered 100, the mutation rate
is considered 0.6, the crossover rate is assumed 0.4, and ε = 0.02.
It should be note that the parameters values for the optimization
are achieved based on trials and error.

Table 3 illustrates the final results of applying the analyzed
algorithms on the fitness functions. These results have been ob-
tained for the PEMFC with 0.018 cm membrane thickness at
180 ◦C.

The current density and pressure of the objective functions are
supposed similar to each other. The results show higher efficiency
with −0.4993W/cm2 for the proposed IGRA. Furthermore, the ir-
reversibility value is 0.012 W/cm2 which is achieved by the GRA
and the suggested IGRA and shows the system efficiency. Also,
exergy efficiency for the suggested IGRA is the best compared
with the GA.

For more clarification, the results of the fitness value for ir-
reversibility, work, and exergy efficiency functions are given in
Fig. 7–Fig. 9, respectively.

Fig. 7. The convergence diagram of the fitness for the irreversibility term.

The irreversibility convergence of the system is given in Fig. 7.
It is obvious that the presented algorithm gives the minimum
value with minimum iteration for the convergence (35 iterations).
More information about this optimization is given in Table 3.
Table declares that the value of the irreversibility at iteration 100
is 0.012 w/cm2 that is a proper performance for the results.

As it is clear from Fig. 8, single-objective optimization of
the work term diagram, the best minimum value and the best
convergence is achieved by the proposed IGRA that is converges
in iteration 33 toward the GA that gives the worst result with
larger convergence steps that in iteration 100. The prominent
ability of the proposed algorithm in convergence than the basic
GRA is obvious from the diagram.

Finally, the optimal efficiency for the exergy of the system is
analyzed based on its convergence. The details of this term are
illustrated in Table 3 and Fig. 9. As can be seen, the GRA based
algorithms has better results than the GA for exergy efficiency,
however, the presented IGRA has faster convergence to the fixed
value toward the others (iteration 62).

5. Conclusion

Among different new generation systems, fuel cell-based sys-
tems are a good option for cogeneration for reasons such as high
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Fig. 8. The convergence diagram of the fitness for the work term.

Fig. 9. The convergence diagram of the fitness for the exergy efficiency.

efficiency and power density, pollution and low noise. Proton-
exchange membrane fuel cell (PEMFC), especially the high tem-
perature type of that is one of the highest performance types of
fuel cells that has lots of applications in the recent decade. In this
study, an exergy analysis was proposed to a high-temperature
PEMFC. For achieving an optimal steady-state model, some pa-
rameters were optimized. The optimization process was applied
using a new modified Grass Fibrous Root Optimization Algorithm
(IGRA). After validation of the presented optimization algorithm
by comparing it with some metaheuristics to show its promi-
nence features, it was utilized for optimizing the PEMFC system.
The system was then utilized for analyzing three primary terms
including irreversibility, work, and exergy efficiency. The results
showed that with considering the constant membrane thickness
of 0.017 cm, enhancing the current density decreases the exergy
efficiency, while enhancing the temperature gives sensible rising
on the exergy efficiency, mass exergy and the ẆFC of the feed and
consequently the ratio of ẆFC/Ėxinmass. The results also showed that
by increasing the Eẋmass,in, decreases the input exergy ratio and
increases the current density and thermodynamic irreversibility
and at the same temperature, the thermodynamic irreversibility
is proportional to the pressure. Results showed that for single-
objective optimization of the work term diagram among different
algorithms, the suggested IGRA gives the best optimum value and
the fastest convergence toward the others in iteration 33. The
prominent ability of the proposed algorithm in convergence than
the basic GRA is obvious from the diagram. The simulation results
were compared with empirical data, basic GRA, and also GA and
the evaluations indicated that IGRA gives the best results for the
exergy analysis. In the future work, the system will be analyzed
by considering different uncertainties. These uncertainties will be
including different stochastic models which will be performed
based on stochastic formulations.
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