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Abstract 

We investigate whether firm performance is related to the accumulated stock of technological 
knowledge associated with the Fourth Industrial Revolution (4IR) and, if so, whether the firm’s 
history in 4IR technology development affects such a relationship. We exploit a rich longitudinal 
matched patent-firm data set on the population of large firms that filed 4IR patents at the 
European Patent Office (EPO) between 2009 and 2014, while reconstructing their patent stocks 
from 1985 onwards. To identify 4IR patents, we use a novel two-step procedure proposed by 
EPO (2020), based on Cooperative Patent Classification (CPC) codes and on a full-text patent 
search. Our results show a positive and significant relationship between firms’ stocks of 4IR 
patents and labour and total factor productivity. We also find that firms with a long history in 
4IR patent filings benefit more from the development of 4IR technological capabilities than later 
applicants. Conversely, we find that firm profitability is not significantly related to the stock of 
4IR patents, which suggests that the returns from 4IR technological developments may be slow 
to be cashed in. Finally, we find that the positive relationship with productivity is stronger for 
4IR-related wireless technology and for AI, cognitive computing and big data analytics. 

Keywords: Fourth Industrial Revolution (4IR); patent applications; technology development; 
firm performance; longitudinal matched patent-firm data. 

Jel codes: O33, D24, J24. 

1 Corresponding author: Francesco Rentocchini, e-mail: francesco.rentocchini@ec.europa.eu. 
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1. Introduction

The last decade has witnessed increasing attention to the Fourth Industrial Revolution – from 
now on, 4IR (Schwab, 2017). Academic scholars, practitioners (managers, entrepreneurs and 
technologists) and policy makers have sparked a debate on the potential role of 4IR in the 
technological development and transformation of production processes (Brynjolfsson and 
McAfee, 2014; Deloitte, 2018; Santos et al., 2017). The 4IR promises to revolutionise several 
aspects of social and economic life. Manufacturing is a case in point: digitalised information on 
customer needs, processed through analytics and social media, together with real-time, flexible 
manufacturing systems, allows mass customisation to be achieved. Apart from production 
systems, 4IR technologies and applications open up unprecedented opportunities to drastically 
change already existing industries – for instance, transportation (through drones and driverless 
cars) and healthcare (personalised medication) – and create new ones (Rüßmann et al., 2015; 
WEF, 2016a). 

The current academic literature on 4IR has mainly focused on: (i) the potential technological 
disruption of 4IR (Benassi et al., 2020; EPO, 2020; Li et al., 2021; Martinelli et al., 2021) and 
the future consequences on employment (Frey and Osborne, 2017; Graetz and Michaels, 2018); 
(ii) the analysis of specific 4IR technologies, such as artificial intelligence systems, robots and
the like (Cockburn et al., 2018; Dernis et al., 2019; Kromann et al., 2020). However, despite
this widespread interest, evidence on the implications of 4IR for companies is scant. We consider
this lack of evidence particularly unfortunate, as a better understanding of the implications of
the development of these technologies for firms’ performance could significantly inform the
current debate on firm-level competitiveness, performance and strategy (Raj and Seamans,
2018).

In this paper, we analyse the extent to which the accumulation of knowledge in the development 
of 4IR technologies over time is associated with firm performance, as measured by labour 
productivity, total factor productivity and accounting profitability. We further explore whether 
such a relationship is affected by the firm’s history in the development of 4IR technologies, as 
measured by the firm’s experience and continuity in 4IR technological development. Finally, we 
assess whether the relationship between 4IR technology development and firm performance is 
different for specific technological areas within the broader 4IR remit. 

For our empirical analysis, we use a panel data set obtained from ORBIS-IP, including the 
population of large firms (i.e., with more than 250 employees) that have filed at least one patent 
in the 4IR domain at the European Patent Office (EPO) in the 2009–2014 period, and we 
reconstruct the firm-specific history of patent filings in the 4IR technological classes from 1985 
onwards. We identify 4IR patents by applying a novel two-step procedure proposed by the EPO, 
which is based on a combination of Cooperative Patent Classification (CPC) codes and a full-text 
patent search of multiple keywords identifying 4IR technologies (EPO, 2020). We analysed six 
major technological groups comprising 4IR technologies: Cyber-Physical Systems (CPS); 
Industrial Internet of Things (IIoT); Artificial Intelligence (AI), cognitive computing and big data 
analytics; cloud computing/manufacturing; Augmented Reality (AR); wireless technology. We 
focused on large firms because they account for almost the totality of 4IR patent applications. 
From our computations on the ORBIS-IP data set, it emerges that large firms account for over 
98% of all 4IR patent applications to the EPO since 1985. The possibility to go back in time by 
as much as 30 years in the construction of 4IR (and non-4IR) patent stocks allows us to capture 
the accumulated experience on 4IR technologies developed by companies since the 4IR 
inception. As is standard practice in the literature, we use patent filings as a proxy for a firm’s 
innovation capabilities (e.g., see Artz et al., 2010; Grinza and Quatraro, 2019; Sears and 
Hoetker 2014). Although they may be an imprecise proxy of technological and innovation 
activities at the firm level (e.g., because the propensity to patent differs across firms and 
industries; not all inventions are patented; patents can be filed for strategic reasons), patents 
still represent the most commonly and widely accepted way of measuring a firm’s technological 
capabilities, and are generally considered valid and robust indicators of knowledge creation and 
innovation (Trajtenberg, 1987). 
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Our main results, obtained after controlling for a wide array of patent- and firm-level 
characteristics and firm fixed unobserved heterogeneity, show a positive and significant 
relationship between the stock of 4IR patents and productivity (both labour productivity and 
total factor productivity), but no correlation with profitability. The positive relationship with 
productivity is mainly driven by companies that are characterised by higher experience and 
continuity in 4IR technology development and that have started earlier to develop 4IR inventions 
(i.e., in the 1985–1994 decade). Furthermore, when we disentangle the specific subsets of 4IR 
technologies, we find that the positive relationship is stronger for 4IR-related wireless technology 
and for AI, cognitive computing and big data analytics. 

Our evidence thus suggests that the development of 4IR technologies has its major impact on 
the firm’s production process, while the positive effects in terms of profitability remain still to be 
seen. Moreover, accumulated experience in the development of 4IR technological capabilities 
appears to be relevant for firm productivity, which suggests that learning in the 4IR domain 
heavily depends on the ability to take stock of the development of 4IR technologies. 

Our paper is but a preliminary exploration of the strategic, technological and competitive 
implications of 4IR technology development and sheds light on these issues from a company 
perspective. The remainder of the article is structured as follows. Section 2 reviews the relevant 
works in the area of economics and management pertaining to 4IR technologies and outlines 
our conceptual framework and main research questions. Section 3 explains the empirical model. 
Section 4 reports on the sample construction, variables and descriptive statistics. Section 5 
describes the results. Finally, Section 6 concludes the article by highlighting the main limitations 
of our work and suggesting possible avenues for future research. 

2. Background and conceptual framework

2.1 Background literature and context 

The term “4IR” encompasses a broad set of convergent technologies and applications that have 
become prominent in the last few years and now interact across physical, digital and biological 
domains (Gilchrist, 2016). Often connected to the term “Industry 4.0” (Xu et al., 2018; Ustundag 
and Cevikcan, 2018), the term “4IR” was originally introduced at the Hannover Fair in 2011 and 
later supported by the German government in its strategic initiatives (Rojko, 2017). At first, it 
yielded a strong engineering connotation and mainly referred to automation technologies within 
manufacturing and the “smart factory” (Internet of Things – IoT, cloud computing and CPS) 
(Morrar et al., 2017). Subsequently, it was popularised thanks to the global agenda set forward 
at the World Economic Forum Annual Meeting 2016 (WEF, 2016b), which was held under the 
theme “Mastering the Fourth Industrial Revolution” and the book by the WEF founder and 
chairman Klaus Schwab (Schwab, 2017). The term “4IR”, despite still being technology-focused, 
is also referred to the interconnection between the different technologies and the impact on the 
organisation of production and the changes in business processes. 

The ability to use at the same time a set of convergent technological mega-trends is what 
sets apart 4IR from the Third Industrial Revolution (3IR or Digital Revolution), which has marked 
the transition from an industrial to an information era (Stankovic et al, 2017). The 4IR heavily 
builds upon the digital technologies developed during the Digital Revolution, but brings important 
differences in terms of computational power, devices with human-like intelligence and the 
importance placed upon integration and interconnectivity of material objects (Maynard, 2015).2 
In this respect, Philbeck and Davis (2018) define the 4IR as an “epi-digital” revolution where, 
as the new technologies become more integrated into the physical, social and political worlds, 

2 In a similar way, the development of digital technologies starting from the 1960s relied on the electricity and 
telecommunication systems, which were at the centre of the Second Industrial Revolution. 
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they bring fundamental shifts to human behaviours, relationships and way in which humans 
experience things (including products and services). 

Following its initial inception, there have been dramatic increases in the interest in 4IR, 
which has spanned academic literature (Brynjolfsson and McAfee, 2014; Goldfarb et al., 2019; 
Fagerberg and Verspagen, 2020), practitioners (Wee et al., 2015; WEF, 2016b) and policy 
makers (EPO, 2020; Santos et al., 2017). The excitement about the capability of 4IR 
technologies to contribute to economic and social well-being has gone hand in hand with the 
concerns arising about the future of human work, inequality and populism (e.g., Frey and 
Osborne, 2017; Graetz and Michaels, 2018; Koizumi, 2019). Despite this, the 4IR technologies 
bring with them promises of revolutionising several sectors of the economy and society (Martin, 
1995).  

A rampant increase in the development of scientific and technological knowledge pertaining to 
4IR-related technologies has also been witnessed in recent years. Webb et al. (2018) offered 
several stylised facts about patenting in software and related areas at the United States Patent 
and Trademark Office (USPTO). The authors showed a significant increase in applications in 
many emerging technologies by a relatively small group of US, Japanese and Korean inventors, 
who generally work for large firms with a robust patenting history. Similarly, Mann and Püttmann 
(2018) showed that the share of automation patents increased from 25% in 1976 to 67% in 
2014. Cockburn et al. (2018) analysed the development of scientific publications and patents in 
the AI domain in the US, and showed an exponential increase in the fields of learning systems 
(both publications and patents) and robotics (patents only). Several studies have recently 
provided evidence on the surge of 4IR-related technologies (Benassi et al., 2020; EPO, 2020; 
Martinelli et al., 2021; Venturini, 2019). 

The academic literature that deals with 4IR is quite scattered and has mainly concentrated on 
two broad areas: (i) the potential of 4IR technologies and their role on the future of work; (ii) 
the analysis of whether 4IR technologies share the same features as General Purpose 
Technologies (GPTs).  

As far as the first stream of literature is concerned, most of the interest has revolved around the 
labour market consequences of the adoption of 4IR technologies. Most of this literature has 
focused on the role that automation, particularly the adoption of industrial robots, could have 
for employment and wage outcomes at the sectoral or occupational level (Acemoglu and 
Restrepo, 2020; Dauth et al., 2017; Graetz and Michaels, 2018). Recent works have instead 
dealt with the role of the recent advancements in AI and how these can affect the tasks 
performed by employees in the workplace (Brynjolfsson et al., 2018; Felten et al., 2018; Frey 
and Osborne, 2017; Manyika et al., 2017).  

The second stream of literature has instead attempted to understand whether 4IR technologies 
are characterised by the main features of GPTs, which have historically been drivers of long-
term technological progress and economic growth (Bresnahan and Trajtenberg, 1995). By 
studying the technological and scientific development of AI, Cockburn et al. (2018) found that 
AI shares two central characteristics of a GPT: (i) AI is rapidly developing and (ii) it has been 
applied in several (economically) relevant sectors, but, at the current stage, (iii) it lacks a spill-
over effect that is able to spawn innovation in application sectors. Other works have instead 
focused on either the relationship between 4IR technological development and productivity at 
the country level (Venturini, 2019) or on the technological bases and emergent patterns of 4IR 
technologies (Martinelli et al., 2021).  

Within this second stream of the literature investigating the potentially disruptive role of 4IR 
technologies, some studies criticise the radicalness and GPT nature of 4IR. In a recent 
contribution, Lee and Lee (2021) investigate whether the technological regimes of 4IR 
technologies differ from the technological regimes of 3IR technologies along with a number of 
relevant dimensions (e.g., cumulativeness, originality, generality, appropriability). They 
conclude that, unlike the 3IR, which has seen radical technological changes, 4IR technologies 
are not providing a break as radical as 3IR technologies, but rather tend to follow a more 
evolutionary path of technological change. Similarly, recent studies claim that the framework of 
GPT is not the most appropriate to analyse one of the most representative technologies of 4IR 
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(i.e., AI), but that the large technical system framework would be more informative (Vannuccini 
and Prytkova, 2020; Prytkova, 2021). 

Although the above works have all contributed to our understanding of the economic 
implications of 4IR, they mostly focused on a subset of the technologies that comprise 4IR 
technologies (mainly industrial robots and, more recently, AI) from a predominantly 
technological/labour perspective. In our view, such approaches disregard relevant strategic and 
competitive implications from a firm-level perspective, and the implications of 4IR, in terms of 
competitive advantage for firms, remain poorly understood. Overall, there is a paucity of studies 
that aimed at answering relevant research questions from a firm-level perspective, such as how 
4IR technologies affect firm-level performance and what types of firms are more (or less) likely 
to develop 4IR technological capabilities. 

Although – as mentioned above – 4IR comprises a wide set of convergent technologies, for 
conceptual and empirical clarity in our study, we refer to a well-defined set of technological 
advancements pertaining to 4IR. Given the broad remit of 4IR technologies, academic literature 
is not yet unanimous in providing a clear list of the technologies therein contained. To reach a 
consensus on the set of technologies that are likely to enter the list (and also for empirical 
purposes), we have conducted a review of the main contributions providing definitions of the 
technologies comprising 4IR or Industry 4.0 (the two terms are often used interchangeably in 
the literature). We referred to academic articles and reports by international organisations, 
mainly, European Commission, United Nations Industrial Development Organization (UNIDO), 
EPO and OECD.3 The common denominator comprises the following technological domains, for 
each of which we provide a brief description. 

Cyber-Physical Systems (CPS). These are natural- and human-made systems (physical space) 
integrated with computation, communication and control systems (cyberspace). The interaction 
between the digital and physical parts provides an unprecedented combination of sensing, 
control, computation and networking functions in real-time (Bagheri et al., 2015). CPS comprise 
technologies such as robotics (e.g., collaborative robots), smart grids, sensor networks, 
autonomous vehicles and the like. 

Industrial Internet of Things (IIoT). This is a technological area where networked smart objects, 
information technologies and computing platforms interact to enable real-time and autonomous 
collection and processing of information within an industrial environment. IIoT enables the 
integration of physical objects to the communication network in manufacturing and service 
processes. It can be seen as a dynamic global network infrastructure with self-configuring 
capabilities based on standard and interoperable communication protocols (Vermesan et al., 
2011). 

Artificial Intelligence (AI), cognitive computing and big data analytics. This technological domain 
contains learning systems (i.e., machines that can become better at a task typically performed 
by humans with limited or no human intervention), cognitive systems (with the ability to learn 
and improve knowledge without reprogramming) and AI. AI itself covers a wide set of techniques 
– machine learning, probabilistic reasoning, logic programming, fuzzy logic and ontology
engineering – with several functional applications (e.g., speech processing) in many application
fields (WIPO, 2019). The recent increase in the availability of huge volumes of data proved to
be very important to further expand the efficiency and reach of these technologies.

3 The academic articles and reports are the results of a search done following a strict review protocol. First, we searched 
for a number of simple keywords, namely “Fourth Industrial Revolution” and “Industry 4.0”, together with a set of 
detailed technologies (e.g., AI, machine learning, IoT, AR, additive manufacturing, virtual reality, collaborative 
robots) in three digital databases (Scopus, Web of Science and Google Scholar). Second, within each of the 131 
contributions identified, we searched for the definition or set of technologies included in the 4IR concept. Third, we 
compared the list of definitions/technologies and organised them in the broad technological areas briefly sketched 
above. A full list of the articles surveyed is not included for space reasons and is available from the authors upon 
request. 



6 

Cloud computing/manufacturing. This technology enables ubiquitous, efficient and real-time 
network access to a pool of resources (e.g., servers, storage, applications) that can be provided 
with low management effort. Cloud computing is based on interconnected and virtualised 
computers that are employed by a service provider (Buyya et al., 2008). Cloud computing 
capabilities can be enhanced for distant modelling and simulation, thus reducing the 
transportation, waiting and processing of manufacturing systems. 

Augmented Reality (AR). This refers to technologies where virtual information can be 
encompassed to real-world presentation to enrich the human perception of reality with 
augmented objects and elements (Paelke, 2014). The application of AR to the industry domain 
has become increasingly relevant, with five major areas of application: human-robot interaction, 
maintenance-assembly-repair, training, products inspection and building monitoring (De Pace et 
al., 2018). 

Wireless technology. This domain comprises wireless connectivity, particularly the 5th generation 
of mobile connectivity (i.e., 5G). 5G promises to offer unprecedented performance in 
connectivity by reducing latency, dramatically increasing speed and exponentially raising the 
number of connected objects. 5G also offers network slicing, a virtualization of the network 
allowing several logical service networks (called “slices”) to be provided over the same 
underlying physical network. This, in turn, will allow specific operators to offer customised 
services with features tailored to different groups of users (OECD, 2019). From an industrial 
perspective, sensor-based technologies in association with wireless communication are playing 
a prominent role to make the factory “smart”. All technologies contributing to increase network 
speed, quality and reliability within the factory are included within this technological area.4 

2.2 Conceptual framework and research questions 

Previous literature has provided much evidence on the relationship between the development of 
technological capabilities and firm-level outcomes. Technological capabilities are positively 
associated with customer value and competitive advantage (Afuah, 2002), product innovation 
(Zhou and Wu, 2010), profitability (Hao and Song, 2016), market valuation (DeCarolis and 
Deeds, 1999) and foreign direct investments (Kogut and Chang, 1991). These relationships are 
particularly strong and relevant in dynamic industries (DeCarolis and Deeds, 1999). 

The development and adoption of technologies are expected to contribute to a firm’s knowledge 
stock (Thoma, 2009) and its performance. For example, past GPTs (e.g., steam engines, 
railroads, electricity, computers) were associated with significant gains at the firm level. There 
is, in fact, ample literature on the impact of Information and Communication Technologies (ICTs) 
on firm performance. Brynjolfsson and Hitt (2000) provided a knowledgeable review of this body 
of work. The authors highlighted how the value added of ICTs lies in their ability (i) to enable 
complementary organisational investments (e.g., new business processes and investments 
concerning work practices) and (ii) to increase productivity by reducing costs and by enabling 
firms to increase output quality (e.g., radical and incremental product innovation). 

There are some features of 4IR that one can expect to bring performance benefits for firms. 
First, 4IR is at an initial stage of development and still has a wide scope for improvement. Once 
it becomes widely used, improvements in 4IR technologies can take place at a much faster pace. 
These rapid technological improvements can bring important economic benefits, such as cost 
reduction or the pre-emption of radical innovations, which can be appropriated by the developing 
firms. Second, the application of 4IR technologies to economically important sectors can be 
expected to increase firm diversification in the activities related to these sectors and, thus, 

4 We thank an anonymous reviewer for helpful comments in the construction of this section. 
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provide a “natural” growth strategy at the company level, thereby benefitting productivity and 
profitability. Finally, the ability to spawn innovations in application sectors implies that 4IR 
technologies can be employed by different potential downstream clients and can accommodate 
their different strategies. This can lead firms to develop relevant 4IR technologies that are then 
integrated downstream or to rely on the market for technology. Both decisions can be expected 
to improve their ability to capture a larger share of the value that their technology creates 
(Gambardella and McGahan, 2010). The above argument leads to our first research question on 
the relationship between the development of 4IR technological capabilities and a firm’s 
productivity and profitability.  

 

Research question #1: What is the association between the development of 4IR technological 
capabilities and a firm’s performance (both productivity and profitability)? 

 

Idiosyncrasies can be expected in this relationship, due to the technical features of the 
technologies under consideration and to firm strategic considerations. The 4IR technologies can 
be seen as contributing to technological change given their radical nature (Ehrnberg, 1995; Day 
and Schoemaker, 2000). These technologies pose significant challenges for both incumbents and 
newcomers. The 4IR technologies are likely to open up extraordinary market opportunities for 
established companies, but at the same time, they foster competition by newcomers. Moreover, 
given the radical nature of 4IR technologies, they can lead to competence-destroying 
discontinuities, which are often associated with increased environmental turbulence and 
uncertainty (Tushman and Anderson, 1986). 

 Newcomers can leverage fresh and new knowledge, but can lack long-term expertise and the 
complementary assets needed to capture the value from the newly developed technology 
(Rothaermel and Hill, 2005; Teece, 2008). On the other hand, established companies might be 
reluctant to focus on technologies that are emerging due to organizational inertia or, if they 
decide to, they might discover new territories to be unexpectedly hazardous (Barnett and 
Pontikes, 2008). The 4IR technologies can also prove to be complex to manage, as they entail 
several different technologies being combined, adapted and exploited. Given the coexistence of 
the features and problems related to different domains of knowledge (e.g., engineering, 
software, cognitive sciences, chemistry), companies may need time and a considerable amount 
of investments in cumulative knowledge stocks before the operational and economic benefits of 
their investments emerge. Early entrants into the 4IR technological domain can thus exploit 
first-mover advantages and enter into a virtuous path-dependent process, thus pre-empting 
future competition by newcomers (Antonelli, 1997; Ruttan, 1997).  

Moreover, the different technologies that make up the 4IR bundle are also characterised by 
heterogeneity. Martinelli et al. (2021) showed remarkable differences between 4IR technologies, 
in terms of generality and originality of their technological development, their industrial 
knowledge base, the growth of patented technology and the rate of entrance into the 
technological area, thus pointing to different stages of development for the technologies 
comprising 4IR. According to the above-mentioned arguments, the effect of the development of 
4IR technologies may be different for different types of 4IR technologies (e.g., AI, IIoT, wireless 
technology) as well as for the different levels of experience accumulated by the firm in the 
development of 4IR technologies. The arguments presented above lead us to forward a second 
research question, which pertains to experience in 4IR technology development and the specific 
technological area of 4IR development.  

 

Research question #2: Is the relationship between 4IR technological capabilities and firm 
performance contingent upon (i) the experience in the development of 4IR technologies by the 
firm and (ii) the specific technological domains comprising the 4IR? 
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3. Empirical model 

 

Our empirical analysis aims at connecting a firm’s development of 4IR technologies to its 
performance. We do so by first testing the overall relationship for the full sample. We then 
investigate the role of experience in 4IR technology development and the effect on firm 
performance of the different technologies in the 4IR domain. We focus on the productivity and 
profitability outcomes over a 6-year period (i.e., long enough to capture “average” firm 
performance and to purge away short-term disequilibrium shocks), and we test their relationship 
with the accumulated knowledge in 4IR technology development as captured by the stock of 4IR 
patents filed starting from 1985. 

We estimate several versions of the following baseline reduced-form equation: 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒!" = 𝛼 + 𝜗#4𝐼𝑅!"$# + 𝜗%4𝐼𝑅!"$% + 𝛾#𝑋!"$# + 𝛾%𝑋!"$% +	𝜂! +	𝜀!" .										(1) 

 

The dependent variable, 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒!", is alternately defined as the productivity or profitability 
of firm 𝑖 at time 𝑡. Our variable of interest is 4𝐼𝑅, which measures a firm’s development of 4IR 
technologies through its deflated stock of patent filings in the 4IR domain. In Section 4, we 
discuss how we identified the patent applications related to 4IR technologies and the rationale 
of using patent filings as a proxy for technology development. 

The vector 𝑋 collects a variety of relevant patent- and firm-level characteristics and several fixed 
effects control variables, including sector-year and country-year interactions. Controlling for 
these interaction effects is important because there may be country- and sector-specific trends 
in the performance outcomes and 4IR technology development of firms. For instance, some 
countries have recently implemented innovation and industrial policies to promote the 
development of 4IR technologies by domestic firms.5 

The term 𝜂! captures firm-specific time-invariant heterogeneity. Unobserved variables, such as 
a firm’s culture, quality of management and degree of internationalization, might influence its 
performance and, at the same time, its efforts in 4IR technology development to a great extent. 
If these factors are not controlled for, the estimated relationship of interest may be biased. We 
thus rely on fixed effects (FE) estimation, which accounts for unobserved time-invariant firm 
heterogeneity by exploiting only within-firm variation. Finally, 𝜀!" is the error term of the 
regression. 

All the explanatory variables, including our regressor of interest, are lagged by one and two 
years. First, excluding contemporaneous variables helps reduce the problem of reverse causality, 
whereby firm performance may influence the involvement of a firm in the development of 4IR 
technologies. Second, this standard practice in the innovation literature (e.g., Nesta and Saviotti, 
2005; Grinza and Quatraro, 2019) allows a (short-term) dynamics in the relationship of interest 
to be captured. The impact on productivity and profitability of developing 4IR technologies might 
take time to materialise, as implementing 4IR innovations in a firm’s production process or 
making them known to potential customers is not immediate. Therefore, the effects on 
performance might start manifesting with some delay.6 

The FE estimation of Equation (1) tests the overall relationship between a firm’s 4IR technology 
development and its performance (see Subsection 5.1). We then estimate different versions of 
this baseline equation, which include interactions with the firms’ levels of experience and 
persistence in the development of 4IR technologies and with the period in which they started to 
patent 4IR technologies. We finally estimate a version of Equation (1) where we evaluate the 

 
5 For instance, South Korea’s government is massively investing in 4IR technologies, especially those concerning 5G 

networks, digital twins and AI (https://www.4th-ir.go.kr/home/en). Similarly, the Italian government has recently 
launched the “Piano Nazionale Impresa 4.0” to finance firms’ investments aimed at developing 4IR technologies and 
to sustain their international competitiveness (https://www.mise.gov.it/index.php/it/industria40). 

6 Due to our relatively short panel and the use of within-firm estimates, we cannot reliably include further lags in our 
regressions. 
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performance effects of different technological domains of 4IR innovations (see Subsection 5.2). 
Before showing the econometric results, we describe the data and present relevant descriptive 
statistics. 

4. Data

4.1 Sample construction 

Our data source is ORBIS-IP. It is a large and recently released matched patent-firm data set 
provided by the Bureau Van Dijk, which combines rich firm- and patent-level information on 
around 110 million companies throughout the world. The data set used in this analysis includes 
all the large7 private-sector incorporated companies (except for agricultural and financial 
companies) with headquarters in the United States, Germany, Japan, Italy, the United Kingdom, 
South Korea, France, Belgium, Sweden, Finland, Spain, the Netherlands, China and Austria8, 
which have filed at least one 4IR patent at the EPO in the 2009–2014 period. 

We consider large firms for our study because they cover almost the totality of 4IR patent 
applications. From our computations on the ORBIS-IP data set, the firms with more than 250 
employees account for 98.5% of all the 4IR patent applications at the EPO since 1985. While 
this might reflect the fact that small firms are less involved in the development of 4IR 
technologies, it might also be due to the different propensity to patent across firm size (Schilling, 
2015). It is well known that small firms are less inclined to apply for patents than large firms 
and this tendency might exacerbate in the complex and fast-changing 4IR technological 
environment, thus reducing the ability of patents to reliably estimate the investments in 4IR 
technology development in the case of small firms.9  

It is important to point out that data on the patenting history of each firm are available from its 
first patent filing onwards, which allows us to reconstruct a firm’s efforts in the development of 
4IR technologies over the past decades. However, ORBIS balance-sheet data – which we need 
to construct the firms’ productivity and profitability indicators – are only available starting from 
2009 (i.e., in a ten-year window from data extraction). Because of this, we focus on the period 
2009–2014 (and estimate the performance effects in this 6-year span). 

We devoted an intense data mining effort to build our data set. In a nutshell, we performed four 
steps. First, we selected firms that filed at least one 4IR patent at the EPO between 2009 and 
2014. Second, we reconstructed their patenting history by going back, year by year, to 1985, 
singling out patents related to both 4IR and non-4IR technologies. This allowed us to construct 
the stock of 4IR patents, our regressor of interest, and non-4IR patents, which we use as a 
control variable. Third, we collected balance-sheet information on each firm to construct 
measures of productivity, profitability and other control variables (e.g., number of employees, 
location and sector of economic activity). Fourth, we reconstructed each firm’s ownership 
structure and grouped the firms belonging to the same corporate group. To this end, we 
employed information from ORBIS-IP on the “global ultimate owner”, whereby a given entity is 
reported as being – under different possible configurations – the ultimate owner of a firm. 
Controlling for group affiliation allows us to take into account the group dynamics (e.g., through 
synergic effects, strategic paths and financial support) in the development of 4IR technologies. 

7 To define firm size, we refer to the criteria in the OECD (2017) classification, according to which firms are defined as 
“large” when they have more than 250 employees. 

8 Other countries had to be excluded because they did not have a reasonable minimum number of firm-year observations 
(which we set to 10). 

9 Moreover, accounting data to construct performance variables for small firms are often missing or not consistently 
available over the time frame required for panel estimation (i.e., at least four observations). 
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The final data set used in the estimations comprises 491 firms and 1,492 firm-year observations. 
Appendix A provides a detailed description of the construction of our data set. 
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4.2 The variables 

 

Firm performance 

Our dependent variable is firm performance. In the empirical analysis, we consider three 
performance measures, two of which are related to firm productivity and one to firm profitability. 
The first productivity indicator is the total factor productivity (TFP), which provides a measure 
of a firm’s overall productive and organisational efficiency. We obtain the TFP estimates as the 
residuals from the estimation of a Cobb-Douglas production function (see, for instance, 
Devicienti et al., 2018).10 The second productivity variable is labour productivity, defined as (the 
natural logarithm of) revenues per employee. To measure firm profitability, we follow several 
studies (e.g., Arend et al., 2017) and use the accounting return on investments (ROI). 

 

Firm technological capabilities 

As a proxy of a firm’s technological capabilities in developing 4IR technologies, we use the 
(natural logarithm of the) deflated stock of patent applications related to 4IR technologies filed 
at the EPO from 1985 onwards. We constructed the deflated stock of 4IR patents using the 
perpetual inventory method with a constant depreciation rate of 0.15, as is typical in this 
literature (see, for instance, Grinza and Quatraro, 2019).11 Many studies (e.g., Artz et al., 2010; 
Bloom and Van Reenen, 2002; DeCarolis and Deeds, 1999; Grinza and Quatraro, 2019; Marin 
and Lotti, 2017; Sears and Hoetker 2014) have used patents as a proxy of the technological 
capabilities of a firm. Although this choice suffers from some limitations (e.g., not all innovations 
are patented; see Schilling, 2015), patents have been shown to correlate well with product and 
process innovations (Basberg, 1987).12 On the whole, patents represent the most common and 
widely accepted way of measuring the technological capabilities of a firm, and are generally 
considered valid and robust indicators of knowledge creation and innovation (Trajtenberg, 1987). 

 

Identification of 4IR-related patents 

To identify 4IR patents, we used a novel two-step procedure recently proposed by the EPO (EPO, 
2020). The first step of the procedure collects a list of CPC codes that circumscribe the pool of 
patents potentially related to 4IR technologies. The second step, which identifies 4IR patents, 
provides a detailed list of keywords to apply through patent text search to the patents retrieved 
from the first step.13 We applied the first-step search on CPC codes to primary and secondary 
CPC codes. We conducted the second-step text search on the full texts of patents, which we 
retrieved from the EP full-text database.14 In this way, we are able to search for the relevant 
combinations of keywords in the patent full texts (i.e., title, abstract, claims and description), 
and not only title and abstract as is common practice in the economics of innovation literature. 
Starting from the EPO (2020) report and our analysis of the technological/innovation literature 
(see above), we finally classified the identified 4IR patents into the six technological classes 
described earlier: wireless technology; IIoT; CPS; AR; cloud computing/manufacturing; AI, 
cognitive computing and big data analytics. Notably, the EPO only recently disclosed (in 

 
10 We ran a FE regression augmented with a large set of other fixed effects (i.e., year fixed effects and interaction 

dummies between year and size, year and industry, and year and country) on a log-linear Cobb-Douglas production 
function with revenues as the output variable and deflated tangible fixed assets and the number of employees as 
capital and labour inputs, respectively. Unfortunately, the data did not allow us to estimate either a value-added 
production function (i.e., with value added as the output variable and labour and capital as inputs) or a revenue 
production function (i.e., with revenues as the output variable and labour, capital and materials as inputs), but only 
a mix of the two. This is because the high number of missing values for both value added and materials in ORBIS 
would have dramatically reduced the size of our data set (e.g., using value added to estimate a value-added 
production function would entail dropping more than 50% of the observations). 

11 Similarly, we computed the deflated stock of non-4IR patent applications. 
12 We controlled for the differential propensity to patent across firm size and economic sector by including size and 

industry fixed effects and industry-year interactions. 
13 The list of keywords is reported in Subsection 3.1 of the EPO (2020) report annex, which can be downloaded here. 
14 This data set can be retrieved at https://www.epo.org/searching-for-patents/data/bulk-data-sets/data.html. 
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December 2020, through the EPO, 2020 report) the list of keywords for the text search in the 
second step of the classification procedure. This second step is critical to obtain a more precise 
and narrow identification of patents embedding 4IR technologies, and has the advantage of 
being based on an official source.15 At least to our knowledge, we are the first to use this 
complete two-step procedure to identify 4IR patents.16 

 

Controls 

We then include several other variables as controls in the productivity and profitability equations. 
The natural logarithm of the number of employees in the company accounts for different 
propensities in 4IR technology development based on firm size. Capital intensity, measured by 
the (natural logarithm of the) ratio between tangible fixed assets and employees, controls for 
structural differences in the firms’ production processes. We finally add a control for the degree 
of intangibility of assets (computed as the ratio between intangible fixed assets and total assets), 
to capture heterogeneities in firms’ intangible investments, including R&D investments.17 

  

 
15 We would like to thank an anonymous reviewer for helpful comments on the identification of 4IR patents. 
16 Different versions of the EPO classification based on the EPO (2017) release – which only disclosed the CPC codes 

related to the first step – have been used in recent studies on 4IR (e.g., Benassi et al., 2020; Corrocher et al., 
2020; Weresa, 2019). 

17 Although ORBIS-IP provides data on R&D investments (from balance-sheet information), this information is unusable 
because of the high number of missing values (more than 80%). 
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4.3 Descriptive statistics 

 

We now present some descriptive statistics of the sample. Disentangling the data according to 
the firms’ characteristics (e.g., size, age and 4IR patenting activity) and according to the patents’ 
technological domain is of great help for the interpretation of the econometric results. 

Table 1 provides an overview of the firms analysed in this study, together with summary 
statistics of the dependent variables and the main control variables used in the regressions. Our 
sample of firms is rather heterogeneous. The average number of employees of a firm is around 
23,750, but the median is considerably smaller, around 4,000 employees. Similarly, the average 
revenues are around 9,2 billion Euros, whereas the median value is less than 1,5 billion Euros. 
On average, labour productivity (i.e., revenues per employee) is around 419 thousand Euros per 
year. The average ROI is 9.1%, which suggests that the firms in our sample are rather profitable. 
Most of the firms belong to the manufacturing sector (about 81%), whereas the rest are services 
companies. The firms are not young on average (53 years), but at least 25% of them are less 
than 20 years old. 

 

------------------------ 

Insert Table 1 here 

------------------------ 

 

Table 2 focuses on 4IR technology development. The average stock of 4IR patents of each firm 
in the sample is around 7.6 patents, against a total patent stock of 1,215 patents. 4IR patents 
thus represent a small fraction (around 0.6%) of the overall patent portfolios of firms, which is 
consistent with the restrictive definition of 4IR adopted in this study and coherent with the 
figures reported in EPO (2020). Among the top 4IR patent applicants in our sample, there are 
Nintendo, Intel, Sony, IBM, Microsoft, Bosch, Ericsson, Qualcomm, Nokia and Volkswagen 
(stocks of 4IR patents above 50, on average). 

The second and third panels in the table report the summary statistics of the stocks of 4IR 
patents according to different levels of experience and, relatedly, different starting periods in 
4IR technology development. Experience in the development of 4IR technologies was defined as 
the number of years since the first 4IR patent application. A 0-year experience means that the 
firm has never filed a 4IR patent application; experience is set to 1 for the year in which the firm 
files its first 4IR patent, it is set to 2 for the subsequent year, and so on. We then took the panel-
average experience to make it time-invariant and divided the firms into three categories (i.e., 
firms with limited, medium or high experience) according to whether their panel-average 
experience was below the 25th percentile, between the 25th and 75th percentiles, or above the 
75th percentile, respectively. We then classified the firms based on different starting periods of 
4IR technology development. Starting from the last year in our data (i.e., 2014), we went back 
for three decades on the 4IR patent filing history of the sampled firms and defined firms as 
“early 4IR applicants” if they filed their first 4IR patent in the period 1985–1994. We classified 
firms as “intermediate 4IR applicants” if their first 4IR patent application lies in the 1995–2004 
period. Finally, we defined a firm as a “late 4IR applicant” if its first 4IR patent was filed between 
2005 and 2014. 

Not surprisingly, highly-experienced firms and – consistently – early 4IR applicants have the 
highest stocks of 4IR patents (15.9 and 17.8 patents, respectively). The magnitude of the mean 
differences, when compared to firms with low and medium levels of experience, on the one hand, 
and intermediate and late 4IR applicants, on the other hand, is considerable (though less so if 
looking at the median values) and reflects the difference in firm size among such companies.18 

 
18 For instance, the average number of employees among early 4IR applicants is around 48,200, whereas it is 26,000 

and 11,020, respectively, for intermediate and late 4IR applicants. There are some very large companies, leaders 
in 4IR technology development, among early 4IR applicants (e.g., Volkswagen, Bosch and IBM). 
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----------------------- 

Insert Table 2 here 

----------------------- 

 

Table 3 reports summary statistics of the firms’ 4IR patent portfolios according to the different 
4IR technologies. In the first panel, we report the stocks of the patents related to the six 4IR 
technologies identified in this study. The second panel reports indicators of the intensity of these 
4IR technologies, which we constructed as the share of the deflated stock of 4IR patents 
belonging to a particular 4IR technology over the total deflated stock of 4IR patents. For 
instance, the intensity of wireless technology of a firm is defined as the ratio of wireless 
technology 4IR patents to total 4IR patents.19 These indicators are useful to characterise the 
directions, in terms of technological domains, of a firm’s efforts in developing 4IR technologies. 

Wireless technology is, on average, the most widespread. Around 44.3% of a firm’s 4IR patents 
are related to wireless technology. The second-largest patent category relates to IIoT, with 
23.8% of 4IR patents. CPS and AR technologies represent 21.2% and 11.7% of the firms’ 4IR 
patent portfolios, respectively. Around 2.5% of 4IR patents are attributable to cloud 
computing/manufacturing, and the same fraction refers to AI, cognitive computing and big data 
analytics. In line with the EPO (2020) report, connectivity-related technologies represent a 
relevant share of 4IR patents, whereas – however in the spotlight – AI-related patents are a 
minority fraction. 

 

----------------------- 

Insert Table 3 here 

----------------------- 

 

 

5. Results 

 

We now present the results of the econometric analysis. Subsection 5.1 shows the results of the 
estimation of Equation (1), where we examine the overall relationship between a firm’s 
development of 4IR technologies and its productivity and profitability. Subsection 5.2 focuses 
on the firms’ history in 4IR technology development and tests the relationships for different 4IR 
technologies. 

 

5.1 Main results: the relationship between the development of 4IR technologies and firm 
performance 

 

Table 4 reports the FE estimates of Equation (1) for each of the three outcomes of performance: 
TFP, labour productivity and ROI. We include, as control variables, the deflated stock of non-4IR 
patents, the degree of capital intensity, the level of employment and the degree of intangibility 
of assets. We also add time dummies and year-industry and year-country fixed effects. Our 
within-firm estimates remove the remaining time-invariant unobserved firm-specific 
heterogeneity of the firms. Standard errors are robust to heteroskedasticity and clustered at the 
firm and sectoral level. 

 
19 Around 5% of the 4IR patents are attributable to more than one 4IR technology class so that the intensity indicators 

sum up to slightly more than 1. 
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----------------------- 

Insert Table 4 here 

----------------------- 

 

Table 4 shows a consistent pattern of results, whereby the development of 4IR technologies is 
positively and significantly related to firm productivity, both TFP and labour productivity, but not 
to profitability.  

The positive and significant effects on productivity emerge with a two-year lag. The estimated 
impacts on productivity are 0.023 and 0.022,  for TFP and labour productivity, respectively. At 
a first glance, the magnitude of the effect seems modest: a 10% increase in the deflated stock 
of 4IR patents is estimated to increase TFP by 0.23% and labour productivity by 0.22%.20 
However, it should be noted that a non-negligible share of firms starts applying for 4IR patents 
from scratch during the 2009–2014 period, and another significant share of firms starts from 
very small 4IR patent portfolios (e.g., passing from 2 to 4 patents implies a 100% increase). 
Indeed, the yearly average percentage increase of 4IR deflated patent stocks (excluding firms 
that switched from zero to a positive number of 4IR patents) is as high as 67.3%. As a result of 
the average increase in the firms’ 4IR patent portfolios, TFP is estimated to rise by 1.54% 
(0.673∗0.023∗100) and labour productivity by 1.48% (0.673∗0.022∗100). 

When we turn to the effect of the deflated stock of 4IR patents on firm profitability, we find no 
significant impact. As discussed in Section 6, this is possibly due to significant sunk costs 
associated with the development of 4IR technologies.21 

 

5.2 The role of the firm’s history in 4IR technology development and different 4IR technologies 

 

Based on the evidence so far, our answer to the first research question is that developing 4IR 
technologies has a positive effect on total factor and labour productivity, and no significant effect 
on accounting profitability. We now address the second research question, by disentangling this 
positive effect in relation to the firm’s history in 4IR technology development. We use three 
different – but complementary – indicators to measure the firm’s history in 4IR technology 
development: the number of years since the first 4IR patent (experience), the persistence in 
4IR patenting (continuity) and the starting period of 4IR patenting.  It should be noted that, 
from now on, we report in the tables only the coefficients of the variables of interest, focusing 
on the impacts on TFP and labour productivity.22  

To begin with, we test whether the effect on productivity changes with the level of experience 
and continuity in developing 4IR technologies. The results are presented in Table 5. 

 

----------------------- 

Insert Table 5 here 

----------------------- 

 

 
20 See Venturini (2019), who estimated, at the country level, that the elasticity of productivity to the aggregate stock of 

knowledge related to intelligent technologies ranges from 0.02 and 0.06 for industrialised economies. 
21 We also experimented with alternative measures to account for firm profitability, that is, the return on assets (ROA) 

and the return on sales (ROS), but the results do not change.   
22 The estimates with ROI as the dependent variable are consistent with the general result that 4IR technological 

development has no (short-term) effects on profitability, as they typically produce small and not significant 
coefficients. 
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To account for experience, we classified firms in three classes, that is, with low, medium or high 
experience in 4IR patenting, as described in Subsection 4.3. We then estimated a specification 
that adds to Equation (1) interaction terms multiplying the firm’s deflated stock of 4IR patents 
by its relative degree of experience.23 The first panel in Table 5 shows that firms with higher 
experience obtain greater productivity gains from developing 4IR technologies. The estimated 
coefficients for such firms are 0.038, for TFP, and 0.041, for labour productivity, both significant 
at the 1% level. On the contrary, for firms with low and medium levels of experience, the 
coefficients – despite being positive – are never statistically significant, thus suggesting that 
they do not attain significant productivity gains from 4IR technology development. 

This experience variable has the advantage of being a simple and clear indicator of a firm’s 
history in 4IR patent filings. However, it does not account for the degree of continuity in 4IR 
patenting between the first year of filing and later years, which may be a critical dimension of 
differentiation.24 For instance, the experience variable does not distinguish between a firm that 
patents 4IR technologies every year (i.e., with much continuity) from a firm that files 4IR patents 
every 10 years (i.e., much more sporadically), and consequently misses to capture an important 
aspect of 4IR technology development. To shed some light also on this issue, we constructed an 
indicator of persistence in 4IR technology development, and classified firms according to their 
different degrees of continuity in 4IR patenting. Continuity is an indicator constructed as the 
number of years in which a firm has filed at least one 4IR patent application over the number of 
years since it became active in 4IR patenting (i.e., our experience variable). It ranges between 
0 and 1. It is 1 when the firm has filed at least one 4IR patent application every year since its 
first 4IR patent; it approaches 0 when the 4IR patenting activity is more sporadic. We then took 
the panel-average continuity and divided the firms into three categories (i.e., firms with low, 
medium or high continuity) according to the same classification we adopted for experience (i.e., 
below the 25th percentile, between the 25th and 75th percentiles and above the 75th percentile). 
We thus interact the firm’s deflated stock of 4IR patents with its degree of continuity in 4IR 
patenting in order to estimate whether the effects of 4IR technology development change with 
the firm’s high, medium or low continuity in filing 4IR patents. The lower panel in Table 5 shows 
the results of this test. Firms with high levels of continuity in 4IR patenting show a positive and 
significant productivity increase from developing 4IR technologies, which emerges for both TFP 
and labour productivity. On the contrary, firms that are less continuous in filing 4IR patents do 
not show significant positive relationships between productivity – either TFP or labour 
productivity – and 4IR technology development.25 

The results so far suggest that the accumulated experience is critical to enable the firm to extract 
productivity gains from the development of 4IR technologies, with apparent benefits from being 
in the upper portion of the learning curve. Furthermore, high continuity in the development of 
4IR technologies turns out to be another important factor to grab the productivity advantages 
of 4IR technology development, thereby suggesting that benefits might be accrued through 
incremental and cumulative steps. 

 In Table 6, we further investigate the moderating role of a firm’s history in 4IR technology 
development by testing whether the impact on productivity depends on the firm’s starting period 
of 4IR patenting activity. 

----------------------- 

Insert Table 6 here 

----------------------- 

23 In the estimating model, we included interactions with both one- and two-year lags. As the impact stems from the 
two-year lag, we only report the results for the second-year lag. The full set of results is available upon request.  

24 For a study that highlights the importance of controlling for the persistence in innovation activity when estimating the 
impact of innovation on firm productivity, see Huergo and Moreno (2011).  

25 In the estimation with our experience variable, we performed different tests to directly control for the firm’s persistence 
in 4IR patenting. In practice, we included (time-varying) controls for the degree of continuity, either as a continuous 
variable or as a categorical variable, and we observed no changes in the results. 
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We interact the firm’s deflated stock of 4IR patents with a binary variable denoting the decade 
in which it started to file 4IR patents, that is, whether the firm filed its first 4IR patent in the 
period 1985–1994, 1995–2004 or 2005–2014. Table 6 thus estimates the productivity effects of 
4IR technology development separately for early, intermediate and late 4IR patent applicants. 
In line with the results on experience, we find no significant positive productivity effects 
stemming from the development of 4IR technologies for both late and intermediate 4IR 
applicants. The effect on TFP and labour productivity for early 4IR applicants is instead positive, 
large in magnitude (0.040 for both productivity measures) and significant at the 1% level.26 

These results consistently indicate that having a long history in 4IR patenting is fundamental to 
take advantage from 4IR technology development. As discussed in the next section, being a first 
mover has several advantages, including the possibility of setting standards, pre-empting the 
market and exploiting higher accumulated knowledge, all factors that turn out to be relevant in 
the 4IR context. However, what types of 4IR technologies are more important for productivity 
gains? The final step of our study explores this issue in Table 7, where we split a firm’s deflated 
stock of 4IR patents into the six 4IR technology classes defined earlier. 

 

----------------------- 

Insert Table 7 here 

----------------------- 

 

The table clearly shows that the positive productivity effects stem from two important 4IR 
technology classes: wireless technology and AI, cognitive computing and big data analytics. As 
shown earlier, wireless-related technologies are the most widespread, representing over 40% of 
the firms’ 4IR patent portfolios, on average. The productivity impact associated with such 
technologies is somewhat large in magnitude (0.041 for TFP and 0.031 for labour productivity) 
and significant at conventional levels. On the contrary, AI, cognitive computing and big data 
analytics is a restricted technology class, with only 2.5% of the firms’ 4IR patents. However, it 
is undoubtedly one of the 4IR technologies that generates the highest expectations, in terms of 
capability to revolutionise our lives and societies. From our estimations, it appears that such 
expectations are not disappointed as far as the productivity of AI-developing firms is concerned. 
We detect positive and very large productivity effects stemming from AI, cognitive computing 
and big data analytics: 0.067 on TFP and 0.062 on labour productivity (though the latter 
coefficient is not significant at conventional levels). 27 

 

 

6. Discussion and conclusions 

 

Our study has focused on the impact of 4IR technology development, an investigation area that 
so far has largely been unexplored, in favour of the adoption of these technologies and 
consequent effects (Venturini, 2019; Bassetti et al., 2020). We investigated (i) the relationship 
between the development of 4IR technological capabilities and firm performance, (ii) the 
moderating role of the firm’s history in 4IR technology development, and (iii) which technological 
domains of the 4IR explain the contribution of 4IR to productivity at the firm level. 

The empirical investigation offers three main conclusions. 

 
26 Positive, but small and only weakly significant, impacts emerge also on firm profitability for highly-experienced firms 

(coefficient significant at the 10% level) and early 4IR applicants (p-value around 0.15), thus suggesting that, for 
such firms, the high observed productivity gains might translate into profitability increases already in the short-run.   

27 In general, more imprecise estimates on the analysis by technology classes are to be expected since the regressor of 
interest is split into six categories, some of which with a relatively low number of patents. 
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First, firm productivity is positively and significantly related to the development of 4IR 
technologies, whereas firm profitability does not appear to be affected. Increases in productivity 
may be due to higher efficiency in the production process (thanks to the development and 
implementation of 4IR technologies) as well as to larger revenues from the sale of products that 
incorporate 4IR technologies. Although, at a first glance, it may be surprising that such positive 
productivity effects do not translate into higher profitability, it should be noted that the 
development of 4IR technologies requires huge, sunk investments (Schwab, 2017; Venturini, 
2019). While these costs do not enter our productivity indexes directly, they significantly impact 
the profitability of firms. Therefore, it may take several years for initial investments to become 
profitable. Moreover, new market segments with high expectations have not yet taken off. For 
example, despite being promising, the driverless car market is struggling with technological and 
regulatory issues (among others) and still in its infancy (Cummings and Ryan, 2014). 

Second, firms that started developing 4IR technologies earlier seem to capitalise more on 
productivity than those that started later. This effect may emerge for various reasons. 
Experience in 4IR patenting seems to indicate a first-mover advantage, as more experienced 
firms achieve higher productivity gains. Our results suggest that climbing the 4IR learning curve 
can bring important benefits, at least in terms of total factor productivity and labour productivity. 
This is also confirmed by our other result, which shows the positive contribution of persistence 
in 4IR technology development on productivity (Demirel and Mazzucato, 2012; Deschryver, 
2014). More in general, our research contributes to the literature on the advantages and 
disadvantages of being a first mover. In the case of 4IR technologies, building a history of 4IR 
technology development from the outset seems to pay off in terms of economic performance. 
This conclusion is in line also with the emerging state of 4IR technologies, where further technical 
developments and new market applications can potentially trigger future innovations (Adner and 
Levinthal, 2002) and even more robust economic performance (e.g., concerning profitability). 

Third, productivity gains originating from the development of 4IR technologies seem to be mainly 
due to the domains of wireless technology and of AI, cognitive computing and big data analytics. 
This evidence confirms the importance of developing the technological infrastructure for other 
4IR technologies in order to obtain efficiency gains (i.e., 5G) and the potential GPT role of 
prediction algorithms for the technological change. Overall, this resonates well with the great 
expectations put in these technologies by policy makers, managers and the popular press in the 
recent period. 

Our study has several implications for firm strategy. First, our results confirm that the timing of 
entry is highly relevant when new technologies emerge. Being a first mover generally offers 
clear advantages over competitors, as first-patenting firms can thwart competitors, enjoy a 
(temporary) monopoly and reap performance benefits. Our study shows that even when the 
technological domain is broad and highly dynamic (such as the 4IR domain), capitalising on early 
technological development and valuable knowledge still matters. Second, the combination of 
different technologies seems to be relevant, thus urging firms to orchestrate and coordinate 
distinctive know-how that emerges at different times. This requires an in-depth analysis of past 
accumulated experience and a fine-grained scrutiny of existing know-how. Third, some 
technologies in the 4IR remit seem to matter more than others (at least, to date) in reaping 
efficiency benefits. Nevertheless, as profitability gains have not materialised (yet), firms need 
to be alert and carefully pick future investment decisions in new 4IR technological developments. 

Future research may shed light on these mechanisms and find invariants in firms’ behaviour, 
thereby possibly overcoming the limitations of our research. The first limitation has to do with 
the measurement of 4IR technology development. The patent data that we used suffer from the 
usual drawbacks. The quality of patents differs, and patents can be filed for competitive and 
strategic reasons. Moreover, patents are just one component of a firm’s knowledge stock (e.g., 
quality of human capital). Second, the availability of data for longer periods is also critical for 
the analysis of emerging technological domains. Third, quantitative analyses are a robust way 
of investigating complex phenomena, but triangulation through quantitative and qualitative 
methodologies can shed light on some aspects that this research has just touched on the surface. 
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Table 1. Summary statistics: general information 

Variable 
Mean 

% 
Std. dev. 25th Pct. Median 75th Pct. Min. Max. 

Dependent variables 

TFP (log) 6.764 0.628 6.305 6.717 7.159 5.334 8.923 

Labour 
productivity 
(log) 

5.839 0.597 5.411 5.776 6.201 4.260 7.977 

ROI 0.091 0.114 0.026 0.084 0.145 -0.410 0.696

Independent variables 

Deflated stock 
of 4IR patents 
(log) 

1.132 1.034 0.381 0.894 1.546 0.000 6.070 

Deflated stock 
of non-4IR 
patents (log) 

5.552 1.847 4.202 5.602 6.845 0.187 10.190 

Capital-to-
labour ratio 
(log) 

4.284 0.961 3.666 4.262 4.876 0.196 7.858 

Employment 
(log) 8.498 1.779 7.089 8.293 9.690 5.549 12.981 

Intangible 
fixed assets 
over total 
assets 

0.102 0.146 0.009 0.031 0.137 0.000 0.781 

Other variables 

Employment 23,748 53,931 1,199 3,997 16,153 257 434,246 

Revenues 
(1,000 Euros) 9,183,407 21,156,902 376,287 1,479,154 6,261,546 51,589 164,682,400 

Labour 
productivity 
(1,000 Euros) 

418.654 321.966 223.842 322.499 493.253 70.801 2,912 

Year of 
incorporation 1957.656 40.599 1930 1969 1991 1805 2012 

Manufacturing 81.23% 

Services 18.77% 

Firm-year observations: 1,492 
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Firms: 491 

Source: ORBIS-IP (years: 2009–2014) 

We have shifted the distribution of the deflated stocks of both 4IR patents and non-4IR patents by 1 unit 
in order not to miss observations with 0 values in the logarithmic transformations. 



 

30 

 

Table 2. Summary statistics: 4IR patents; overall view, by experience in 4IR patenting activity 
and by starting period of 4IR patenting activity 

 

Variable Mean Std. 
dev. 25th Pct. Median 75th Pct. Min. Max. 

Overall view 

Deflated stock of 4IR 
patents 7.580 31.425 0.463 1.445 3.692 0 431.615 

Deflated stock of non-4IR 
patents 1,208 2,997 65.796 270.020 938.568 0.206 26,642 

Deflated stock of overall 
patents 1,215 3,012 66.931 270.877 940.923 0.272 26,662 

Firm-year observations: 1,492 

Firms: 491 

By experience in 4IR patenting activity 

Deflated stock of 4IR 
patents of firms with 
limited experience 

1.830 2.530 0.522 1.228 2.434 0 24.250 

Firm-year observations: 332 

Deflated stock of 4IR 
patents of firms with 
medium experience 

5.984 24.933 0.522 1.518 3.667 0.087 431.615 

Firm-year observations: 781 

Deflated stock of 4IR 
patents of firms with high 
experience 

15.908 50.031 0.270 1.748 6.538 0.012 360.030 

Firm-year observations: 379 

By starting period of 4IR patenting activity 

Deflated stock of 4IR 
patents  

of early 4IR applicants 
(1985–1994)  

17.765 49.559 0.410 2.409 8.149 0.012 360.030 

Firm-year observations: 279 

Deflated stock of 4IR 
patents of intermediate 
4IR applicants (1995–
2004) 

8.736 35.981 0.455 1.739 4.500 0.054 431.615 

Firm-year observations: 568 

Deflated stock of 4IR 
patents of late 4IR 

2.158 3.279 0.522 1.044 2.573 0 43.682 
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applicants (2005–2014) 

Firm-year observations: 645 

Source: ORBIS-IP (years: 2009–2014) 

Experience is defined as the number of years since the first 4IR patent application. Experience is set to 
1 for the year in which the firm files its first 4IR patent, it is set to 2 for the subsequent year, and so on. 
We take the panel-average experience and divide firms into three categories, firms with limited, medium 
or high experience, if their panel-average experience is below the 25th percentile, within the 25th and 
75th percentiles and above the 75th percentile, respectively. “Early 4IR applicants” are firms that started 
their 4IR patenting activity between 1985 and 1994. “Intermediate” refers to the 1995–2004 decade 
and “late 4IR applicants” identify firms whose first 4IR patent was filed between 2005 and 2014. 
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Table 3. Summary statistics: 4IR patents; by technology 

Variable Mean Std. 
dev. 

25th 
Pct. Median 75th

Pct. Min. Max. 

Deflated stock of wireless technology 
4IR patents 2.002 9.964 0 0.321 1.700 0 190.100 

Deflated stock of IIoT 4IR patents 3.380 22.310 0 0 0.781 0 369.777 

Deflated stock of CPS 4IR patents 0.817 2.623 0 0 0.614 0 34.496 

Deflated stock of AR 4IR patents 1.435 8.042 0 0 0 0 168.372 

Deflated stock of cloud 
computing/manufacturing 4IR 
patents 

0.105 0.526 0 0 0 0 9.058 

Deflated stock of AI, cognitive 
computing and big data analytics 4IR 
patents 

0.097 0.408 0 0 0 0 3.667 

Firm-year observations: 1,492 

Firms: 491 

Intensity of wireless technology 4IR 
patents 0.443 0.437 0 0.335 1 0 1 

Intensity of IIoT 4IR patents 0.238 0.351 0 0 0.387 0 1 

Intensity of CPS 4IR patents 0.212 0.350 0 0 0.286 0 1 

Intensity of AR 4IR patents 0.117 0.270 0 0 0 0 1 

Intensity of cloud 
computing/manufacturing 4IR 
patents 

0.025 0.118 0 0 0 0 1 

Intensity of AI, cognitive computing 
and big data analytics 4IR patents 0.025 0.129 0 0 0 0 1 

Firm-year observations: 1,402 

Firms: 491 

Source: ORBIS-IP (years: 2009–2014) 

The “intensity” of a particular 4IR technology is computed as the deflated stock of 4IR patents in that 
particular 4IR technology domain over the total stock of 4IR patents. It is defined when the latter stock 
is positive (i.e., when the firm has at least one 4IR patent application). 
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Table 4. The impact of 4IR technology development on productivity and profitability 

Dep. var.: TFP 
(log) 

Dep. var.: labour 
productivity (log) 

Dep. var.: 
ROI 

Deflated stock of 4IR patents (log) 
at t-1 

-0.009 -0.011 -0.015

(0.010) (0.013) (0.010) 

Deflated stock of 4IR patents (log) 
at t-2 

0.023** 0.022* 0.002 

(0.009) (0.012) (0.010) 

Deflated stock of non-4IR patents 
(log) at t-1 

0.011 0.019 -0.003

(0.013) (0.011) (0.012) 

Deflated stock of non-4IR patents 
(log) at t-2 

-0.007 -0.003 0.013 

(0.014) (0.016) (0.008) 

Firm-level controls Yes Yes Yes 

Time dummies Yes Yes Yes 

Time*industry dummies Yes Yes Yes 

Time*country dummies Yes Yes Yes 

Firm fixed effects Yes Yes Yes 

Firm-year observations: 1,492 

Firms: 491  

Source: ORBIS-IP data set (years: 2009–2014) 

Standard errors, reported in parentheses, are robust and clustered at the sector and firm level. ***, ** 
and * denote, respectively, the 1%, 5% and 10% significance levels. We have shifted the distribution of 
the deflated stocks of both 4IR patents and non-4IR patents by 1 unit in order not to miss observations 
with 0 values in the logarithmic transformations. Firm-level controls include employment (number of 
employees; log), capital-to-labour ratio (log) and intangible assets over total assets; all at t-1 and t-2. 
Industry dummies are at the 2-digit level of the NACE Rev. 2 classification of economic activities. Country 
dummies identify the 14 countries represented by the firms in our sample. 



Table 5. The impact of 4IR technology development on productivity by experience and 
continuity in 4IR patenting activity 

Experience; dep. var.: TFP (log) 

Deflated stock of 4IR patents (log) at t-2*firm with limited 
experience 

0.013 (0.017) 

Deflated stock of 4IR patents (log) at t-2*firm with medium 
experience 

0.021 (0.017) 

Deflated stock of 4IR patents (log) at t-2*firm with high 
experience 

0.038*** (0.011) 

Experience; dep. var.: labour productivity (log) 

Deflated stock of 4IR patents (log) at t-2*firm with limited 
experience 

0.010 (0.018) 

Deflated stock of 4IR patents (log) at t-2*firm with medium 
experience 

0.021 (0.018) 

Deflated stock of 4IR patents (log) at t-2*firm with high 
experience 

0.041*** (0.014) 

Continuity; dep. var.: TFP (log) 

Deflated stock of 4IR patents (log) at t-2*firm with limited 
continuity  

0.037 (0.032) 

Deflated stock of 4IR patents (log) at t-2*firm with medium 
continuity 

0.008 (0.024) 

Deflated stock of 4IR patents (log) at t-2*firm with high 
continuity 

0.023** (0.009) 

Continuity; dep. var.: labour productivity (log) 

Deflated stock of 4IR patents (log) at t-2*firm with limited 
continuity 

0.046 (0.048) 

Deflated stock of 4IR patents (log) at t-2*firm with medium 
continuity 

0.007 (0.022) 

Deflated stock of 4IR patents (log) at t-2*firm with high 
continuity 

0.021* (0.012) 

Firm-year observations: 1,492 

Firms: 491 

Source: ORBIS-IP data set (years: 2009–2014) 

Standard errors, reported in parentheses, are robust and clustered at the sector and firm level. 
***, ** and * denote, respectively, the 1%, 5% and 10% significance levels. These estimates 
include the same set of controls as the estimations in Table 4. Interactions between the deflated 
stock of 4IR patents at t-1 and the three categories for experience/continuity are also included. 
Experience is defined as in Table 2. Continuity is defined as the number of years in which the firm 
has filed at least one 4IR patent application over the number of years since it became active in 



4IR patenting (i.e., experience). It ranges between 0 and 1. It equals 1 when the firm has filed at 
least one 4IR patent application in each year since it became active in 4IR patenting, whereas it 
approaches 0 when 4IR patenting activity is more sporadic. We take the panel-average continuity 
and divide firms into three categories (firms with low, medium and high continuity) according to 
the same classification we adopted for experience (below the 25th percentile, within the 25th and 
75th percentiles and above the 75th percentile). For other information, see the footnote to Table 4. 



Table 6. The impact of 4IR technology development on productivity by starting period 
of 4IR patenting activity 

Starting period; dep. var.: TFP (log) 

Deflated stock of 4IR patents (log) at t-2*early 4IR applicant 0.040*** (0.010) 

Deflated stock of 4IR patents (log) at t-2*intermediate 4IR 
applicant 

0.021 (0.022) 

Deflated stock of 4IR patents (log) at t-2*late 4IR applicant 0.015 (0.015) 

Starting period; dep. var.: labour productivity (log) 

Deflated stock of 4IR patents (log) at t-2*early 4IR applicant 0.040*** (0.012) 

Deflated stock of 4IR patents (log) at t-2*intermediate 4IR 
applicant 

0.023 (0.026) 

Deflated stock of 4IR patents (log) at t-2*late 4IR applicant 0.012 (0.016) 

Firm-year observations: 1,492 

Firms: 491 

Source: ORBIS-IP data set (years: 2009–2014) 

Standard errors, reported in parentheses, are robust and clustered at the sector and firm level. 
***, ** and * denote, respectively, the 1%, 5% and 10% significance levels. These estimates 
include the same set of controls as the estimations in Table 4. Interactions between the deflated 
stock of 4IR patents at t-1 and the three categories for starting period are also included. “Early 
4IR applicant”, “intermediate 4IR applicant” and “late 4IR applicant” are defined as in Table 2. For 
other information, see the footnote to Table 4. 



Table 7. The impact of 4IR technology development on productivity by technology 

Dep. var.: TFP 
(log) 

Dep. var.: labour 
productivity (log) 

Deflated stock of wireless technology 4IR patents 
(log) at t-2 0.041** 0.031* 

(0.018) (0.017) 

Deflated stock of IIoT 4IR patents (log) at t-2 -0.002 -0.003

(0.010) (0.014) 

Deflated stock of CPS 4IR patents (log) at t-2 -0.004 0.002 

(0.017) (0.017) 

Deflated stock of AR 4IR patents (log) at t-2 -0.014 -0.002

(0.017) (0.017) 

Deflated stock of cloud computing/manufacturing 4IR 
patents (log) at t-2 0.016 0.020 

(0.040) (0.042) 

Deflated stock of AI, cognitive computing and big data 
analytics 4IR patents (log) at t-2 0.067* 0.062 

(0.040) (0.055) 

Firm-year observations: 1,492 

Firms: 491 

Source: ORBIS-IP data set (years: 2009–2014) 

Standard errors, reported in parentheses, are robust and clustered at the sector and firm level. 
***, ** and * denote, respectively, the 1%, 5% and 10% significance levels. These estimates 
include the same set of controls as the estimations in Table 4. Controls for the deflated stocks of 
4IR patents by technology at t-1 are included. For other information, see the footnote to Table 4. 



Appendices 

A. The construction of the data set

The patent-level information contained in ORBIS-IP includes the application number and 
date of a patent, CPC codes and information on the applicants. As for firm-level 
information, ORBIS-IP includes balance-sheet data, the number of employees, as well as 
the firm’s year of incorporation, sector of economic activity and location. 

To identify the firms involved in 4IR technology development, we used the 4IR patent 
applications filed at the EPO. This was possible thanks to the matched patent-firm nature 
of the ORBIS-IP data set, whereby each firm in the data is linked to its patent applications 
through a unique firm identifier, called “bvdid”. We considered 4IR patents filed between 
2009 and 2014 to select the firms that constitute our sample. This means that each firm 
in the sample filed at least one 4IR patent application between 2009 and 2014. We 
restricted the attention to this period for two reasons. First, we were not able to obtain 
firm-level data (i.e., those necessary to construct performance outcomes) before 2009.28 
Second, we selected 2014 as the last year of observation to avoid truncation (and 
selection) problems arising from the publication lag associated with patent filings.29 

After having identified the firms in our sample, we reconstructed their histories in 4IR 
technology development by going back as far as 30 years. We thus computed their stocks 
of 4IR patents filed since 1985. This allowed us to have a more precise measure of the 
firms’ technological capabilities related to 4IR innovations. It also allowed us to construct 
detailed long-run indexes of experience and continuity in 4IR technology development and 
to differentiate the firms according to their starting period of 4IR patenting activity.  

We then gathered the necessary firm-level information, including balance-sheet variables 
used to construct the performance indexes and firm-level controls. For consistency with 
patent-level information related to 4IR technologies, we also reconstructed the firms’ 
technological capabilities in non-4IR innovations, by computing their stocks of non-4IR 
patents from 1985 onwards.  

Finally, by exploiting rich information on ownership and corporate structure provided by 
ORBIS-IP, we reconstructed the ownership structure of the firms and grouped those 
belonging to the same corporate group. We used the information on the so-called “global 
ultimate owner”, whereby – under different possible configurations – a given entity is 
reported as being the ultimate owner of a firm. The possible criteria to identify a firm’s 
ultimate owner are mainly related to the percentage of stock ownership and the type of 
entity, and include, for instance, whether the entity is a business firm, a financial holding 
company, a physical person or a government. As concerns the type of entity, we set 
business firms as admissible ultimate owners. As far as the percentage of stock ownership 
is concerned, we set the thresholds according to those typically used in the literature (see, 
for instance, Belenzon and Berkovitz, 2010). We set a minimum threshold of 50% of stock 
ownership for non-publicly listed firms, whereas we set a less restrictive threshold of 25% 
if the firm was publicly owned. Ownership is more dispersed in publicly listed firms, and a 
less rigid threshold is more suitable in this case (Belenzon and Berkovitz, 2010).  

The thus defined ultimate owners were then used to group our sample firms. In particular, 
we aggregated firms according to their ultimate owners by summing the relevant 
variables.30 Grouping firms that belong to the same corporate group was crucial because it 

28 ORBIS-IP provides a 10-year history of firm-level information from the time of data extractions. 
29 The EPO publishes patents as soon as possible after the expiry of a period of 18 months from the filing. As a 

result of this publication lag, it is common in the literature to limit the attention to patents filed some years 
before (e.g., see Webb et al., 2018). 

30 As far as balance-sheet information is concerned, we summed the variables from the unconsolidated balance 
sheets. As for the non-numeric variables (e.g., year of incorporation and country or industry), we attached 



allowed us to explicitly take into account any effects stemming from group dynamics. 
Belonging to a group in which other firms develop 4IR technologies might have had an 
impact on a firm’s development of 4IR technologies (and performance), for instance, 
through sharing knowledge between the parent company and affiliate firms, receiving 
external financial support, and other forms of synergic effects. We chose business firms as 
the admissible ultimate owners because we wanted to precisely capture the situations in 
which those synergic effects most likely materialised, that is, when the linkage between 
the parent company and the other firms in the group is expressed in ways that are not 
only related to a mere financial control, without any exchange of knowledge and common 
strategic goals. 

As discussed in the main text, we here focused on large firms. We followed the OECD 
classification and defined large firms as those that employ more than 250 workers. We 
focused on firms with their headquarters in the United States, Germany, Japan, Italy, the 
United Kingdom, South Korea, France, Belgium, Sweden, Finland, Spain, the Netherlands, 
China and Austria. This choice was made to obtain a reasonable minimum number of 
observations for each country, which we set to 10 observations. Finally, since we ran 
within-firm estimations with one- and two-year lagged variables, we had to focus on 
companies with at least four years of observations. 

the value of the company with the highest revenues in the group. When we refer to a “firm”, we mean the 
group of firms aggregated on the basis of the previously defined common ultimate owner. 
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