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Abstract

In this paper, we study the distributional properties of the tangency portfolio

(TP) weights assuming a normal distribution of the logarithmic returns. We derive

a stochastic representation of the TP weights that fully describes their distribution.

Under a high-dimensional asymptotic regime, i.e. the dimension of the portfolio,

k, and the sample size, n, approach infinity such that k/n → c ∈ (0, 1), we deliver

the asymptotic distribution of the TP weights. Moreover, we consider tests about

the elements of the TP and derive the asymptotic distribution of the test statistic

under the null and alternative hypotheses. In a simulation study, we compare the

asymptotic distribution of the TP weights with the exact finite sample density. We

also compare the high-dimensional asymptotic test with an exact small sample test.

We document a good performance of the asymptotic approximations except for

small sample sizes combined with c close to one. In an empirical study, we analyze

the TP weights in portfolios containing stocks from the S&P 500 index.

MSC: 62H10, 62H12, 91G10.
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1 Introduction

The fundamental goal of the portfolio theory introduced by Markowitz (1952) is to effi-

ciently allocate investments among various assets. The mean-variance optimization tech-

nique serves as a quantitative tool that considers the trade-off between the risk of the

portfolio and its return. In the formulation of the mean-variance analysis the investor

selects a portfolio with the highest expected return for a given level of risk or the smallest

risk for a given level of the expected return. The risk aversion strategy in the absence of

risk-free assets (bonds) leads to the minimum variance portfolio, whereas in the presence

of risk-free assets, the tangency portfolio (TP) is constructed and it consists of both risky

and risk-free assets. Moreover, it is the only portfolio that maximizes the Sharpe ratio.

Because of its significant role in finance for both researchers and practitioners, having a

full understanding of the properties of the TP becomes vital for any financial actor.

The statistical properties of the estimated TP weights are investigated in a number

of papers. Britten-Jones (1999) developed an exact finite sample F -test for TP weights.

Okhrin and Schmid (2006), under the assumption of independently and multivariate nor-

mally distributed returns, derived the univariate density of the TP weights as well as

its asymptotic distribution. Bodnar (2009) proposed a sequential monitoring procedures

for the TP weights, while Bodnar and Okhrin (2011) suggested several exact test of

general linear hypotheses about the elements of the portfolio weights. In Kotsiuba and

Mazur (2015), the asymptotic distribution and the approximate density function, based

on a third order Taylor series approximation, of the TP weights are derived. Bodnar

and Zabolotskyy (2017) considered the risk properties of the TP and concluded that

this portfolio is a very risky investment opportunity which should be carefully consid-

ered in practice. Bauder et al. (2018) studied different distributional properties of TP

weights from Bayesian statistics point of view. Bodnar et al. (2019b) analyzed the dis-

tributional properties of the estimated TP weights and proposed inference procedures in

small and high dimensions when both the population and the sample covariance matrices

are singular. A test of the existence of TP on the set of feasible portfolios is developed

by Muhinyuza et al. (2020) which is also extended to the high-dimensional setting by

Muhinyuza (2020). Higher-order moments of the estimated TP weights are obtained by

Javed et al. (2020), while Alfelt and Mazur (2020) studied the mean and variance of the

estimated TP weights for small samples.

The present paper complements the existing literature by delivering the stochastic

representation and asymptotic distribution of the estimated TP weights as well as the

asymptotic distribution of the statistical test about the elements of the TP. Asymptotic

results are delivered under a high-dimensional asymptotic regime, i.e. k/n → c ∈ (0, 1)

as k → ∞ and n → ∞, and assuming positive definiteness of the population covariance

matrix.

The remaining parts of this paper are organized as follow. In Section 2, we present a
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very useful stochastic representation of the estimated TP weights that depicts their distri-

bution. The obtained stochastic representation is then used in the derivation of the high-

dimensional asymptotic distribution of the estimated TP weights and high-dimensional

asymptotic test on the TP weights. In Section 3, we present the results of the simulation

and empirical studies, while the summary and concluding remarks are given in Section 4.

All proofs are collected in the appendix.

2 Main Results

We consider a portfolio that consists of k risky assets. Let xt = (x1t, . . . , xkt)
T be the

k-dimensional vector of log-returns of these assets at time point t = 1, . . . , n, and w =

(w1, . . . , wk)
T be a vector of weights, where wi denotes the portion of the wealth allocated

to the ith asset. Let also the mean vector of the asset returns be denoted by µ and

the covariance matrix by Σ which assumed to be positive definite. Following the mean-

variance theory introduced by Markowitz (1952), an investor allocates her/his wealth

among k risky assets by maximizing the portfolio expected return for a given level of the

portfolio risk or, equivalently, by minimizing the risk given some predetermined level of

the portfolio expected return. In this context, the risk is measured by the variance of

the portfolio return. Levy and Markowitz (1979) and Kroll et al. (1984) showed that

the mean-variance portfolio problem is equivalent to maximizing the expected quadratic

utility. In the absence of a risk-free asset, the optimal portfolio is obtained by maximizing

the expected quadratic utility under the constraint wT jk = 1, where jk denotes the vector

of ones. On the other hand, if short selling is allowed and there is a possibility to invest

in the risk free-asset with return rf , a portion of an investor’s wealth may be invested

in the risk-free asset and it may reduce the variance, while the rest of the wealth can be

invested in the risky assets. In this case, the expected return of the portfolio is given by

µp = wT (µ−rf jk)+rf with the variance σ2
p = wTΣw. The optimal portfolio composition

of the tangency portfolio (TP) is obtained by solving the following optimization problem

µp −
α

2
σ2
p → max

w
(1)

where the coefficient α describes the investor’s attitude towards risk or risk aversion.

All portfolios from the tangent line are obtained by varying α ∈ (0,∞). The higher

value of the risk aversion representing lesser tolerance to risk. The risk aversion level

can be looked as a characteristic of the investor’s indifference curve which represents the

investor’s preference for risk and return. How to choose or fix the value of α in practice

is not obvious and a number of papers have suggested different approaches to estimating

the risk aversion coefficient (see, e.g.,Chetty (2003); Campo et al. (2011); Bodnar and

Okhrin (2013); Bodnar et al. (2018b)).
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Figure 1: A graphical illustration of the efficient frontier in the presence of risk-free asset.

When solving the maximization problem defined in (1), we note that short sales are

allowed and there are no restrictions on the portfolio weights, therefore, the optimization

problem is unconstrained. Consequently, it is easy to see that the global maximum, i.e.

the TP weights, is given by

wTP = α−1Σ−1 (µ− rf jk) . (2)

Equation (2) gives the structure of the optimal portfolio composition corresponding to

the risky assets only, whereas the portion invested into the risk-free asset is determined by

1−wT
TP jk. Ingersoll (1987) defined a TP as a tangent point which lies on the intersection

of the mean-variance frontier and the tangency line drawn from the return of the risk-free

asset (see Figure 1).

The optimal portfolio weights depend on the unknown parameters µ and Σ and in

practice they need to be estimated. Using the random sample we estimate the parameters

by their sample counterparts as

x =
1

n

n∑
t=1

xt and S =
1

n− 1

n∑
t=1

(xt − x) (xt − x)T .

Replacing µ and Σ with x and S in (2), we get the sample estimator of the TP weights

given by

ŵTP = α−1S−1 (x− rf jk) . (3)
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In practice, interest is often focused on just a few weights. In addition, analysis of the

whole vector becomes impractical as the dimensions k increases. We will hence focus on

the linear combination of wTP that is given by

θ = lTwTP = α−1lTΣ−1 (µ− rf jk) ,

where l is a k-dimensional vector of constants. Consequently, the sample estimator of θ

is expressed as

θ̂ = lT ŵTP = α−1lTS−1 (x− rf jk) .

By choosing different vectors l we are able to provide information about different

linear combinations of the TP weights and more insights into the behaviour of the TP.

For example, by choosing l = (1, 0, . . . , 0)T , an investor is able to study the behaviour of

the first asset in the portfolio. Similarly, if l = (1, 1, 0, . . . , 0)T an investor is interested

in the behaviour of the TP weights the two first assets of the portfolio. Taking l = jk an

investor can study the share of the portfolio invested in risky assets.

In the following proposition, we derive a stochastic representation of θ̂. The stochastic

representation is a powerful tool in the theory of multivariate statistics, it can be used

to determine the distribution of random quantity as the distribution of functions of in-

dependent random variables with the standard probability distributions. It also plays an

important role in both frequentist and Bayesian statistics (see Givens and Hoeting (2012),

Bodnar et al. (2017a), Bauder et al. (2018)). Its usefulness is frequently remarkable in

Monte Carlo simulations (Givens and Hoeting (2012)) as well as in elliptical contoured

distributions (Gupta et al. (2013)).

Proposition 1. Let x1, . . . ,xn be identically and independently distributed random vectors

with x1 ∼ Nk(µ,Σ), k < n. Also, let l be a k-dimensional vector of constants. Then the

stochastic representation of θ̂ = lT ŵTP is given by

θ̂
d
=
n− 1

ξ

(
θ + α−1z0

√(
1

n
+

k − 1

n(n− k + 1)
u

)
lTΣ−1l

)
,

where ξ ∼ χ2
n−k, z0 ∼ N (0, 1) and u ∼ F(k−1, n−k+ 1, ns) with s = (µ− rf jk)TRl(µ−

rf jk) and Rl = Σ−1 − Σ−1llTΣ−1/lTΣ−1l. Moreover, the random variables ξ, z0 and u

are mutually independently distributed.

The proof of Proposition 1 can be found in the appendix. From Proposition 1, we have

a stochastic representation of θ̂ as a function of independently distributed χ2, standard

normal and non-central F random variables. It is worth noting that the application of

Proposition 1 speeds up the simulation of θ̂, since it is sufficient to simulate only three
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univariate random quantities instead of generating a sample mean vector and sample

covariance matrix that can have high dimensions. Proposition 1 also plays an important

role in the derivation of the distribution of the linear combination of the estimated TP

weights in high dimensions.

Remark 1. According to (3), the sample estimator of the TP weights ŵTP depends on

the inverse of the sample covariance matrix S. In Proposition 1, it is assumed that

k < n and this assumption ensures that the distribution of S is non-singular, therefore,

the regular inverse of S can be taken. If k > n, the distribution of S is singular and

the regular inverse cannot be used. This issue is discussed in the portfolio context by

utilizing Moore-Penrose inverse (see Bodnar et al. (2016, 2017b), Tsukuma (2016), Bodnar

et al. (2019b)). Alternatively, one can use different regularization techniques such as the

ridge-type approach (Tikhonov and Arsenin (1977)), the Landweber Fridman iterative

algorithm (Kress (1999)), the spectral cut-off (Chernousova and Golubev (2014)), a form

of Lasso (Brodie et al. (2009)), and an iterative method based on a second order damped

dynamical systems (Gulliksson and Mazur (2019)).

Remark 2. In the Bayesian setting, the posterior distribution of the covariance matrix

Σ is inverse Wishart. Consequently, the posterior distribution of wTP can be expressed

as the product of the (singular) Wishart matrix and a normal vector. The distributional

properties of this product are well studied by Bodnar et al. (2013, 2014), Bodnar et al.

(2018a), Bodnar et al. (2019a).

Next, we study the asymptotic behaviour of θ̂ = lT ŵTP under a high-dimensional

asymptotic regime, that is, the portfolio size k increases together with the sample sizes n

and they all tend to infinity. More precisely, we assume that kn ≡ k(n) and cn := kn/n→
c ∈ (0, 1) as k → ∞ and n → ∞. The following condition is needed for ensuring the

validity of the asymptotic results presented in this section:

(A1) there exists m and M such that 0 < m ≤ µTΣ−1µ ≤M <∞, 0 < m ≤ jTΣ−1j ≤
M <∞ and 0 < m ≤ lTΣ−1l ≤M <∞ uniformly in k.

Let us note that we don’t have assumptions about the eigenvalues of the population

covariance matrix Σ. Consequently, one can consider the case when Σ has unbounded

spectrum.

In the next theorem we deliver the high-dimensional asymptotic distribution of a linear

combination of the estimated TP weights for normally distributed data.

Theorem 1. Let x1, . . . ,xn be identically and independently distributed random vectors

with x1 ∼ Nk(µ,Σ), k < n. Let cn := kn/n → c ∈ (0, 1) as n → ∞. Also, let l

be a k-dimensional vector of constants. Then, under (A1), it holds that the asymptotic

distribution of θ̂ = lT ŵTP is given by

√
n− knσ−1

(
θ̂ − n− 1

n− kn
θ

)
D→ N (0, 1)
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where

σ2 =
α−2

(1− c)2
[
lTΣ−1l + (αθ)2 + lTΣ−1l(µ− rf jk)TΣ−1(µ− rf jk)

]
.

The proof of Theorem 1 is provided in the appendix. From Theorem 1, we can observe

that the sample estimator of θ is biased and, therefore, bias correction can be applied. In

Corollary 1, we construct an unbiased estimator of θ and deliver its central limit theorem

in the high-dimensional setting. The statement of the corollary follows immediately from

Theorem 1.

Corollary 1. Let θ̃ = n−kn
n−1 θ̂. Under the assumptions of Theorem 1, θ̃ is asymptotically

unbiased with asymptotic distribution√
n− knσ̆−1

(
θ̃ − θ

)
D→ N (0, 1)

where

σ̆2 = α−2lTΣ−1l + θ2 + α−2lTΣ−1l(µ− rf jk)TΣ−1(µ− rf jk).

Having established the asymptotic distribution we next consider testing the hypothesis

H0 : lTwTP = 0 against H1 : lTwTP = ρ 6= 0. (4)

in a high dimensional setting. Bodnar and Okhrin (2011) suggested the following test

statistics for (4)

T =

√
n(n− kn)

n− 1

αθ̂√
lTS−1l

√
1 + n

n−1 ŝ
,

where ŝ = (x − rf jk)T R̂l(x − rf jk) and R̂l = S−1 − S−1llTS−1/lTS−1l. Moreover, they

delivered the distribution of T both under the null and under alternative hypotheses.

It follows from Bodnar and Okhrin (2011, Theorem 6) that the power of the test is

given by

GT,ψ(λ, s) = 1− n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

(
Ftn−k,v(λ,y)(tn−k;1−ψ/2)− Ftn−k,v(λ,y)(tn−k;ψ/2)

)
×fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy

where ψ denotes the size of the test, λ = αρ/
√

lTΣ−1l, s = (µ − rf jk)
TRl(µ − rf jk),

tn−k,v(λ,y) stands for a non-central t-distribution with n − k degrees of freedom and non-

centrality parameter v(λ, y) = λ/
√

1/n+ y/(n− 1), while tn−k,ψ denotes the ψ-quantile
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Figure 2: Power of the test statistic T as a function of λ for s ∈ {1/2, 1, 2}, n = 100 and
k ∈ {10, 90}.

of the central t-distribution with n − k degrees of freedom. The power of the test thus

only depends on the true alternative, ρ, and the parameters µ and Σ through λ and s

where we can think of λ as the standardized alternative and s as the slope of the efficient

frontier.

In Figure 2, we illustrate the behaviour of the power of the test statistic T as a function

of λ for fixed values of s ∈ {1/2, 1, 2}. We consider the sample size to be n = 100 and

portfolio size to be k ∈ {10, 90}. We observe that the power of the test increase as s

decreases. We also note that the test rejects the null hypothesis for small values of λ.

The theorem below gives us the distribution of the test statistics T in a high dimen-

sional setting, while its proof can be found in the appendix.

Theorem 2. Let x1, . . . ,xn be identically and independently distributed random vectors

with x1 ∼ Nk(µ,Σ), k < n. Let cn := kn/n → c ∈ (0, 1) as n → ∞. Also, let l

be a k-dimensional vector of constants. Then, under (A1), it holds that the asymptotic

distribution of T is given by

(a)

σ−1T

T − √
nαρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

(
1 + n

kn−1s
))
 D→ N (0, 1)
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where

σ2
T = 1 +

(αρ)2

lTΣ−1l(1 + s)

(
1

2
+
s2 + c+ 2s

2(1 + s)2

)
with s = (µ− rf jk)TRl(µ− rf jk) and Rl = Σ−1 −Σ−1llTΣ−1/lTΣ−1l;

(b) under the null hypothesis it holds that T
D→ N (0, 1).

3 Simulation and Empirical Studies

3.1 Simulation Study

In this subsection we present the results of a Monte Carlo simulation study. We investigate

the performance of the high-dimensional asymptotic distribution of a linear combination

of the TP weights derived in Theorem 1, and the power function of the high-dimensional

asymptotic test that is obtained in Theorem 2.

We set α = 3, rf = 0.005, and l = (1, 0, . . . , 0)T . Each element of µ is generated

from the uniform distribution on [−0.1, 0.1]. The population covariance matrix is drawn

as follow:

• k non-zero eigenvalues of Σ are generated from the uniform distribution on (0,1);

• the eigenvectors are generated from the Haar distribution by simulating a Wishart

matrix with 30 degrees of freedom and identity covariance, and calculating its eigen-

vectors.

Both the mean vector and the population covariance matrix obtained in this manner

satisfy assumption (A1), they are then used in all simulation runs.

First, we compare the asymptotic normal distribution of θ̂ = lT ŵTP with the corre-

sponding finite-sample one obtained by applying the stochastic representation obtained

in Proposition 1. We consider different sample size n ∈ {50, 120, 250, 500} which roughly

corresponds to the length of one-year, two-years, five-years and ten-years of weekly fi-

nancial data. The results are compared for different values of concentration coefficients

c ∈ {0.1, 0.4, 0.7, 0.9} and it is based on N = 105 independent realisations of θ̂ generated

from the finite-sample distribution. Lastly, the corresponding kernel density estimator of

the finite sample density is computed with Epanechnikov kernel. The following algorithm

is used in drawing the finite-sample density

a) generate θ̂ by using the stochastic representation given in Proposition 1

θ̂
d
=
n− 1

ξ

(
θ + α−1

√(
1

n
+

kn − 1

n(n− kn + 1)
u

)
lTΣ−1lz0

)

9



where ξ ∼ χ2
n−kn , z0 ∼ N (0, 1) and u ∼ F(kn − 1, n − kn + 1, ns) with s =

(µ− rf jk)TRl(µ− rf jk) and Rl = Σ−1−Σ−1llTΣ−1/lTΣ−1l; moreover, the random

variables ξ, z0 and u are mutually independently distributed;

b) compute

√
n− knσ−1

(
θ̂ − n− 1

n− kn
θ

)
(5)

with

σ2 =
α−2

(1− c)2
[
lTΣ−1l + (αθ)2 + lTΣ−1l(µ− rf jk)TΣ−1(µ− rf jk)

]
;

c) repeat a)-b) N times.

In Figures 3-6, we present the results of the simulation study for c ∈ {0.1, 0.4, 0.7, 0.9},
respectively. The finite-sample distribution of (5) is shown as dashed black lines, while the

asymptotic distribution (standard normal) is shown as solid black lines. We observe that

all obtained results show a good performance of the asymptotic approximation except for

c = 0.9 and n = 50 where the approximation performs badly. It is can be noted that even

for n = 50 and c ∈ {0.1, 0.4, 0.7} our asymptotic results seem to provide a reasonable

approximation.

From Theorem 1, we have that θ̂ is a biased estimator of θ. In Table 1, we study

behaviour of the relative bias, E(θ̂ − θ)/θ, for different values of the sample size n ∈
{50, 120, 250, 500} and concentration ratio c ∈ {0.1, 0.4, 0.7, 0.9}. The relative bias is in-

creasing in c and converges to c/(1− c) as n increases, confirming the result of Theorem

1 and indirectly showing that the bias correction of Corollary 1 works. It is also note-

worthy that the convergence is from above, i.e. the small sample bias is greater than the

asymptotic bias.

n c = 0.1 c = 0.4 c = 0.7 c = 0.9

50 0.1472 0.7377 2.7638 14.7060

120 0.1240 0.6933 2.5012 11.1048

250 0.1173 0.6849 2.4068 9.8687

500 0.1140 0.6746 2.3723 9.3402

∞, c/(1− c) 0.1111 0.6667 2.3333 9.0000

Table 1: Relative bias of θ̂ for different values of the sample size n ∈ {50, 120, 250, 500}
and concentration ratio c ∈ {0.1, 0.4, 0.7, 0.9}.

The second part of our simulation study compares the exact test with the high-

dimensional asymptotic test that is derived in Theorem 2. Table 2 reports on the empirical
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size of the exact and asymptotic tests for a nominal significance level of 5%. As can be

expected, the exact test has the correct size in all cases. The overall size properties of the

asymptotic test are also quite good although the test is oversized for large c and small n.

Figures 7-10 show the power of the exact and asymptotic tests for different values of c

and n as a function of λ with s = 1 and 5% nominal significance. For large n and/or small

c the power is almost indistinguishable while the asymptotic test shows larger power than

the exact test for small n and large c reflecting the oversized nature of the test.

c\n 50 120 250 500
Exact Asymptotic Exact Asymptotic Exact Asymptotic Exact Asymptotic

0.1 0.0512 0.0576 0.0503 0.0531 0.0504 0.0517 0.0497 0.0503
0.4 0.0504 0.0596 0.0502 0.0540 0.0505 0.0524 0.0506 0.0514
0.7 0.0508 0.0700 0.0502 0.0580 0.0503 0.0540 0.0510 0.0529
0.9 0.0505 0.1083 0.0496 0.0734 0.0508 0.0618 0.0504 0.0556

Table 2: Empirical size of the exact and asymptotic tests at 5% significance level

3.2 Empirical study

In this part, we present the results of an empirical study in which we show how the

theoretical results obtained in Section 2 can be applied to real data. We consider the

weekly averages of the daily log returns data from S&P 500 of 270 stocks for the period

from January 3, 2007, to December 27, 2017, making a total of 574 observations. We

use the weekly returns of the three-moths US treasury bill as the risk free-rate, and the

risk aversion coefficient is chosen to be 3. We choose to use weekly logarithmic returns

because they can be well approximated by Gaussian distribution (see Fama (1976), Tu

and Zhou (2004)).

In Figures 11-14, we present the dynamic behaviour of the p-values obtained from the

exact and the asymptotic tests on the hypotheses (4), specifically testing the hypothesis

that the weight of one stock is zero with l a vector of zeros except for one element set

to one, by using a rolling window estimator with an estimation window of 300 weeks,

i.e. n = 300. We analyze portfolios with different number of assets such that c ∈
{0.1, 0.4, 0.7, 0.9}, i.e. k ∈ {30, 120, 210, 270}. The figures present the results for four

stocks, Abbott Laboratories, Affiliated Managers Group Inc, Alphabet Inc Class A, and

3M Company, where we test – in turn – that the portfolio weight is zero. First of all,

we would note that the p-values obtained from both tests are indistinguishable indicating

that the high-dimensional asymptotic test performs well. Next, we can observe that in

most cases the obtained p-values are relatively large resulting in the conclusion that the

null hypothesis (4) cannot be rejected. However, the TP weights are significantly different

from zero for all considered stocks from the end of 2012 until the middle of 2014 for the

11



small portfolio size k = 30. For Abbott Laboratories and Affiliated Managers Group Inc

the TP weights are also significant well into 2017 and 2016, respectively. For larger k and

hence larger investment universes we find few occasions with significant TP weights. This

is hardly surprising for two reasons. With larger k and fixed sample size c increases and

we can expect lower power. In addition as the investment universe increases the true TP

weights will, on average across stocks, be smaller.

4 Conclusion

This paper discussed the statistical properties of the TP weights in high dimension. In

particular, we delivered the high-dimensional asymptotic distribution of the weights as

well as the high-dimensional asymptotic test on the weights. All theoretical results are

obtained under the assumption of normality and they can be extended to the more general

case which deserves a separate study. In particular, we are planning to develop new

techniques in random matrix theory that will be used for delivering a high-dimensional

theory on the weights with more general distributional assumptions. In future research,

we would also extend our results to the case when c > 1. This case is more complicated

since the weights will depend on the inverse of the singular sample covariance matrix.
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Appendix

In this section, we collect all the proofs of the main results delivered in Section 2.

Proof of Proposition 1. From Theorem 3.1.2 of Muirhead (1982), it follows that

x ∼ Nk
(
µ,

1

n
Σ

)
and (n− 1)S ∼ Wk(n− 1,Σ),

where Wk(n − 1,Σ) denotes a k-dimensional Wishart distribution with n − 1 degrees of

freedom and the parameter matrix Σ. Moreover, x and (n−1)S are independent. Apply-

ing Corollary 1 of Bodnar and Okhrin (2011), we get the statement of the proposition.
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Proof of Theorem 1. Using the stochastic representation obtained in Proposition 1, we

get

θ̂ − n− 1

n− kn
θ =

n− 1

ξ
θ + α−1

n− 1

ξ

z0√
n

√(
1 +

kn − 1

n− kn + 1
u

)
lTΣ−1l− n− 1

n− kn
θ

=
n− 1

n− kn

(
n− kn
ξ
− 1

)
θ + α−1

n− 1

ξ

z0√
n

√(
1 +

kn − 1

n− kn + 1
u

)
lTΣ−1l,

where ξ ∼ χ2
n−k, z0 ∼ N (0, 1) and u ∼ F(k−1, n−k+1, ns) with s = (µ− rf jk)TRl(µ−

rf jk) and Rl = Σ−1−Σ−1llTΣ−1/lTΣ−1l. Let us also note that ξ, u and z0 are mutually

independently distributed.

Since ξ ∼ χ2
n−k, the application of Lemma 3 in Bodnar and Reiß (2016) leads us to

ξ

n− kn
− 1

a.s.→ 0 and
√
n− kn

(
ξ

n− kn
− 1

)
D→ N (0, 2) (6)

for kn/n→ c ∈ (0, 1) as n→∞.

We also have that √
n− kn

z0√
n

D→ N (0, 1− c). (7)

Using the stochastic representation of a non-central F -distributed random variable,

i.e. u = ζ1/(kn−1)
ζ2/(n−kn+1)

with independent variables ζ1 ∼ χ2
kn−1,ns and ζ2 ∼ χ2

n−kn+1, we obtain

that

u− 1− ns

kn − 1
=

ζ1/(kn − 1)

ζ2/(n− kn + 1)
− 1− ns

kn − 1

=
n− kn + 1

ζ2

[(
ζ1

kn − 1
− 1− ns

kn − 1

)
−
(

1 +
ns

kn − 1

)(
ζ2

n− kn + 1
− 1

)]
.

From Lemma 3(a) in Bodnar and Reiß (2016) and using assumption (A1), we have that

ζ1
kn − 1

− 1− ns

kn − 1

a.s.→ 0 and
ζ2

n− kn + 1
− 1

a.s.→ 0.

Consequently, it holds that

u− 1− ns

kn − 1

a.s.→ 0⇒ u
a.s.→ 1 +

s

c
.

Hence, we get √(
1 +

kn − 1

n− kn + 1
u

)
lTΣ−1l

a.s.→
√

1 + s

1− c
lTΣ−1l (8)
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for kn/n→ c ∈ (0, 1) as n→∞.

We also have that

n− 1

ξ
=
n− 1

n− k
n− k
ξ

a.s.→ 1

1− c
(9)

for kn/n→ c ∈ (0, 1) as n→∞.

Taking into account (6), (7), (8) and (9), we get

√
n− kn

(
θ̂ − n− 1

n− kn
θ

)
=

n− 1

ξ
θ
√
n− kn

(
1− ξ

n− kn

)
+α−1

n− 1

ξ

√(
1 +

kn − 1

n− kn + 1
u

)
lTΣ−1l

√
n− kn

z0√
n

D→ 1

1− c
θz1 + α−1

1

1− c

√
1 + s

1− c
lTΣ−1lz2

where z1 ∼ N (0, 2) and z2 ∼ N (0, 1− c) and they are independently distributed.

Finally, the application of the properties of normal random variables leads to

√
n− knσ−1

(
θ̂ − n− 1

n− kn
θ

)
D→ N (0, 1),

where

σ2 =
2

(1− c)2
θ2 +

1

(1− c)2
α−2lTΣ−1l +

1

(1− c)2
α−2slTΣ−1l.

Let us note that

s = (µ− rf jk)TRl(µ− rf jk)
= (µ− rf jk)TΣ−1(µ− rf jk)− (µ− rf jk)TΣ−1llTΣ−1(µ− rf jk)/lTΣ−1l

and, therefore, we get that

α−2slTΣ−1l = α−2lTΣ−1l(µ− rf jk)TΣ−1(µ− rf jk)− θ2.

Hence, we obtain that

σ2 =
α−2

(1− c)2
[
lTΣ−1l + (αθ)2 + lTΣ−1l(µ− rf jk)TΣ−1(µ− rf jk)

]
.

The statement of the theorem is proved.
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Proof. From the proof of Proposition 1 of Bodnar and Schmid (2009), we know that the

conditional distribution of T is given by

T |ŝ = y ∼ tn−kn,υ(y)
n(n− kn + 1)

(kn − 1)(n− 1)
ŝ ∼ Fkn−1,n−kn+1,ns

with υ(y) =
√
nαρ√

lTΣ−1l(1+ n
n−1

y)
.

Using the stochastic representation of a non-central t-distribution, we obtain

T |ŝ = y
d
=

√
nαρ√

lTΣ−1l(1+ n
n−1

y)
+ z0√

ξ
n−kn

=

√
n− kn
ξ

 √
nαρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

u
) + z0


where z0 ∼ N (0, 1), ξ ∼ χ2

n−kn and u = n(n−kn+1)
(kn−1)(n−1) ŝ ∼ Fkn−1,n−kn+1,ns; moreover, z0, ξ

and u are independent.

We then have

T −
√
nαρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

(
1 + n

kn−1s
))

=

√
n− kn
ξ

 √
nαρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

u
) + z0

− √
nαρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

(
1 + n

kn−1s
))

=

√
n− kn
ξ

z0 +
αρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

u
)

×

√n
(√

n− kn
ξ
− 1

)
+
√
n

1−

√
1 + kn−1

n−kn+1
u√(

1 + kn−1
n−kn+1

(
1 + n

kn−1s
))

 .

Putting the third term on a common denominator, we get

1−

√
1 + kn−1

n−kn+1
u√

1 + kn−1
n−kn+1

(
1 + n

kn−1s
) =

√
1 + kn−1

n−kn+1

(
1 + n

kn−1s
)
−
√

1 + kn−1
n−kn+1

u√
1 + kn−1

n−kn+1

(
1 + n

kn−1s
) .
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Multiplying the numerator of the last expression by its conjugate, we obtain

1−

√
1 + kn−1

n−kn+1u√
1 + kn−1

n−kn+1

(
1 + n

kn−1s
) =

kn−1
n−kn+1

(
1 + n

kn−1s− u
)

√
1 + kn−1

n−kn+1

(
1 + n

kn−1s
)

+
√

1 + kn−1
n−kn+1u

× 1√
1 + kn−1

n−kn+1

(
1 + n

kn−1s
) .

Applying results from the proof of Theorem 1, we have that

u
a.s.→ 1 +

s

c
⇒
√

1 +
kn − 1

n− kn + 1
u

a.s.→
√

1 + s

1− c
(10)

and √
1 +

kn − 1

n− kn + 1

(
1 +

n

kn − 1
s

)
a.s.→

√
1 + s

1− c
. (11)

Using (10) and (11), the denominator becomes√
1 +

kn − 1

n− kn + 1

(
1 +

n

kn − 1
s

)
+

√
1 +

kn − 1

n− kn + 1
u

1√
1 + kn−1

n−kn+1

(
1 + n

kn−1s
)

a.s.→ 2
1 + s

1− c
(12)

for kn/n→ c ∈ (0, 1) as n→∞.

Using the stochastic representation of a non-central F distribution

u
d
=

η1/(kn − 1)

η2/(n− kn + 1)

with independent random variables η1 ∼ χ2
kn−1,ns and η2 ∼ χ2

n−kn+1, we have that

1 +
ns

kn − 1
− u d

= 1 +
ns

kn − 1
− η1/(kn − 1)

η2/(n− kn + 1)

=
1

η2/(n− kn + 1)

[(
η2

n− kn + 1
− 1

)(
1 +

ns

kn − 1

)
−
(

η1
kn − 1

− 1− ns

kn − 1

)]
.

Applying Lemma 3 in Bodnar and Reiß (2016), we obtain

η2
n− kn + 1

a.s.→ 1 and
η1

kn − 1
− 1− n

kn − 1
s
a.s.→ 0;
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moreover, it holds that

√
n

(
η2

n− kn + 1
− 1

)
D→ N

(
0,

2

1− c

)
,

√
n

(
η1

kn − 1
− 1− ns

kn − 1

)
D→ N

(
0,

2

c

(
1 + 2

s

c

))
,

for kn/n→ c ∈ (0, 1) as n→∞.

The application of Slutsky’s lemma leads to

√
n

(
1 +

ns

kn − 1
− u
)
D→ N

(
0,

2

c

(
1 + 2

s

c

)
+

2

1− c

(
1 +

s

c

)2)
. (13)

Hence, since ξ ∼ χ2
n−kn and the usage of (6) we have that

√
n

(√
n− kn
ξ
− 1

)
=

√
n
(
1− ξ

n−k

)
n−k
ξ√

n−k
ξ

+ 1

D→ 1

2
z̃1 (14)

where z̃1 ∼ N (0, 2
1−c).

Using (12) and (13), we obtain

√
n

1−

√
1 + kn−1

n−kn+1
u√(

1 + kn−1
n−kn+1

(
1 + n

kn−1s
))
 D→

c
1−c

21+s
1−c

z̃2 (15)

where z̃2 ∼ N (0, σ2
0) with σ2

0 = 2
c

(
1 + 2 s

c

)
+ 2

1−c

(
1 + s

c

)2
.

Putting everything together and taking into account (8), (14) and (15) we obtain

T −
√
nαρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

(
1 + n

kn−1s
)) D→ z̃0 +

αρ√
lTΣ−1l1+s

1−c

(
1

2
z̃1 +

c
1−c

21+s
1−c

z̃2

)

where z̃0 ∼ N (0, 1) and z̃1 and z̃2 are defined in (14) and (15), respectively. Moreover,

z̃0, z̃1 and z̃2 are independent.

Finally, the application of the properties of normal random variables leads to

σ−1T

T − √
nαρ√

lTΣ−1l
(
1 + k−1

n−k+1

(
1 + n

k−1s
))
 D→ N (0, 1)
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with

σ2
T = 1 +

(αρ)2

lTΣ−1l(1 + s)
(1− c)

(
1

2(1− c)
+

c2

4(1 + s)2
σ2
u

)
= 1 +

(αρ)2

lTΣ−1l(1 + s)

(
1

2
+
s2 + 2s+ c

2(1 + s)2

)
.

The statement of Theorem 2(b) follows by setting ρ = 0 under the null hypothesis. The

theorem is proved.
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Figure 3: Asymptotic distribution and the kernel density estimator of the finite sample
distribution of standardized θ̂ for c = 0.1.
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Figure 4: Asymptotic distribution and the kernel density estimator of the finite sample
distribution of standardized θ̂ for c = 0.4.
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Figure 5: Asymptotic distribution and the kernel density estimator of the finite sample
distribution of standardized θ̂ for c = 0.7.
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Figure 6: Asymptotic distribution and the kernel density estimator of the finite sample
distribution of standardized θ̂ for c = 0.9.
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Figure 7: Powers of the exact test and of the high-dimensional asymptotic test as a
function of λ based on the statistic T for c = 0.1 with s = 1 and ψ = 5%.
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Figure 8: Powers of the exact test and of the high-dimensional asymptotic test as a
function of λ based on the statistic T for c = 0.4 with s = 1 and ψ = 5%.
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Figure 9: Powers of the exact test and of the high-dimensional asymptotic test as a
function of λ based on the statistic T for c = 0.7 with s = 1 and ψ = 5%.
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Figure 10: Powers of the exact test and of the high-dimensional asymptotic test as a
function of λ based on the statistic T for c = 0.9 with s = 1 and ψ = 5%.
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Figure 11: p-values of the exact and the asymptotic tests on the tangency portfolio weight
of Abbott Laboratories.
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Figure 12: p-values of the exact and the asymptotic tests on the tangency portfolio weight
of Affiliated Managers Group Inc.
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Figure 13: p-values of the exact and the asymptotic tests on the tangency portfolio weight
for Alphabet Inc Class A.

32



2013 2014 2015 2016 2017 2018

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

3M Company

Year

p−
va

lu
e

Exact
High−dimensional

(a) k = 30

2013 2014 2015 2016 2017 2018

0.
2

0.
4

0.
6

0.
8

1.
0

3M Company

Year

p−
va

lu
e

Exact
High−dimensional

(b) k = 120

2013 2014 2015 2016 2017 2018

0.
2

0.
4

0.
6

0.
8

1.
0

3M Company

Year

p−
va

lu
e

Exact
High−dimensional

(c) k = 210

2013 2014 2015 2016 2017 2018

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3M Company

Year

p−
va

lu
e

Exact
High−dimensional

(d) k = 270

Figure 14: p-values of the exact and the asymptotic tests on the tangency portfolio weight
of 3M Company.
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