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FINANCIAL ECONOMICS | LETTER

Super-replication of the best pairs trade in
hindsight
Alex Garivaltis1*

Abstract: This paper derives a robust online equity trading algorithm that achieves
the greatest possible percentage of the final wealth of the best pairs rebalancing
rule in hindsight. A pairs rebalancing rule chooses some pair of stocks in the market
and then perpetually executes rebalancing trades so as to maintain a target frac-
tion of wealth in each of the two. After each discrete market fluctuation, a pairs
rebalancing rule will sell a precise amount of the outperforming stock and put the
proceeds into the underperforming stock.

Under typical conditions, in hindsight one can find pairs rebalancing rules that
would have spectacularly beaten the market. Our trading strategy, which extends
Ordentlich and Cover’s “max-min universal portfolio,” guarantees to achieve an
acceptable percentage of the hindsight-optimized wealth, a percentage which
tends to zero at a slow (polynomial) rate. This means that on a long enough
investment horizon, the trader can enforce a compound-annual growth rate that
is arbitrarily close to that of the best pairs rebalancing rule in hindsight. The
strategy will “beat the market asymptotically” if there turns out to exist a pairs
rebalancing rule that grows capital at a higher asymptotic rate than the market
index.

The advantages of our algorithm over the Ordentlich and Cover strategy are
twofold. First, their strategy is impossible to compute in practice. Second, in
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considering the more modest benchmark (instead of the best all-stock rebalancing
rule in hindsight), we reduce the “cost of universality” and achieve a higher learning
rate.

Subjects: Game Theory Economics; Finance; Investment & Securities

Keywords: super-replication; pairs trading; correlation options; constant-rebalanced
portfolios; universal portfolios; kelly criterion; robust procedures; minimax
JEL Classification: C44; D81; D83; G11; G12; G13

1. Introduction

1.1. Literature review
The theory of asymptotic portfolio growth was initiated by Kelly (1956), who considered repeated
bets on horse races with odds that diverge from the true win probabilities. Kelly set forth the
natural goal of optimizing the asymptotic growth rate of one’s capital. This implies that one should
act each period so as to maximize the expected log of his capital. By the Law of Large Numbers,
the realized per-period continuously compounded growth rate converges to the expected growth
rate.

The Kelly rule was used by Beat the Dealer author Edward O. Thorp (1966) to properly size his
bets at the Nevada blackjack tables. For example, imagine a situation where you have a 50:5%
chance of winning the next hand. What percentage of your net worth should you bet? The classical
mean-variance (Markowitz, 1952) theory has no answer, except to say that it depends on your
particular appetite for risk. For instance, the extreme choices of betting 0% or betting 100% are
both undominated in the mean-variance plane. The Kelly criterion gives a much more satisfactory
answer: bet 50:5%� 49:5% ¼ 1% of your wealth. This achieves the (optimum) capital growth rate
of 0:005% per hand played in this (favorable) situation. By the rule of 72, you would expect to
double your wealth after approximately 72=0:005 ¼ 14;400 hands.

Thus, it became clear to many people that the log-optimal portfolio theory should replace mean-
variance as the dominant decision criterion. Breiman (1961) proved that the Kelly rule outperforms
any “essentially different strategy” by an exponential factor, and it has the shortest mean waiting
time to reach a distant wealth goal. Thorp’s (2017) biography discusses his use of log-optimal
portfolios in his money management career on Wall Street. Cover’s (1987) survey and his informa-
tion theory textbook (2006) are excellent primers of the theory of asymptotic growth.

Cover and Gluss (1986) were the first to exhibit an online trading algorithm that could achieve
the Kelly growth rate even when starting in total ignorance of the return process. Assuming finitely
supported returns, they applied Blackwell’s (1956) approachability theorem to get a trading strat-
egy that grows wealth at the same asymptotic rate as the best rebalancing rule (or fixed-fraction
betting scheme) in hindsight. Thus began a whole host of so-called “universal trading strategies”
that, under mild conditions, “beat the market asymptotically” for highly arbitrary (e.g. nonsta-
tionary or serially correlated) return processes.

Cover (1991) gave the first simple and intuitive universal portfolio, at the same time removing
the restriction to finitely supported returns. Jamshidian (1992) transplanted Cover’s (1991) idea
into a continuous-time market with several correlated stocks whose Itô processes have unknown,
time-varying parameters that satisfy some asymptotic stability conditions. Cover and Ordentlich
(1996) gave the “universal portfolio with side information,” along with more perspicuous proofs of
the main (1991) regret bounds. For example, Thorp’s infamous “count” in Blackjack is a canonical
source of side information.
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Ordentlich and Cover (1998) super-replicated the final wealth of the best rebalancing rule in
hindsight at time-0, although they did not use the terminology of financial derivatives so thor-
oughly. It seems that their paper was not inspired so much by derivative pricing as it was by
Shtarkov’s (1987) “universal source code” in information theory. Properly interpreted, the universal
source code amounts to a robust scheme for betting on repeated horse races with unknown (and
perhaps nonstationary) win probabilities.

More recently, Iyengar (2005) has studied universal investment for discrete-time markets with two
assets and proportional transaction costs. Stoltz and Lugosi (2005) extended the game-theoretic
notion of internal regret to the case of online portfolio selection problems. DeMarzo, Kremer, and
Mansour, (2006) used discrete-time online trading algorithms to derive no-arbitrage bounds for the
prices of derivative securities. Györfi, Lugosi, and Udina (2006) gave universal procedures that find
and exploit hidden complicated dependencies of asset prices on the past evolution of the market.
Kozat and Singer (2011) investigated semiconstant rebalanced portfolios that may (to avoid transac-
tion costs) opt out of rebalancing altogether in selected investment periods.

1.2. Contribution
This paper offers a workaround for two practical problems encountered by would-be practitioners of
Ordentlich and Cover (1998) max-min universal portfolio. First, for markets with many assets, the
practitioner must wait a tremendously long time for his bankroll to “pull away” from the market
averages. Second, the online portfolio weights are impossible to calculate in practice, since the
Ordentlich-Cover algorithm requires large-scale computation of multilinear forms. The cleverest
methods of computation either exhaust the computer’s memory or else they require eons of CPU
time. Ordentlich and Cover (1998) max-min universal portfolio is only viable for markets with two or
three stocks, at best. Naturally, we want procedures that work for a market with, say, 500 assets.

Accordingly, we take up the more modest goal of performing well (at the end of the investment
horizon) relative to the best pairs rebalancing rule in hindsight. Our notion of a “pairs rebalancing
rule” allows for the degenerate possibility of keeping 100% of wealth in either of the two stocks.
Thus, the best pairs rebalancing rule in hindsight will do at least as well as the best performing
stock in the market. Our use of a less aggressive benchmark leads to a computable trading
strategy that “learns” more quickly, although in the long run its “understanding” of market
dynamics will be somewhat less subtle than that of the original Ordentlich and Cover (1998)
strategy.

1.3. Motivating example
To motivate the paper, we use a continuous-time version of “Shannon’s Demon” (Poundstone,
2010) to illustrate the fact that the possibility of “beating the market asymptotically” is no
contradiction to the random walk model of stock prices. For simplicity, consider two stocks i 2
1;2f g that follow independent geometric Brownian motions. Suppose that the price processes Si tð Þ
evolve according to

dSi tð Þ
Si tð Þ

¼ σ2

2
dtþ σ dWi tð Þ;

where W1 tð Þ;W2 tð Þ are independent unit Brownian motions. In Shannon’s original lecture
(Poundstone, 2010), at each (discrete) time step the stock price either doubled or got cut in half,
each with equal probability. To match this tradition, we put σ ¼ log 2 ¼ 0:7. We have

Si tð Þ
Si 0ð Þ ¼ eσWi tð Þ ¼ 2Wi tð Þ:

Note that lim
t!1

1
t log

Si tð Þ
Si 0ð Þ
n o

¼ 0. This means that the stocks themselves have zero asymptotic
growth; they trade “sideways.”
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Now, consider a gambler who continuously maintains half his wealth in each stock. This is not
a buy-and-hold strategy: the rebalancing rule dictates that he sell some shares of whichever stock
performed better over t; tþ dt½ �. He puts the proceeds into the underperforming stock. If the trader
starts with a dollar, his wealth V tð Þ evolves according to

dV tð Þ
V tð Þ ¼ 1

2
� dS1 tð Þ
S1 tð Þ þ 1

2
� dS2 tð Þ
S2 tð Þ ¼ σ2

2
dtþ σ

2
dW1 tð Þ þ dW2 tð Þ½ �:

Applying Itô’s Lemma for functions of several diffusion processes (Wilmott, 2001), we get

V tð Þ ¼ exp
σ2t
4

þ σ

2
W1 tð Þ þW2 tð Þ½ �

� �
:

We thus have lim
t!1

1
t log V tð Þ ¼ σ2=4 ¼ 12%. From two dead-money substrates, the gambler has

manufactured continuous growth at a rate of 12% per unit time, leaving the market portfolio in the
dust. Notice that this growth is merely the result of “volatility harvesting” (Poundstone, 2010) or
“volatility pumping” (Luenberger, 1998). Note that the gambler has not attempted to guess which
stock will outperform over the interval t; tþ dt½ �—rather, he just rebalances his portfolio after the
fact. A sample path for Shannon’s Demon has been simulated in Figure 1. For a pair of correlated
stocks, the dynamics will be substantially the same, albeit with a lower growth rate.

It is an axiom of capital growth theory that one should seek out a pair of volatile, uncorrelated

stocks. But which ones? For the Dow Jones (30) stocks, there are 30
2

� �
¼ 435 pairs to choose

from. For the S&P 500, there are 124;750. For a badly chosen pair i; jf g of stocks, the gambler may
very well beat stocks i and j but still underperform the market as a whole. The best pair i�; j�f g will
only be apparent in hindsight.

2. Definitions and notation
We consider a financial market with m assets, called j 2 1; . . . ;mf g. For convenience, we will refer to
these assets merely as “stocks,” although they can be any sort of financial products whatsoever (cash,
bonds, lottery tickets, arrow securities, insurance contracts, real estate, etc.). The stocks are traded in T

Figure 1. Shannon’s demon in
continuous time.
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discrete sessions, called t 2 1; . . . ; Tf g. We let xtj � 0 be the gross return of a $1 investment (or “bet”)

on stock j in session t. xt :¼ xt1; . . . ; xtmð Þ is the gross-return vector in session t. We will require only
that xt 2 R

m
þ � 0f g. This means that at least one of the assets must have a strictly positive gross

return. In the sequel, we will adhere to the individual sequence approach to investment that was
pioneered by Cover and Ordentlich (1996). This means that we will assume no particular dynamics for

ðxtÞTt¼1; the analysis will be completely model-independent. However, to make some concrete sense of
what follows, the reader may want to keep the following examples in mind.

Example 1 (Log-Normal Random Walk) Put xtj :¼ exp νj þ σjεtj
� �

, where εtj : ,N 0;1ð Þ,
Corr εtj; εtk

� � ¼ ρjk, and the vectors εt :¼ εt1; . . . ; εtmð Þ are independent across time.

Example 2 (Kelly (1956) Horse Race) Assume that m horses run T races, 1 � t � T. Prior to race t,
a bookie sets the (gross) odds at Otj on horse j. This means that a $1 bet on the winning horse

yields a gross payoff of Otj dollars. Any money bet on the other horses is lost. If horse jt is the

winner of race t, then the gross-return vector is xt ¼ Otjt ejt ¼ 0; . . . ;Otjt
jt

; . . . ;0

 !
, where e1; . . . ;em

are the unit basis vectors for Rm.

We will consider constant rebalancing rules (or constant-rebalanced portfolios) called b 2 R
m,

where bj � 0 and ∑
m

j¼1
bj ¼ 1. At the start of trading session (race) t, the gambler distributes his

wealth among the m stocks, putting the fraction bj of wealth into stock j. To adhere to a constant

rebalancing rule, the gambler must generally trade every period. For, at the end of trading session
t, the gambler now has the fraction

bjxtj
hb; xti

of wealth in stock j, where hb; xti is the inner product ∑
m

j¼1
bjxtj. If stock j outperformed the portfolio in

session t, then the tradermust sell some shares of stock j to restore the balance. Likewise, hemust buy
additional shares of stock j if it underperformed the portfolio as a whole. He can refrain from adjusting
his holdings in stock j only if xtj ¼ hb; xti, e.g. only when stock j’s performance is identical to that of the

portfolio as a whole. After T plays, the wealth of the constant-rebalanced portfolio b is

Wb x1; . . . ; xTð Þ :¼ hb; x1ihb; x2i � � � hb; xTi;

where we have assumed that the gambler starts with $1 and keeps reinvesting all his capital. The
final wealth is just the product of the growth factors hb; xti from each trading session. Note that the
degenerate rebalancing rule b ¼ ej amounts to buying and holding stock j, as it keeps 100% of

wealth in stock j. For the Kelly horse race, the rebalancing rule b amounts to a fixed-fraction betting
scheme that bets the fixed fraction bj of wealth on horse j in every race. In the sequel, we will let

xt :¼ x1; . . . ; xtð Þ be the return history after t trading sessions, with transition law xtþ1 ¼ xt; xtþ1
� �

. For

the Kelly horse race, this amounts to the win history jt :¼ j1; . . . ; jtð Þ 2 1; . . . ;mf gt.

Definition 1 Given the return history xt, the best rebalancing rule in hindsight is the rebalancing

rule b� xt
� �

that would have yielded the most final wealth:

b� xt
� �

:¼ arg max
b2Δm

hb; x1ihb; x2i � � � hb; xti;
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where Δm :¼ b 2 R
n
þ : ∑

m

j¼1
bj ¼ 1

( )
is the portfolio simplex.

The number D x1; . . . ; xTð Þ :¼ max
b2Δm

QT
t¼1

hb; xti can be regarded as the payoff of a path-dependent

financial derivative (“Cover’s Derivative”) of the m underlying stocks. In the terminology of the exotic
option literature (cf. Wilmott 1998), this would be called a “correlation” or “rainbow” option. In the
continuous-time context of several correlated stocks in geometric Brownian motion, Cover’s Derivative
has been priced and replicated by the author (Garivaltis 2018a), under the assumption of continuous
rebalancing and levered hindsight optimization. By contrast, the present paper deals with discrete-
time, unlevered rebalancing, and super-replication under total model uncertainty. In this extreme
generality, there is no way to guarantee the solvency of leveraged rebalancing rules. Thus, neither the
hindsight-optimization nor the super-replicating strategy will be permitted to use leverage.

Definition 2 A trading strategy must specify a portfolio vector θt :¼ θt1; . . . ; θtmð Þ as a function of

the history xt�1. In session t, the strategy bets the fraction θtj ¼ θtj xt�1
� �

of wealth on stock j, where

∑
m

j¼1
θtj xt�1
� � ¼ 1 and θtj xt�1

� � � 0: For simplicity, we write θ xt�1
� � ¼ θt1 xt�1

� �
; . . . ; θtm xt�1

� �� �
. We

write h0 for the empty history, and θ h0
� 	

for the initial portfolio vector.

Note that every trading strategy θ �ð Þ induces a betting scheme for the Kelly horse race. After

observing the win history jt�1 :¼ j1; . . . ; jt�1ð Þ, θ �ð Þ prescribes that one should be the fraction

θtj O1j1ej1 ; . . . ;Ot�1;jt�1
ejt�1

� �
of wealth on horse j in race t, where Orjr was the gross odds on the

winner of race r. The betting scheme induced by the Ordentlich and Cover (1998) universal
portfolio is known in information theory as the universal source code (Shtarkov, 1987).

Definition 3 The final wealth function Wθ induced by the trading strategy θ �ð Þ is defined by

Wθ x1; . . . ; xTð Þ :¼ θ h0
� 	

; x1
D E

θ x1ð Þ; x2h i � � � θ x1; . . . ; xT�1ð Þ; xTh i ¼
YT
t¼1

θ xt�1� �
; xt


 �

Definition 4 A super-hedge (or super-replicating strategy) for a derivative payoff D �ð Þ is a pair
p; θð Þ, where θ �ð Þ is a trading strategy and p is an initial deposit of money, such that

p �Wθ x1; . . . ; xTð Þ � D x1; . . . ; xTð Þ

for all x1; . . . ; xT 2 R
m
þ � 0f g.

In the words of an undated memo by Eric Benhamou of Goldman Sachs, “A super-hedge is
defined as a portfolio that will generate greater or equal cash-flows in any outcome. A super-
hedge guarantees to make no loss as the super-hedge more than offsets the derivative security.”
The concept is due to Bensaid, Lesne, and Scheinkman (1992). Note that in our context, we
demand that the final wealth p �Wθ dominate the derivative payoff literally everywhere, and not
merely with probability 1.

Definition 5 The super-hedging price (or super-replicating cost) p� of D �ð Þ is the minimum initial
deposit needed to super-replicate D �ð Þ, i.e. p� D½ � :¼ inf fp � 0 : ðp; θÞ is a super-hedge for some θg.

Under this terminology, the cost of super-replicating the final wealth of the best rebalancing
rule in hindsight (Ordentlich & Cover, 1998) is

p T;mð Þ :¼ ∑n1þ...þnm¼T
T

n1; . . . ;nm

� �
n1=Tð Þn1 . . . nm=Tð Þnm
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where the sum is taken over all solutions of the equation n1 þ � � � þ nm ¼ T in non-negative
integers.

Definition 6 A pairs rebalancing rule is a rebalancing rule b 2 R
n
þ whose support has at most two

stocks, e.g. #supp bð Þ ¼ #fj : bj>0g � 2: More generally, an s-stock rebalancing rule is defined by

the condition #supp bð Þ � s:

Definition 7 The best pairs rebalancing rule in hindsight is the pairs rebalancing rule that would
have yielded the greatest final wealth, given x1; . . . ; xT. The final wealth of the best pairs rebalan-
cing rule in hindsight is

D 2ð Þ x1; . . . ; xTð Þ :¼ max
#supp cð Þ�2

hc; x1i � � � hc; xTi ¼ max
i;jð Þ:1�i<j�m

max
0�b�1

YT
t¼1

bxti þ 1� bð Þxtj
� 


:

In general, D sð Þ x1; . . . ; xTð Þ will denote the final wealth of the best s-stock rebalancing rule in
hindsight. Ordentlich and Cover (1998) corresponds to the special case s :¼ m.

For the Kelly horse race, a pairs rebalancing rule is a fixed-fraction betting scheme that, each
race, bets all its money on the same two horses i; jf g in the same fixed proportions b;1� bð Þ. Thus,
if three or more distinct horses wind up winning over the T races, every pairs rebalancing rule will
eventually go bankrupt, just as soon as a horse other than i or j wins a race.

3. Super-replication

Lemma 1 For any trading strategy θ �ð Þ, we have

∑
j1 ;...;jTð Þ2 1;...;mf gT

Wθ ej1 ; . . . ; ejT
� � ¼ 1:

Proof In the definition of a final wealth function, start by substituting xT :¼ ejT and summing
both sides over all jT ¼ 1; . . . ;m: Since the coordinates of any portfolio vector sum to 1, we get

∑
m

jT¼1
Wθ xT�1; ejT
� � ¼ ∑

m

jT¼1
Wθ xT�1
� �hθ xT�1

� �
; ejT i ¼ Wθ xT�1

� �
, where Wθ xT�1

� �
is the final wealth func-

tion for the first T� 1 investment periods. Next, substitute xT�1 :¼ ejT�1
and sum over all

jT�1 ¼ 1; . . . ;m. We get Wθ xT�2
� �

, and so on down the line. After summing over the indices

jT; jT�1; . . . ; j2, we finally substitute x1 :¼ ej1 and get ∑
m

j1¼1
Wθ ej1
� � ¼ ∑

m

j1¼1
hθ h0
� �

; ej1 i ¼ 1, which is the

desired result.

Proposition 1 For any derivative D �ð Þ, we have the bound

p� D½ � � ∑
j1;...;jTð Þ2 1;...;mf gT

D ej1 ; . . . ; ejT
� �

:

Proof In the definition of super-hedging, we substitute x1 ¼ ej1 , x2 ¼ ej2 ; � � �; xT ¼ ejT and sum the
inequality over all possible indices j1; . . . ; jT. By Lemma 1, the left-hand side of the resulting
inequality is equal to p� D½ �.

Proposition 1 says that if p; θð Þ dominates D �ð Þ everywhere, then in particular it dominates the
derivative payoff for the special case of the Kelly horse race. However, we have ignored the odds
Otjt , and just substituted xt ¼ ejt . This amounts to an artificial situation where a one dollar bet on

the winning horse gets you your dollar back; otherwise the money is lost.
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Proposition 2 For unit basis vectors xt :¼ ejt ; Cover’s Derivative has the value

D mð Þ ej1 ; . . . ; ejT
� � ¼ ðn1=TÞn1ðn2=TÞn2 � � � ðnm=TÞnm ;

Where ni :¼ # t : jt ¼ i
� 


is the number of races won by horse i.

Here we have used the tacit convention that “00 :¼ 1” for the situation where there are
horses i such that ni ¼ 0.

Proof We have to solve a standard Cobb-Douglas optimization problem over the simplex:

Max
b2Δm

bn1
1 � � � bnm

m :

If ni ¼ 0, then b�i ¼ 0, e.g. in hindsight no money should have been bet on horse i. For all other
horses we have b�i >0, and Lagrange’s multipliers give the solution

b�i ¼
ni

∑m
i¼1ni

¼ ni

T
:

Corollary 1 For unit basis vectors xt :¼ ejt , we have D 2ð Þ ¼ 0 if at least three distinct horses ever

won a race. Otherwise, if jt 2 i; jf g for all t, then D 2ð Þ ¼ ðni=TÞni ð1� ni=TÞT�ni .

Corollary 2

p� D 2ð Þ
h i

� m
2

� �
∑
T

n¼0

T
n

� �
ðn=TÞnð1� n=TÞT�n ¼ m

2

� �
p T;2ð Þ:

Proof We proceed to sum D 2ð Þ over all horse race sequences that have at most two winning horses

i; j. To this end, we let kT :¼ k1; k2; . . . ; kTð Þ; where kt 2 i; jf g denotes the winner of race t. For each

i ¼ 1; . . . ;m, we let ni kT
� �

denote the number of races won by horse i in the sequence kT.

∑
i< j

∑
kT2 i; jf gT

ni k
T� �
=T

� �ni kTð Þ
nj k

T� �
=T

� �nj kTð Þ

¼ ∑
i< j

∑T
n¼0

T

n

� �
ðn=TÞnð1� n=TÞT�n ¼ m

2

� �
p T;2ð Þ:

In other words, among the 2T histories that have only horses i; j as winners, there are
T
n

� �
histories

for which horse i wins n times, and for all such histories we have D 2ð Þ ¼ ðn=TÞnð1� n=TÞT�n:

Thus, we have found that the cost of achieving the best pairs rebalancing rule in hindsight is

at least
m
2

� �
p T;2ð Þ: To prove the equality p� D 2ð Þ� � ¼ m

2

� �
p T;2ð Þ, we need only exhibit a super-

hedge that costs
m
2

� �
p T;2ð Þ:

Theorem 1 The (minimum) cost of achieving the best pairs rebalancing rule in hindsight is

m
2

� �
p T;2ð Þ. To achieve the super-replication, one can proceed as follows: for every pair i; jf g of

stocks with i<j, purchase a minimum cost super-hedge at t ¼ 0 for the final wealth of the best i; jf g
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rebalancing rule in hindsight. This amounts to depositing p T;2ð Þ dollars into the Ordentlich and

Cover (1998) strategy over stocks i and j, for an aggregate deposit of
m
2

� �
p T;2ð Þ.

This simple strategy, which is the best possible, leads to a final wealth of at least

∑
i<j

max
0�b�1

YT
t¼1

bxti þ 1� bð Þxtj
� 
" #

:

One of the terms i�; j�ð Þ of this sum will correspond to the final wealth of the best rebalancing
rule in hindsight. In practice, this will easily dominate the final wealth of the best pairs rebalancing
rule in hindsight. However, in the worst-case scenario of the Kelly market, the trader’s wealth will
be exactly equal to that of the best pairs rebalancing rule in hindsight.

Theorem 2 After T periods, the excess per-period continuously-compounded growth rate of the
best pairs rebalancing rule in hindsight over and above that of the super-hedging trader is at most

log
m
2

� �
þ log p T;2ð Þ
T

;

which tends to 0 as T ! 1. Thus, the trader compounds his money at the same asymptotic
rate as the best pairs rebalancing rule in hindsight.

Proof The trader takes his initial dollar and purchases 1
m
2

� �
p T;2ð Þ

super-hedges of the final wealth

of the best pairs rebalancing rule in hindsight. From the definition of super-hedge, we have

m
2

� �
p T;2ð ÞWθ x1; . . . ; xTð Þ � D 2ð Þ x1; . . . ; xTð Þ:

Taking logs, we have the uniform bound

logD 2ð Þ � logWθ

T
�

log
m
2

� �
þ log p T;2ð Þ
T

:

The fact that lim
T!1

1
T log p T;2ð Þ ¼ 0 follows from the upper bound p T;2ð Þ � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
Tþ 1

p
(Ordentlich &

Cover, 1998, Lemma 3).

It remains to write explicit formulas for the super-replicating strategy. To this end, let Wij xt
� �

be

the wealth, after xt, that has accrued to a $1 deposit into the Ordentlich-Cover (1998) strategy
applied to the specific pair i; jf g of stocks, with i<j. Alternatively, one can use the sequential-
minimax universal portfolio (Garivaltis, 2018b) applied to stocks i; jf g. On account of the fact that
we have made an initial deposit of p T;2ð Þ dollars into each distinct pairs strategy, our aggregate

wealth after xt will be p T;2ð Þ∑
i<j

Wij xt
� �

. Let bij xt
� �

denote the fraction of wealth held by this

strategy in stock i after xt, where 1� bij xt
� �

is the fraction of wealth held in stock j. How much

wealth in total is put into stock k after xt? We have

∑
k�1

i¼1
p T;2ð ÞWik xt

� �
1� bik xt

� �� �þ ∑
m

i¼kþ1
p T;2ð ÞWki x

t� �
bki x

t� �
:

Thus, the total fraction of wealth to bet on stock k in session tþ 1 (after return history xt) is
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θtþ1;k xt
� � ¼ ∑k�1

i¼1 Wik xt
� �

1� bik xt
� �� �þ∑m

i¼kþ1Wki xt
� �

bki xt
� �

∑i<jWij xtð Þ :

This expression accounts for the total wealth held by them� 1 pairs strategies i; kð Þ and k; ið Þ that have
stock k in the portfolio, as a fractionof theaggregatewealth held by all

m
2

� �
strategies. The practitioner

is required to keep track of the wealths and portfolio vectors of
m
2

� �
separate pairs strategies.

3.1. Generalized max-min game
Ordentlich and Cover (1998) considered a two-person zero-sum trading game between the trader
(Player 1) and nature (Player 2). The trader picks an entire trading algorithm θ �ð Þ while nature
simultaneously picks the returns x1; . . . ; xTð Þ of all stocks in all periods. They used the payoff kernel

θ �ð Þ; x1; . . . ; xTð Þ7! Wθ x1; . . . ; xTð Þ
D mð Þ x1; . . . ; xTð Þ ;

which is the ratio of the trader’s final wealth to that of the best (full support) rebalancing rule in
hindsight. In this subsection, we solve the generalized game with payoff kernel

ðθð�Þ; x1; . . . ; xTÞ7! wθðx1; . . . ; xTÞ
DðsÞðx1; . . . ; xTÞ :

Theorem 3 In pure strategies, the lower value of the game is 1
m
s

� �
p T;sð Þ

� � and the upper value is

1. Thus, there is no pure strategy Nash equilibrium. The trader’s maximin strategy is to play

a minimum-cost super-hedge for D sð Þ. Nature’s minimax strategy is to pick (any) particular stock
j� and have it be the best performing stock in all periods, e.g. xtj� � xtj for all t; j.

Proof Let θ �ð Þ be a minimum-cost super-hedge for D sð Þ. From the definition of super-hedging, we
have the uniform bound

m
s

� �
p T; sð ÞWθ x1; . . . ; xTð Þ � D sð Þ x1; . . . ; xTð Þ:

Thus, the trading strategy θ �ð Þ guarantees that the payoff is at least 1
m
s

� �
p T;sð Þ

. This is the best

possible guarantee. For, suppose that a trading strategy ψ �ð Þ guarantees that Wψ

D sð Þ � g for all

x1; . . . ; xT. Then, since 1
g

� 	
Wψ � D sð Þ; the strategy ψ �ð Þ is a super-hedge for D sð Þ, with an initial

deposit of 1
g dollars. Since the cheapest possible super-hedge costs

m
s

� �
p T; sð Þ, we must have

1
g �

m
s

� �
p T; sð Þ, so that g � 1

m
s

� �
p T;sð Þ

: This shows that 1
m
s

� �
p T;sð Þ

is the highest possible payoff

the trader can guarantee.

θ �ð Þ; x1; . . . ; xTð Þ7! Wθ x1; . . . ; xTð Þ
D sð Þ x1; . . . ; xTð Þ :

To show that the upper value is 1, assume that nature chooses a specific return path
ðx1; . . . ; xT) with the property that a certain stock j� is the best performer in all periods. Then,
the best s-stock rebalancing rule in hindsight is a degenerate rebalancing rule that keeps 100%
of its wealth in stock j� at all times (and 0% in the other s� 1 stocks). This also happens to be
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the best trading strategy of any kind that could be played against the specific path x1; . . . ; xTð Þ.
Thus, this specific path guarantees that Wθ

D sð Þ � 1 for all θ �ð Þ.

Theorem 4 To fill the duality gap, nature randomizes over Kelly horse race sequences xt :¼ ejt that

have at most s distinct winners # j1; . . . ; jTf g � sð Þ. It plays the particular sequence ej1 ; . . . ; ejT
� �

with probability
D sð Þ ej1 ;...;ejTð Þ
m
s

� �
p T;sð Þ

. The value of the game is 1
m
s

� �
p T;sð Þ

. In the mixed-strategy Nash

equilibrium, Player 1 does not randomize; he continues to play a minimum-cost super-hedge θ �ð Þ.

Proof First note that these are legitimate probabilities, since they are non-negative and sum to 1.

For a specific Kelly sequence ðejtÞTt¼1 that has at most s distinct winners, the payoff is

Wθ ej1 ; . . . ; ejT
� �

D sð Þ ej1 ; . . . ; ejT
� � :

Multiplying these payoffs by their probabilities and summing over all such sequences, we obtain an
expected payoff of

∑# j1;...;jTf g�sWθ ej1 ; . . . ; ejT
� �

m
s

� �
p T; sð Þ

:

By Lemma 1, the numerator is at most 1. Thus, nature’s mixed strategy has guaranteed that the

expected payoff is at most 1
m
s

� �
p T;sð Þ

� � , regardless of θ �ð Þ. This proves the theorem. □

4. Conclusion

This paper generalized Ordentlich and Cover’s beautiful (1998) result, that the cost of super-
replicating the best full support rebalancing rule in hindsight is

p T;mð Þ ¼ ∑
n1þ...þnm¼T

T
n1; . . . ;nm

� �
ðn1=TÞn1 � � � ðnm=TÞnm

We obtained the fact that the cost of super-replicating the best s-stock rebalancing rule in hind-

sight is
m
s

� �
p T; sð Þ. For any significant number of stocks (say, the Dow Jones 30), the full support

universal portfolio is impossible to compute in practice. However, it is very easy to super-replicate

the best pairs trade in hindsight: one need only calculate and account for
m
2

� �
2-stock universal

portfolios. The minimum-cost super-hedge amounts to buying
m
2

� �
super-hedges for p T;2ð Þ

dollars each, one for each pair of stocks i<j. If the realized volatility of stock prices turns out to
be low, then this strategy will easily have enough final wealth with which to dominate the best
pairs rebalancing rule in hindsight. However, if the realized volatility of the stock market turns out
to be extremely high, then the final wealth of this strategy will not be much more than that of the
best pairs rebalancing rule in hindsight. In the limiting case of the Kelly horse race market, the
strategy will have a final wealth that is exactly equal to the derivative payoff.

In practice, the trader will have to pick a tolerance ε, and calculate the shortest horizon T εð Þ on
which he can guarantee to achieve a compound growth rate that is within ε of that of the best
pairs rebalancing rule in hindsight. T εð Þ is the smallest solution T of the inequality

log
m
2

� �
þ log p T;2ð Þ<Tε:
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With this horizon in hand, the trader takes his initial dollar and purchases 1
m
2

� �
p T;2ð Þ

� � super-

hedges, yielding a final wealth of at least D 2ð Þ

m
2

� �
p T;2ð Þ

� � , where D 2ð Þ is the wealth of the best pairs

rebalancing rule in hindsight. If the realized returns ðxtÞ1t¼1 are such that the best pairs rebalancing
rule in hindsight sustains a higher asymptotic growth rate than the best performing stock in the
market, then the trader will beat the market asymptotically. Put more concisely, we hope that

lim inf
T!1

1
T

logD 2ð Þ x1; . . . ; xTð Þ � log max
1�j�m

YT
t¼1

xtj

 !( )
>0:

However, the trader’s asymptotic growth rate will be somewhat lower than that achieved by the
full-support universal portfolio.
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