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Abstract 
 
How does population aging affect economic growth and factor shares in times of increasingly 
automatable production processes? The present paper addresses this question in a new 
macroeconomic model of automation where competitive firms perform tasks to produce output. 
Tasks require labor and machines as inputs. New machines embody superior technological 
knowledge and substitute for labor in the performance of tasks. Automation is labor-augmenting 
in the reduced-form aggregate production function. If wages increase then the incentive to 
automate becomes stronger. Moreover, the labor share declines even though the aggregate 
production function is Cobb-Douglas. Population aging due to a higher longevity reduces 
automation in the short and promotes it in the long run. It boosts the growth rate of absolute and 
per-capita GDP in the short and the long run, lifts the labor share in the short and reduces it in the 
long run. Population aging due to a decline in fertility increases automation, reduces the growth 
rate of GDP, and lowers the labor share in the short and the long run. In the short run, it may or 
may not increase the growth rate of per-capita GDP, in the long run it unequivocally accelerates 
per-capita GDP growth. 
JEL-Codes: E220, J110, J220, J230, O330, O410. 
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1 Introduction

Automation, i. e., the use of machines to replace and complement human beings in the per-
formance of tasks, has been a key driver of economic growth since the beginning of the
industrial revolution (Landes (1969), Mokyr (1990), Allen (2009)). At least since the early
1960ies, this tendency has become more pronounced as technological advances in areas
like robotics, information technology, digital technology, and artificial intelligence sub-
stantially widened the scale and scope of automation (Brynjolfsson and McAfee (2014),
Ford (2015), Ross (2016), Goldfarb and Tucker (2019)).

For many industrialized countries the period from 1960 to today has also been an era of
population aging that is predicted to extend further into the 21st century (Lutz, Sanderson,
and Scherbov (2008), United Nations (2015)). Since longevity has increased and fertility
fallen, older individuals have become a proportionally larger fraction of the total popu-
lation (Weil (2008)).2

The focus of this paper is on the effect of population aging on automation, growth, and
factor shares. Unlike existing studies, my analysis shows that the source of aging and the
considered time horizon matter for the direction of impact. On the one hand, an increase
in longevity reduces automation in the short and promotes it in the long run. It boosts the
growth rate of absolute and per-capita GDP in the short and the long run, lifts the labor
share in the short and reduces it in the long run. On the other hand, a decline in fertility
increases automation, reduces the growth rate of GDP, and lowers the labor share in the
short and the long run. While in the short run, it may or may not increase the growth rate
of per-capita GDP, it unequivocally accelerates per-capita GDP growth in the long run.

I derive these findings in a novel competitive one-sector endogenous growth model. The
design of the production sector is the central conceptual innovation of this paper. Here,
I distinguish fixed capital from machines. Automation refers to the substitution of new
and better machines for hours worked by labor in the performance of tasks. A higher (ex-
pected) wage strengthens the incentive to automate.3 While automation is labor-saving
at the level of individual tasks, it is labor-augmenting in the economy’s reduced-form

2Section B.1 of the Online Appendix provides empirical evidence on the increase in longevity and the
decline in fertility since the 1960ies for a sample of 27 selected OECD countries. The evolutions shown there
in Figures B.1 and B.2 also support key assumptions regarding the household sector introduced below.

3This mechanism mimics a key finding of the so-called induced innovations literature of the 1960s:
higher expected wages induce faster labor-saving technical change (see, Hicks (1932), von Weizsäcker (1962),
Kennedy (1964), Samuelson (1965), Drandakis and Phelps (1966), or Funk (2002)). It also plays an impor-
tant role in models where automation is not labor-augmenting (see, e. g., Acemoglu and Restrepo (2018d) or
Zeira (1998)). The production sector developed in the present paper builds on and extends the one devised
in Irmen (2017) and Irmen and Tabaković (2017) where the focus is on endogenous capital- and labor-saving
technical change. Irmen (2020) studies the link between these models and the taxonomy developed in Ace-
moglu (2010).
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aggregate production function. Even though the latter is Cobb-Douglas with fixed pa-
rameters, automation affects the labor share.

The household sector features two-period lived overlapping generations. Individuals
face a survival probability when they enter the second period of their lives. Population
aging corresponds to an increase in this probability and/or to a decline in fertility. The
per-period utility function of individuals is of the generalized log-log type recently pro-
posed by Boppart and Krusell (2020). Hence, the individual supply of hours worked is
endogenous, falls in the real wage, and declines at a constant rate in response to a con-
stant wage growth (Irmen (2018b)). To the best of my knowledge, the present paper is
the first that studies Boppart-Krusell preferences in a fully-fledged endogenous growth
model. This is the second conceptual innovation of this paper.

The economy converges to a steady-state path that is consistent with Kaldor’s stylized
facts (Kaldor (1961)). New machines embody improved technological knowledge that
accumulates through periodic automation investments. This is the source of sustained
growth. A steady state is feasible since technological knowledge is labor-augmenting in
the economy’s reduced-form net production function (Irmen (2018a)). In addition, and
in line with recent empirical evidence, the amount of hours worked per worker declines
at a constant rate (Huberman and Minns (2007), Boppart and Krusell (2020)).

As a first set of results, my analysis uncovers how the possibility of automation affects
the behavior of firms and the labor share. At the level of the individual task automation
gives rise to a rationalization effect as fewer working hours are needed to perform a given
task. At the same time, automation lowers the cost per task. I refer to the latter as the
productivity effect of automation. It induces a task expansion effect, i. e., automating firms
increase the set of tasks they perform. The slope of the aggregate demand for hours
worked reflects how both the rationalization and the task expansion effect respond to a
change in the real wage.

I find that automation reduces the labor share. Without automation the share in the value
added that accrues to tasks coincides with the labor share. However, with automation
investments these shares differ, and the labor share declines. Moreover, the stronger the
incentives to automate the lower is the labor share. Nevertheless, even if these incentives
become very strong the labor share remains bounded away from zero.

The main results of my analysis concern the direction of impact and the mechanics through
which population aging affects automation, growth, and factor shares in the short and in
the long run. These findings may be sketched as follows.

Young individuals who expect to live longer want to increase their consumption possibil-
ities in old age. Therefore, they expand their supply of working hours and save a larger
fraction of their earnings. In the short run, these behavioral adjustments increase the ag-
gregate supply of hours worked at the intensive margin and lower the equilibrium wage.
As a consequence, the incentive of firms to engage in automation investments falls, and
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the labor share rises. GDP is affected through two channels. On the one hand, the level
of employment, hence, GDP increases. On the other hand, the weakened incentives to
automate imply that the productivity of labor in the performance of tasks falls. However,
as firms choose the degree of automation and the amount of performed tasks optimally,
the latter channel has no first-order effect on GDP. Hence, GDP increases in the short run.
Since the labor supply expands at the intensive margin, per-capita GDP rises, too.

The long-run effects of a permanent increase in longevity materialize through an increase
in the savings rate. This stimulates the accumulation of fixed capital and allows for higher
wages. As the working hour becomes more expensive, firms respond with more automa-
tion. In steady state, this speeds up the growth rate of absolute and per-capita GDP and
reduces the labor share.

The short-run effects of population aging through a decline in the fertility rate materialize
in the period following the decline when the labor supply shrinks at the extensive margin.
This leads to a higher equilibrium wage, stronger incentives to automate, and hence, to
a lower labor share. GDP is again affected through two channels. On the one hand,
the level of employment, hence, GDP declines. On the other hand, the strengthened
incentives to automate imply that the productivity of labor in the performance of tasks
increases. However, the latter channel has again no first-order effect on GDP as firms
choose the degree of automation and the amount of performed tasks optimally. Hence,
GDP falls in the short run. Nevertheless, if the proportionate decline in GDP is smaller
than the decline in population, per-capita GDP can increase.

If the decline in fertility is permanent then the labor supply is lower in all periods follow-
ing the decline. Accordingly, in these periods the appropriately defined capital-labor ra-
tio and wages will be higher so that the incentives to automate become more pronounced.
Therefore, the long run has more automation, faster growth of per-capita GDP, and a
lower labor share.

The present paper is related to several strands of the literature. First, it contributes to
the recent literature on endogenous automation and economic growth (see, e. g., ?, Ace-
moglu and Restrepo (2018a), Acemoglu and Restrepo (2018c), Acemoglu and Restrepo
(2018d), Berg, Buffie, and Zanna (2018), or Hémous and Olsen (2021)). In contrast to
these contributions, my analytical framework provides a novel and tractable “neoclas-
sical” alternative. Automation is the consequence of investments in new machines that
substitute for human labor in a widening range of tasks and, nevertheless, appears as
endogenous labor-augmenting technical change in the reduced-form aggregate produc-
tion function. Moreover, sustained growth is due to the accumulation of technological
knowledge embodied in new machines rather than to a mechanism that mimics the one
of the AK-model (de La Grandville (1989), Klump and de La Grandville (2000), Palivos
and Karagiannis (2010)).

Second, the present paper complements the literature on automation, economic growth,
and demographic change (see, e. g., Acemoglu and Restrepo (2018b), Cutler, Poterba,
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Sheiner, and Summers (1990), Irmen (2017), among others). Contrary to these contribu-
tions, the focus of my research is on the link between population aging, the individual
labor supply, individual savings, and the equilibrium incentives to automate. This per-
spective leads, e. g., to the novel insight that the qualitative effects of population aging
through a higher life expectancy on automation incentives in the short and in the long
run are of opposite sign.

Allowing for an endogenous supply of hours worked is key to these findings. The rep-
resentation of individual preferences with a generalized log-log utility function of the
Boppart-Krusell class reveals in addition that the wage elasticity of the individual sup-
ply of hours worked matters for the link between population aging and the incentive to
automate. In the short run, this elasticity affects the response of the equilibrium wage to
an increase in life expectancy and/or to a decline in fertility. In the long run, it is a deter-
minant of the steady-state growth rate of technological knowledge. Therefore, it affects
the impact an increase in life expectancy and/or a decline in fertility has on the steady-
state growth rates of technological knowledge, per-capita and aggregate macroeconomic
variables.

Third, my research contributes to the literature that aims at explaining the global decline
in the labor share (see, e. g., Karabarbounis and Neiman (2014), Piketty (2014)).4 Here, I
maintain that the decline in the labor share is also a long-run consequence of automation
induced by population aging. However, in contrast to other studies my analysis predicts
that the labor share remains bounded away from zero even if the incentives to automate
become very strong.

Finally, let me confront two key findings of the present paper with those obtained in
the canonical OLG-model.5 In the latter model, a decline in the population growth rate
increases the capital-labor ratio in the long run and induces positive level effects on per-
capita variables. In contrast, the present paper shows that a higher capital-labor ratio due
to a decline in population growth generates incentives for automation that can trigger a
higher long-run growth rate. A permanently lower population growth rate is therefore
associated with faster long-run growth of per-capita variables.6 Moreover, in the model
of this paper a lower population growth rate is associated with a decline in the labor share
even though the reduced-form production function is Cobb-Douglas. This contrasts with
the canonical OLG-model where the Cobb-Douglas production function precludes that a
lower population growth rate can have an effect on the labor share.

4Task-based models of automation tend to predict that automation reduces the labor share (see, e. g., Ace-
moglu and Restrepo (2018d), and Acemoglu and Restrepo (2018c) for a discussion of the literature). In the
present paper this feature occurs in spite of a Cobb-Douglas production function with constant coefficients.

5The latter has two-period lived individuals with logarithmic utility, an exogenous labor supply growing
at the same constant rate as the population, and a neoclassical production function of the Cobb-Douglas type
(see, e. g., Acemoglu (2009), Section 9.3).

6This implication also contrasts with so-called semi-endogenous growth models (Jones (1995)) where
permanently lower population growth reduces the long-run growth rate of per-capita variables.
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The remainder of this paper is organized as follows. Section 2 presents the model. Sec-
tion 2.1 introduces the novel production sector. Here, I show that the profit-maximizing
production plan associates automation with a rationalization effect, a productivity ef-
fect, a task-expansion effect, and an output expansion effect. Moreover, I show that au-
tomation is labor-augmenting in the aggregate production function and reduces the labor
share. Section 2.2 introduces the household sector. Sections 3, 4, and 5 contain the main
results of this paper. The focus of Sections 3 is on the inter-temporal general equilibrium,
the mechanics of the labor market, and the properties of the dynamical system. Sections 4
and 5 derive the effect of population aging on automation, growth, and factor shares in
the short and the long run. Section 6 concludes. All proof are relegated to Section A,
the Appendix. Section B is an Online Appendix. It contains supplementary empirical
findings as well as a calibration exercise.

2 The Model

The economy comprises a production, a household, and an insurance sector in an infinite
sequence of periods t = 1, 2, ..., ∞. The production sector has competitive firms that man-
ufacture a single good. Building on Irmen (2017), Irmen and Tabaković (2017), and Irmen
(2020) the production of this good requires tasks to be performed. The manufactured
good may be consumed or invested. If invested, it either serves as contemporaneous
automation investments or as future fixed capital.

The household sector has overlapping generations of individuals who potentially live
for two periods, youth and old age. Survival into old age is stochastic. The individual
lifetime utility function features a Boppart-Krusell generalized log-log utility function
(Boppart and Krusell (2020)). Hence, the labor supply is endogenous. I follow, e. g., Yaari
(1965) or Blanchard (1985), and assume a perfect annuity market for insurance against
survival risk.

There are four objects of exchange, the manufactured good, fixed capital, labor, and an-
nuities. Each period has markets for these objects. Firms rent fixed capital, undertake
automation investments, demand labor, and supply the manufactured good. House-
holds demand the manufactured good for consumption and savings, supply labor, and
exchange savings for annuity policies. Insurance companies sell these policies and rent
the savings as fixed capital to firms that use it to produce in the next period. Without loss
of generality, fixed capital fully depreciates after one period. The manufactured good
serves as numéraire.

Throughout, I denote the time-invariant growth rate of some variable xt between two
adjacent periods by gx. Moreover, I often use subscripts to write first- and second-order
derivatives. For instance, the notation for the derivatives of some function G(x, y) would
be G2(x, y) ≡ ∂G(x, y)/∂y or G21(x, y) ≡ ∂2G(x, y)/∂y∂x. I also write G instead of G(x, y)
or G(·) whenever this does not cause confusion.
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2.1 The Production Sector

The production sector has many small firms operating under perfect competition. Their
behavior may be studied through the lens of a competitive representative firm. At all t,
this firm has access to the production function

Yt = ΓKγ
t N1−γ

t , 0 < γ < 1. (2.1)

Here, Yt denotes the total output of the manufactured good, Kt the amount of fixed cap-
ital, and Nt the amount of performed tasks. The parameter Γ > 0 reflects cross-country
differences in geography, technical and social infrastructure that affect the “transforma-
tion” of fixed capital and tasks into the manufactured good.

All units included in the stock of fixed capital, and, likewise, each of the Nt tasks are
treated as homogeneous, i. e., they may provide the same marginal contribution to the
output of the manufactured good. However, due to the “law of a diminishing marginal
product” the marginal contribution of task n is greater than the one of task n′ when n′ >
n. This mimics the neoclassical artifice that captures the heterogeneity within each input
aggregate with a diminishing marginal product.

The performance of tasks requires working hours and machines. These inputs are strong
substitutes with an elasticity of substitution strictly greater than unity. Machines embody
technological knowledge. Automation results from investments in new machines that
embody improved technological knowledge and increase the productivity of labor in the
performance of tasks.

2.1.1 Tasks and Technology

Let n ∈ R+ index these tasks. At t, each task is performed once. The production function
of task n is

1 = at(n)ht(n), (2.2)

where ht(n) is working hours, and at(n) is the productivity per hour worked on the
performance of task n.7 The latter is given by

at(n) = At−1 (1 + qt(n)) , qt(n) ≥ 0. (2.3)

Here, At−1 > 0 is an aggregate indicator of the level of technological knowledge at t− 1 to
which the firm has free access at t. To fix ideas, one may think of At−1 as representing the

7Allowing for each task n to be performed at a scale xt(n) ̸= 1, means that (2.2) becomes xt(n) =

at(n)ht(n)xt(n). This generalization leaves the results derived below unchanged if the corresponding in-
vestment outlays of equation (2.4) are replaced by it(n)xt(n) = αqt(n)xt(n) reflecting the idea that a machine
with a higher capacity requires proportionately larger investment outlays.
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level of technological knowledge embodied in the last vintage of installed machines that
may still be activated. The variable qt(n) is the growth rate of productivity per working
hour in task n at t. A growth rate qt(n) > 0 requires an automation investment in a new
machine at t. This machine partially replaces labor in the performance of task n. The
degree to which this substitution occurs is endogenous.8

The invention, construction, installation, and running of a new machine for task n gives
rise to investment outlays of

it(n) = αqt(n), α > 0, (2.4)

units of the contemporaneous manufactured good.9 The parameter α parameterizes the
efficiency of the activities that eventually bring the new machine into use. Investment
outlays increase in the growth rate of productivity, qt(n), i. e., a machine that embodies a
better technology is more expensive.

The technology described by equations (2.2) - (2.4) incorporates the notion of automa-
tion as the substitution of working hours per task, ht(n), with technological knowledge
represented by at(n). In (at(n), ht(n)) - space equation (2.2) has an interpretation as a
unit isoquant. It states the set of necessary input combinations of working hours and
technological knowledge as

ht(n) =
1

at(n)
, at(n) ≥ At−1. (2.5)

This is illustrated in Figure 2.1. At t = 1, the relevant isoquant is the blue curve h1(n)
starting at point (A0, 1/A0). Since A0 > 0 is given, task n requires at most 1/A0 working
hours. The use of more technological knowledge shifts a1(n) further to the right of A0.
Accordingly, the amount of working hours shrinks along the isoquant. At t = 2, the
relevant isoquant, h2(n), starts at (A1, 1/A1). As depicted, A1 > A0 so that h2(n) begins
to the right of A1. Again, if more technological knowledge than A1 is used then a2(n)
moves further to the right of A1, and the amount of working hours shrinks.

Since technological knowledge is embodied in machines the substitution of working
hours per task with technological knowledge has to occur through a substitution of work-
ing hours with machines. Using qt(n) = it(n)/α ≥ 0 from (2.4) in (2.5) delivers the unit

8Imperfect substitution of labor with machines suggests that task n comprises subtasks. Following the
substitution, more of these subtasks are performed by machines. This kind of substitution is in line with
recent evidence, e. g., on the effect of computer-based technologies or of machine learning on occupations
(Autor, Levy, and Murnane (2003), Brynjolfsson, Mitchell, and Rock (2018)).

9If task n was performed in t − 1 then it(n) would also include the scrap costs of the old machine that
is replaced. To avoid the asymmetry this would introduce for the investment outlays of tasks n ∈ [0, Nt−1]

and n ∈ (Nt−1, Nt] if Nt > Nt−1 we neglect such expenses. This comes down to assuming that the firm can
get rid of old machines without incurring a cost, i. e., its production set satisfies the property of free disposal.
Observe that the qualitative results of this paper extend to more general functions i as long as these are
increasing and convex.
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Figure 2.1: Automation as the Substitution of Working Hours per Task with Technological
Knowledge.

0

1
A0

1
A1

ht(n)

at(n)

A1 > A0

A0 A1

h1(n) h2(n)

Note: The blue curve starting at (A0, 1/A0) is h1(n). Hence, at t = 1 automation, i. e., the substitution of
working hours per task with technological knowledge, occurs along this curve to the right of A0. At t = 1,
the blue curve starting at (A1, 1/A1) is h2(n). Automation occurs along this curve to the right of A1.

isoquant describing the set of necessary input combinations of working hours and invest-
ment outlays as

ht(n) =
1

At−1

(
1 + it(n)

α

) , it(n) ≥ 0. (2.6)

Hence, automation investments substitute for working hours. Finally, observe that an
automation investment is not an essential input in the performance of task n at t. Without
such an investment task n may be performed with a machine of the past vintage that
embodies the technological knowledge represented by At−1, hence ht(n) = 1/At−1 if
it(n) = 0.

2.1.2 Aggregate Technological Knowledge Growth

The technological knowledge embodied in a new machine is non-rival. Hence, it must
be temporarily excludable so that an investing firm can reap the economic benefits of its
investment. I capture these features with the assumption that the technological knowl-
edge embodied in a new machine is proprietary knowledge of an investing firm only in
t, i. e., in the period when the investment is made. This may reflect patent protection,
secrecy, or the required time competitors need to reverse-engineer a new machine and to
understand the technology it uses.
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In the periods after an automation investment, the new knowledge associated with it be-
comes part of the indicator At, At+1,..., with no further scope for proprietary exploitation.
The evolution of this indicator is given by

At = max
n∈[0,Nt]

{at(n)} = At−1 max
n∈[0,Nt]

{1 + qt(n)} . (2.7)

Accordingly, the stock of technological knowledge to which all firms have access at the
beginning of period t + 1 reflects the highest level of technological knowledge attained
for any of the n ∈ [0, Nt] tasks performed at t.

Observe that non-rivalry and the limited excludability provide the link between the no-
tions of embodied technological knowledge at the level of each automation investment
and disembodied knowledge accumulation at the level of the economy as a whole. As
suggested by Figure 2.1, this link will be the source of technological progress and sus-
tained economic growth.

2.1.3 The Profit-Maximizing Production Plan

The representative firm takes the sequence {wt, Rt, At−1}∞
t=1 of real wages, real rental

rates of capital, and the aggregate productivity indicators as given and chooses a produc-
tion plan (

Yt, Kt, It, Nt, Hd
t , qt(n), ht(n), i (qt(n))

)
for all n ∈ [0, Nt] and all t. Here, Kt is the aggregate demand for fixed capital, It the
aggregate demand for automation investments, and Hd

t the aggregate demand for hours
worked, i. e.,

It =
∫ Nt

0
i (qt(n)) dn and Hd

t =
∫ Nt

0
ht(n)dn.

The optimal production plan maximizes the sum of the present discounted values of
profits in all periods. Since an automation investment generates proprietary technologi-
cal knowledge only in the period when it is made, the inter-temporal maximization boils
down to the maximization of per-period profits denoted by Πt.

In view of (2.2) and (2.3) the time spent on the performance of task n is

ht(n) =
1

At−1 (1 + qt(n))
. (2.8)

Hence, task n gives rise to a wage cost, wtht(n), and an investment cost, i(qt(n)). Let
ct(n) denote these costs, i. e.,

ct(n) =
wt

At−1 (1 + qt(n))
+ i (qt(n)) . (2.9)
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Accordingly, for each period t, the firm’s optimal plan solves

max(
Kt,Nt,[qt(n)]

n=Nt
n=0

) Πt = ΓKγ
t N1−γ

t − RtKt −
∫ Nt

0
ct(n)dn.

Here, the last term is the sum of the costs of all performed tasks.

At all t, the firm’s maximization problem may be split up into two parts. First, for each
n ∈ R+ the firm chooses the value qt(n) ∈ R+ that minimizes the cost of task n, i. e., it
solves

min
[qt(n)]

∞
n=0

ct(n). (2.10)

Second, at minimized costs per task, the firm determines the profit-maximizing number
of tasks, Nt, and the desired amount of fixed capital, Kt.

Cost Minimization per Task

Let ωt ≡ wt/At−1 denote the wage cost of tasks at t before an automation investment
is undertaken. Then, for all n ∈ R+ the respective first-order (sufficient) condition to
problem (2.10) is

−ωt

(1 + qt(n))2 + α ≥ 0, with strict inequality only if qt(n) = 0. (2.11)

This condition relates the marginal reduction of task n’s wage cost to the marginal in-
crease in its investment cost. Since this trade-off is the same for all tasks we have qt(n) =
qt where

qt = q (ωt) ≡


−1 +

√
ωt
α if ωt ≥ α,

0 if ωt ≤ α.

(2.12)

Hence, if the wage cost per working hour under the old technology is greater than the
marginal investment outlays at qt = 0, i. e., if ωt > α, then qt > 0 with ∂q (ωt) /∂ωt >

0. In other words, the more expensive the working hour under the old technology is
expected to be the higher is qt.

If ωt ≤ α then no automation investments are undertaken and the performance of tasks
occurs with old machines that embody the technology represented by At−1. Intuitively,
this corner solution arises if at qt(n) = 0 the marginal reduction of the wage cost is too
small compared to the marginal investment cost, α > 0. Then, labor is so cheap that it
retains its comparative advantage over new machines.

Using (2.12) in (2.4), (2.8), and (2.9) delivers the cost-minimizing choices per task of hours
worked, investment outlays, and costs denoted by ht, it, and ct. For further reference,
define

h (ωt) ≡
1

1 + q (ωt)
, i (ωt) ≡ αq (ωt) , and c (ωt) ≡ ωth (ωt) + i (ωt) .
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Proposition 2.1 (Cost Minimization per Task)

The minimization of costs per task delivers continuous, piecewise defined functions

qt = q (ωt) , ht =
h (ωt)

At−1
, it = i (ωt) , and ct = c (ωt) .

In addition to (2.12) the following closed-form solutions obtain:

• if ωt ≥ α then

ht =
1

At−1

√
α

ωt
, it =

√
αωt − α, and ct = 2

√
αωt − α,

• if ωt ≤ α then

ht =
1

At−1
, it = 0, and ct = ωt.

The following corollary to Proposition 2.1 highlights that cost-minimizing automation
investments give rise to a rationalization effect and to a productivity effect.

Corollary 2.1 (Rationalization and Productivity Effect)

If ωt > α then

ht <
1

At−1
(rationalization effect)

and

ct < ωt (productivity effect).

Hence, if automation is profitable then it means rationalization, i. e., fewer working hours
per task. The productivity effect results in spite of investment outlays since a cost-
minimizing automation investment reduces the overall cost per task.

A higher wage strengthens the rationalization and the productivity effect. For the former,
this holds since ∂q/∂ωt > 0 implies dht/dωt = (∂h/∂ωt) /At−1 < 0. For the latter, this is
true since dct/dωt = h (ωt) ∈ (0, 1) so that both the difference ωt − ct and the ratio ωt/ct

increase in ωt.

Profit-Maximization at Minimized Costs

At minimized costs per task profits at t become

Πt = ΓKγ
t N1−γ

t − RtKt − ctNt,
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and the maximization with respect to Nt and Kt delivers the first-order conditions

Nt : Γ (1 − γ)Kγ
t N−γ

t − ct = 0 and Kt : ΓγKγ−1
t N1−γ

t − Rt = 0. (2.13)

Both conditions require the respective value product to equal marginal cost. The marginal
cost of task Nt is ct. This leads to the following proposition where

N (ct) ≡
(

Γ(1 − γ)

ct

) 1
γ

and Y (ct) ≡ Γ
(

Γ(1 − γ)

ct

) 1−γ
γ

.

Proposition 2.2 (Profit-Maximizing Tasks, Output, Profits, and the Factor-Price Frontier)

Given Kt, the profit-maximizing amounts of tasks and output at t are

Nt = KtN (ct) and Yt = KtY (ct) .

Moreover, the factor-price frontier is Rt = γY (ct) and Πt = 0.

Hence, given Kt, the profit-maximizing levels of tasks and output may be expressed as
functions of ct. With a slight abuse of notation, I shall henceforth denote these levels by
Nt and Yt. The functions N (ct) and Y (ct) show, respectively, how the amount of tasks
per unit of fixed capital, Nt/Kt, and the productivity of fixed capital, Yt/Kt, hinges on
the minimized costs per task, ct. A decline in ct increases the profit-maximizing amount
of tasks since the marginal value product of tasks is equal to a lower cost per task at a
greater Nt. Hence, N′ (ct) < 0. As Y(ct) = ΓN (ct)

1−γ this implies Y′ (ct) < 0. Moreover,
the factor-price frontier dictates that Rt will fall in ct, too. Finally, constant returns to scale
of the production function imply Πt = 0.

The following corollary to Proposition 2.2 establishes that automation gives rise to a task
expansion effect and an output expansion effect.

Corollary 2.2 (Task and Output Expansion Effect)

If ωt > α then

N (ct) > N (ωt) (task expansion effect)

and

Y (ct) > Y (ωt) (output expansion effect).

If ωt > α then firms undertake automation investments and the productivity effect of
Corollary 2.1 implies ct < ωt. Then, the task expansion effect and the output expansion effect
of automation follow since N′ (ct) < 0 and Y′ (ct) < 0.

12



Finally, let me note that the profit-maximizing production plan determines the aggre-
gate demands for fixed capital, Kt, automation investments, It = itNt, and for hours
worked Hd

t = htNt. Moreover, unlike in Acemoglu and Restrepo (2018d) and Zeira
(1998), automation appears as labor-augmenting technical change in the aggregate pro-
duction function (2.1). To see this, observe that cost minimization implies q(nt) = qt so
that the production function of each task is 1 = At−1 (1 + qt) ht. Here, the rationaliza-
tion effect means that automation is labor-saving in the sense that fewer hours of labor
are needed in the performance of a task, i. e., a higher qt means a lower ht. However, if
Nt tasks are performed then Nt = Nt At−1 (1 + qt) ht = At−1 (1 + qt) Hd

t as Hd
t = htNt.

Hence,10 with (2.1)

Yt = ΓKγ
t

(
At−1 (1 + qt) Hd

t

)1−γ
.

2.1.4 Automation and the Labor Share

Since Πt = 0, the economy satisfies Yt − RtKt − ctNt = Yt − RtKt − wthtNt − itNt = 0.
Let GDPt denote the economy’s net output at t, i. e., GDPt = Yt − itNt. Then, total earned
income satisfies RtKt + wthtNt = GDPt, and the labor share is defined as

LSt ≡
wthtNt

GDPt
. (2.14)

Proposition 2.3 (Automation and the Labor Share)

If ωt > α then

LSt = (1 − γ)

(
wtht

wtht + γit

)
.

Hence, automation unequivocally reduces the labor share because it involves investment
outlays, it > 0. Since the labor and the capital share, RtKt/GDPt, add up to one, automa-
tion will increase the latter.11

The intuition for Proposition 2.3 is as follows. Without automation investments net and
gross output coincide. Then, the production function (2.1) implies that the share of tasks
in GDP, ctNt/Yt, is equal to 1 − γ. Moreover, since ct = wt and ht = 1 the share of tasks

10This finding uses the minimization of costs per task and the definition of the firm’s demand for hours
worked. Therefore, it generalizes beyond the Cobb-Douglas form to any production function F (Kt, Nt).

For these functions one obtains Yt = F
(

Kt, At−1 (1 + qt) Hd
t

)
. Hence, the term labor-augmenting technical

change is indeed meaningful here.

11Here, investment outlays are treated as a flow input. Therefore, no income accrues to machines. How-
ever, one readily verifies that the qualitative results of Proposition 2.3 and Corollary 2.3 below remain un-
changed if new machines are treated as a stock and deliver rental income to their owners.
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coincides with the labor share. With automation investments the share of tasks in GDP
is

ctNt

Yt − itNt
= (1 − γ)

(
ct

wtht + γit

)
,

where use is made of Proposition 2.1 and 2.2. This share is split up into the labor share,
LSt, and the “share of automation investments,” itNt/GDPt = (1 − γ) (it/(wtht + γit)).

The following corollary shows that the decline in the labor share, LSt, is more pronounced
the stronger the incentives to automate.

Corollary 2.3 (Automation Incentives and the Lower Bound of the Labor Share)

If ωt > α then it holds that

∂LSt

∂ωt
< 0.

Moreover,

lim
ωt→∞

LSt =
1 − γ

1 + γ
.

Hence, a higher expected wage induces more automation and reduces the labor share.
However, the labor share remains strictly positive even if the incentives to automate be-
come very strong and, asymptotically, ht → 0. These findings obtain since for the chosen
functional forms the labor share may be written as

LSt = (1 − γ)

 1

1 + γ
(

it
wtht

)
 = (1 − γ)

 1

1 + γ
(

1 −
√

α
ωt

)
 , (2.15)

i. e., it depends on the per-task amount of investment outlays in wage costs, it/(wtht).
This ratio is smaller than unity, increases in ωt, and converges to 1.

2.2 The Household Sector

Individuals live for possibly two periods, young and old age. When young, they supply
labor, earn wage income, enjoy leisure and consumption, and save. At the onset of old
age, they face a survival probability µ ∈ (0, 1). Surviving old individuals retire and
consume their wealth.12

12Hence, by assumption aging may affect the endogenous labor supply when young but not the timing of
retirement. To a first approximation, this does not seem too far from reality. For instance, Bloom, Canning,
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The population at t consists of Lt young (cohort t) and µLt−1 old individuals. Due to birth
and other demographic factors the number of young individuals between two adjacent
periods grows at rate gL > (−1). For short, I shall refer to gL as the fertility rate.

Population aging is the result of an increase in life expectancy and/or a decline in fertility.
An increase in µ and/or a decline in gL capture this. These parameter changes also lift
the old-age dependency ratio. For period t the latter is defined as

OADRt ≡
µLt−1

Lt
=

µ

1 + gL
. (2.16)

Hence, OADRt is determined by the survival probability and the fertility rate of cohort
t − 1. There is population aging between period t − 1 and t if OADRt > OADRt−1.
Accordingly, an increase in the survival probability of cohort t − 1 and/or a decline in
the fertility rate of this cohort implies population aging.

For cohort t, denote consumption when young and old by cy
t and co

t+1, and leisure time
enjoyed when young by lt. The periodic time endowment is normalized to unity. Then,
lt = 1 − hs

t , where hs
t ∈ [0, 1] is working hours supplied by cohort t when young.

Individuals of all cohorts assess bundles
(
cy

t , lt, co
t+1

)
according to an expected lifetime

utility function, U, featuring a periodic utility function of the generalized log-log type
proposed by Boppart and Krusell (2020). The utility after death is set equal to zero. Ac-
counting for retirement when old, i. e., lt+1 = 1, cohort t’s expected utility is

U
(
cy

t , lt, co
t+1
)
= ln cy

t + ln
(

1 − ϕ (1 − lt)
(
cy

t
) ν

1−ν

)
+ µβ ln co

t+1, (2.17)

where 0 < β < 1 is the discount factor, ϕ > 0 and ν ∈ (0, 1). For ease of notation, I use

henceforth xt ≡ (1 − lt)
(
cy

t
) ν

1−ν .

The term ln (1 − ϕxt) reflects the disutility of labor when young. The parameter ϕ cap-
tures characteristics of the labor market that affect the disutility of labor in the population
irrespective of the amount of hours worked and the level of consumption. These include,
e. g., the level of occupational safety regulations and the climatic conditions under which
labor is done (Landes (1998)). As shown in Irmen (2018b), ν ∈ (0, 1) assures that con-
sumption and leisure are complements in the cardinal sense of ∂2U/∂cy

t ∂lt > 0.

and Fink (2010), p. 5-6, report for a sample of 43 mostly developed countries that the average male life
expectancy increased between 1965 and 2005 by 8.8 years whereas the average legal male retirement age
increased by less than half a year. More strikingly, the correlation between the change in male life expectancy
and the change in the retirement age over this time-span is small and negative. While recent years have seen
political initiatives to increase the statutory retirement age, e. g., in the EU-27, there is often substantial
political resistance (see, e. g., New York Times (2011) or New York Times (2019) on France). Whether and
how such changes impact on the effective retirement age that people choose is likely to depend on the future
evolution of life expectancy and on institutional details of the retirement scheme (Gruber and Wise (2004)).
I shall get back to this issue in Section 6.
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Expected utility, U, is strictly monotone and strictly concave if

1 − 2ν − (1 − ν)ϕxt > 0. (2.18)

This condition requires ν < 1/2. Henceforth, I refer to the set of bundles
(
cy

t , lt, co
t+1

)
∈

R++ × [0, 1]× R++ that satisfy (2.18) as the set of permissible bundles denoted by P .

At the end of their young age, individuals of cohort t deposit their entire savings with
life insurers in exchange for annuity policies. These insurers rent the savings out as fixed
capital to the firms producing in t + 1. In return, the latter pay a (perfect foresight) real
rental rate Rt+1 per unit of savings. Perfect competition among risk-neutral life insurers
guarantees a gross return to a surviving old at t + 1 of Rt+1/µ. Hence, cohort t faces the
periodic budget constraints

cy
t + st ≤ wt(1 − lt) and co

t+1 ≤ Rt+1

µ
st. (2.19)

I refer to
(
cy

t , lt, co
t+1, st, hs

t
)

as a plan of cohort t. The optimal plan solves

max
(cy

t ,lt,co
t+1,st)∈P×R

U
(
cy

t , lt, co
t+1
)

subject to (2.19) (2.20)

and includes the utility maximizing supply of working hours as hs
t = 1− lt. Before I fully

characterize the solution to this problem the following assumption must be introduced.

Assumption 1 For all t it holds that

wt > wc ≡
(

(1 + µβ) (1 − ν)

(ϕ (1 + (1 + µβ) (1 − ν)))1−ν (1 − ν (1 + µβ))ν

) 1
ν

and

0 < ν < ν̄ (µβ) ≡ 3 + µβ −
√

5 + µβ(2 + µβ)

2(1 + µβ)
.

As will become clear in the Proof of Proposition 2.4 below, Assumption 1 assures two
things. First, if the real wage exceeds the critical level wc then cohort t’s demand for
leisure is strictly positive. Second, the unique bundle identified by the Lagrangian asso-
ciated with problem (2.20) satisfies condition (2.18).13 Hence, it is a global maximum on
the choice set P × R.

13The function ν̄ (µβ) is strictly positive and declining in µβ with ν̄(0) ≈ 0.382 and ν̄(1) ≈ 0.293. Hence,
Assumption 1 imposes a tighter constraint on ν than just ν < 1/2 which is necessary for (2.18) to hold.
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Proposition 2.4 (Optimal Plan of Cohort t)

Suppose Assumption 1 holds. Then, the optimal plan of cohort t = 1, 2, ..., ∞ involves

hs
t = wν

c w−ν
t , cy

t =
1 − ν (1 + µβ)

(1 + µβ) (1 − ν)
wν

c w1−ν
t ,

st =
µβ

(1 + µβ) (1 − ν)
wν

c w1−ν
t , co

t+1 =
βRt+1

(1 + µβ) (1 − ν)
wν

c w1−ν
t .

For surviving members of cohort 0, consumption when old is co
1 = R1s0/µ > 0 where s0 > 0 is

given.

According to Proposition 2.4 cohort t’s supply of hours worked declines in the wage
with an elasticity equal to ν. As a consequence, the positive response of st, cy

t , and co
t+1

to a wage hike is less than proportionate. Observe that cy
t and st may be expressed,

respectively, as the product of a marginal (and average) propensity to consume or to save
and the wage income, i. e.,

cy
t =

1 − ν(1 + µβ)

(1 + µβ)(1 − ν)
wths

t and st =
µβ

(1 + µβ) (1 − ν)
wths

t . (2.21)

This helps to understand how a change in the life expectancy affects the optimal plan.

Corollary 2.4 (Life-Expectancy and the Optimal Plan of Cohort t)

If wt > wc then it holds that

∂hs
t

∂µ
> 0,

∂cy
t

∂µ
< 0,

∂st

∂µ
> 0,

∂co
t+1

∂µ
< 0.

Hence, a higher life expectancy increases the supply of hours worked. This reflects the
appreciation of the utility when old relative to the utility when young. Through this
channel the demand for leisure declines and hs

t increases.14

The effect of a higher life expectancy on consumption when young is the result of two
opposing channels. On the one hand, for a given wage income, the propensity to con-
sume in (2.21) falls. This reflects the desire to shift resources into the second period of
life which now has more weight. On the other hand, there will be more income since
the supply of hours worked increases. Then, consumption smoothing calls for more con-
sumption when young. Overall, the former effect dominates so that cy

t falls in µ.

14A higher µ also reduces the gross rate of return to a surviving old, Rt+1/µ. However, for U of (2.17) the
substitution and the income effect associated with such a reduction on hs

t , cy
t , and st cancel out.
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The same two channels determine the effect of a higher life expectancy on savings. How-
ever, now they are reinforcing. Indeed, for a given wage income, the propensity to save
in (2.21) increases. Moreover, a higher wage income and consumption smoothing imply
more savings, too. Hence, st increases in µ.

Finally, consumption when old declines with a higher life expectancy. Again, two chan-
nels of opposite sign are at work. On the one hand, savings increase pushing co

t+1 up-
wards. On the other hand, the rate of return on savings for a surviving old, Rt+1/µ, falls.
As the latter dominates, co

t+1 declines in µ.

3 Inter-temporal General Equilibrium

3.1 Definition

A price system corresponds to a sequence {wt, Rt}∞
t=1. An allocation is a sequence

{cy
t , lt, co

t , st, hs
t , Yt, Kt, Nt, Hd

t , It, qt(n), at(n), ht(n), i (qt(n))}∞
t=1

for all tasks n ∈ [0, Nt]. It comprises a plan {cy
t , lt, co

t , st, hs
t}∞

t=1 for all cohorts, consump-
tion of the old at t = 1, co

1, and a plan {Yt, Kt, Nt, Hd
t , It, qt(n), at(n), ht(n), i (qt(n))}∞

t=1 for
the production sector.

For an exogenous evolution of the labor force, Lt = L1 (1 + gL)
t−1 with L1 > 0 and

gL > (−1), and initial levels of fixed capital, K1 > 0, and technological knowledge,
A0 > 0, an inter-temporal general equilibrium with perfect foresight corresponds to a price
system, an allocation, and a sequence {At}∞

t=1 of the aggregate technological knowledge
indicator that comply with the following conditions for all t = 1, 2, ..., ∞:

(E1) The production sector satisfies Propositions 2.1 and 2.2.

(E2) The indicator At evolves according to (2.7).

(E3) The plan of each cohort satisfies Proposition 2.4.

(E4) The market for the manufactured good clears, i. e.,

µLt−1co
t + Ltc

y
t + It + IK

t = Yt,

where IK
t is aggregate investment in fixed capital.

(E5) There is full employment of labor, i. e.,

htNt = hs
t Lt.
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(E1) assures the optimal behavior of the production sector and zero profits. In conjunction
with (E2) the evolution of technological knowledge for the economy as a whole boils
down to

At = at = At−1 (1 + qt) , for all t given A0 > 0. (3.1)

(E3) guarantees the optimal behavior of the household sector under perfect foresight.
Since the old own the capital stock, their consumption at t = 1 is µL0co

1 = R1K1 and
s0 = K1/L0. (E4) states that the aggregate demand for the manufactured good produced
at t is equal to its supply. Aggregate demand at t comprises aggregate consumption,
µLt−1co

t + Ltc
y
t , aggregate automation investments, It, and aggregate investment in fixed

capital, IK
t . On the supply side, it reflects the (innocuous) assumption that fixed capital

fully depreciates after one period. According to (E5) the aggregate demand for hours
worked must be equal to its supply. Here, use is made of (E1) in that ht(n) = ht for all n.

To focus the discussion I henceforth restrict attention to constellations where, for all t,
profit-maximizing firms decide to automate and utility-maximizing cohorts express a
strictly positive demand for leisure. The following assumption accomplishes this.

Assumption 2 For all t it holds that

wt > αAt−1 > wc.

The inequality wt > αAt−1 is equivalent to ωt > α. Hence, automation investments are
profit-maximizing (see Proposition 2.1). If wt > wc then cohort t has a strictly positive
demand for leisure (see Proposition 2.4). Finally, assuming αAt−1 > wc for all t simplifies
the analysis of the transitional dynamics since the distinction between the three regimes
αAt−1 < wc, αAt−1 = wc, and αAt−1 > wc can be neglected. As At−1 grows over time
αAt−1 > wc is satisfied for all t if A0 > wc/α.

3.2 Labor Market Equilibrium

With Proposition 2.1 and 2.2 the aggregate demand for hours worked at t may be ex-
pressed as

Hd
t = Hd(ωt) ≡

(
Kt

At−1

)
h(ωt)N(ct)

(3.2)

=

(
Kt

At−1

)√
α

ωt

(
Γ (1 − γ)

ct

) 1
γ

with slope

dHd(ωt)

dωt
=

(
Kt

At−1

)
N (ct)

∂h (ωt)

∂ωt︸ ︷︷ ︸
(−)︸ ︷︷ ︸

Aggregate Rationalization Effect (−)

+

(
Kt

At−1

)
h (ωt)

∂N (ct)

∂ct︸ ︷︷ ︸
(−)

∂c (ωt)

∂ωt︸ ︷︷ ︸
(+)︸ ︷︷ ︸

Aggregate Task Expansion Effect (−)

< 0.
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An increase in wt, respectively ωt, induces an aggregate rationalization effect and an aggre-
gate task expansion effect. Both effects are negative. The former means that fewer working
hours per task will be demanded for all performed tasks. The latter reflects the increase
in the cost per task and the concomitant decline in the total number of performed tasks
for given working hours per task.

From Proposition 2.4 the aggregate supply of hours worked at t for wt > wc is Hs
t =

wν
c w−ν

t Lt and may be expressed in terms of ωt as

Hs
t =

(
wc

At−1

)ν

ω−ν
t Lt ≡ Hs (ωt, Lt, wc) . (3.3)

Then, the equilibrium wage, ŵt, and the corresponding level of employment, Ĥt, are
determined by the labor market equilibrium condition

Hd (ω̂t) = Hs (ω̂t, Lt, wc) , (3.4)

where ω̂t ≡ ŵt/At−1.

Since both, the aggregate demand for and the aggregate supply of hours worked, fall in
the real wage there may be none, one, or multiple wage levels at which demand is equal
to supply. This section establishes the existence of a unique labor market equilibrium that
satisfies Assumption 2. To accomplish this it proves useful to introduce the following
notation:

kt ≡
Kt

A1−ν
t−1 Lt

, and kc ≡ wν
c α−ν

[
α

Γ(1 − γ)

] 1
γ

.

Henceforth, I shall refer to kt as the efficient capital intensity. It will later serve as the state
variable of the dynamical system. The parameter kc denotes a critical level of the efficient
capital intensity to be interpreted below.

Proposition 3.1 (Labor Market Equilibrium)

Suppose αAt−1 > wc holds. Then, a unique labor market equilibrium
(
ŵt, Ĥt

)
with ŵt > αAt−1

exists for all t = 1, 2, ..., ∞ if and only if

kt > kc.

Moreover, the labor market equilibrium defines a function ω̂ : (kc, ∞) → (α, ∞) such that

ω̂t = ω (kt) with ω′ (kt) > 0.

Proposition 3.1 makes two points. First, it establishes the existence of a unique labor
market equilibrium consistent with Assumption 2 if kt is sufficiently large. Intuitively,
this follows since the aggregate supply of hours worked, Hs (ωt, Lt, wc), is sufficiently
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Figure 3.1: The Labor-Market Equilibrium.

0 wc
At−1

α

Lt

Hd
t , H

s
t

Ĥt

ωt
ω̂t

Hs (ωt, Lt, wc)

Hd (ωt)

Note: Assumption 2 is equivalent to ωt > α > wc/At−1. The labor market equilibrium
(
ω̂t, Ĥt

)
satisfies

Ĥt = Hd(ω̂t) = Hs (ω̂t, Lt, wc) < Lt. A unique equilibrium exists since Hs (ωt, Lt, wc) is sufficiently flatter
than Hd(ωt) and Hd(α) > Hs (α, Lt, wc).

flatter than the aggregate demand, Hd (ωt). Moreover, kt > kc assures that Hd (α) >

Hs (α, Lt, wc). Accordingly, ω̂t > α and the equilibrium wage satisfies ŵt > αAt−1 (see
Figure 3.1 for an illustration).

Second, it lays open that ω̂t can be expressed as a function of kt. Indeed, with (3.2) and
(3.3) the labor market equilibrium condition (3.4) may be stated as

kt =
wν

c ω̂−ν
t

h(ω̂t)N(c (ω̂t))
= wν

c ω̂−ν
t

√
ω̂t

α

(
2
√

αω̂t − α

Γ(1 − γ)

) 1
γ

. (3.5)

The right-hand side captures the effect of ωt on the supply relative to the demand of
hours worked. If ωt = α then (3.5) boils down to kt = kc. For ωt ≥ α the right-hand side
is monotonically increasing in ωt and becomes unbounded as ωt → ∞. Hence, a higher
wt induces a proportionate decline in the demand for hours worked that dominates the
proportionate decline in the supply. Moreover, for any kt > kc there is a unique ω̂t =

ω (kt) > α. The derivative ω′ (kt) > 0 captures that a greater Kt increases Hd
t whereas a

lower Lt reduces Hs
t . Moreover, the effect of a lower At−1 on Hd (ω̂t) is stronger than the

one on Hs (ω̂t, Lt, wc) so that ω̂t increases.

21



3.3 Dynamical System

The transitional dynamics of the inter-temporal general equilibrium can be analyzed
through the evolution of a single state variable, kt. To derive the equilibrium sequence
{kt}∞

t=1 observe that conditions (E3) and (E4) require investments in fixed capital to equal
savings, i. e., IK

t = stLt = Kt+1, or

µβ

(1 + µβ) (1 − ν)
wths

t Lt = Kt+1, for all t = 1, 2, ..., ∞. (3.6)

Using Proposition 2.4 the latter equation may be expressed as

Ωω1−ν
t = kt+1, for all t = 1, 2, ..., ∞, (3.7)

where,

Ω ≡ µβwν
c

(1 + µβ) (1 − ν) (1 + gL)

summarizes preference and demography parameters that affect the relationship between
ωt and kt+1. Henceforth, I shall refer to equation (3.7) as the capital market equilibrium
condition. The equilibrium difference equation that describes the evolution of kt results
from replacing ωt of (3.7) with the labor market clearing condition ω̂t = ω (kt) of Propo-
sition 3.1. This gives

kt+1 = Ω [ω (kt)]
1−ν . (3.8)

Hence, kt+1 is increasing in kt and greater than Ω [ω (kc)]
1−ν = Ωα1−ν ≡ kc, which is the

lowest permissible level of savings at t per efficient worker in t + 1, A1−ν
t Lt+1. For the

labor market to satisfy ω̂t > α for all t, kt > kc is required for all t. Hence, (3.8) is to
deliver a value kt+1 > kc for all t. Then, the condition kc > kc ensures for any kt > kc that
kt+1 > kc so that the labor market equilibrium at t + 1 satisfies ω̂t+1 > α.

Proposition 3.2 (Dynamical System, Steady-State, and Transitional Dynamics)

Let kc > kc and consider initial values (K1, L1, A0) > 0 such that A0 > wc/α and k1 > kc.
Then, there is a unique monotonic equilibrium sequence, {kt}∞

t=1, governed by the equilibrium dif-
ference equation (3.8) with kt > kc for all t. Moreover, for any k1 > kc it holds that limt→∞ kt =

k∗ > kc where k∗ = Ω [ω (k∗)]1−ν.

An instructive intuition for Proposition 3.2 can be gained from Figure 3.2. This figure
depicts the labor market equilibrium at t of equation (3.5) and the capital market equilib-
rium at t of equation (3.7) for kc > kc. Then, for any k1 > kc the labor market at t = 1
delivers a unique ω1 = ω̂1 > α. Using ω̂1 in the capital market equilibrium condition
at t = 1 gives a unique k2 > kc. Clearly, these steps apply to any pair (kt, kt+1) > kc.
Figure 3.2 also highlights that the evolution of kt will be monotonic with convergence to
the steady state, k∗ > kc.
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Figure 3.2: The Dynamical System, Steady State, and Transitional Dynamics.
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ω̂∗
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k1

α

kt

kt+1

ω̂1

Note: For any k1 > kc the labor market at t = 1 delivers ω1 = ω̂1 > α. Since kc > kc, using ω̂1 in the capital
market equilibrium condition for t = 1 delivers k2 > kc and so forth.

4 Short-Run Macroeconomic Implications of Population Aging

Suppose cohort t anticipates an increase in its life expectancy and/or reduces its fertility.
The short-run macroeconomic implications of an anticipated increase in life expectancy
for automation, growth, and factor shares are contemporaneous whereas those of a de-
cline in fertility materialize only in period t + 1.

Henceforth, I denote variables evaluated at the labor-market equilibrium with a hat,
e. g., the cost-minimizing productivity growth rate of (2.12) evaluated at the labor-market
equilibrium at t becomes q̂t = q (ω̂t).

4.1 Increasing Longevity

The following corollary to Proposition 3.1 shows how a change in µ affects the equilib-
rium wage and the labor productivity per hour worked.

Corollary 4.1 (Short-Run Effects of µ: Equilibrium Wage and Productivity Growth per Hour
Worked)

Consider the labor market equilibrium of Proposition 3.1. Given kt, it holds that

dŵt

dµ
< 0 and

dq̂t

dµ
< 0.
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Intuitively, if cohort t expects to live longer, then, in accordance with Corollary 2.4, the
individual, hence, the aggregate supply of hours worked increases at the intensive mar-
gin. This reduces ω̂t and ŵt since the aggregate demand for hours worked is steeper than
the aggregate supply.15 Analytically, total differentiation of the labor market equilibrium
(3.4) uncovers this as

dω̂t

dwc
=

(+)︷ ︸︸ ︷
∂Hs (ω̂t, Lt, wc)

∂wc

∂Hd (ω̂t)

∂ωt
− ∂Hs (ω̂t, Lt, wc)

∂ωt︸ ︷︷ ︸
(−)

< 0,

where the denominator is negative since ∂Hd (ω̂t) /∂ωt < ∂Hs (ω̂t, Lt, wc) /∂ωt < 0.
Hence,

dω̂t

dµ
=

dω̂t

dwc︸︷︷︸
(−)

∂wc

∂µ︸︷︷︸
(+)

< 0.

To grasp the role of automation and of the elastic supply of hours worked for the effect
of µ on ω̂t consider the labor market equilibrium condition as stated in (3.5). Here, total
differentiation reveals that

dω̂t

dµ

µ

ω̂t
=

(+)︷ ︸︸ ︷
∂wν

c
∂µ

µ

wν
c

ω̂t

h (ω̂t)

∂h (ω̂t)

∂ωt
+

ω̂t

N(ĉt)

∂N(ĉt)

∂ct

∂c (ω̂t)

∂ωt
+ ν︸ ︷︷ ︸

(−)

< 0. (4.1)

Hence, the negative sign of dω̂t/dµ obtains since the reinforcing impact of a higher ω̂t

on the rationalization effect, represented by ∂h (ω̂t) /∂ωt < 0, and on the task expansion
effect, represented by (∂N(ĉt)/∂ct) (∂c (ω̂t) /∂ωt) < 0, dominates the effect on the labor
supply, represented by ν.

Let me denote the functional relationship between ω̂t and µ implied by the labor market
equilibrium (3.4) by ω̂t = ω̂(µ). Then, q̂t = q (ω̂(µ)) and an anticipated increase in
longevity reduces the growth rate of the labor productivity per hour worked as

dq̂t

dµ
=

∂q (ω̂t)

∂ωt︸ ︷︷ ︸
(+)

dω̂t

dµ︸︷︷︸
(−)

< 0.

15A higher µ means a higher wc. In Figure 3.1 this shifts the aggregate supply of hours worked rightwards
(not shown) so that ω̂t falls.
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Given kt, the equilibrium amount of performed tasks is N̂t = At−1 (1 + q (ω̂t)) Ĥt. Ac-
cordingly, short-run GDP in absolute and per-capita terms is, respectively, ˆGDPt =

F
(
Kt, N̂t

)
− N̂ti (ω̂t) and ˆgdpt = ˆGDPt/Pt, where Pt is the population at t. Through

the labor market equilibrium, i. e., ω̂t = ω̂(µ), ˆGDPt and ˆgdpt hinge on µ.

Corollary 4.2 (Short-Run Effects of µ: GDP and gdp)

Consider the labor market equilibrium of Proposition 3.1. Given kt, it holds that

d ˆGDPt

dµ
> 0 and

d ˆgdpt
dµ

> 0.

Hence, an anticipated increase in longevity increases GDP and gdp in the short run. The
intuition is the following. A higher µ expands the labor supply and lowers the equi-
librium wage. This affects ˆGDPt through two channels. First, given Ĥt, the incentive
to automate weakens. However, as firms choose the degree of automation per task and
the number of tasks to maximize profits, this channel has no first-order effect on ˆGDPt.
Second, given q̂t, the decline in the equilibrium wage increases the level of employment.
Accordingly, more tasks will be performed. Each of these additional tasks is associated
with a strictly positive net output. Hence, ˆGDPt increases. Moreover, since the increase
in µ does not affect the population size ˆgdpt increases, too.

Finally, denote the labor share evaluated at the labor-market equilibrium by L̂St = LS (ω̂t)

where ω̂t = ω̂(µ).

Corollary 4.3 (Short-Run Effects of µ: Labor Share)

Consider the labor market equilibrium of Proposition 3.1. Given kt, it holds that

dL̂St

dµ
> 0.

Hence, in the short run, a higher life expectancy increases the labor share. To gain intu-
ition for this finding express L̂St as

L̂St =
ω̂th (ω̂t)

ω̂th (ω̂t) + γi (ω̂t)

and consider the decomposition

dL̂St

dµ
=

∂L̂St

∂ω̂t︸ ︷︷ ︸
(+)

+
∂L̂St

∂h︸ ︷︷ ︸
(+)

∂h (ω̂t)

∂ω̂t︸ ︷︷ ︸
(−)

+
∂L̂St

∂it︸ ︷︷ ︸
(−)

∂i (ω̂t)

∂ωt︸ ︷︷ ︸
(+)

 dω̂t

dµ︸︷︷︸
(−)

> 0.

Here, the positive overall effect of µ on L̂St obtains even though
(
∂L̂St/∂ω̂t

)
(dω̂t/dµ) <

0. This channel is dominated since weaker automation incentives imply more hours per
task and lower investment outlays.
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4.2 Declining Fertility

A lower fertility rate of cohort t induces the following changes to the equilibrium wage
and the labor productivity per hour worked at t + 1.

Corollary 4.4 (Short-Run Effects of gL: Equilibrium Wage and Productivity Growth per Hour
Worked)

Consider the labor market equilibrium of Proposition 3.1 at kt+1. Then, it holds that

dŵt+1

dgL
< 0 and

dq̂t+1

dgL
< 0.

Intuitively, a lower gL reduces the labor supply at t + 1 at the extensive margin. This
increases the equilibrium wage since the aggregate demand for hours worked is steeper
than the aggregate supply.16 To see this write the labor market equilibrium condition
(3.4) for t + 1 as Hd (ω̂t+1) = Hs (ω̂t+1, Lt(1 + gL), wc). Total differentiation gives

dω̂t+1

dgL
=

(+)︷ ︸︸ ︷
∂Hs (ω̂t+1, Lt+1, wc)

∂gL
Lt

∂Hd (ω̂t)

∂ωt+1
− ∂Hs (ω̂t+1, Lt+1, wc)

∂ωt+1︸ ︷︷ ︸
(−)

< 0,

since ∂Hd (ω̂t+1) /∂ωt+1 < ∂Hs (ω̂t+1, Lt+1, wc) /∂ωt+1 < 0.

Again, a complementary intuition that emphasizes the role of automation and the elastic
supply of hours worked for the effect of changing gL on ω̂t+1 can be gained from the
labor market equilibrium condition at t + 1 as stated in (3.5). Here, total differentiation
delivers

dω̂t+1

dgL

1 + gL

ω̂t+1
=

[
ω̂t+1

h (ω̂t+1)

∂h (ω̂t+1)

∂ωt+1
+

ω̂t+1

N(ĉt+1)

∂N(ĉt+1)

∂ct+1

∂c (ω̂t+1)

∂ωt+1
+ ν

]−1

< 0. (4.2)

Hence, the negative sign of dω̂t+1/dgL obtains since the reinforcing impact of a higher
ω̂t+1 on the rationalization effect, represented by ∂h (ω̂t+1) /∂ωt+1 < 0, and on the task
expansion effect, represented by (∂N(ĉt+1)/∂ct+1) (∂c (ω̂t+1) /∂ωt+1) < 0, dominates the
effect on the supply of hours worked, represented by ν.

16In Figure 3.1 a reduction of the labor supply at the extensive margin corresponds to a smaller Lt. This
shifts the aggregate supply of hours worked downwards (not shown). Hence, ω̂t increases.
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Denote the functional relationship between ω̂t+1 and gL implied by the labor market
equilibrium at t + 1 by ω̂t+1 = ω̂(gL). Then, q̂t+1 = q (ω̂(gL)) and a decline in fertility
increases the growth rate of the labor productivity per hour worked at t + 1 as

dq̂t+1

dgL
=

∂q (ω̂t+1)

∂ωt+1︸ ︷︷ ︸
(+)

dω̂t+1

dgL︸ ︷︷ ︸
(−)

< 0.

Given kt+1, the equilibrium amount of performed tasks is N̂t+1 = At (1 + q (ω̂t+1)) Ĥt+1.
Accordingly, short-run GDP in absolute and per-capita terms at t + 1 is, respectively,

ˆGDPt+1 = F
(
Kt+1, N̂t+1

)
− N̂t+1i (ω̂t+1) and ˆgdpt+1 = ˆGDPt+1/Pt+1, where Pt+1 =

Lt(1 + gL + µ) is the population at t + 1. Through the labor market equilibrium, i. e.,
ω̂t+1 = ω̂(gL), ˆGDPt+1 hinges on gL.

Corollary 4.5 (Short-Run Effects of gL: GDP and gdp)

Consider the labor market equilibrium of Proposition 3.1 at kt+1. Then, it holds that

d ˆGDPt+1

dgL
> 0 and

d ˆgdpt+1

dgL
⋛ 0.

Hence, GDP falls in response to a decline in gL whereas per-capita GDP may even in-
crease. The intuition is as follows. The higher equilibrium wage induced by a lower fer-
tility rate has two effects on ˆGDPt+1. First, for a given level of employment, it strengthens
the incentive to automate and boosts the growth rate of the labor productivity per hour
worked. However, this channel has no first-order effect on ˆGDPt+1 since q̂t+1 is profit-
maximizing. Second, for a given growth rate of the labor productivity per hour worked,
the level of employment declines. As a consequence, ˆGDPt+1 falls.

The response of ˆGDPt+1 to a change in gL can be expressed as

d ˆGDPt+1

dgL
= ŵt+1

(
∂Hd (ω̂t+1)

∂ωt+1

dω̂t+1

dgL

)
,

(4.3)

= ŵt+1Hd (ω̂t+1)×
(

Lt

Lt+1

)
× Ψ (ω̂t+1) .

The first line shows that the response of ˆGDPt+1 is the product of the value added of
each hour worked, ŵt+1, and the change in the equilibrium amount of hours worked.
The second line shows that the latter product can be split up into three factors, i. e., the
value added per hour worked before the change occurs, ŵt+1Hd (ω̂t+1), the growth factor
of the extensive margin of the labor supply induced by the change in gL, Lt/Lt+1, and the
elasticity of the equilibrium level of hours worked with respect to gL, Ψ (ω̂t+1). This
elasticity exceeds unity since ν > 0 (see the proof of Corollary 4.5).
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With (4.3) the condition under which a decline in gL increases ˆgdpt+1 can be expressed as

d ˆgdpt+1

dgL
< 0 ⇔ LS (ω̂t+1)×

(
Lt

Lt+1

)
× Ψ (ω̂t+1) <

1
µ + 1 + gL

. (4.4)

The left-hand side is the growth rate of ˆGDPt+1 induced by a change in gL. It is equal to
the product of the equilibrium labor share before the change in gL occurs, LS (ω̂t+1) =

ŵt+1Hd (ω̂t+1) / ˆGDPt+1 and (Lt/Lt+1)×Ψ (ω̂t+1). The right-hand side is the population
growth rate induced by a change in gL. Hence, a decline in fertility implies an increase in
per-capita GDP if the induced growth rate of GDP falls short of the induced population
growth rate. This condition is easier to satisfy the lower µ and the higher gL.17

Denote the labor share evaluated at the labor-market equilibrium at t + 1 by L̂St+1 =

LS (ω̂t+1) where ω̂t+1 = ω̂ (gL). Corollary 2.3 and 4.4 imply that L̂St+1 falls in response
to a lower fertility rate since stronger incentives to automate reduce the equilibrium labor
share.

Corollary 4.6 (Short-Run Effects of gL: Labor Share)

Consider the labor market equilibrium of Proposition 3.1 at kt+1. Then, it holds that

dL̂St+1

dgL
> 0.

To gain intuition for this finding express L̂St+1 as

L̂St+1 =
ω̂t+1h (ω̂t+1)

ω̂t+1h (ω̂t+1) + γi (ω̂t+1)

and consider the decomposition

dL̂St+1

dgL
=

∂L̂St+1

∂ω̂t+1︸ ︷︷ ︸
(+)

+
∂L̂St+1

∂h︸ ︷︷ ︸
(+)

∂h (ω̂t+1)

∂ω̂t+1︸ ︷︷ ︸
(−)

+
∂L̂St+1

∂it+1︸ ︷︷ ︸
(−)

∂i (ω̂t+1)

∂ωt+1︸ ︷︷ ︸
(+)

 dω̂t+1

dgL︸ ︷︷ ︸
(−)

> 0.

Hence, a lower gL reduces L̂St+1 even though
(
∂L̂St+1/∂ω̂t+1

)
(dω̂t+1/dgL) < 0. The

latter channel is dominated since stronger automation incentives imply fewer hours per
task and higher investment outlays.

17Consider a period length of 30 years and suppose that the annual productivity growth rate per hour
worked is 2%. Then, ω̂t+1 = (1.811)2α and q̂t+1 = 0.811. Moreover, let γ = 1/3, ν = 1/4, and gL = 0.35,
which corresponds to an annual fertility rate of 1%. Then, condition (4.4) is satisfied for µ < .75. If instead
gL = 0.56, which corresponds to an annual fertility rate of 1.5%, then condition (4.4) is satisfied for µ < 0.87.
For many industrialized countries the range of µ interpreted, e. g., as the survival probability for males to age
65 between 1960-2017, is [0.5, 0.9] (see Appendix B.1). Hence, condition (4.4) is sensitive to country-specific
parameters.
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5 Long-Run Macroeconomic Implications of Population Aging

This section derives the long-run, i. e., steady-state, implications of a permanent increase
in life expectancy and a permanent decline in the fertility rate for automation, growth,
and factor shares. It proves useful to start the analysis with the structural properties of
the steady state.18

5.1 Structural Properties of the Steady State

The steady-state evolution of all endogenous variables is as follows.

Proposition 5.1 (Structural Properties of the Steady State)

Consider the steady state of Proposition 3.2. Then, aggregate technological knowledge grows at
rate q∗ > 0. Moreover,

a)
at+1

at
= 1 + q∗,

ht+1

ht
=

1
1 + q∗

, it = i∗ > 0, ct = c∗,

b)
wt+1

wt
=

ŵt+1

ŵt
= 1 + q∗, Rt = R∗ > 0,

c)
hs

t+1

hs
t

=
1

(1 + q∗)ν ,
cy

t+1

cy
t

=
co

t+1

co
t

=
st+1

st
= (1 + q∗)1−ν ,

d)
Ĥt+1

Ĥt
= (1 + q∗)−ν (1 + gL) ,

Yt+1

Yt
=

Kt+1

Kt
=

It+1

It
=

Nt+1

Nt
= (1 + q∗)1−ν (1 + gL) .

The intuition is as follows. Since ω∗ > α firms undertake automation investments that
support a strictly positive growth rate of aggregate technological knowledge, q∗ > 0. On
the production side, this means that the labor productivity per hour worked increases at
this rate. Accordingly, there will be rationalization at the level of each task, i. e., ht+1/ht <

1. Automation investments per task remain constant over time. The real wage inherits
the growth rate of aggregate technological knowledge since by definition ŵt = At−1ω̂∗.
As wages and the productivity per working hour grow at the same rate and it = i∗ the
costs per task are time-invariant, i. e., ct = c∗.

On the household side, wage growth implies a declining individual supply of hours
worked. The key implication is that wage income, wths

t , grows at a factor (1 + q∗)1−ν,

18The calibration exercise presented in Section B.3 of the Online Appendix reveals that the quantitative
properties of the steady state are broadly consistent with the long-run evolution of industrialized economies
over the last century.
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which is also the growth factor of consumption in both periods of life and of individual
savings.19

At the level of economic aggregates, the evolution of the equilibrium amount of hours
worked reflects a decline at the intensive margin, (1 + q∗)−ν, and an expansion at the
extensive margin, 1 + gL. From the accumulation equation (3.6) it is obvious that fixed
capital grows with a factor (1 + q∗)1−ν (1 + gL). Total output, Yt, the aggregate demand
for automation investments, It, the number of tasks, Nt, and, hence, GDPt inherit this
trend.

Finally, observe that the steady state is a balanced growth path as the labor share, the ra-
tios Kt/Yt, It/Yt, and

(
µLt−1co

t + Ltc
y
t
)

/Yt as well as the real rental rate of capital remain
constant over time.

5.2 Increasing Longevity, Declining Fertility, and the Long Run

The following corollary shows that of two otherwise identical economies the one with a
higher life expectancy and/or a lower fertility rate enjoys faster steady-state growth of
labor productivity per hour worked. As a higher µ and a lower gL increase the steady-
state OADR it follows for the long run that per-capita variables grow faster in the older
economy.

Corollary 5.1 (Long-Run Effects: Productivity Growth per Hour Worked)

Consider the steady state of Proposition 3.2. It holds that

dq∗

dµ
> 0 and

dq∗

dgL
< 0.

The effect of a permanent increase in µ on q∗ reflects three channels. These are illustrated
in Figure 5.1 which builds on Figure 3.2. Initially the economy has a survival probability
equal to µ and starts in the steady state (ω∗, k∗). The new steady state corresponding to
µ′ > µ is (ω∗′, k∗′). The first channel is the short-run effect identified in Corollary 4.1 and
propagates through the labor market. A higher µ increases the individual and the ag-
gregate supply of hours worked. Accordingly, the labor-market equilibrium locus shifts
upwards (see the curve denoted by k′t), and, given k∗, the equilibrium wage, falls. The sec-
ond and the third channel operate through the capital market. Here, a greater µ increases
savings for two reasons. First, the wage income increases with the individual supply

19Observe that a higher ν increases the savings rate. Therefore, q∗ also increases. The effect of a higher
ν on the growth factor of per-capita variables, (1 + q∗)1−ν, has to take the individual labor supply decision
into account. Analytically, one can show that a higher ν increases this growth factor if q∗ is sufficiently small.
This finding remains true for the parameter constellation considered in Footnote 17.
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Figure 5.1: The Effect of a Higher Life Expectancy on the Steady State.

0 ω̂∗ ω̂∗′

k∗

kt+1, kt
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k∗′
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k′t+1
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Note: In response to a permanent increase in life expectancy from µ to µ′ the steady state of the economy
switches from (ω∗, k∗) to (ω∗′, k∗′). The labor market equilibrium condition (3.5) denoted, respectively, by kt
and k′t shifts upwards. The capital market equilibrium locus of (3.7) denoted, respectively, by kt+1 and k′t+1
shifts upwards for two reasons. First, individual wage income increases as individuals work more hours,
and, second, the propensity to save increases. The dashed blue line shows the upward shift of the capital
market equilibrium locus that reflects only the increase in the supply of hours worked. This shift leaves ω̂∗

unchanged.

of hours worked (second channel, see Corollary 2.4). Given ωt, this shifts the capital
market equilibrium locus in Figure 5.1 upwards (see the dashed blue line). Second, the
individual propensity to save increases (third channel, see Corollary 2.4). In Figure 5.1,
this effect shifts the capital market equilibrium locus even further upwards (see the curve
denoted by k′t+1). As a result, the new steady state has k∗′ > k∗, ω̂∗′ > ω̂∗, and, q∗′ > q∗.20

Hence, population aging through increased longevity induces faster steady-state growth
of per-capita variables.

A permanent decline in the fertility rate, gL, means higher savings per unit of next pe-
riod’s workers, i. e., Ω increases. This shifts the capital market equilibrium locus in
Figure 5.1 upwards (not shown). As a consequence, the steady state corresponding to
g′L < gL has k∗′ > k∗, ω̂∗′ > ω̂∗, and, q∗′ > q∗. Hence, population aging through a
permanent decline in fertility also leads to faster long-run growth of per-capita variables.

Population aging also affects the long-run growth rate of GDP and gdp that are, respec-
tively, given by g∗GDP = (1 + q∗)1−ν (1 + gL)− 1 and g∗gdp = (1 + q∗)1−ν − 1.

20The proof of Corollary 5.1 reveals that, as shown in Figure 5.1, the third channel is responsible for the
increase in ω̂∗.

31



Corollary 5.2 (Long-Run Effects: Growth of GDP and gdp)

Consider the steady state of Proposition 3.2. It holds that

dg∗GDP
dµ

> 0,
dg∗GDP

dgL
> 0,

dg∗gdp

dµ
> 0,

dg∗gdp

dgL
< 0.

Hence, irrespective of its source population aging increases the long run growth rate of
gdp since it speeds up the growth rate of labor productivity per hour worked. If a higher
longevity is the source of population aging then this force makes GDP grow faster, too.
However, if population aging is due to a decline in fertility then the growth rate of GDP
falls since the decline in the growth rate of the work force dominates.

Finally, let L̂S
∗
= LS (ω∗) denote the steady-state labor share.

Corollary 5.3 (Long-Run Effects: Labor Share)

Consider the steady state of Proposition 3.2. It holds that

dL̂S
∗

dµ
< 0 and

dL̂S
∗

dgL
> 0.

Hence, population aging reduces the steady-state labor share irrespective of its source.
From Corollaries 4.3, 4.6, and 5.1, the intuition is that a higher µ or a lower gL increases
q∗ which reduces L̂S

∗
.

6 Concluding Remarks

Since the 1960ies population aging has changed the macroeconomic environment that
firms operate in. An increasing longevity and a declining fertility have been and will
remain the key drivers of this process in many industrialized countries. At the same time,
the scale and scope of automation substantially widened through technological progress.
This paper shows that population aging implies behavioral adjustments that affect the
incentives to automate, hence, economic growth, and factor shares. Table 6.1 summarizes
the results of the analysis.

The comparative static effects of an increase in µ and of a decline in gL capture the key
drivers of population aging. Both changes lift the old-age dependency ratio as stated in
(2.16). However, an increase in this ratio may still occur if, e. g., both longevity and fer-
tility increase simultaneously and the growth in the former dominates the growth of the
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Table 6.1: The Effects of Changing µ and gL for the Short and the Long Run.

Short-Run Effects
q̂ ˆGDP ˆgdp L̂S

µ (−) (+) (+) (+)

gL (−) (+) (+/−) (+)

Long-Run Effects
q∗ g∗GDP g∗gdp LS∗

µ (+) (+) (+) (−)

gL (−) (+) (−) (+)

Note: The short-run effects of a change in µ at t apply to period-t variables, a change in gL at t applies to
period-t + 1 variables.

latter. Then, one may use the analytical results derived in Section 4 and 5 in a quantita-
tive analysis to gauge the overall effect of population aging on automation, growth, and
factor shares.

To the extent that economic growth is due to automation (and the accumulation of fixed
capital), the comparative statics in Table 6.1 suggest conjectures about the effects of popu-
lation aging on economic growth and the labor share that subsequent empirical research
may want to address. For instance, in the long run older economies are predicted to grow
faster and to have a lower labor share. However, Table 6.1 also emphasizes that the iden-
tification of these two effects needs to distinguish between the sources of aging as well as
the long and the short run.

The present paper gives rise to several new questions that a comprehensive understand-
ing of the effects of population aging on automation, growth, and factor shares needs to
address. One concerns the role of perfect competition and of the knowledge accumula-
tion process. For instance, one may wonder whether the short-run effects of population
aging through automation remain of second order when firms produce differentiated
goods and/or when they internalize the effect of their automation investments on the
evolution of technological knowledge.

Another concerns the role of increasing educational attainments that have been observed
since the 1960ies (Barro and Lee (2018)). Intuition suggests that the expectation of a longer
working life may increase the rate of return of an educational investment. At the same
time, new automation technologies may depreciate the acquired human capital so that
the potential effect of these tendencies on the incentive to automate, growth, and factor
shares remains elusive.

Finally, one may want to allow for alternative ways to expand the supply of hours worked
in response to aging. They include an endogenous retirement age for individuals or an
extensive margin of the labor supply for households. The results of the present paper sug-
gest a tendency to retire later or to expand the extensive margin in response to a higher
life expectancy. Both are in line with the empirical evidence (see, e. g., Bloom, Canning,
Mansfield, and Moore (2007), Aı́sa, Pueyo, and Sanso (2012)). As these adjustments in-
duce a positive level effect on the aggregate labor supply, one may conjecture that at least
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the qualitative effects for the short run are similar to those derived in the analysis above.
I leave the detailed analysis of these issues for future research.
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A Appendix: Proofs

The proofs of Proposition 2.2, 2.3, as well as of Corollary 2.2, 2.3, 4.6, and 5.3 are given in the main text.

A.1 Proof of Proposition 2.1

Given q (ωt) of (2.12), equation (2.8) delivers ht = 1/ (At−1 (1 + q (ωt))) ≡ h (ωt) /At−1. From (2.4) it =

i (ωt). Since the wage cost per task is wtht = ωth (ωt), we have ct = ωth (ωt) + i (ωt) ≡ c (ωt). Continuity
of these functions follows since limωt↓α q (ωt) = 0. The remaining arguments that complete the proof are
straightforward or given in the main text. ■

A.2 Proof of Corollary 2.1

If ωt > α then qt > 0 and the rationalization effect follows since (At−1 (1 + qt))
−1 < A−1

t−1. The productivity
effect follows since ct is the solution to (2.10) and c (ωt) |ωt=α = ωt. ■

A.3 Proof of Proposition 2.4

For ease of notation I shall most often suppress the time argument. Consider problem (2.20). Since pref-
erences are increasing in co both periodic budget constraints will hold as equalities and can be merged.
Accordingly, the Lagrangian of this problem is

L = ln cy + ln
(

1 − ϕ (1 − l) (cy)
ν

1−ν

)
+ µβ ln co + λ

[
w (1 − l)− cy − µco

R

]
. (A.1)

Corner solutions involving cy = co = 0 and l = 1 can be excluded since U satisfies the Inada conditions and
l = 1 implies no income. Hence, with x ≡ (1 − l) (cy)

ν
1−ν the respective first-order Kuhn-Tucker conditions

read as follows:

∂L
∂cy =

1 − ν − ϕx
cy(1 − ν)(1 − ϕx)

− λ = 0, (A.2)

∂L
∂l

=
ϕ (cy)

ν
1−ν

1 − ϕx
− λw ≤ 0, with strict inequality if lt = 0, (A.3)

∂L
∂co =

β

co − λ

R
= 0, (A.4)

∂L
∂λ

= w (1 − l)− cy − µco

R
= 0. (A.5)

Suppose l > 0. Then, upon multiplication by (1 − l), condition (A.3) may be written as

ϕx
(1 − ϕx)w (1 − l)

= λ. (A.6)

Using the latter to replace λ in (A.2) and (A.4) delivers, respectively,

cy =

(
1

ϕx
− 1

1 − ν

)
w(1 − l) (A.7)

and

co = βR
(

1
ϕx

− 1
)

w(1 − l). (A.8)
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With (A.7) and (A.8) in the budget constraint (A.5) I obtain

ϕxt = ϕx =
(1 + µβ)(1 − ν)

1 + (1 + µβ) (1 − ν)
∈ (0, 1). (A.9)

Using (A.9) in (A.7), (A.8), and (2.19) delivers (2.21). Since the optimal plan satisfies Assumption 1 I have
1 > ν(1 + µβ), hence, cy > 0.

From the definition of x with hs = 1 − l it holds that cy =
(

x (hs)−1
) 1−ν

ν . Replacing cy with this expression
in (2.21) and solving for hs delivers hs

t . Using the latter in (2.21) delivers ct and st. Then, co
t+1 is obtained

from the budget when old. Clearly, hs
t ≤ 1 as long as wt ≥ wc. In accordance with this, w < wc implies a

strict inequality in (A.3).

To see that the solution identified by the Lagrangian (A.1) is indeed a global maximum if ν < ν̄ (µβ) consider
first the leading principal minors of the Hessian matrix of U (cy, l, co), i. e.,

D1 (cy, l, co) = − (1 − ν − ϕx)2 + νϕx (1 − ϕx)

(cy(1 − ν) (1 − ϕx))2 ,

D2 (cy, l, co) =
ϕ2 (1 − 2ν − (1 − ν)ϕx)

(cy)
2(1−2ν)

1−ν (1 − ν)2 (1 − ϕx)3
,

D3

(
cy

t , lt, co
t+1

)
= − µβ

(co)2 D2

(
cy

t , lt, co
t+1

)
.

First, we have −D1 (cy, l, co) > 0. Second, observe that D2 (cy, l, co) > 0 and −D3 (cy, l, co) > 0 hold if and
only if condition (2.18) holds. Hence, U is strictly concave for all (cy, l, co) ∈ P .

What remains to be shown is that the solution identified by the Lagrangian satisfies condition (2.18). With
ϕx of (A.9) this is the case if and only if

1 − 2ν

1 − ν
>

(1 + µβ)(1 − ν)

1 + (1 + µβ)(1 − ν)

or

ν2(1 + µβ)− ν(3 + µβ) + 1 > 0.

It is not difficult to show that the latter condition is satisfied if and only if ν < ν̄ (µβ) as stated in Assump-
tion 1.

Finally, observe that surviving members of cohort 0 satisfy their budget constraint when old as equality, i. e.,
we have co

1 = R1s0/µ > 0. ■

A.4 Proof of Corollary 2.4

Some algebra reveals that

∂wc

∂µ
=

βwc

ν(1 + µβ)(1 + (1 − ν)(1 + µβ))(1 − ν(1 + µβ)
> 0.

It follows that ∂hs
t /∂µ > 0. From the definition of wc and Proposition 2.4, cy

t may be written as

cy
t =

(
1 − ν (1 + µβ)

ϕ (1 + (1 + µβ) (1 − ν))

)1−ν

w1−ν
t .

Hence,

∂cy
t

∂µ
=

− (1 − ν) βw1−ν
t

ϕ1−ν(1 + (1 − ν)(1 + µβ))2−ν(1 − ν(1 + µβ))ν
< 0.
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The sign of ∂st/∂µ > 0 follows since the marginal propensity to save in (2.21) increases in µ and ∂hs
t /∂µ > 0.

Finally, using st in the budget constraint of a surviving old delivers

co
t+1 =

βRt+1w1−ν
t

ϕ1−ν(1 + (1 − ν)(1 + µ))1−ν(1 − ν(1 + µ))ν
.

Hence, by Assumption 1

∂co
t+1

∂µ
= −

(
ν2(1 + µβ)− ν(3 + µβ) + 1

)
β2Rt+1w1−ν

t
ϕ1−ν(1 + (1 + ν)(1 + µβ))2−ν(1 − ν(1 + µβ))1+ν

< 0.

■

A.5 Proof of Proposition 3.1

Under Assumption 2, Hd
t is given by (3.2) whereas Hs

t is given by (3.3). Hence, (3.4) delivers (3.5). Denote
the right-hand side of (3.5) by RHS(ωt) where RHS : [α, ∞) → [kc, ∞). Then, RHS(α) = kc > 0. Moreover,
since ν < 1/2 we have RHS′(ωt) > 0 for ωt > α and limωt→∞ RHS(ωt) = ∞. Hence, for equation (3.5) to
be satisfied for any value ωt > α it is necessary and sufficient to have RHS(α) < kt or kt > kc. Then, the
above-mentioned properties of RHS(ωt) assure that there is indeed a unique ω̂t > α that satisfies (3.5). By
the implicit function theorem, the function ω (kt) has the indicated properties. ■

A.6 Proof of Proposition 3.2

First, observe that kt is a state variable of the inter-temporal general equilibrium. Indeed, given kt > kc, the
labor market determines ω̂t = At−1ŵt > α. Hence, Proposition 2.1 delivers qt, at, it, and ct. Proposition 2.2
and (3.2) determine Nt, Yt, It, and Hd

t . Hence, (2.13) delivers Rt. On the household side, Proposition 2.4
gives hs

t , lt, cy
t , co

t , st. Finally, Kt+1 follows from (3.6).

Second, consider (3.5) and replace ω̂t by ωt = (kt+1/Ω)1/(1−ν) from (3.7). Then, the equilibrium difference
equation (3.8) is given by

kt =
kc

α
1
2 −ν

(
kt+1

Ω

) 1−2ν
2(1−ν)

(
2√
α

(
kt+1

Ω

) 1
2(1−ν)

− 1

) 1
γ

. (A.10)

Denote the right-hand side of (A.10) by RHS(k). The latter satisfies limk↓kc
RHS(k) = kc, is continuous,

and, since ν < 1/2, increasing with limk→∞ RHS(k) = ∞. Hence, (A.10) assigns to each kt > kc a unique
kt+1 > kc. To see that there is a unique fixed point k = RHS(k) write (A.10) for kt = kt+1 = k as

k = Z1k
1−2ν

2(1−ν)

(
Z2k

1
2(1−ν) − 1

) 1
γ

or

k
γ

2(1−ν) = Zγ
1 Z2k

1
2(1−ν) − Zγ

1 , (A.11)

where

Z1 ≡ kc

α
1
2 −ν

(
1
Ω

) 1−2ν
2(1−ν)

> 0 and Z2 ≡ 2√
α

(
1
Ω

) 1
2(1−ν)

> 0.

Since 0 < γ < 1 and 0 < ν < 1/2 it holds that 0 < γ/(2(1 − ν)) < 1/(2(1 − ν)) < 1. Hence, the left and the
right-hand side of (A.11) are concave with a unique intersection at some k > 0. Moreover, a straightforward
graphical argument in (kt+1, kt) - space reveals that k > kc and that k is stable for all k1 > kc (see, e. g., Galor
(2007)). A0 > wc/α ensures Assumption 2. ■
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A.7 Proof of Corollary 4.1

Since the right-hand side of (3.5) is increasing in ω̂t and ∂wc/∂µ > 0 there is by the implicit function theorem
a function ω̂t = ω̂(µ) with dω̂t/dµ < 0. Hence, dŵt/dµ = (∂ŵt/∂ωt) (dω̂t/dµ) < 0. The sign of dq̂t/dµ

follows with Proposition 2.1. ■

A.8 Proof of Corollary 4.2

Let Ĥt = Hd(ω̂t) = Hd(ω̂(µ)) where ω̂t = ω̂(µ) is defined in the Proof of Corollary 4.1. With N̂t =

At−1 (1 + q (ω̂(µ))) Hd(ω̂(µ)) define ˆGDPt = F
(
Kt, N̂t

)
− N̂ti (ω̂(µ)) ≡ GDP (ω̂(µ)). Then, it holds that

d ˆGDPt/dµ = (∂GDP (ω̂t) /∂ωt) (dω̂t/dµ) where Corollary 4.1 delivers dω̂t/dµ < 0. Some manipulations
reveal that

∂GDP (ω̂t)

∂ωt
= At−1Hd (ω̂t)

∂q (ω̂t)

∂ωt

[
F2 − (1 + q (ω̂t))

∂i (ω̂t)

∂qt
− i (ω̂t)

]
(A.12)

+ At−1 (1 + q (ω̂t))
∂Hd (ω̂t)

∂ωt
[F2 − i (ω̂t)] ,

where F is evaluated at
(
Kt, N̂t

)
. In equilibrium, the bracketed expression in the first line vanishes. To

see this, observe that the cost per task in a symmetric configuration is wtht + i(qt) = ωt/(1 + qt) + i(qt).
Minimizing this expression with respect to qt gives the first-order condition ωt/(1+ qt) = (1+ qt)∂i(qt)/∂qt.
Hence, the minimized cost per task can be written as ct = (1 + qt)∂i(qt)/∂qt + i(qt). Profit maximization
requires conditions (2.13) to hold. Hence, F2 = ct = (1 + qt)∂i(qt)/∂qt + i(qt) holds in equilibrium. As
∂Hd (ω̂t) /∂ωt < 0 and F2 − i (ω̂t) > 0 it follows that ∂GDP (ω̂t) /∂ωt < 0, hence, d ˆGDPt/dµ > 0. ■

A.9 Proof of Corollary 4.3

Corollary 2.3 proves ∂LSt/∂ωt < 0. Hence, dL̂St/dµ = (∂LSt/∂ωt) (dω̂t/dµ) > 0. ■

A.10 Proof of Corollary 4.4

Consider (3.5) with kt+1 = Kt+1/
(

A1−ν
t Lt(1 + gL)

)
. Since the right-hand side of (3.5) is increasing in ω̂t+1

there is by the implicit function theorem a function ω̂t+1 = ω̂(gL) with dω̂t+1/dgL < 0. Hence, dŵt+1/dgL =

(∂ŵt+1/∂ωt+1) (dω̂t+1/dgL) < 0. The sign of dq̂t+1/dgL follows with Proposition 2.1. ■

A.11 Proof of Corollary 4.5

Let Ĥt+1 = Hd(ω̂t+1) = Hd(ω̂(gL)) where ω̂t+1 = ω̂(gL) is defined in the proof of Corollary 4.4. With
N̂t+1 = At (1 + q (ω̂(gL))) Hd(ω̂(gL)) let ˆGDPt+1 = F

(
Kt+1, N̂t+1

)
− N̂t+1i (ω̂(gL)) ≡ GDP (ω̂(gL)). Then,

it holds that d ˆGDPt+1/dgL = (∂GDP (ω̂t+1) /∂ωt+1) (dω̂t+1/dgL). Some manipulations reveal that

∂GDP (ω̂t+1)

∂ωt+1
= At Hd (ω̂t+1)

∂q (ω̂t+1)

∂ωt+1

[
F2 − (1 + q (ω̂t+1))

∂i (ω̂t+1)

∂qt+1
− i (ω̂t+1)

]
(A.13)

+ At (1 + q (ω̂t+1))
∂Hd (ω̂t+1)

∂ωt+1
[F2 − i (ω̂t+1)] ,
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where F is evaluated at
(
Kt+1, N̂t+1

)
. For the same reason as in the proof of Corollary 4.2, the bracketed

expression in the first line vanishes. Hence, as ∂Hd (ω̂t+1) /∂ωt+1 < 0 and F2 − i (ω̂t+1) > 0 it follows that
∂GDP (ω̂t+1) /∂ωt+1 < 0, hence, d ˆGDPt/dgL > 0.

Turning to the effect of gL on ˆgdpt+1, observe that ˆgdpt+1 ≡ ˆGDPt+1/ (Lt (µ + 1 + gL)). Hence,

d ˆgdpt+1
dgL

⋛ 0 ⇔ d ˆGDPt+1
dgL

⋛
ˆGDPt+1

µ + 1 + gL
.

With (A.13) we have

d ˆGDPt+1
dgL

= At (1 + q (ω̂t+1)) [F2 − i (ω̂t+1)]
∂Hd (ω̂t+1)

∂ωt+1

dω̂t+1
dgL

,

= ŵt+1

(
∂Hd (ω̂t+1)

∂ωt+1

dω̂t+1
dgL

)
, (A.14)

where the second line uses the first-order condition (2.13) for Nt+1, i. e., F2(Kt+1, Nt+1) = ct+1 = wt+1ht+1 +

it+1. The latter implies wt+1 = [F2(Kt+1, Nt+1)− it+1] /ht+1 = At (1 + qt+1) [F2(Kt+1, Nt+1)− it+1].

With (3.5) and (4.2) one finds

∂Hd (ω̂t+1)

∂ωt+1

dω̂t+1
dgL

=
Hd (ω̂t+1)

1 + gL

 ω̂t+1
h(ω̂t+1)

∂h(ω̂t+1)
∂ωt+1

+ ω̂t+1
N(ĉt+1)

∂N(ĉt+1)
∂ct+1

∂c(ω̂t+1)
∂ωt+1

ω̂t+1
h(ω̂t+1)

∂h(ω̂t+1)
∂ωt+1

+ ω̂t+1
N(ĉt+1)

∂N(ĉt+1)
∂ct+1

∂c(ω̂t+1)
∂ωt+1

+ ν


=

Hd (ω̂t+1)

1 + gL
× Ψ (ω̂t+1) , (A.15)

where

Ψ (ω̂t+1) ≡
(

∂Hd (ω̂t+1)

∂ω̂t+1

ωt+1

Hd (ω̂t+1)

)(
dω̂t+1

dgL

1 + gL
ω̂t+1

)
> 1.

With (A.15) and Lt+1 = (1 + gL)Lt one obtains (4.4). ■

A.12 Proof of Proposition 5.1

From Proposition 3.2 the steady state has kt = k∗ > kc > kc so that Proposition 3.1 implies ωt = ω̂∗ =

ω (k∗) > α. Then, from (2.12) I have qt = q∗ = q(ω̂∗) > 0, and the results listed under a) - d) follow from
Proposition 2.1, Proposition 2.2, Proposition 2.4, Proposition 3.1, and equations (2.13), (3.2) and (3.6). ■

A.13 Proof of Corollary 5.1

I show how a change in µ and gL affects ω̂∗. Then, the corollary follows since ∂q(ω̂∗)/∂ωt > 0 (see Proposi-
tion 2.1).

Consider the labor market equilibrium condition (3.5) and the capital market condition (3.7) in steady state.
Solving both equations for k∗ and substitution delivers

µβ (Γ(1 − γ))
1
γ

(1 + µβ)(1 − ν)(1 + gL)
= (αω̂∗)

−1
2

(
2
√

αω̂∗ − α
) 1

γ . (A.16)

The right-hand side of equation (A.16) defines a continuous function RHS(ω) with RHS′(ω) > 0 for all
ω̂∗ > α. Then, total differentiation of (A.16) delivers dω̂∗/dµ > 0 and dω̂∗/dgL < 0. ■
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A.14 Proof of Corollary 5.2

The sign of dg∗GDP/dµ, dg∗gdp/dµ, and dg∗gdp/dgL follow immediately from Corollary 5.1. To show that
dg∗GDP/dgL > 0 observe that

dg∗GDP
dgL

= (1 − ν) (1 + q∗)−ν dq (ω̂∗)
dgL

(1 + gL) + (1 + q∗)1−ν ,

where dq (ω̂∗) /dgL = (∂q (ω̂∗) /∂ω) · (dω̂∗/dgL) < 0. Some algebraic manipulations using

dω̂∗

dgL
= − ω̂∗

1 + gL

[
1
2
+

1
γ

( √
ω̂∗

2
√

ω̂∗ −√
α

)
− ν

]−1

< 0

obtained from (3.5) deliver the desired result. ■
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B Online Appendix: Additional Results

B.1 Empirical Evidence on Population Aging

This section provides empirical evidence on population aging for a sample of 27 OECD
countries. This evidence supports the way population aging is modelled in the theoretical
analysis of the main text.

As explained in Footnote 21 below, I selected those countries from the set of 36 OECD
countries that experienced population aging over the time span 1960-2017. I judge this to
be the case if the experienced change in the OADR is at least equal to 1. This eliminates
Ireland. Moreover, due to data limitations for per-capita GDP in the Penn World Tables
for the considered time span the Czech Republic, Estonia, Hungary, Latvia, Lithuania,
Poland, Slovak Republic, and Slovenia are not included. Hence, the sample includes
Australia, Austria, Belgium, Canada, Chile, Denmark, Finland, France, Germany, Greece,
Iceland, Israel, Italy, Japan, Luxembourg, Mexico, Netherlands, New Zealand, Norway,
Portugal, South Korea, Spain, Sweden, Switzerland, Turkey, UK, and the US.

Figure B.1 documents the substantial increase in the survival probability for males to age
65, a proxy for longevity, for the period 1960 - 2017. The data are from United Nations
(2019). The survival probability for males to age 65 is defined as the percentage of a
cohort of newborn male infants that would survive to age 65, if subject to age specific
mortality rates of the specified year. The parameter µ is the counterpart to the survival
probability in the theoretical analysis of the main part of this paper. This motivates the
choice of this variable as a proxy for longevity.

Regressing the survival probability on a country fixed effect and years gives a slope co-
efficient of roughly 0.43%. Hence, over 30 years the increase in the average survival
probability is 12.9%. Qualitatively similar evolutions obtain for women.

Figure B.2 shows the decline in the total fertility rate in the same sample over the same
time span. The total fertility rate represents the number of children that would be born
to a woman if she were to live to the end of her childbearing years and bear children
in accordance with age-specific fertility rates of the specified year. Regressing the total
fertility rate on a country fixed effect and years gives a slope coefficient of roughly −0.029.
Hence, over 30 years the decline in the average total fertility rate is equal to −0.87.

B.2 The Evolution of the Old-Age Dependency Rate, Growth, and Factor Shares

Throughout, my stylized measure of population aging is the increase in the old-age de-
pendency ratio (OADR). Figure B.3, Figure B.4, and Table B.1 show for 27 selected OECD
countries over the time span 1960-2017 that the association between population aging
and per-capita GDP growth is positive and significant whereas the association with the
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Figure B.1: The Increase in the Survival Probability for Males to Age 65 in 27 Selected
OECD Countries from 1960-2017.
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Figure B.2: The Decline in the Total Fertility Rate in in 27 Selected OECD Countries from
1960-2017.

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Bi
rth

s 
pe

r W
om

an

1960 1970 1980 1990 2000 2010 2017
Years 1960 - 2017

45



change in the labor share is negative and insignificant.21 Table B.1 also suggests that the
order of magnitude of the association between aging and growth is not negligible. Of
two otherwise identical countries in 1960 the one for which the increase in the OADR is
higher by 10 units is predicted to have a 15% higher level of per-capita GDP in 2017. This
raises the question about the role of automation for these trends.

Figure B.3: Population Aging and the Average Annual Growth Rate of Per-Capita GDP
1960-2017 for 27 Selected OECD Countries.
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Note: Figure B.3 shows the positive and significant association between population aging and per-capita
GDP growth 1960-2017. The data for GDP and population are extracted from the Penn World Table 9.1
(Feenstra, Inklaar, and Timmer (2015)). Data for the OADR are taken from the World Bank (United Nations
(2019)). The OADR states the dependent population aged 65 and older per 100 members of the working
population between 15 and 64 years of age.

B.3 A Simple Calibration Exercise

This section shows that a simple calibration of the steady state of Proposition 3.2 delivers
reasonable results. A period corresponds to 30 years. The calibration delivers an annual
steady-state growth rate of per-capita output, per-capita consumption and savings of 2%,
an annual rate of decline in the individual supply of hours worked of 0.66%, and a labor

21From the set of 36 OECD countries I select countries that experienced population aging over the time
span 1960-2017. I judge this to be the case if the change in the OADR over the considered time interval is
at least equal to 1. This eliminates Ireland. Moreover, due to data limitations for the entire time span 1960-
2017 in the Penn World Table the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, the Slovak
Republic, and Slovenia are not included.
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Figure B.4: Population Aging and the Change in the Labor Share 1960-2017 for 27 Selected
OECD Countries.
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Note: Figure B.4 shows the negative, yet, insignificant association between population aging and the change
in the labor share 1960-2017. The data for the labor share are extracted from the Penn World Table 9.1
(Feenstra, Inklaar, and Timmer (2015)). Data for the OADR are the same as those used in Figure B.3.

share of slightly less than 2/3. Throughout, I round resulting numbers to the second digit
after the decimal point.

On the production side I set Γ = 6.15, γ = .25, and α = 1. The following parameter values
are chosen for the household sector:

µ = 70%, β =
10
21

, ν =
1
4

, ϕ =
1
2

(
3
2

) 1
3

, and gL = 35%.

I proxy µ with the probability at birth for males of reaching the age of 65 as shown in
Figure B.1. In line with the literature, the chosen value for β corresponds to an annual
discount factor of roughly 0.976 (see, e. g., Prescott (1986), Blanchard and Fischer (1989),
p. 147, or Barro and Sala-ı́-Martin (2004), p. 197). The wage elasticity of hours worked,
ν, is in line with the value suggested by Boppart and Krusell (2020). The preference
parameter ϕ is chosen such that wc = 1. Then, Assumption 1 holds for wt > 1 as ν =

1/4 < ν̄(µβ) = 0.35. Finally, the fertility rate, gL, implies that cohorts grow at an annual
rate of 1%.
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Table B.1: Estimates of the Impact of Population Aging on the Average Annual Growth
Rate of Per-Capita GDP (Panel A) and the Change in the Labor Share (Panel B) 1960-2017
for 27 Selected OECD Countries.

Panel A. Estimates of the Impact of Aging on Per-Capita GDP Growth
Change of the OADR 0.00025

(0.0001)
Observations 27
R2 0.0479

Panel B. Estimates of the Impact of Aging on the Labor Share
Change of the OADR −0.00033

(0.0009)
Observations 27
R2 0.025

Note: Robust standard errors in parentheses. Panel A, shows the positive and significant association be-
tween population aging and per-capita GDP growth 1960-2017. Panel B, shows the negative, yet, insignifi-
cant association between population aging and the change in the labor share 1960-2017.

Proposition B.1 (Steady State of the Calibrated Economy)

Let A0 > 1 and suppose that the calibrated economy embarks on a steady state in t = 1. Then,
the steady state satisfies wt > αAt−1 > wc for all t = 1, 2, ..., ∞. Moreover, it holds that

k∗ = 0.45, ω∗ = 4.88,

and

q∗ = 1.21, g∗hs = −0.17, LS∗ = 0.66, R∗ = 3.78.

Proof of Proposition B.1

Consider the labor and the capital market.22 For the chosen parameter constellation Λ =

452.632 and kc = 0.0022093. Moreover, the labor-market equilibrium condition (3.5) reads

kt = 0.0022093 (2
√

ωt − 1)4
ω

1
4
t . (B.1)

At the same time, Ω = 0.246914 = kc. Hence, it holds that kc = 0.246914 > kc =

0.0022093, and the capital market equilibrium condition (3.7) becomes

kt+1 = 0.246914 · ω
3
8
t . (B.2)

22All computations were executed in Mathematica. The relevant notebooks are available upon request.
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Equations (B.1) and (B.2) determine the equilibrium difference equation (3.8) as

kt = 0.00561338 · k2/3
t+1

(
12.9113 · k4/3

t+1 − 1
)4

. (B.3)

The evaluation of (B.1) and (B.2) at kt = kt+1 = k∗ and ωt = ω∗ delivers k∗ and ω∗ as
stated in the proposition. Since ω∗ > 1 and α = 1, the steady state satisfies wt > At−1 for
all t = 1, 2, ..., ∞. Since wc = 1 it also satisfies αAt−1 > wc if At−1 > 1.

Using ω∗ in Proposition 2.1 delivers the indicated value of q∗, using ω∗ in (??) gives the
stated labor share, LS∗. With ω∗ in Proposition 2.1 one also finds

i∗ = 1.20823 and c∗ = 3.41645.

With the latter in Proposition 2.2 one obtains

Nt

Kt
=

(
Γ(1 − γ)

c∗

) 1
γ

= 3.32234.

For Nt/Kt = 3.32234 the first-order condition for Kt in (2.13) gives R∗.

Finally, from Proposition 2.1 the growth factor of the supply of hours worked is 1/(1 +

q∗)ν = 0.820331. ■

To interpret these numbers observe that q∗ = 1.21 implies an annual growth rate of
2.68% for the labor productivity per task and for the real wage. Moreover, from Propo-
sition 5.1, the growth factor of per-capita output, per-capita consumption and savings
satisfies (1 + q∗)1−ν = 2.213/4 which implies an annual growth rate of 2%. The growth
rate of the individual supply of hours worked, g∗hs , corresponds to an annual growth rate
of −0.66%.23 The order of magnitude of the labor share is also in line with the empirical
evidence.

Finally, as fixed capital fully depreciates the real rate of return on capital is R∗ − 1 which
corresponds to an annual rate of 4.54%.24

23For the US the PWT 9.0 estimates average annual hours per person engaged in 1960 to equal 1863.
In 2010 the corresponding number is 1695 (Feenstra, Inklaar, and Timmer (2015)). This corresponds to an
average annual growth rate of −0.19%. The estimates of the annual hours worked per worker of Huberman
and Minns (2007) for the US are much higher than the numbers in the PWT 9.0. According to Huberman
and Minns (2007) annual hours worked per worker in 1960 was 2033 whereas this number plunges to 1878
for the year 2000. However, the implied average annual growth rate of roughly −0.18% is in line with the
one found for the PWT data. The calibration chosen here implies an average annual growth rate of hours
worked of −0.66% which is closer to the estimate that Boppart and Krusell (2020) derive for the sample of
countries included in Figure B.1 over the time span 1870-2000. This confirms the view that the US evolution
of hours worked per worker is an outlier.

24Piketty (2014) asserts that the real rate of return on capital often exceeds the economy’s growth rate.
In my notation this means that R∗ − 1 > (1 + q∗)1−ν (1 + gL). With the numbers of Proposition B.1 this
inequality holds since 2.78 > 2.45.
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