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A B S T R A C T

Fairness measures for queues were introduced for measuring the individual satisfaction of human customers with
respect to the waiting experience. The measure which performs best in some sense is the expected discrimination
frequency (DF). In contrast to competing fairness measures, up to now, the DF has not been thoroughly analysed
for multi-server systems. In particular, there are no results concerning the question whether or not in terms of the
DF, combined queues are fairer than separate queues. In this note, we prove that under Markovian assumptions,
combined queues are fairer and, furthermore, that this statement does not remain true for general queueing
systems.

1. Introduction

Traditionally, the system performance of queueing systems is mea-
sured by characteristics such as waiting times, throughput, ... In recent
years, fairness measures have been paid attention to. Considering
fairness in queues has various reasons, and therefore, various kinds of
fairness measures have been introduced.

In computer applications, it is a quite natural approach to consider
the proportion of the response time of a job of size x to its size x. This
quotient is referred to as the slowdown. For a queue with stochastic
arrival process and stochastic service times, by considering stationary
behaviour and taking the expectation, the (un)fairness of scheduling
disciplines can be classified [1,2]. It turns out that the disciplines PS
(processor sharing) and preemptive LCFS (last come, first served) can
be regarded as some kind of fair with respect to the expected slowdown.

In many applications of queueing theory, human customers are in-
volved (for example, supermarkets, waiting rooms at doctor’s offices,
check-in areas at airports, ...). Whereas slowdown-based considerations
intend to find an abstract classification of fairness, for systems with
human customers, psychological aspects become important: Human
customers will judge the system by means of the ’perceived fairness’.
Based on their satisfaction with their waiting experience, they will
decide whether or not to revisit the facility providing the waiting
system in the future (if they have a choice). Usually, human customers
will not judge preemptive LCFS as a fair scheduling discipline, and
hence, the slowdown-based classification of (un)fairness cannot be
applied in this context.

Pychological studies [3] revealed that human customers perceive
’unfairness’ if they are overtaken by other customers or if customers
with a larger job size are allowed to leave the system earlier. Based on
these findings, principles for measuring perceived fairness have been
established [4]: For single-server queues, fairness measures should
fulfill a seniority preference principle and a service-requirement preference
principle. In their strong version, tests for these principles require that

• if two jobs have the same service requirement, the job which arrived
earlier should be completed first,

• if two jobs arrive at the same time, the job with smaller service
requirement should be completed first.

In both cases, interchanging the order of service of the two jobs
under consideration should lead to a lower fairness/ higher unfairness.
In order to analyse perceived fairness, order fairness [5], a slowdown-
based measure [6], the measure RAQFM (resource allocation queueing
fairness measure) [7] and the discrimination frequency (DF) [8] have
been introduced, further analysis can be found in [9–13]. In some way,
the DF performs best with respect to the principles established in [4],
since it is the only measure introduced so far which satisfies the strong
tests both for the seniority principle and the service requirement prin-
ciple.

For multi-server systems, there is psychological evidence that
human customers generally judge single-queue systems fairer than
multi-queue systems, see [3]. A measure being appropriate for evalu-
ating the fairness of multi-server and multi-queue systems should
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reflect this judgement. For the RAQFM, an analysis has been performed
in [10], yielding that for G/D/k and M/M/2 models, the single-queue is
fairer than the multi-queue. However, it is shown that this result does
not hold for general G/G/k queues. The main goal of this paper is to
provide a similar analysis for the DF in the case of simple Markovian
systems. We will focus on the FCFS discipline, but nevertheless, our
results can be interpreted as a starting point for a future investigation of
the impact of the scheduling discipline on the discrimination frequency
in multi-server systems.

The structure will be as follows: In Section 2, we will describe the
considered single-queue and multi-queue system, and restate the pre-
cise definition of the discrimination frequency. In Section 3, we will
derive the expected DF for the single-queue system, and in Section 4, we
will determine a lower bound for the expected discrimination frequency
in the multi-queue system and prove that indeed, in terms of the DF, the
single-queue system is fairer than the multi-queue system. In Section 5,
we will present an example that for general (non-Markovian) systems
this statement does not remain true. In Section 6, we will summarize
our results, and we will outline possible directions of further research.

2. Basic terms and models under consideration

In this paper, we aim for comparing the expected discrimination
frequency for an M/M/2-model and two M/M/1 models with separate
queues. We briefly present both models and the precise definition of the
discrimination frequency.

2.1. The M/M/2 model

Customers arrive according to a Poisson process with intensity λ.
There are two identical servers, and the service times are independently
and identically Exp(μ)-distributed. Furthermore, there is no restriction
of the number of waiting customers, and the scheduling discipline is
FCFS (first come, first served). Due to these modelling assumptions, the
process (Nt)t≥ 0 of the number Nt of customers in the system (waiting in
the queue or being served) is a continuous-time Markov chain (CTMC).
In case = <ρ 1,λ

μ2 the system is stable, and in the long-run, it will
behave stationarily, that is, for any = …k 0, 1, 2, , we have

� = =
→∞

N k πlim ( ) ,
t

t k where = =
∞π π( )k k 0 is the stationary distribution. It is

well-known [14, Section 3.5] that
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Due to the PASTA property of the arrival process [15, Theorem VII.6.7],
in the long-run, arriving customers will ’see’ the stationary distribution,
that is, with probability πk, an arriving customer will find k other
customers in the system. Note that for the stationary number N of
customers in the system, we have � = ∑ =

=
∞

− +
N nπ[ ] n n

ρ
ρ ρ0
2

(1 )(1 ) .

2.2. The multi-queue model

In order to model two separate queues, we consider two parallel M/
M/1 models. Customers still arrive according to a Poisson process with
parameter λ. Each arriving customer will join the first system with
probability ,1

2 and the second one with probability 1
2
. Hence, the arrival

process for each of both systems is a Poisson process with intensity λ
2
.

Both systems have one server, and the service times are independently
and identically Exp(μ) distributed. Still, we assume infinite waiting
capacity and FCFS as scheduling discipline. Let ≥N N( , )t t t

(1) (2)
0 be the

process of the number of customers in the first and in the second
system, respectively. Due to the modelling assumptions, this process is
again a CTMC, and furthermore, ≥N( )t t

(1)
0 and ≥N( )t t

(2)
0 are independent,

and both are CTMCs. For =ρ ,λ
μ2 we have stability, and

� �= = = = = …
→∞ →∞

N k N k π klim ( ) lim ( ) , 0, 1, 2, ,
t

t
t

t k
(1) (2)

where = =
∞π π( )k k 0 is the stationary distribution. Again, the exact shape

of π is well-known [14, Section 3.2], we have = −π ρ ρ(1 )k
k for all

= …k 0, 1, 2, . As for the M/M/2 model, we have the PASTA property,
that is, in the long-run, with probability πk · πℓ an arriving customer sees
k other customer in the first system, and ℓ other customers in the second
system.

Although we will compare the fairness (measured by the dis-
crimination frequency), we briefly recapitulate that traditional perfor-
mance measure favor the combined queue over the separate queue: Let
N be the total stationary number of customers in the system. Then

= +N N N(1) (2) and � =
−

N[ ] ,ρ
ρ

2
1 and this number is larger (by factor

+ ρ1 ) than the corresponding expected number of customers in the M/
M/2 queue. Since Little’s formula guarantees that the expected response
(or sojourn) time of any ’black box’ can be determined by � ,N

λ
[ ] this

result carries over to response times.
Note that there are different ways to ’choose’ the queue an arriving

customer joins. Here, we consider the ’coin toss’. A natural alternative is
joining the shorter queue (if there is one). In this case, the stationary
numbers of customers in the systems depend on each other. We leave
this topic open for future research.

2.3. The discrimination frequency

The discrimination frequency was introduced in [8]. The intuitive
concept behind it is to count the discriminating events a customer
suffers from. These are large jobs, that are jobs which have a larger
remaining service requirement at our job’s time of arrival, but leave the
system earlier, and overtakes, that are jobs which arrive after and leave
before our marked job. Formally, in [8], the DF was defined as follows:

Definition 2.1. Let ai, di, si be the arrival time, the departure time, and
the service time of job Ji. Furthermore, let ′s t( )j be the residual service
time of Jj at time t (if Jj did not enter the system at time t, we have
′ =s t s( )j j). Then the amount OV(i) of overtakes job Ji suffers from is

= ≥ ∧ ≤OV i j a a d d( ): { : ( )} .j i j i

The amount LJ(i) of large jobs that a job Ji suffers from is

= ≥ > ∧ ′ ≥LJ i j d d a s a s( ): { : ( ( ) } .i j i j i i

The discrimination frequency of job Ji is

= +DF i OV i LJ i( ) ( ) ( ).

The discrimination frequency of a system in steady state is the
discrimination frequency of a stationary customer.

For stationary systems, the distribution of OV(i), LJ(i), and DF(i) is
identical for all customers i. We will refer to the number of overtakes,
the number of large jobs, and the discrimination frequency of a ran-
domly chosen customer as OV, LJ, and DF respectively. Hence, we will
consider a ’tagged customer’ who sees the stationary distribution of
number of customers in the instant of his arrival, and we will pursue his
way through the system, and count the number of overtakes and large
jobs he suffers from.

3. The expected discrimination frequency for the combined queue

In order to compute � DF[ ], we determine � LJ[ ] and � OV[ ]. Note
that under FCFS, large jobs are only caused by customers which have
entered the system before our tagged customer, and overtakes are only
caused by customers which will enter the system after our tagged
customer. Precisely, we will prove the following result in the next
subsections.

Theorem 3.1. For an M/M/2 model with a combined FCFS, the expected
number of large jobs is � =

− +
LJ[ ] ,ρ

ρ ρ(1 )(1 )

2
the expected number of

overtakes in the M/M/2-system with a combined FCFS queue is
� =

+
OV[ ] ,ρ

ρ1 and the expected discrimination frequency is
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ρ ρ
[ ] [ ] [ ]

(1 )(1 )
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3.1. Comparing exponentially distributed random variables

The proofs of the formulas for � LJ[ ] and � OV[ ] rely on the com-
parison of exponentially distributed random variables. We use three
well-known results:

1. Let …Z Z Z, , , n1 be independent and exponentially distributed with
parameter μ. Then = ∈ … <L k n Z Z{ {1, , }: }k is uniformly dis-
tributed on … n{0, , } with expectation n

2
. (Note that this statement

holds true for any random variables independent and identically
distributed random variables …Z Z Z, , , n1 with continuous cumula-
tive distribution function.)

2. Let Z1, Z2 be independent and exponentially distributed with para-
meters μ1, μ2, respectively. Then � �< = ≤ =

+
Z Z Z Z( ) ( ) μ

μ μ1 2 1 2
1

1 2
.

In particular, for =μ μ ,1 2 this probability simplifies to 1
2
.

3. Let …Z Z Z, , ,1 2 be independent where Z is exponentially distributed
with some parameter α and …Z Z, ,1 2 are exponentially distributed
with parameter μ. According to the second result, the event Z> Z1
occurs with probability

+

μ
α μ

. Furthermore, due to the memoryless

property, we have � > +…+ > +…+ =− +
Z Z Z Z Z Z( )k k

μ
α μ1 1 1 for all

k≥ 2, and defining = > + …+Y k Z Z Zsup{ : }k1 (with ∅ =sup 0),

we conclude that � = = −
+ +( ) ( )Y k( ) · 1μ

α μ

k μ
α μ for = …k 0, 1, 2, ,

that is, Y is geometrically distributed with parameter
+

μ
α μ

.

3.2. The expected number of large jobs

At the instant of arrival, our tagged customer sees n other customers
with probability πn, where =

−

+
π ρ

ρ0
1
1 and =π ρ π2n

n
0 for n≥ 1. If n≤ 1,

the service of the tagged customer starts immediately, and either no
other customer leaves the system before our customer does, or a cus-
tomer with smaller (residual) service time leaves before our customer.
In both cases, there is no large job our tagged customer suffers from.

In case n≥ 2, according to the considerations concerning the
comparison of exponentially distributed random variables, the number
of customers causing large jobs is uniformly distributed on … n{0, , }
with expectation n

2
. At the instant in which the service of our tagged

customer begins, the nth of these customers is still in service. With
probability ,1

2 his residual service time is smaller than the service time
of our tagged customer, and all of the n considered customers leave the
system before our tagged customer does. With probability ,1

2 the re-
sidual service time of the nth customer is larger than the service time of
our tagged customer, and only −n 1 of the other customers leave the
system before our customer does. In this case, the nth customer would
definitely have been a large job, and therefore, we have to subtract 1
from the number of large jobs. Summarizing these considerations, we
obtain

� = = − =
−LJ N n n n[ ]

2
1
2

·1 1
2

.

By applying total probability, we find
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3.3. The expected number of overtakes

The formula for � OV[ ] is due to results found in the work of Gordon
[16]. Note that overtakes were defined in the sense of overtakes a
customer suffers from. In the terminology of [16], this number corre-
sponds to the number of slips. On the other hand, skips refer to the
number of customers which are overtaken by a fixed customer. For a
stationary system, the expected number of slips and skips coincide. For
an M/M/2 system, a randomly chosen customer will skip at most one
customer. This is the case if and only if the randomly chosen customer
does not find an empty system (probability − π1 0), and if, in the instant
of starting to be served, his service requirement is smaller than the
remaining service time of the customer at the other server. Since both
(residual) service requirements are Exp(μ) distributed, this probability
is 1

2
. In total, the expected number of skips, and thus of slips is

� = − =
+

=
+

OV π
ρ

ρ
ρ

ρ
[ ] 1

2
(1 ) 1

2
2

1 1
.0

This derivation can be interpreted as a special case of [16, p. 160 and
p.165].

4. Lower bounds for the expected discrimination frequency for
two servers with separate queues

As for the M/M/2 system, we consider � LJ[ ] and � OV[ ] separately
in the subsections below. Note that we will only give a simple lower
bound for � LJ[ ], but this lower bound enables us to prove that in terms
of the discrimination frequency, the system with a combined queue is
fairer than the system with separate queues.

Theorem 4.1. For two parallel M/M/1-systems, we have � ≥
−

LJ[ ] ,ρ
ρ2(1 )

� =
−

OV[ ] ρ
ρ2(1 ) and

� �≥
−

≥DF
ρ

ρ
DF[ ]

(1 )
[ ],c

where DFc is the discrimination frequency in an M/M/2-system, that is, the
corresponding system with a combined queue.

4.1. The expected number of large jobs

The tagged customer enters one of both systems, which are in-
dependent M/M/1 queues with arrival rate λ

2
and service rate μ. He can

suffer from large jobs which occur in his own queue, and from large
jobs which result from customers served in the other queue.

The expected number of large jobs which occur in the system the
tagged customer joins coincides with the number of large jobs which
arise in an M/M/1 queue with utilization =ρ λ

μ2 . Following [13], the
expectation of this quantity can be derivated as follows: The expected
number of customers found in the system by the tagged customer is

−
,ρ

ρ1 and each of these customers will be a large job with probability 1
2
.

Hence, the expected number of large jobs which occur in the queue our
tagged customer has entered computes as

−

ρ
ρ2(1 )
. Since there may be

large jobs in the other queue as well, we find

� ≥
−

LJ
ρ

ρ
[ ]

2(1 )
.

In a last step, we would have to determine the expected number of
large jobs that occur in the other queue. Since the above result already
enables us to prove Theorem 4.1, we omit any further considerations.

4.2. The expected number of overtakes

As pointed out above, in [16], the number of skips is the number of
overtakes a customer performs, and the number of slips is the number of
overtakes a customer suffers from. Hence, we are interested in the
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expected number of slips of a randomly chosen customer, and according
to more general results [16], this expected number is given by

−

ρ
ρ2(1 )
.

Under our conditions, the derivation of this result simplifies, and in the
next lines, we give a concise proof:

Our customer can overtake at most the N customers that are in the
other queue at the instant of his arrival. Either at least all of these N
customers are served during our customers sojourn time in which case
no slips occur or only k≤N customers are served implying that the
number of slips is −N k. We can now describe the number of slips by

−N N Ymin{ , } with Y being the number of customers served during the
sojourn time of the tagged customer provided that the system never
runs empty.

Since our customer joins an ordinary M/M/1 queue, his sojourn
time is exponentially distributed with parameter −μ ρ(1 ), and due to
all service times being exponentially distributed with parameter μ, we
can use the third property from Section 3.1, and find that Y is geome-
trically distributed with parameter =

+ − −

μ
μ μ ρ ρ(1 )

1
2 . Since N is geome-

trically distributed with parameter ρ, min {Y, N} is geometrically dis-
tributed with parameter =

− −
ρ· ρ

ρ
ρ

1
2 2 . In total, the expected number of

slips and skips is given by

� � �= − =
−

−
−

=
−

−
−

=
−

−

−

OV N N Y
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ

[ ] [ ] [min{ , }]
1 1

1 2 2 2(1 )
.

ρ
ρ

ρ
ρ

2

2

5. Counterexample: Deterministic arrival process and
deterministic service times

Whereas for Markovian systems, the single-queue system is fairer (in
terms of the DF) than the multi-queue system, unfortunately, this
statement does not hold for arbitrary systems.

Consider the following example with two servers: Let the service
time be 1 for all customers, and let there be two arrivals at time 0, two
arrivals at time 2, two arrivals at time 4, and so on, that is, the inter-
arrival times alternate deterministically between 0 and 2. First assume
that we have a single queue for both servers. Then each arrival suffers
from one large job and one overtake (caused by the customer which
arrived at the same time). Hence, the expected discrimination fre-
quency for a randomly chosen customer is 2.

Now consider the multi-queue system, where each job joins each
queue with probability 1

2
. Still, each customer can be discriminated at

most twice. But with probability 1
4
both customers arriving at the same

time are assigned to the same queue. In this case, the first of these
customers is not discriminated at all. Hence, for a randomly chosen
customer, there is a positive probability that his DF is 0, and it follows
that the expected DF is < 2. This behaviour of the discrimination fre-
quency is not desired as it contrasts the psychological findings pre-
sented in [3], where it has been reported that human cusomters judge
the single-queue to be fairer than the multi-queue. There are two pos-
sibilities to deal with this problem:

• We could restrict the class of models under consideration. For ex-
ample, we could only allow independent interarrival times with
continuous distribution. It seems reasonable to hope that under
these restrictions no counterexamples can be constructed since then
the events that two customers enter the system at the same time, or
leave the system at the same time occur with probability 0.

• We could think about changing the definition of the discrimination
frequency since the only reason for the above counterexample to
work is that for overtakes, we not only count the jobs that leave
before the tagged customer, but also the jobs that leave at the same
time. So, an idea would be not to count the customers leaving at the
same time. In case of continuous distributions (as for the models

discussed in Sections 3 and 4), the results are not effected at all. On
the other hand, the discrimination frequency was originally devel-
oped for evaluating the fairness of scheduling disciplines for single-
server queues, and therefore, the most important feature should be
that criteria for fairness measures are met for single-server queues.

Both ways require further research. In the first case, we have to
analyse a quite large class of queueing models, and in the second case,
we have to recheck whether or not slight adjustments of the definition
of the discrimination frequency change the fact that it meets the basic
criteria for fairness measures such as the strong service-requirement
preference test and the strong seniority preference test (see [4], [8]).

6. Conclusion and further research

For queueing systems with two servers, psychological studies sug-
gest that customers will judge the system with a combined queue as
’fairer’ than that with separate queues. Hence, if a function shall mea-
sure the fairness of multi-server queueing systems, it should reflect this
judgement. For the fairness measure RAQFM, this analysis has been
performed in [3], and in this paper, we have provided some con-
siderations for the fairness measure DF (discrimination frequency). In-
deed, the main results of this paper show that under Markovian as-
sumptions (Poisson input and exponential service times) the combined
queue is fairer than the separate queues in terms of the DF. Un-
fortunately, this statement does not remain true for arbitrary queueing
systems. However, for single-server queueing systems, the measure DF
performs better than RAQFM (see [8]) with respect to properties for
fairness measures which were established based on psychological
foundings.

Hence, future research could intend to adjust the measure DF in
such a way that it does not lose the desired properties for single-server
systems, see Section 5. Alternatively, more models could be analysed in
order to investigate whether or not the measure DF meets the fairness
judgements for some ’large’ class of multi-server queues.

The first step in this direction would be a generalization of the
analysis presented in Sections 3 and 4 to systems with more than two
servers. Since most of our results easily extend to this case, we strongly
conjecture that the main result remains true. Nevertheless, for the
system with separate queues an exact term for the expected number of
large jobs would be desirable, and more ’intelligent’ queueing strategies
(e.g., choose the shorter queue) could be considered. In further steps,
Semi-Markovian models, that is, models with M/G/•- or G/M/•-as-
sumptions, could be analysed.

Another interesting task is the determination of higher moments of
the DF or its complete distribution. As pointed out in Section 3, the
distributions of the numbers of skips and overtakes (slips) do not co-
incide, and therefore, approaches focusing on overtakes instead of skips
will have to be developed.

Finally, we want to remark that the measure DF was originally
defined in order to analyse the impact of the scheduling discipline on
the fairness. For single-server queues, some comparisons are given in
[13], and it is natural to investigate which of these results extend to
multi-server systems.
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