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A B S T R A C T

This paper studies a repairable k-out-of-n:G system with failure dependencies, N-policy and repairman’s multiple
vacations. Whenever there are no broken components, the repairman leaves for a vacation which obeys a phase
type distribution. Upon returning from his/her vacation, he/she takes another vacation if broken components
waiting less than N. This pattern continues until at least N broken components are waiting. By using the Markov
process theory, the matrix analytical method and the probabilistic properties of the phase type distribution, the
availability and the rate of occurrence of failures of the system are derived in transient and stationary regimes.
Further, numerical examples discuss the behavior of the system reliability measures.

1. Introduction

In the area of reliability theory, the k-out-of-n:G system is often
encountered in industrial systems. Such a system consists of n compo-
nents in which all the n components are operating initially even though
only k out of n are required for the system to be normal. Its applications
include the power transmission and distribution systems, the commu-
nication systems with multiple transmitters, the design of electronic
circuits, the multi-engine system in an aircraft, the multi-pump system
in a hydraulic control system and the multi-display system in a cockpit.
For instance, in a data processing system with six video displays, a
minimum of three video displays are in good condition can be possible
to display the full data. Thus the display system works as a 3-out-of-6:G
system. Due to the importance of k-out-of-n:G system in industry sys-
tems, a lot of authors have studied their availability and reliability.
Comprehensive discussion of the multi-component system is provided
in the bibliographies by Kuo and Zuo [1], and Cao and Cheng [2].

When k-out-of-n:G systems are considered for modelling, random
times involved are usually assumed to be exponential distributions. For
example, Byun et al. [3], Wu et al. [4], Jain and Gupta [5], Yuan [6],
Moghaddass et al. [7], Zhang and Wu [8], Khatab et al. [9], Tang and
Zhang [10], Ushakumari and Krishnamoorthy [11]. They studied such a
multi-component system with different assumptions. Wu et al. [4] in-
vestigated a repairable k-out-of-n:G system with vacations and N-policy,
in which the repairman is activated as soon as the total number of
broken components accumulates to value ⩽ ⩽ − +N N n k(1 1). Various

steady-state system performance measures such as the availability, the
rate of occurrence of failures are derived. Khatab et al. [9] provided an
algorithm for automatic construction system state transition diagram to
study availability of the system with non-identical components and
repair priority rule. Subsequently, Moghaddass et al. [7] generalized
their work to k-out-of-n:G system with non-identical components, si-
milar or different repair priorities and shut-off rules. Besides, em-
ploying the semi-Markov process theory and the Laplace (Laplace-
Stieltjes) transform, Wu et al. [12,13] studied the k-out-of-n:G repair-
able system with general repair times. The mean time to the first
failure, the steady-state system availability and rate of occurrence of
failures of the system are derived.

In traditional k-out-of-n:G system, it is usually supposed that the
repairman remains idle until broken components are presented or some
repair control policies are met. However in many real-world systems,
the repairman may be assigned to perform some extra jobs such as
additional work, preventive maintenance in his/her idle time. Here the
time spent by the repairman to take additional tasks is called vacation
time. Such type of repair models with vacation policy have been at-
tracted attention in the literature. Yuan [6] studied a k-out-of-n:G re-
pairable system with repairmen’s multiple vacations where the oper-
ating times and repair times, the vacation times all follow exponential
distributions. Later, Wu et al. [14] discussed the stationary reliability
measures for such a system with single vacation by using the supple-
mentary variables technique. For more detail on this topic the reader
are referred to the Chakravarthy et al. [15], Zhang et al. [16], and Wu
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et al. [17] and therein. With this knowledge, the case of repairman’s
multiple vacations is taken into account in this paper.

In multi-component systems, another factor is the failure de-
pendency which describes the interactions among system components.
The dependency is the most common phenomenon in real world si-
tuations. For example, the failure/adding one component will change
system reliability both by loss/gain the component’s reliability and by
reconfiguration of system loading. In 2007, Yu et al. [18] introduced a
specific failure dependency called redundant dependency where any
component can be viewed as a redundancy for another components.
They studied the reliability optimization problem of a parallel system
with n identical components. In their work, the dependence function is
originally defined to quantify the redundant dependency. According to
the dependence function, the redundant dependencies are further
classified into independence, weak, linear and strong dependency. Re-
cently, Yu et al. [19] proposed a constructive approach to optimize the
system availability of an n components parallel repairable system
through modeling the dependency of components. The optimization
problem is provided and the resolution procedure is progressively de-
veloped.

This paper dealt with a k-out-of-n:G repairable system with repair-
man’s multiple vacations and redundant dependency. In order to make
the model more reasonable and flexible, the repair is according to N-
policy. Utilizing the Markov process theory, the matrix analytical
method and the probabilistic properties of the phase type (PH) dis-
tribution, the system availability, the rate of occurrence of failures
along with other system reliability measures are derived in transient
and stationary regimes.

This paper is arranged as follows. Section 2 gives some notations
and the assumptions of the model. Section 3 provides the infinitesimal
generator of the Markov process. System reliability measures are de-
rived in Section 4. Section 5 gives numerical results. Finally, conclu-
sions are drawn in Section 6.

2. Some notations and model assumptions

2.1. Some notations

Definition 1. A distribution H(x) on +∞[0, ) is of phase type with
representation (δ, S), if it is the distribution of the time until absorption
in a Markov process on the states … +m{1, 2, , 1} with infinitesimal
generator

⎜ ⎟
⎛
⎝

⎞
⎠

× ×

× ×

S S
0 0

,m m m

m

0
1

1 1 1

and initial probability vector (δ1×m, 01×1). Assuming that the states
… m{1, 2, , } are all transient, and the state +m 1 is absorbing. Hence the

matrix S can be interpreted as the rate transient matrix among the
transient states, while S0 represents the column vector of absorption
rates. The matrix S is non-singular with negative diagonal entries and
non-negative off-diagonal entries and satisfies − =×Se Sm 1

0. The
probability distribution = − ⩾× ×δ SH x x x( ) 1 exp( )e , 0,m m1 1 and its
mean = − ×

−
×δ SE χ( ) em m1

1
1.

For easy reference, let Il be an identity matrix of order l, and el be a
column vector of order l of 1’s. Denote by 0l× j a zero matrix of di-
mension l× j, and by f*(s) the Laplace transform of an arbitrary func-
tion f(t), t≥ 0, namely, ∫= ∞ −f s f t t* ( ) e ( )d ,st

0 by ω1× κ(ι) is a row
vector of dimension κ with 1 in the ιth position and 0 others.

2.2. Model assumptions

The detailed assumptions of the system are provided as follows.
A1. The system consists of n identical components where all n

components are operating initially even though only k out of n are re-
quired for the system to be good. The system is down as long as the total

number of components in the operating state goes down to −k 1. When
it fails, no failure will occur for other operating components.

A2. The operating time X of component is an exponential distribu-
tion with nominal failure rate λ(λ>0). Once an operating component
breaks, it is repaired by a repairman. The repair time Y of broken
component is an mth order PH distribution with the irreducible re-
presentation (α, T) and mean repair time = − −αT eμ1/ m

1 . A repaired
component is as good as new.

A3. The repairman leaves for a vacation whenever there are no
broken components. Upon returning from his/her vacation, if there are
at least ⩽ ⩽ − +N N n k(1 1) broken components waiting, the repairman
starts to repair. Otherwise, he/she leaves for another vacation. This
pattern continues until there are at least N broken components waiting
in the system. Further, the vacation time V follows a PH distribution
with representation (β, H) of order r and mean vacation time

= − −βH eθ1/ r
1 .

A4. The redundant dependency which was firstly defined in [18] is
taken into account. As the components are identical and redundant to
each other in the system, the dependency is symmetric to these com-
ponents. To combine the redundant dependency into the system failure,
assume that the failure rate of components is given by its nominal
failure rate λ and the dependence function which provided below

⩾ ≡λ
g ι

ι g
( )

, 2, (1) 1,
(1)

where g(ι) is the dependence function, ι is the total number of operating
components in the system. When one component breaks, the failure rate
of the operating components should update upon the dependence
function g(ι).

A5. Random variables X, Y, and V are mutually independent.

3. The infinitesimal generator matrix

This section constructs the infinitesimal generator matrix which
describes the behavior of the repairable k-out-of-n:G system. According
to the model assumptions, the studied system can be viewed as a block-
structured continuous-time Markov chain. The details of the Markov
process theory could be seen in Stroock [20], Stewart [21]. To achieve
this, denote by L(t) the number of broken components (either waiting or
being repaired) at time t in the system, = = … − +L t i i n k( ) ( 0, 1, , 1).
Define J(t) be the state of the repairman at time t, and

=
⎧

⎨
⎪

⎩⎪
J t

t

t

( )
1, the repairman is repairing broken components at time

,
2, the repairman is on vacation at time .

Further, we define
• ω1(t): the phase of the repair process at time t, = …ω t m( ) 1, 2, ,1 .
• ω2(t): the phase of the vacation process at time t, = …ω t r( ) 1, 2, ,2 .
Due to the system is a redundant system with dependent compo-

nents, the failure rate λi of the system is given below

= −
−

⩽ ⩽ −λ n i λ
g n i

i n k( )
( )

, 0 .i

Based on the model assumptions, the stochastic process
= ⩾t L t J t t( ) { ( ), ( ): 0}X is a continuous-time Markov chain with state

space given by

⎜ ⎟= ∪ ⎛
⎝

⋃ ∪ ⎞
⎠=

− +
Ω Δ (Δ Δ ) ,

i

n k

i i0
2

1

1
1 2

where
= = = = = … − + = …L t i J t ω t l i n k l rΔ { ( ) , ( ) 2, ( ) 0, 1, , 1, 1, 2, , }i

2
2 2 2

describes that there are i broken components in the system, and the
repairman takes his/her vacation with phase l2,

= = = = = … − + = …L t i J t ω t l i n k l mΔ { ( ) , ( ) 1, ( ) 1, 2, , 1, 1, 2, , }i
1

1 1 1
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describes that there are i broken components in the system, and the
repairman is repairing component with phase l1.

By partitioning the state space into levels with respect to the
number of broken components and applying lexicographical sequence
for these states, the corresponding infinitesimal generator matrix Q of

t( )X is of dimension − + + +n k m r r( 1)( ) , exhibiting the following
block-structured form

=

⎛

⎝

⎜
⎜
⎜
⎜⎜

⋱ ⋱ ⋱

⎞

⎠

⎟
⎟
⎟
⎟⎟− − −

− + − +

Q

A C
B A C

B A C

B A C
B A

,

n k n k n k

n k n k

0 0

1 1 1

2 2 2

1 1

where

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

= … − +

= − + +

= ⎛
⎝

− +
− + +

⎞
⎠

= … −

= ⎛
⎝

− +
− +

⎞
⎠

= + … −

= ⎛
⎝

⎞
⎠

= = = … −

×

×

× ×

×

×

×

− +
×

× +

B T β
0

B T α 0
0 0

A I H H β

A
I T 0
0 I H H β

A
I T 0
H α I H

A
T 0

H α H
C 0 I C I

i n k

λ
λ

λ
i N

λ
λ

i N N n k

λ λ i n k

, , 2, 3, , 1,

,

, 1, 2, , 1,

, , 1, , ,

,

( , ), , 1, 2, , .

r r
i

m r

r m r r

r

i
i m m r

r m i r

i
i m m r

i r

n k
m r

r m r i i m r

1
0 0

0 0
0

0

0

1 0

0 0

Here we give an explanation on how to derive these elements of the
infinitesimal generator matrix Q.

→ = … −i i i N( , 2) ( , 2), 0, 1, , 1: The block − + +I H H βλi r
0

means that all the −n i operating components are good following − λ ,i
a change among the phase of the repairman’s vacation following H, or
the repairman returns from his/her vacation following H0 and there are
less than N broken components in the system, then he/she restarts
another vacation immediately following β.

→ = + … −i i i N N n k( , 2) ( , 2), , 1, , : The block − +I Hλi r corre-
sponding to all the −n i operating components are good following − λ ,i
and a change among the phase of the repairman’s vacation following H.

− + → − +n k n k( 1, 2) ( 1, 2): The block H indicates that a change
among the phase of the repairman’s vacation following H.

→ = … −i i i n k( , 1) ( , 1), 1, 2, , : The block − +I Tλi m means that
all the −n i operating components are good following − λ ,i and a
change among the phase of the repair following T.

− + → − +n k n k( 1, 1) ( 1, 1): The block T indicates that a change
among the phase of the repair following T.

→ = + … − +i i i N N n k( , 2) ( , 1), , 1, , 1: The block H0α means
that the repairman comes from vacation following vector H0, and he/
she starts to repair broken components immediately following α.

(0, 2)→ (1, 2): The block λ0Ir corresponds to one of the n operating
components breaks down following λ0, while the repairman’s vacation
phases do not change.

→ + = … −i i i n k1, 1, 2, , : The block +Iλi m r indicates thats one of
the −n i operating components breaks down following λi, while the
repair phases do not change, and the repairman’s vacation phases do
not change.

(1, 1)→ (0, 2): The block T0β means that the repair is completed
following vector T0, then the repairman takes another vacation im-
mediately following vector β.

→ − = … − +i i i n k( , 1) ( 1, 1), 2, 3, , 1: The block T0α indicates
that the repair is completed following vector T0, and then the re-
pairman begins to repair other broken components immediately fol-
lowing vector α.

4. System reliability measures

4.1. Transient reliability measures

This subsection studies the transient behavior of system reliability
measures by employing the Laplace transform method. First, supposed
that all the components are new and the repairman is on vacation in-
itially, and define the following probabilities

= = =
= … = … = … − +

= = =
= … = … − +

P i l t P t i l ι
ι r l m i n k

P i l t P t i l ι
ι l r i n k

(( , 1, ), ) { ( ) ( , 1, ) (0) (0, 2, ^)},
^ 1, 2, , , 1, 2, , , 1, 2, , 1.

(( , 2, ), ) { ( ) ( , 2, ) (0) (0, 2, ^)},
^, 1, 2, , , 0, 1, , 1.

ι

ι

^ 1 1

1

^ 2 2

2

X X

X X

Moreover, the above transition probabilities could be written com-
pactly in matrix form as follows

= = …
= = …

= … = … − +

×

× +

P
P

t P l t ι l r
t P i l t P i l t l m

ι l r i n k

( ) ( ((0, 2, ), )) , ^, 1, 2, , ,
( ) ( (( , 1, ), ), (( , 2, ), )) , 1, 2, , ,

^, 1, 2, , , 1, 2, , 1.

ι r r

i ι ι r m r

0 ^ 2 2

^ 1 ^ 2 ( ) 1

2

By a straightforward analysis, the Kolmogorov forward equation of
the Markov process ⩾t t{ ( ), 0}X is formed in matrix format as

=P P Q
t

t td
d

( ) ( ) ,
(2)

where = … − +P P P Pt t t t( ) ( ( ), ( ), , ( ))n k0 1 1 .
Expanding the above matrix equation gives below

= +P P A P B
t

t t td
d

( ) ( ) ( ) ,0 0 0 1 1 (3)

= + +P P C P A P B
t

t t t td
d

( ) ( ) ( ) ( ) ,1 0 0 1 1 2 2 (4)

= + + = … −− − + +P P C P A P B
t

t t t t i n kd
d

( ) ( ) ( ) ( ) , 2, 3, , ,i i i i i i i1 1 1 1 (5)

= +− + − − − + − +P P C P B
t

t t td
d

( ) ( ) ( ) .n k n k n k n k n k1 1 1 (6)

By taking the Laplace transform on Eqs. (3)–(6), we obtain the
following algebraic system with the help of initial condition =P I(0) ,r0

− = +P I P A P Bs s s s* ( ) * ( ) * ( ) ,r0 0 0 1 1 (7)

= + +P P C P A P Bs s s s s* ( ) * ( ) * ( ) * ( ) ,1 0 0 1 1 2 2 (8)

= + + = … −− − + +P P C P A P Bs s s s s i n k* ( ) * ( ) * ( ) * ( ) , 2, 3, , ,i i i i i i i1 1 1 1

(9)

= +− + − − − + − +P P C P Bs s s s* ( ) * ( ) * ( ) .n k n k n k n k n k1 1 1 (10)

Eqs. (7)–(10) is an algebraic system that can be solved recursively.
After some calculation, the expressions for the Laplace transform of the
transient probability is given in terms of P s* ( )0

∏= = … − +
=

P Ps s ξ i n k* ( ) * ( ) , 1, 2, , 1,i
κ

i

κ0
1 (11)

where = − − = … −− + + +
−C I A Bξ s ξ i n k( ) , 1, 2, , ,i i m r i i i1 1 1

1 =− +ξn k 1

Table 1
Classification of redundant dependencies.

dependence types dependence function

independence = ⩾g ι ι( ) 1, 1
weak dependence 1< g(ι)< ι, ι≥ 2, =g (1) 1
linear dependence = ⩾g ι ι ι( ) , 1
strong dependence g(ι)> ι, ι≥ 2, =g (1) 1
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−− + − +
−C I As( )n k m r n k 1

1.
Furthermore, P s* ( )0 could be solved by Eq. (7) and is given by

= − − −P I A Bs s ξ* ( ) ( ) .r0 0 1 1
1 (12)

Thus the transient probability functions at time t can be computed
by using the numerical algorithm for the inverse Laplace transform. In
this paper, we use the EULER algorithm proposed by Abate and Whitt

[22], which is a variant of Fourier-series method based on the Euler
summation and the Bromwich contour inversion integral. The aim is to
compute values of a real-valued function f(t) for various t from the
Laplace transform ∫= ∞ −f s f t t* ( ) e ( )d ,st

0 where s is a complex variable
with nonnegative real part. The numerical inversion is mainly based on
the following important formula (see Eq. (2) in Abate and Whitt [22])

Table 2
Transient availability for different values of w.

=t 0.05 =t 1.5 =t 6.0 =t 15 =t 35 = ∞t
w transient availability A(t) Aa

0 0.97660904 0.34201890 0.48163202 0.52319329 0.52361451 0.52361452
0.5 0.99999869 0.99804110 0.83077065 0.89982153 0.89797169 0.89797446
1.0 0.99999999 0.99995324 0.96285746 0.95881161 0.95652641 0.95652964
1.5 1.00000000 0.99999638 0.99246097 0.97931742 0.97989364 0.97989035

Table 3
Transient rate of occurrence of failures for different values of w.

=t 0.05 =t 1.5 =t 6.0 =t 15 =t 35 = ∞t
w transient rate of occurrence of failures mf(t) mf

0 0.23710169 0.81292025 1.25042557 1.34395920 1.34490638 1.34490641
0.5 0.00001926 0.00831939 0.15455548 0.11306537 0.11391032 0.11390898
1.0 0.00000027 0.00022341 0.03894288 0.03191271 0.03317650 0.03317663
1.5 0.00000002 0.00001807 0.00894089 0.01307950 0.01346656 0.01346320

Fig. 1. Illustration of reliability measures under different values of w.
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∫= +
∞

f t
at

π
e f a iu ut u( )

2 exp( )
( * ( ))cos( )d ,

0
R

(13)

where = −i 1 , ℜe(s) is the real part of s, and a is a number such that
f*(s) has no singularities on or to the right of the vertical line =s a. We
can numerically evaluate the integral (13) by means of the trapezoidal
rule to obtain an approximate alternating series.

Once the transient probabilities are calculated, some important re-
liability measures in transient regime are easily derived.

• System availability

∑= +
=

−

+βP e βP eA t t t( ) ( ) ( ) .r
i

n k

i m r0
1 (14)

• The rate of occurrence of failures at time t

= − − +βP C em t t( ) ( ) .f n k n k m r (15)

4.2. Steady-state reliability measures

Let π be the steady-state probability vector of matrix Q. We partition
π according to the number of broken components as

= … − +π π π π( , , , )n k0 1 1 where = …π π π π( , , , ),r0 0,2,1 0,2,2 0,2, =πi

… …π π π π( , , , , , ),i i m i i r,1,1 ,1, ,2,1 ,2, = … − +i n k1, 2, , 1. Then the steady-
state equations expressed in matrix form as =πQ 0 are given by

+ = ×π A π B 0 ,r0 0 1 1 1 (16)

+ + = × +π C π A π B 0 ,m r0 0 1 1 2 2 1 ( ) (17)

+ + = = … −− − + + × +π C π A π B 0 i n k, 2, 3, , ,i i i i i i m r1 1 1 1 1 ( ) (18)

+ =− − − + − + × +π C π A 0 ,n k n k n k n k m r1 1 1 ( ) (19)

and the following normalizing equation must be satisfied

∑+ =
=

− +

+π e π e 1.r
i

n k

i m r0
1

1

(20)

It follows from Eq. (19) that

= − =− + − − − +
−

− − +π π C A π ϕ( ) .n k n k n k n k n k n k1 1
1

1 (21)

Substituting the result to Eq. (18) and performing some routine
manipulations, we obtain the following results

= = … −−π π ϕ i n k, 2, 3, , ,i i i1 (22)

where = − + = … −− + +
−C A Bϕ ϕ i n k( ) , 2, 3, ,i i i i i1 1 1

1 .
Similarly, we obtain from Eq. (17) that

= − + =−π π C A B πϕ ϕ( ) .1 0 0 1 2 2
1

0 1 (23)

Consequently, = … − +π i n k( 1, 2, , 1)i can be written in terms of π0
as =π π Φi i0 where = ⋯Φ ϕ ϕ ϕ ,i i1 2 = … − +i n k1, 2, , 1. Once the
steady-state probability π0 being obtained, the steady-state solutions

= … − +π π π π( , , , )n k0 1 1 are then determined. π0 could be satisfies the
following equations:

+ = ×π A B 0( Φ ) ,r0 0 1 1 1 (24)

∑⎛

⎝
⎜ + ⎞

⎠
⎟ =

=

− +

+π e Φ e 1.r
i

n k

i m r0
1

1

(25)

With the stationary probability vector, we can compute some useful
performance measures straightforwardly.

• The steady-state system availability

∑ ∑= + = ⎛

⎝
⎜ + ⎞

⎠
⎟

=

−

+
=

−

+π e π e π e Φ eA .r
i

n k

i m r r
i

n k

i m r0
1

0
1 (26)

• The steady-state rate of occurrence of failures

= =− − + − − +π C e π Φ em λ .f n k n k m r n k n k m r0 (27)

• The expected number of failed components in the system

∑ ∑= =
=

− +

+
=

− +

+π e π Φ eE ζ i i[ ] .
i

n k

i m r
i

n k

i m r
1

1

0
1

1

(28)

Table 4
State probabilities for 7-out-of-13:G system with Coxian distribution.

(i, j, l) Pi, j, l(t) (i, j, l) Pi, j, l(t) (i, j, l) Pi, j, l(t)

(0,2,1) 0.01643583 (3,1,1) 0.05235657 (5,2,1) 0.00534730
(0,2,2) 0.00344131 (3,1,2) 0.03183399 (5,2,2) 0.00395434
(0,2,3) 0.00171559 (3,1,3) 0.02552045 (5,2,3) 0.00378766
(1,1,1) 0.01541181 (3,2,1) 0.00835334 (6,1,1) 0.08010165
(1,1,2) 0.00901992 (3,2,2) 0.00514342 (6,1,2) 0.05011607
(1,1,3) 0.00630686 (3,2,3) 0.00420980 (6,1,3) 0.04431219
(1,2,1) 0.01421884 (4,1,1) 0.06800305 (6,2,1) 0.00434747
(1,2,2) 0.00513300 (4,1,2) 0.04179587 (6,2,2) 0.00334552
(1,2,3) 0.00315037 (4,1,3) 0.03479272 (6,2,3) 0.00335833
(2,1,1) 0.03398735 (4,2,1) 0.00663369 (7,1,1) 0.05878872
(2,1,2) 0.02035795 (4,2,2) 0.00458207 (7,1,2) 0.04015415
(2,1,3) 0.01547772 (4,2,3) 0.00410801 (7,1,3) 0.04550793
(2,2,1) 0.01074854 (5,1,1) 0.07804666 (7,2,1) 0.01385791
(2,2,2) 0.00545314 (5,1,2) 0.04840692 (7,2,2) 0.01106343
(2,2,3) 0.00394552 (5,1,3) 0.04157042 (7,2,3) 0.01179652

Fig. 2. Different service time distributions on performance measures.
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4.3. System reliability and the mean time to system failure

Now we use the theory of PH distribution to derive the formulas of
the system reliability and the mean time to system failure. To achieve
this, we lump all failure states −n(

+ − + … − +k n k n k m1, 1, 1), ( 1, 1, 2), ( 1, 1, ),
− + − + … − +n k n k n k r( 1, 2, 1), ( 1, 2, 2), , ( 1, 2, ) together to

make one absorbing state, say “⊛”. Then consider an absorbing Markov
process with state space

⎜ ⎟= ∪ ⎛
⎝

⋃ ∪ ⎞
⎠

∪ ⊛
=

−
Ω Δ (Δ Δ ) ,

i

n k

i i0
2

1

1 2

where
= = = = = … − = …L t i J t ω t l i n k l mΔ { ( ) , ( ) 1, ( ) 1, 2, , , 1, 2, , },i

1
1 1 1

= = = = = … − = …L t i J t ω t l i n k l rΔ { ( ) , ( ) 2, ( ) 0, 1, , , 1, 2, , }i
2

2 2 2 are
transient, and the state “⊛” is absorbing.

The infinitesimal generator of this absorbing Markov process is
given by

⎜ ⎟
⎛
⎝

⎞
⎠

− + + × − + + − + + ×

× − + + ×

S S
0 0

,n k m r r n k m r r n k m r r

n k m r r

[( )( ) ] [( )( ) ]
0

[( )( ) ] 1

1 [( )( ) ] 1 1

where

=

⎛

⎝

⎜
⎜
⎜⎜

⋱ ⋱ ⋱

⎞

⎠

⎟
⎟
⎟⎟− − − − − −

− −

S

A C
B A C

B A C
B A

,
n k n k n k

n k n k

0 0

1 1 1

1 1 1

and initial probability vector is × − + + ×δ( , 0 )n k m r r1 [( )( ) ] 1 1 with
× − + +δ n k m r r1 [( )( ) ] = = … − + +− + +ω ι ι n k m r r( ), 1, 2, , ( )( )n k m r r( )( ) is

determined by initial state of the system.
Based on the definition of the PH distribution, we obtain the system

reliability is

= δ S eR t t( ) exp( ) . (29)

The mean time to system failure (MTTF) is

=− −δS eMTTF .1 (30)

4.4. The busy period of the repairman

The repairman’s busy period of the k-out-of-n:G system is the time
interval from the repairman starts repairing broken components until
there is no broken component in the system. Next, we will use the
properties of the PH distribution to derive the expressions of the dis-
tribution and the expected duration of the busy period of the re-
pairman. Consider an newly absorbing Markov process with state space

= … − + = …i l i n k l m{( , 1, ) 1, 2, , 1, 1, 2, , }1 1
∪ = …l l r{(0, 2, ) 1, 2, , }2 2 where the state (0, 2, l2) are absorbing and all
other states are transient. Similarly, the infinitesimal generator is given
by

⎜ ⎟
⎛

⎝

⎞

⎠

− + × − + − + ×

× − + ×

Γ Γ
0 0

,n k m n k m n k m

n k m

( 1) ( 1) ( 1) 1
0

1 ( 1) 1 1

where

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⋯
− + ⋯

− + ⋯
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋯ − +
⋯ − +

⎞

⎠

⎟
⎟
⎟
⎟
⎟

− −

− − − −Γ

T T α 0 0 0
I I T T α 0 0

0 I I T 0 0

0 0 0 I T T α
0 0 0 I I T

λ λ
λ λ

λ
λ λ

,

n k n k

n k n k

0

0

1 1

2
0

1 1

and initial probability vector × − + ×φ 0( , )n k m1 ( 1) 1 1 . Here
= × − +φ ω ι( ),n k m1 ( 1) = … − +ι n k m1, 2, , ( 1) is determined by the in-

itial state of the system.
Based on the phase type distribution, the distribution of the busy

period of the repairman is

= − × − + − + ×ω Γ eB t ι t( ) 1 ( )exp( ) ,n k m n k m1 ( 1) ( 1) 1

and expected duration time of the repairman is continuously busy is

= − × − +
−

− + ×ω Γ eE B ι[ ] ( ) .n k m n k m1 ( 1)
1

( 1) 1

Table 5
Transient availability for different values of n.

=t 0.05 =t 1.5 =t 6.0 =t 15 =t 35 = ∞t
n transient availability A(t) Aa

6 0.99946428 0.81692931 0.80378442 0.80378380 0.80378380 0.80380133
7 0.99997044 0.86598103 0.83601414 0.83599315 0.83599315 0.83600257
8 0.99999851 0.90076712 0.85246966 0.85231186 0.85231185 0.85231699
9 0.99999993 0.92647078 0.86116034 0.86061029 0.86061026 0.86061300
10 1.00000000 0.94571852 0.86594645 0.86470421 0.86470398 0.86470536
11 1.00000000 0.96015295 0.86878225 0.86662239 0.86662159 0.86662225
12 1.00000000 0.97093442 0.87065542 0.86746632 0.86746456 0.86746485
13 1.00000000 0.97893594 0.87205774 0.86781355 0.86781063 0.86781074
14 1.00000000 0.98483116 0.87323091 0.86794736 0.86794326 0.86794330

Table 6
The rate of occurrence of failures for different values of n.

=t 0.05 =t 0.8 =t 2.0 =t 5.0 =t 15 = ∞t
n the rate of occurrence of failures mf(t) mf

a

6 0.03140669 0.66981394 0.68675591 0.68675671 0.68675671 0.68669534
7 0.00230697 0.51693278 0.57398444 0.57402399 0.57402399 0.57399101
8 0.00014616 0.40647855 0.51655782 0.51690852 0.51690853 0.51689053
9 0.00000836 0.32069192 0.48653056 0.48786401 0.48786410 0.48785449
10 0.00000044 0.25216336 0.47037098 0.47353551 0.47353611 0.47353124
11 0.00000002 0.19699781 0.46115833 0.46682235 0.46682444 0.46682213
12 0.00000000 0.15269614 0.45536326 0.46386938 0.46387406 0.46387303
13 0.00000000 0.11737534 0.45122308 0.46265496 0.46266282 0.46266239
14 0.00000000 0.08947619 0.44787504 0.46218754 0.46219861 0.46219845
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5. Numerical illustrations

5.1. Influence of redundant dependency on system reliability measures

The dependence function g(ι) in Eq. (1) describes redundant de-
pendency of components. When the number of operating components is
given, the bigger g(ι) is, the stronger the dependency is. Based on the
reference [18], four types of redundant dependencies are classified by
the value of g(ι).

According to Table 1, the redundant dependencies are in-
dependence, weak, linear and strong dependence. Consider the influ-
ence of four types of redundant dependencies on system reliability
measures by taking the = + − ⩾g ι wι w w( ) 1 , 0 as one specific form,
and selecting =k 5, =n 12, =λ 0.85, =N 4.

The service time is a PH distribution with 3 stages and mean 0.4025
where

= = ⎛

⎝
⎜

−
−

−

⎞

⎠
⎟ = ⎛

⎝
⎜

⎞

⎠
⎟α T T(1, 0, 0),

7 4 2
2 9 5
1 3 10

,
1
2
6

.0

The vacation time is a PH distribution with 3 stages and mean
2.2650 where

= = ⎛

⎝
⎜

−
−

−

⎞

⎠
⎟ = ⎛

⎝
⎜

⎞

⎠
⎟β H H(1, 0, 0),

1 0.6 0.2
0.7 2 1
0.5 1 4

,
0.2
0.3
2.5

.0

The numerical example performs the above specific parameters
under different values of w=0, 0.5, 1.0 and 1.5 (corresponding to in-
dependence, weak dependence, linear dependence and strong depen-
dence, respectively). The computational results are displayed in
Tables 2, 3 and Fig. 1.

It can be seen from Fig. 1 that the transient availability A(t) is a
monotonically increasing function of w, while the rate of occurrence of
failures decreases with w increase. This means that the system avail-
ability and the rate of occurrence of failure are sensitive to the de-
pendency. Moreover, Tables 2, 3 and Fig. 1 show that the curves of the
system availability A(t) and the rate of occurrence of failures mf(t) ex-
hibit violent fluctuations at the early stage, and after some time this
fluctuations tend to disappear. The measure R(t) is an increasing
function of w, while the B(t) is a decreasing function of w. They are the
same pattern as the measures A(t) and mf(t).

5.2. Influence of service times on system reliability measures

We first choose =k 7, =N 2, =λ 0.55, and =w 0.07, and vacation
time is a PH distribution with 3 stages and mean 1.5125 where

= = ⎛

⎝
⎜

−
−

−

⎞

⎠
⎟ = ⎛

⎝
⎜

⎞

⎠
⎟β H H(1, 0, 0),

2 1.4 0.3
0.8 3 2
0.6 0.4 3

,
0.3
0.2
2

.0

Further, consider the following four cases of PH service time
• Exponential distribution (EXP)

= = − =α T T(1), ( 2), (2).0

• Hyper-exponential distribution (HEX)

⎜ ⎟ ⎜ ⎟= = ⎛
⎝

−
−

⎞
⎠

= ⎛
⎝

⎞
⎠

α T T(0.7, 0.3), 2 0
0 3 , 2

3 .0

• Erlangian distribution (ERL)

= = ⎛

⎝
⎜

−
−

−

⎞

⎠
⎟ = ⎛

⎝
⎜

⎞

⎠
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0 6 6
0 0 6
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0
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• Coxian distribution (COX)

= = ⎛

⎝
⎜

−
−

−

⎞

⎠
⎟ = ⎛

⎝
⎜

⎞

⎠
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0 0 8

,
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The expected values of the four PH distributions are 0.5, 0.45,
0.3667 and 0.3266, respectively. The results for state probabilities with
Coxian distribution are provided in Table 4. Fig. 2 indicates the influ-
ence of the service time on the system reliability measures. It follows
from Fig. 2 that the system availability increases with decreasing the
mean of service time, while the rate of occurrence of failure goes on
increasing with increasing the mean value. Similarly, performance
measures are sensitive to the service time.

5.3. Special case

Set =N 1, =g ι( ) 1 and the mean vacation time tend to zero, our
model reduce to the classical k-out-of-n:G Markovian repairable system.
Applying the Markov analysis method, Cao and Cheng [2] deduced the
steady-state availability Aa and the rate of occurrence of failures mf

a

which are provided below.

=
∑

∑
=

∑

=

= −

−

−

= −

( )
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A m, .a i k
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i
μ
λ

i

i k
n

i
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λ

i f
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μ
k

μ
λ

k

i k
n

i
μ
λ

i

1
!

1
1
!

( 1) !

1

1
1
! (31)

To illustrate the correctness of the formulae in the paper, we select
=k 4, =λ 0.65, =μ 3.5, =β (1) and = −H ( 10 )4 . Computation results

are tabulated in Tables 5 and 6, respectively, which show that the
formulae obtained in the present paper exactly agree with that given in
Cao and Cheng [2].

6. Conclusions

This paper considered the k-out-of-n:G system with N-policy and
repairman’s multiple vacations, in which the failure dependency is in-
troduced to describe the interactions among the failures of components.
System performance measures are derived in transient and stationary
regimes by using the matrix analytical method and the properties of the
phase type distribution.

In the future work, an interesting extension is to consider such a
system with repairman’s vacation policy and non-identical components
subject to repair priorities. Once an operating components fails, it is
immediately replaced and exchanged with a good component taken
from the spare parts inventory. The failed component are sent to a
central for repair considering priority rule.
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