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A B S T R A C T

Queueing systems with processor sharing represent the adequate models for sharing the resources, e.g., com-
ponents of a computer or a bandwidth of communication systems. In this paper, we consider a queueing system
with processor sharing discipline under quite general assumptions about the arrival and service processes.
Arrivals are defined by the Markovian arrival process. The service time has a phase type distribution. Possible
impatience of customers is taken into account. The number of customers, which can simultaneously obtain
service, is limited. We compare two approaches for monitoring service of customers, namely, the approach
counting the number of customers at each phase of service and the approach counting the phase of service of
each customer and show the significant advantage of the former approach. We obtain the joint distribution of the
number of customers in the system and the states of the underlying arrival and service processes as well as the
loss probabilities. It is shown that the sojourn time in the system of an arbitrary customer has phase type
distribution and an irreducible representation of this distribution is obtained. Numerical examples are presented.
A possibility of optimal choice of the server capacity (e.g., multi-programming level) is numerically illustrated.
An opportunity of increasing the speed of computations via the use of the graphics processing unit is discussed.

1. Introduction

Processor sharing discipline is very popular in computers, commu-
nication systems and networks. For references and examples of real-
world applications see, e.g. [16], the surveys [32,33] as well as the re-
cent papers [19,31]. In particular, this discipline is very popular for tasks
scheduling in multi-programming computer systems. The model con-
sidered in our paper significantly extends possibility of adequate mod-
elling of such systems. We do not impose restrictive assumptions like an
exponential distribution of all times characterizing the behavior of the
system and a flow of tasks as well as on the number of tasks that share
the computer resources. The presented results allow to consider a task
processing in a computer or communication system as a whole sequence
of various operations, e.g., using CPU, GPU, RAM, I/O devices, etc, not
just a single operation duration of which has an exponential distribution.

In the classical settings, a processor can be shared by the unlimited
number of users and the majority of the existing literature is devoted to
the analysis of queueing systems under this assumption. However, in
many applications of this discipline in computer systems and commu-
nication networks this assumption is not fulfilled because a certain
minimal share of the bandwidth of the computer or channel has to be

guaranteed to provide acceptable quality of service to a customer.
Therefore, the limited processor sharing or processor sharing with a fi-
nite capacity is often considered. This kind of processor sharing sug-
gests that the maximal number, say N,N<∞, of users who may obtain
service simultaneously is fixed. Customers arriving when the capacity of
the server is not exhausted immediately start service with the rate
which is, in general, inversely proportional to the number of customers
in service. The majority of the existing research is addressed to analysis
of the simple M/M/1 type queues where it is assumed that the arrivals
are described by the stationary Poisson process and the service time
distribution is exponential. However, both these assumptions look quite
artificial in many real-world systems. In particular, it is already well
recognized that the stationary Poisson arrival process is not a good
descriptor of the real-world information flows and the Markovian ar-
rival process (MAP) suits much better for the description of such flows,
see, e.g. [6,17,30]. An exponential distribution is a very particular case
of the phase type (PH) distribution successfully used for approximation
of an arbitrary distribution, see, e.g. [1]. In our paper, to provide the
advanced model, we assume that the arrival process is defined by the
MAP and the service time distribution is of phase type. A short list of
related papers, in which at least one of the unrealistic assumptions that
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the arrivals are defined by the stationary Poisson process and the ser-
vice time distribution is exponential is omitted, is as follows. The model
with the infinite capacity of the server and the MAP is considered, e.g.,
in [10,18,20]. The model with the finite capacity and the MAP is con-
sidered, e.g., in [7,26]. It is worth to note that as a rule the problem of
computation of the stationary distribution of the number of customers
in the system under processor sharing discipline has a known solution
which coincides with the solution for the corresponding system with
first-in-first-out service discipline. The problem of computation of the
sojourn time distribution is more complicated. This problem for the M/
M/1 and MAP/M/1 systems with an infinite capacity was addressed in
[20,34], correspondingly. The moments of the sojourn time distribution
for the unreliable MAP/M/1 system with a finite capacity are computed
in [26]. In all cited above papers, it was assumed that the service time
has an exponential distribution. This assumption is more or less suitable
for modelling the systems with the coefficient of variation of the service
time equal to 1. However, in some real-world systems, including cel-
lular wireless communication networks, the distribution of the service
time may have higher variation, see, e.g. [23] and the hyper-ex-
ponential distribution describes the duration of holding times in such
networks better. The hyper-exponential distribution as well as the Er-
langian distribution is very particular case of the PH distribution. The
model of M/PH/1 type with unlimited processor sharing was con-
sidered in the paper [27]. The mathematical technique exploited for
analysis there can be hardly used in the case of theMAP arrival process.

In this paper, we consider the MAP/PH/1 queue with limited pro-
cessor sharing. The very recent paper [28] is devoted to detailed con-
sideration of an analogous system along with a survey of the related re-
search. However, there are three essential differences between our paper
and [28]. (i) We assume that a customer arriving when the capacity of the
server is exhausted is lost while in [28] it is assumed that such a customer
joins the buffer of an infinite capacity to obtain service later. It seems that
the model with customer loss better suits, e.g., for modelling bandwidth
sharing in wireless communication networks. (ii) In real-world systems,
customers may be impatient and leave the system before service com-
pletion due to long processing. When the processor is shared by many
customers, service of each customer becomes slower and importance of
account of an impatience phenomenon increases. In our model, we ac-
count possible impatience of customers. (iii) We use another description
of the system states by the multi-dimensional Markov chain. This de-
scription allows to compute characteristics of the system faster and for
much larger capacity N of the server. E.g., even in the case when the state
spaces of the underlying Markov processes of theMAP arrival process and
the PH distribution consists of only two states, it is more or less realistic to
compute characteristics of the system based on the classical description of
the system states only for N up to 12. The effective description applied in
our paper allows to make computations even for N equal to 1000.

The rest of the paper is organized as follows. In Section 2, the math-
ematical model of the system under study is described. The stationary
distribution of the number of customers in the system is analysed in
Section 3. The dynamics of the system is described by the multi-dimen-
sional Markov chain, the generator of which is derived and equilibrium
equations are written down. Formulas for the throughput of the system
and the customer loss probabilities (due to the server capacity exhausting
and due to impatience) are presented. In Section 4, it is shown that the
sojourn time of an arbitrary customer has a phase type distribution.
Section 5 contains the numerical results illustrating the dependence of the
key performance measures of the system on its capacity, correlation in the
arrival process and variance of the service times. An optimization problem
is considered in brief. An advisability of using for computations the gra-
phics processing unit (GPU) is discussed. Section 6 concludes the paper.

2. Description of the model

We consider a single-server queueing system without a buffer. The
arrival process is the MAP. Arrivals are controlled by the underlying

irreducible continuous-time Markov chain νt, t≥ 0, with a finite state
space … W{0, 1, , }. The MAP is defined by the square matrices

=D k, 0, 1,k of size +W 1 consisting of the intensities of transitions of
the Markov chain νt accompanied by the arrival of k customers. The
matrix +D D0 1 is an infinitesimal generator of the process νt. The sta-
tionary distribution vector θ of this process is the unique solution of the
system + = =θ 0 θD D e( ) , 10 1 where e is a column vector consisting
of1‘s’, and 0 is a zero row vector. The average intensity λ (fundamental
rate) of theMAP is given by = θλ D e.1 We assume that λ<∞. For more
detailed and exact definition of the MAP and motivation of its im-
portance for description of the correlated bursty arrival flows in modern
communication networks see [6,17,30].

The service time of an individual customer (service in absence of
other customers) has a PH distribution with an irreducible representa-
tion (β, S). This service time can be interpreted as the time until the
underlying Markov process ηt, t≥ 0, with a finite state space

⋯ +M M{1, , , 1} reaches the single absorbing state +M 1, conditioned
on the fact that the initial state of this process is selected among the
transient states ⋯ M{1, , } with probabilities defined by the entries of the
probabilistic row vector = …β β β( , , )M1 . The transition rates of the
process ηt within the set ⋯ M{1, , } are defined by the sub-generator S
and the transition rates into the absorbing state (which leads to service
completion) are given by the entries of the column vector = −S Se0 .
The Laplace-Stieltjes transform of the distribution having an irreducible
representation (β, S) is defined as − >−β SsI S Re s( ) , 0.1

0 For more
detailed information about the PH distribution see [21].

The problem of constructing the matrices D0, D1, S and the vector β
based on traces of real arrival and service processes is extensively ad-
dressed in the literature and may be more or less easily solved based on
the results from, e.g. [4,5,22].

We assume that up to N customers can be served simultaneously.
The number N is called the capacity of the server. If during an arbitrary
customer arrival epoch the number of customers in service is less than
N, the customer is admitted and immediately starts obtaining service. If
the number of customers in service is equal to N, the arriving customer
leaves the system permanently (is lost). The most well-known results
relating to the systems with processor sharing assume the exponential
distribution of individual customer service time. Let us denote the
parameter of this distribution (rate) by μ. It is assumed that when i
customers simultaneously receive service each customer is served with
the rate .μ

i Because here we assume the PH distribution of service time,
it is necessary at first to specify the interaction of simultaneous services.
It is reasonable to do this in the following way. It follows from the
description of the PH distribution given above that the service time of a
customer can be interpreted as the walking time of a customer in the
open network consisting of M nodes. The customer starts walking from
the node m with the probability =β m M, 1, .m Here, denotation like

=m M1, means that the variable m takes the values from the set
⋯ M{1, , }. Then, the customer makes the transitions within this net-

work. The intensities of the transitions are given by the entries of the
matrix S. Then, the customer leaves the network with the intensities
given by the entries of the column vector S0. From this interpretation, it
is clear that the starting phase of the service of any customer should be
chosen independently of other customers receiving service. The in-
dividual intensities of the transitions within the network during the
periods when i customers present in the system are defined by the
components of the sub-generator =S i N, 1, .i

1 The intensities of tran-
sitions leading to service completion are defined by the components of
the vector = − =S S i Ne, 1, .i i0,

1

It is worth to note that the presented below results can be easily
extended to the case of more general, than the supposed above, in-
versely proportional dependence of the intensities of the transitions
between the phases on the number i of customers presenting in the
system.

As it was mentioned in Introduction, account of customers im-
patience is very important in analysis of the processor sharing discipline
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and we assume that the customers are impatient. Customers do not
have information about the number of other customers receiving ser-
vice. Therefore, the patience time of the customer does not depend on
other customers. If the duration of the mth phase of service of a cus-
tomer exceeds a random time having an exponential distribution with
the parameter αm, then the customer terminates service and leaves the
system permanently (is lost), ≥ =α m M0, 1, .m

The goals of our analysis are to find the stationary distributions of
the number of customers in the system and the sojourn time of an ar-
bitrary customer, the loss probability of an arbitrary customer and the
throughput of the system and to find the optimal value of the server
capacity N.

3. Stationary distribution of the number of customers in the
system

Let =i i N, 0, ,t t be the number of customers receiving service in the
system at the moment t, t≥ 0. The process it is non-Markovian. To study
this process, at first we have to construct the multi-dimensional Markov
process that includes it as the component. It is clear that this process has
to also include the state νt of the underlying process of the MAP and the
components that keep track of the service underlying processes of
customers presenting in the system. There are two opportunities to keep
track of the service processes. One of them, called in [12] as TPFS
(track-phase-for-server), counts a current phase of service of each cus-
tomer. The second one called in [12] as CSFP (count-server-for-phase)
counts the number of customers receiving the service at the certain
phase. The approach, which uses CPFS, is traced back to the papers
[24,25]. The key information about this approach is as follows.

Let us consider an arbitrary queueing system where up to N PH
service processes defined by an irreducible representation (β, S) run
independently of each other. Here, the size of the row vector β and the
sub-generator S is assumed to be equal to M. Let the current number

=i i N, 0, ,t t of running processes be equal to i and ht
m( ) be the number

of processes that currently stay at the phase m, ∈ …h i{0, , },t
m( )

=m M1, , ∑ == h i.m
M

t
m

1
( ) Introduce the vector process

= ⋯h hh ( , , )t t t
M(1) ( ) where the components =h m M, 1, ,t

m( ) are assumed
to be enumerated in the reverse lexicographic order. Denote by Ai(N, S)
the matrix, the non-diagonal entries of which define the intensities of
transitions of the process ht that do not lead to the change of the
number i of the running processes and the diagonal entries are equal to
0. By −L N S( , )͠N i we denote the matrix, entries of which define the in-
tensities of transitions of the process ht when the number i of the run-
ning processes decreases by one. By Pi(β) we denote the matrix, entries
of which define the transition probabilities of the process ht when the
number i of the running processes increases by one. Here, the square

matrix S͠ of size +M 1 is defined by ⎜ ⎟= ⎛
⎝

⎞
⎠

S O
0

S
0͠

M0
where OM is the zero

square matrix of size M.
Formulas and algorithms for recursive computation of matrices

Ai(N, S), −L N S( , )͠N i and Pi(β) can be found, e.g., in [14,15,24,25]. The
number = =+ −

−
+ −

−( )Mi
i M

M
i M
i M

1
1

( 1) !
! ( 1) ! defines the number of possible states

of the process ht when the number of running in parallel processes is
equal to i, =i N0, .

In the paper [28] devoted to consideration of a similar system, but
with the buffer of an infinite capacity and without account of customers
impatience, the TPFS approach was used. The choice of the authors of
[28] is explained by the reasonings that the form of the blocks of the
generator of Markov chain under study in that approach is more
transparent. Our choice of the CSFP approach, which requires deriva-
tion and computer realization of more involved formulas, is explained
by the fact that the TPFS approach allows to compute the stationary
distribution of the system under study only for relatively small capacity
N of the server. Essential computational advantages of CSFP over TPFS
were illustrated, e.g., in [12,15]. For instance, the CSFP approach

requires operation with the blocks of size up to = + −
−( )MN

N M
M

1
1 while

the TPFS approach requires operation with the blocks of size up to MN.
For instance, if =M 2, the CSFP approach requires operation with the
blocks of size up to +N( 1) while the TPFS approach requires operation
with the blocks of size up to 2N. If =N 20, these sizes are 21 and 1 048
576, correspondingly.

Let us adopt the outlined above CSFP approach originally developed
for multi-server queues with PH distribution of service time for analysis
of the considered MAP/PH/1 system with the limited processor sharing
discipline and impatient customers. Let the number of customers in
service at the moment t be equal to i, the number of customers in service
at phase m be h ,t

m( ) =m M1, , and = ⋯h hh ( , , ).t t t
M(1) ( ) Comparing to

the situation, for which this approach was explained, we have two
distinguishing features: (a) in our queueing model, the running in
parallel service processes are not independent (due to processor
sharing); (b) each of the running in parallel processes may be termi-
nated ahead of the schedule (due to customers impatience).

The feature (b) is accounted via the introducing and using an ad-
ditional denotation. Let ̂̂ −L N S( , )N i be the matrix, the entries of which
define the intensities of transitions of the process ht when one of i
customers receiving service leaves the system due to impatience. It is
obvious that the matrices ̂̂ −L N S( , )N i can be computed in the same way
as the matrices −L N S( , )͠N i by replacing the matrix S͠ with the matrix

̂ ⎜ ⎟= ⎛
⎝

⎞
⎠αS O

00
M

where α is the column vector having the entries =α m M, 1, .m
Accounting also the feature (a), we prove the following statement.

Lemma 1. Let the number of customers in service be equal to =i i N, 1, .
Then the intensities of transitions of the vector process ht that do not lead to
the change of the number of customers in service are given by the entries of
the square matrix A N S( , )i i

1 of size Mi. The intensities of transitions of the
process ht when the number of customers in service decreases from i to −i 1
are defined by the entries of the matrix

̂̂+− −i
L N S L N S1 ( , ) ( , )͠N i N i

of size × =−M M i N, 1, .i i 1 The transition probabilities of the process ht

when the number of customers in service increases from i to +i 1 are defined
by the entries of the matrix Pi(β) of size × = −+M M i N, 0, 1.i i 1 The
matrix P0(β) is equal to the vector β.

Proof of Lemma 1 is straightforward because, as it was noted in the
previous section, the sharing of a single server by i customers implies that the
transition rates between the phases and to the absorbing state are equal to
the corresponding rates of the individual service of one customer divided by i.
The rate of service termination of an arbitrary customer due to impatience
does not depend on the number of other customers in service.

It is easy to see that the dynamics of the considered queueing system is
described by the multi-dimensional process

= ⋯ ≥ζ i ν h h t{ , , , , }, 0,t t t t t
M(1) ( )

which is the continuous-time Markov chain. If =i 0,t the components
⋯h h{ , , }t t

M(1) ( ) are absent.
Let us introduce the following notation:

• I is an identity matrix of the corresponding size. If the size is not clear
from context, it is indicated by the suffix, i.e. IW is the identity matrix of
size = +W W 1;

• ⊗ and ⊕ are symbols of Kronecker product and sum of matrices, see
[11];

• diag{b} is the diagonal matrix with the diagonal entries defined by the
entries of the vector b;

• ̂̂= + + =− −{ }N A N S L N S L N S i Ne e eΔ ( ) diag ( ( , ) ( , ) ) ( , ) , 1, .͠i
i i N i N i

( ) 1
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Let us enumerate the states of the Markov chain ζt, t≥ 0, in the direct
lexicographic order of the component νt and the reverse lexicographic order
of the components ⋯h h, , .t t

M(1) ( ) We refer to the set of states of the Markov
chain with value i of the first component as a level i. Let Q be the generator of
the Markov chain ζt, t≥ 0, consisting of the blocks Qi, j, which define the
transition rates of this chain from the level i to the level j. The diagonal
entries of the matrices Qi, i are negative. The modulus of the diagonal entry
of the blocks Qi, i defines the total intensity of departure from the corre-
sponding state of the Markov chain ζt, t≥ 0.

Lemma 2. The generator of the Markov chain ζt, t≥ 0, has the following
block-tridiagonal form:

=

⎛

⎝

⎜
⎜
⎜
⎜

…
…
…

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
…

⎞

⎠

⎟
⎟
⎟
⎟

Q

Q Q O O O
Q Q Q O O

O Q Q Q O

O O O O Q

.

N N

0,0 0,1

1,0 1,1 1,2

2,1 2,2 2,3

,

The non-zero blocks Qi, j, i, j≥ 0, have the following form:

=Q D ,0,0 0

= ⊕ − ⊗ = −Q D
i

A N S I N i N1 ( , ) Δ ( ), 1, 1,i i i W
i

, 0
( )

= ⊕ − ⊗ + ⊗Q D
N

A N S I N D I1 ( , ) Δ ( ) ,N N N W
N

M, 0
( )

1 N

= ⊗ = −+ βQ D P i N( ), 0, 1,i i i, 1 1

̂̂= ⊗ ⎛
⎝

+ ⎞
⎠

=− − −Q I
i

L N S L N S i N1 ( , ) ( , ) , 1, .͠i i W N i N i, 1

Proof of Lemma 2 follows from analysis of all possible transitions of the
components of the Markov chain ζt during the time interval having an
infinitesimal length.

Since the Markov chain ζt is irreducible and has a finite state space, the
stationary probabilities

= = = =
→∞

π ν P i ν ν ν W(0, ) lim { 0, }, 0, ,
t

t t

⋯ = = = = ⋯ =
→∞

π i ν h h P i i ν ν h h h h( , , , , ) lim { , , , , },M
t

t t t t
M M(1) ( ) (1) (1) ( ) ( )

∑= = =
=

ν W h i i N0, , , 1, ,
m

M
m

1

( )

exist for any set of the system parameters.
Let π0 be the row vector formed by the probabilities π(0, ν), and πi be the

row vector formed by the probabilities ⋯π i ν h h( , , , , ),M(1) ( ) enumerated in
the direct lexicographic order of the component ν and the reverse lexico-
graphic order of the components ⋯ =h h i N( , , ), 1, .M(1) ( ) Let

= ⋯π π π( , , ).N0

Corollary 1. The vectors =π i N, 0, ,i satisfy the following system of
equilibrium equations

̂̂+ ⊗ + =− −π πD I L N S L N S 0( ( ( , ) ( , ))) ,͠W N N0 0 1 1 1 (1)

̂̂

⎜

⎟

⎛
⎝

⊕ − ⊗ ⎞
⎠

+ ⎛
⎝

⊗ ⎛
⎝ +

+ ⎞
⎠

⎞
⎠

+ ⊗

= = −

+

− − − − − −

π π

π β

D
i

A N S I N I

i
L N S L N S D P

i N0

1 ( , ) Δ ( )

1
1

( , ) ( , ) ( ( ))

, 1, 1,

͠

i i W
i

i W

N i N i i i

0
( )

1

1 1 1 1 1

(2)

⎛
⎝

+ ⊕ − ⊗ ⎞
⎠

+ ⊗

=

− −π π βD D
N

A N S I N D P

0

( ) 1 ( , ) Δ ( ) ( ( ))

.

N N W
N

N N0 1
( )

1 1 1

(3)

System (1)-(3) obviously follows from the equilibrium (or Chapman-
Kolmogorov) equation =πQ 0.

There exist many methods for solving the finite system of the linear al-
gebraic Eqs. (1)–(3) supplemented with the normalization condition
∑ == π e 1i

N
i0 . For instance, the algorithm described in [2, 9] and some re-

ferences from [3], which effectively uses the block-tridiagonal structure of
the generator Q, can be recommended.

Algorithm 1

Step 1. Compute the set of the matrices =G i N, 1, ,i from the recursion

= − −G Q Q ,1 1,0 0,0
1

= − + =− − − − − −
−G Q Q G Q i N( ) , 2, .i i i i i i i i, 1 1, 1 1 2, 1

1

Step 2. Compute the row vector ψN as the unique solution of the system

+ = =−ψ ψQ G Q 0 e( ) , 1.N N N N N N N, 1,

Step 3. Compute the set of the vectors = −ψ i N, 0, 1,i from the
backward recursion

= = −+ +ψ ψ G i N, 0, 1.i i i1 1

Step 4. Compute the normalizing constant = ∑ = ψc e.i
N

i0
Step 5. Compute the probability vectors =π i N, 0, ,i as

= =π ψ
c

i N1 , 0, .i i

Remark 1. It is well known in the literature that if the arrival flow is
described by the stationary Poisson process and the service time
distribution is exponential, system (1)–(3) has the same form and
solution as the equilibrium equations for the stationary probabilities of
the system M/M/1/N with a finite buffer and FIFO (first-in-first-out)
service discipline. It can be checked that the similar fact is valid for the
system with the MAP as well. However, consideration of the PH
distribution of the service time drastically changes the situation. The
problem of computation of the stationary distribution of the system
states cannot be reduced to the analogous problem for the single-server
queue with the finite buffer.

Corollary 2. The average number N of customers receiving service at an
arbitrary moment is computed by

∑=
=

πN i e.
i

N

i
1



Corollary 3. The intensity T of output of customers that obtained service in
the system is computed by

∑= ⎛
⎝

⊗ ⎞
⎠=

−πT I
i

L N S e1 ( , ) .͠
i

N

i W N i
1

Corollary 4. The probability −Pent loss that an arbitrary customer is lost
because it arrives when the server capacity is exhausted is computed by the
formula

= ⊗− πP
λ

D I e1 ( ) .ent loss N M1 N

Corollary 5. The probability −Pimp loss that an arbitrary customer is lost due
to impatience is computed by the formula

̂̂∑= ⊗−
=

−πP
λ

I L N S e1 ( ( , )) .imp loss
i

N

i W N i
1

Corollary 6. The probability Ploss that an arbitrary customer is lost (at the
entrance or due to impatience) is computed by the formula
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= +− −P P Ploss ent loss imp loss

or by the formula

= −P T
λ

1 .loss

Remark 2. Availability of two different formulas for computing the
probability Ploss is helpful for control of the accuracy of computation of
the stationary distribution of the system states.

Remark 3. In the case when the size of the vectors =π i N, 0, ,i is large,
the memory-efficient method developed in [3] for computing the
stationary characteristics without preliminary computation of the
stationary distribution of the Markov chain can be applied to
compute the listed above performance measures of the system.

4. The stationary distribution of the sojourn time of an arbitrary
customer in the system

The sojourn time distribution of an arbitrary customer is one of the
most important characteristics of any queueing system. In this section,
we show that the sojourn time of an arbitrary customer in the system
under study has a phase type distribution and obtain the irreducible
representation of this distribution. To this end, first we derive the
Laplace-Stieltjes transform of the stationary distribution of the sojourn
time of an arbitrary customer.

4.1. Computation of the Laplace-Stieltjes transform of the stationary
distribution of the sojourn time of an arbitrary customer in the system

Let V(x) be the distribution function of the sojourn time of an ar-

bitrary customer in the system and ∫= >
∞

−v s e dV x Re s( ) ( ), 0,sx

0
be the

LST of this distribution. To obtain the expression for this LST, we tag an
arbitrary customer and monitor its processing in the system. We sepa-
rately count the state of the underlying process ηt

(1) of service of this
customer and the number of other customers at each phase of service.

Let = ⋯ −s s sv v v( ) ( ( ), , ( ))N0 1 be the column vector sub-vectors vi(s)
of which define the LST of the sojourn time of the tagged customer
conditioned on the fact that i other customers receive service,

= −i N0, 1, and the processes ⋯ν η h h, , , ,t t t t
M(1) (1) ( ) have the corre-

sponding states.
Let us introduce some auxiliary denotations and matrices:

• =F k Kdiag{ , 1, }k is the block-diagonal matrix with the diagonal
blocks ⋯F F, , K1 ;

• =+ F k Kdiag { , 1, }k is the matrix having all zero blocks except the
updiagonal blocks defined by the matrices ⋯F F, , K1 ;

• =− F k Kdiag { , 1, }k is the matrix having all zero blocks except the
subdiagonal blocks defined by the matrices ⋯F F, , K1 ;

• = ⊗ ⊗ = −+ + βI D I P n Ndiag { ( ), 0, 2}M n1 ;

•
̂̂= ⊗ − + − =− − − − −{ }( )I I L N S L N S n Ndiag ( 1, ) ( 1, ) , 2,͠W M n N n N n

1
1 ;

•
� = ⊕ ⊕ ⊕ − − ⊗ −

= − + +

+

+ −

{
}

D S D S A N S I N

n N I I

diag , ( 1, ) Δ ( 1),

1, 1

n n W M
n

0 0
1

1
( ) ;

• �= −H e.0
Lemma 3. The vector v(s) is computed by the formula

�= − −s sIv H( ) ( ) .1
0 (4)

To prove this lemma, we derive the system of linear algebraic equations
for the vectors = −s i Nv ( ), 0, 1.i In derivation, we use the so-called
method of collective marks (method of additional event, method of
catastrophes), for references see, e.g. [13, 29]. To this end, we interpret
the variable s as the intensity of some virtual stationary Poisson flow of the

so-called catastrophes. The use of this additional flow allows to obtain a
system of equations for the conditional LSTs under study based on the
transparent probabilistic derivations.

Let us assume that the tagged customer arrives to the system when i
customers receive service. It is easy to understand that the components of the
vector LST = −s i Nv ( ), 0, 1,i define the probability that a catastrophe will
not arrive during the stay of the tagged customer in the system when i other
customers are servicing in the system. It is evident that if =i N the tagged
customer is lost and the probability that no catastrophe arrives during its
sojourn time is equal to 1. Therefore, we consider in detail only the case

= −i N0, 1. The structure of the tagged customer sojourn time is as follows.
First, during a time interval of a length τ, 0< τ<∞, the components

⋯ν η h h( , , , , )t t t t
M(1) (1) ( ) can make only transitions that do not lead to the new

customer arrival, service completion or termination. It is well known that the
probabilities of such transitions of these components and no catastrophe
arrival during time τ are defined by the entries of the matrix exponent

⊕ + ⊕ − − ⊗ − −( )e .D i S A N S I N sI τ1
1 ( ( 1, )) Δ ( 1)i W M i W MMi0 ( )

After the moment τ, during the time interval of the infinitesimal length dτ the
following events can occur:

• A new customer arrives and starts service (if + <i N1 ). The intensities
of such transitions are given by the entries of the matrix D1⊗IM⊗Pi(β).
After this event occurrence, the probabilities of no catastrophe arrival
during the rest of the sojourn time of the tagged customer are defined by
the vector + sv ( ).i 1

• Service of one of = −i i N, 1, 1, non-tagged customers is finished or
terminated. The intensities of such transitions are given by the entries of
the matrix

̂̂⊗ ⎛
⎝ +

− + − ⎞
⎠

− − − −I
i

L N S L N S1
1

( 1, ) ( 1, ) .͠W M N i N i1 1

After this event, the probabilities of no catastrophe arrival during the rest
of the sojourn time of the tagged customer are defined by the vector

− sv ( ).i 1

• Service of the tagged customer is finished or terminated. The intensities of
such a transition are given by the entries of the matrix

⊗ + ⊗+( )αI IS .W i M
1

1 0 i After this event, the probabilities of no cat-
astrophe arrival during the rest of the sojourn time of the tagged customer
are defined by the vector e.

Therefore, for = −i N1, 2 we have the relation

∫= ⎡

⎣
⎢ ⊗

⊗ +

∞
⊕ + ⊕ − − ⊗ − −

+

( )

β

s e D I

P s

v

v

( ) (

( )) ( )

i
D i S A N S I N sI τ

M

i i

0

1
1 ( ( 1, )) Δ ( 1)

1

1

i W M i W MMi0 ( )

̂̂⎜ ⎟⎛
⎝

⊗ ⎛
⎝ +

− + − ⎞
⎠

⎞
⎠

+

⊗ ⎛
⎝ +

+ ⎞
⎠

⊗ ⎤
⎦⎥

− − − − −

α

I
i

L N S L N S s

i
dτ

v e

S e

1
1

( 1, ) ( 1, ) ( )

1
1

,

͠W M N i N i i W

M

1 1 1

0 i

from which we have the equation

̂̂⎜ ⎟

⎛
⎝

⊕
+

⊕ − − ⊗ −

− ⎞
⎠

+ ⊗ ⊗

+ ⎛
⎝

⊗ ⎛
⎝ +

− + − ⎞
⎠

⎞
⎠

+ ⊗ ⎛
⎝ +

+ ⎞
⎠

⊗ = = −

+

− − − − −

β

α

D
i

S A N S I N

sI s D I P s

I
i

L N S L N S s

i
i N

v v

v

e S e 0

1
1

( ( 1, )) Δ ( 1)

( ) ( ( )) ( )

1
1

( 1, ) ( 1, ) ( )

1
1

, 1, 2.

͠

i W M
i

W MM i M i i

W M N i N i i

W M
T

0
( )

1 1

1 1 1

0

i

i

(5)

Analogously, for =i 0 we obtain the equation
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⊕ − + ⊗ ⊗ + ⊗ +

=

( ) β αD S sI s D I P sv v e S

0

( ) ( ( )) ( ) ( )W M M W

T

0 0 1 0 1 0

(6)

and for = −i N 1 we obtain the equation

̂̂

⎛
⎝

⊕ ⊕ − − ⊗ + ⊗

− ⎞
⎠

+ ⎛
⎝

⊗ ⎛
⎝

−

+ − ⎞
⎠

⎞
⎠

+ ⊗ ⎛
⎝

+ ⎞
⎠

⊗ =

−
−

−

−

−

−

−α

D
N

S A N S I D I

sI s I
N

L N S

L N S s

N

v

v

e S e 0

1 ( ( 1, )) Δ

( ) 1 ( 1, )

( 1, ) ( )

1 .

͠

N W M
N

MM

W MM N W M

N

W M
T

0 1
( 1)

1

1 0

0 2

0

N

N

N

1

1

1

(7)

Using the introduced above denotations, Eqs. (5)–(7) can be rewritten in
form (4). Because the matrix � is the sub-generator, the diagonal entries of
the matrix �−sI dominate in each row. Therefore, the matrix �−sI is
non-singular. Lemma 3 is proved.

Theorem 1. LST v(s), Re s>0, of the sojourn time of an arbitrary
customer in the system is computed as

∑= + ⊗ ⊗−
=

−

π βv s P
λ

D I sv( ) 1 ( ) ( ).ent loss
i

N

i M i
0

1

1 i

Proof easily follows from the formula of total probability.

Corollary 7. LST v s( )͠ of the sojourn time of an arbitrary customer, which is
not lost at the entrance to the system, is computed as

∑=
−

⊗ ⊗
− =

−

π βv s
λ P

D I sv( ) 1
(1 )

( ) ( ).͠
ent loss i

N

i M i
0

1

1 i

4.2. Computation of the distribution of the sojourn time of an arbitrary
customer in the system

Above we defined a random variable having PH distribution with an
irreducible representation (β, S) as the time until the underlying
Markov process ηt, t≥ 0, with a finite state space ⋯ +M M{1, , , 1}
reaches the single absorbing state +M 1, conditioned on the fact that
the initial state of this process is selected among the transient states

⋯ M{1, , } with probabilities defined by the entries of the probabilistic
row vector = …β β β( , , )M1 .

A bit more general definition of PH distribution assumes that the
number φ0 and the row vector φ such that the row vector (φ0, φ) is the
stochastic one are fixed instead of the stochastic vector β. With prob-
ability φ0 the underlying Markov process selects the absorbing state as
the initial state. The components of the vector φ0 define the prob-
abilities of the choice by the underlying Markov process of one of the
transient states as the initial state. In this more general case, it is pos-
sible to say about an irreducible representation (φ0, φ, S).

Theorem 2. The sojourn time of an arbitrary customer in the system has a
PH distribution with an irreducible representation �φφ( , , )0 where

= = ⊗ ⊗ ⊗ ⊗ ⋯

⊗ ⊗

− −

−

φ π β π β π

β

φ P
λ

D I D I D

I

, 1 ( ( ), ( ), , (

)).

ent loss M M N

M

0 0 1 1 1 1 1

N

0 1

1

Proof of the theorem is obvious. Using the introduced denotations, the
statement of Theorem 1 can be rewritten as

= + φv s φ sv( ) ( ).0

Taking into account (4), this formula transforms into

�= + − −φv s φ sI H( ) ( ) .0
1

0

This formula evidently defines the LST of the pH distribution with an
irreducible representation �φφ( , , ).0 Theorem 2 is proved.

Corollary 8. The distribution function of the sojourn time of an arbitrary
customer has the form

�= − φV x e e( ) 1 .x

4.3. Computation of the moments of the sojourn time distribution

Sometimes, in real-world systems, information about the distribu-
tion function of the sojourn time is redundant for managerial purposes
and it is enough to compute only several moments of distribution. Here
we present an algorithm for their computation.

Corollary 9. The rth moment vr, r≥ 1, of the distribution of the sojourn
time of an arbitrary customer, including the lost customers, is computed as

∑= ⊗ ⊗ =
=

−

π β φv
λ

D I v v1 ( )r
i

N

i M i
r r

0

1

1
( ) ( )

i

where the vectors = −i Nv , 0, 1,i
r( ) are the components of the vector v(r)

defined by formula

�= − ≥−r rv e! ( ) , 1.r r( ) (8)

Proof of the corollary evidently follows from the formula of total probability
and properties of the LST. The average sojourn time of an arbitrary customer
in the system is equal to v1, the variance of the sojourn time is defined as

−v v .2 1
2

Corresponding formula for an arbitrary non-lost customer is easily ob-
tained by analogy with the statement of Corollary 7.

The disadvantage of explicit formula (8) from the computational point of
view is necessity to compute the reverse matrix � −1 and the degrees of this
matrix. The size of this matrix is equal to ∑ =

−W M Mm
N

m0
1 and can be large.

Therefore, it is more preferable to elaborate another, recursive, way for
computing the vectors v(r), r≥ 1. This way is described as follows.

The vectors v(r) are defined via the vector LST v(s) by well-known for-
mula

= −v v( 1) (0)r r r( ) ( )

where v(r)(0) means the rth derivative of the vector LST v(s) at the point
=s 0.
It is easy to show that the derivatives v(r)(0) can be computed recursively

by the formula:

� = ≥−r rv v(0) (0), 1,r r( ) ( 1) (9)

with the initial condition =v e(0) .(0)

When the vector in the right hand side of (9) is already known, say it
is equal to a vector = ⋯ −b b b( , , ) ,N

T
0 1 the unknown vector =x v (0)r( ) is

defined as the solution to the system � =x b. To solve such a system of
linear algebraic equations with block-tridiagonal structure of the matrix
� , we recommend the following algorithm.

Algorithm 2

Step 1. Denote as � = −i N, 0, 1,i i, the diagonal blocks of the matrix
� ,� = −− i N, 1, 1,i i, 1 the sub-diagonal blocks of the matrix
� , and � = −+ i N, 0, 2,i i, 1 the up-diagonal blocks of the ma-
trix � .

Step 2. Compute the sequences of the matrices �
∼

i i, and the vectors b͠i
from the backward recursion

� � � � �= − = −∼ ∼
+ + + +

− i N( ) , 0, 2,i i i i i i i i i i, , , 1 1, 1 1,
1

� �= − = −∼
+ + + + i Nb b b , 0, 2,͠ ͠i i i i i i i, 1 1, 1 1
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with the initial conditions

� �= =∼
− − − −

−
− −b b, .͠N N N N N N1, 1 1, 1

1
1 1

Step 3. Recursively compute the components = −i Nx , 0, 1,i of the
unknown vector x by the formulas

�= −∼−
x b ,͠0 0,0

1
0

� �= − − = −∼−
− − i Nx b x( ), 1, 1.͠i i i i i i i,

1
, 1 1

All the inverted matrices are the irreducible sub-generators and,
therefore, are non-singular. The reverse matrices have non-negative
entries. This guarantees the numerical stability of Algorithm 2 and its
easy computer implementation.

5. Numerical experiments

The goals of the experiments are to demonstrate the feasibility of
the proposed algorithms and to show the importance of account of
correlation in the arrival process and variance of the service time dis-
tribution.

Let us assume that the parameters of the system are fixed as follows.
The MAP is defined by the matrices

⎜ ⎟ ⎜ ⎟= ⎛
⎝

−
−

⎞
⎠

= ⎛
⎝

⎞
⎠

D D13.52 0
0 0.43(8) , 13.43 0.09

0.2(4) 0.19(4) .0 1

This arrival process has the average arrival rate =λ 10, the coefficient
of correlation of two successive intervals between arrivals =c 0.2,cor
and the squared coefficient of variation of the intervals between cus-
tomer arrivals =c 12.34.var

The service time distribution is Erlangian of order 2 and is defined

by the vector =β (1, 0) and the sub-generator ⎜ ⎟= ⎛
⎝

−
−

⎞
⎠

S 20 20
0 20 . The

service time has the mean value equal to 0.1 and the squared coefficient
of variation equal to 0.5.

Let the customers be patient during the first phase of the service,
i.e., =α 0,1 while the impatience rate during the second phase of service
be =α 0.05.1

The experiments were implemented on PC having the following
configuration: Intel Core i7-8700 CPU 3.20 GHz (6 cores), 16 Gb RAM,
video card Nvidia Ge Force GTX 1050 Ti 4Gb, Cuda 8.0, Java 9.

The first conclusion from the implemented experiments consists of
confirmation of essential advantage of CSFP approach for description of
service process. Using the alternative, TPFS approach, due to RAM
limitation, we succeeded to compute stationary distributions only for
the server capacity N up to 12. Using the CSFP approach, we succeeded
to compute the stationary distribution of the number of customers in
the system for the server capacity N up to 1000. Computation of the
both stationary distributions of the number of customers and of the
sojourn time for =N 500 required about 10 min.

In Figs. 1–5, we present the dependencies of the following perfor-
mance measures of the system: the average number N of busy servers,
the probability −Pent loss of an arbitrary customer loss at the entrance to
the system, the probability −Pimp loss of an arbitrary customer loss due to
impatience, the loss probability Ploss of an arbitrary customer and the
average sojourn time v1 of an arbitrary customer on the server capacity
N, which is varied from 1 to 150. The presented above analysis of
stationary characteristics of the system seems to be not easy. However,
the computation time is not very long. Computation for 150 values of N
required only 5 min 11 s. Nevertheless, the natural question may arise:
whether or not it is possible to approximate these performance

measures by the corresponding measures of the simplified models. Be-
sides the original model with the MAP arrival process and the PH ser-
vice time distribution (we code further this model as +MAP PH ), we
consider three approximate models. The first one, coded as +M PH,
assumes that arrivals occur according to the stationary Poisson process
with the same rate =λ 10 as the initial MAP process. Two other models
assume the following reasonable simple approximations of the service
and impatience processes. It is assumed that the service time distribu-
tion is exponential with the same rate =μ 10 as the original Erlangian
service time distribution. The impatience rate α of an arbitrary cus-
tomer is assumed to be fixed as the constant, =α 0.024969, computed as
the weighted sum of the rate 0 during the first phase of service and rate
0.05 during the second phase of service with the weights 20.05

40.05
and 20

40.05
defining the invariant probability vector of the generator

− + +α α βS Sdiag{ } ( ) .0 The model with the MAP arrivals and ap-
proximated service is coded as +MAP M and the model with the sta-
tionary Poisson process and approximated service is coded as +M M.

It is evident from Figs. 1–5, that the approximations, especially the
simplest approximation +M M, may be quite poor. Bad feature of all
approximations is that they are too optimistic under the given set of
parameters of the system. E.g., based on +M M approximation one may
expect that the average sojourn time for =N 140 is less than 1.8 while
indeed this time is more than 6.5. This justifies the analysis of the model
with the MAP arrival process and the PH service time distribution if the
precise evaluation of the system performance measures is required.

Fig. 2confirms an intuitively clear fact that the probability −Pent loss is
the decreasing function of N while Fig. 3 confirms the fact that the

Fig. 1. Dependence of the average number N of customers in service on the
server capacity N.

Fig. 2. Dependence of the probability −Pent loss of an arbitrary customer loss at
the entrance to the system on the server capacity N.
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probability −Pimp loss is the increasing function of N.
The probability Ploss of an arbitrary customer loss is equal to the sum

of the probabilities −Pent loss and −P .imp loss This probability is large when N
is small. When N increases, this probability decreases. However, it can
be verified that there exist points where the probability Ploss achieves
the minimal value. E.g., for the +MAP PH case such a minimal value is
equal to 0.1645 and it is achieved when =N 119. When N>119, the
probability Ploss starts the increasing when N grows. E.g., for =N 150,

=P 0.1655.loss
To more convincingly demonstrate a possibility of using the ob-

tained results for optimization purposes, we formulate the problem to
find the optimal value of N, which minimizes the following cost func-
tion:

= +− −E N aλP bλP( ) ent loss imp loss

where a and b are the charges paid per unit of time because of one
customer loss at the entrance and due to impatience, correspondingly.
We suppose that b > a, i.e., it is better to reject a customer from the
early beginning than admit this customer for service, waste some
system resources for its service but eventually lose this customer due to
too long service time. Let as fix =a 0.1 and =b 0.3.

Fig. 6illustrates the dependence of the cost function E(N) on N and
demonstrates the existence of optimal values N* of the system capacity.
The optimal value N* for the MAP/PH/1 system is equal to 14 and the
optimal value of the cost function is =E (14) 0.27992. For the +MAP M
approximation, =N * 22 and the optimal value of the cost function is

=E (22) 0.250873. For the +M PH approximation, =N * 17 and
=E (17) 0.10973. For the +M M approximation, =N * 20 and
=E (20) 0.101739. Again, we can conclude that the approximations give

too optimistic prediction of the value of the cost function and the biased
estimation of the optimal system capacity N*. Another evident con-
clusion is that the choice of the system capacity in the proper way may
provide an essential reduction of the value of the cost function.

Remark 4. It is worth noting that in all our extensive numerical
experiments, Little’s formula is valid in the form

= −v λ N .1
1

. Since the computation of the stationary distributions of the number of
customers in the system and the sojourn time, respectively, are
independent, we have implicitly checked the accuracy of our
computational methods. If only the average sojourn time v1, not the
jitter or higher moments of the distribution of the sojourn time, is
needed, the use of this relation allows to compute v1 without the use of
Corollary 9.

Above we presented the numerical results for an exponential dis-
tribution of the service time (having the squared coefficient of variation
equal to 1) and the Erlangian distribution of the service time (having
the squared coefficient of variation equal to 0.5). Let us consider the
case when the service time has a hyper-exponential distribution. Let

=β (0.6, 0.4), = − −S diag{ 20, }.40
7 As well as the exponential and

Erlangian distribution of service time used above, this service time has
mean value 0.1. The squared coefficient of variation is equal to 1.75.

Fig. 4. Dependence of the probability Ploss of an arbitrary customer loss on the
server capacity N.

Fig. 5. Dependence of the average sojourn time v1 of an arbitrary customer in
the system on the server capacity N.

Fig. 6. Dependence of the cost function E(N) on the server capacity N.

Fig. 3. Dependence of the probability −Pimp loss of an arbitrary customer loss due
to impatience on the server capacity N.
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Figs. 7and 8 show the dependence of the average number N of
customers in service and the probability Ploss of an arbitrary customer
loss on the server capacity N for the fixed three distributions of the
service time. The symbol M corresponds to the exponential distribution,
the symbol E2 corresponds to the Erlangian distribution, the symbol
HM2 corresponds to the hyper-exponential distribution.

It is seen from these figures that the system operates better when,
under the same mean value, the service time has a higher variation. The
intuitive explanation of this fact is as follows. The Erlangian distribu-
tion has the smallest (among considered three distributions) coefficient
of variation. Therefore, the service time of an arbitrary customer is
more or less close to its mean value 0.1. The Hyper-exponential dis-
tribution considered in this example assumes that about 60 % of cus-
tomers have the service time around 0.05 (twice less than the mean
value) and 40 % of customers have the service time around 0.175. Large
percentage of customers, which obtain quick service, implies, in
average, the presence in the system of the smaller number of customers
and lower loss probability. Note also that, as it is seen from Fig. 7, for

=N 150 the average number of customers in the system for the service
times having the hyper-exponential, exponential and Erlangian dis-
tribution is less than 25, about 43 and more than 65, correspondingly.
Definitely, the difference is large. Therefore, careful account of varia-
tion of the service time is very important for exact evaluation of system
performance and assumption that this distribution is exponential made
in the overwhelming majority of the relevant literature may cause big
errors.

5.1. Advisability of using the graphics processing unit (GPU)

Algorithms 1 and 2 presented above operate with matrices the size
of which may be large. In the numerical examples described above, we
considered the PH distribution of the service time of order 2. Therefore,
the maximum size of the blocks of the generator Q was +N2( 1) where
N is capacity of the server. If =N 25, this size is equal to 52.

Let now consider the PH distribution of the service time of order 4
having the same average service time equal to 0.1. Namely, we assume
that the distribution is defined by the vector =β (1, 0, 0, 0) and the sub-

generator =
⎛

⎝

⎜
⎜

−
−

−
−

⎞

⎠

⎟
⎟

S
40 40 0 0

0 40 40 0
0 0 40 40
0 0 0 40

. The vector α defining the rates

of customer impatience at various phases of service is fixed as
=α (0, 0, 0.25, 0.25). For this distribution of the service time, the

maximum size of the blocks of the generator Q is +2 .N
N

( 3) !
! 3 ! E.g., if

=N 25, this size is equal to 6552. The work with matrices having large
size may be quite slow. To accelerate calculation for operations (espe-
cially multiplication and inversion) with matrices, having large di-
mension, we used graphics processing unit (GPU) instead of central
processing unit (CPU).

To justify such a choice, we compared the required computation
time using CPU and GPU. Table 1 contains the information about the
time required for multiplication of two square random double-precision
matrices of fixed dimension using CPU and GPU. Note that for matrix
multiplication on CPU we used multi-threaded multiplication with 12
threads. Time indicated for GPU indeed includes also time required for
memory allocation and data transfer. Table 2 contains the information
about the time required for the inversion of an arbitrary nonsingular
double-precision matrix using CPU and GPU.

One can see from Tables 1 and 2 that using GPU is not reasonable
for small size of matrices (less than 1500 for multiplication of matrices
and less than 1200 for matrix inversion). However, for the larger size of
matrices the use of GPU allows to significantly reduce the computation
time comparing to the use of CPU. For block size 10,000, calculation
time using GPU is about 10 times less than calculation time using CPU.

The maximal size of the block in the considered in this example
model with PH distribution of the service time of order 4 is equal to
6552. The required time for computation of the stationary distribution
of the system states and performance measures using CPU is equal to
18 min 11 s, while computation time using GPU is equal to 3 min 47
s, i.e., 4.8 times less. Therefore, it is reasonable to use GPU for

Fig. 7. Dependence of the average number N of customers in service on the
server capacity N for service times having different coefficients of variation.

Fig. 8. Dependence of the probability Ploss of an arbitrary customer loss on the
server capacity N for service times having different coefficients of variation .

Table 1
Information about the time required for multiplication of two square random
double-precision matrices of fixed dimension using CPU and GPU.

Matrices dimension CPU computation time GPU computation time

1000 0.184 s 0.519 s
2000 1.722 s 0.769 s
4000 16.29 s 2.26 s
6000 56.23 s 6.04 s
8000 2m 13 s 13.4 s
10,000 4m 20 s 25 s

Table 2
Information about the time required for inversion of an arbitrary nonsingular
double-precision matrix using CPU and GPU.

Matrices dimension CPU computation time GPU computation time

1000 0.82 s 1.15 s
2000 8 s 2 s
4000 1m 15 s 11 s
6000 4m 13 s 30 s
8000 9m 55 s 1m 7 s
10,000 19m 22 s 2m 6 s
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computations in the described example. It is worth to note that the
reasonability of using GPU depends on the concrete configuration of a
computer and programming language.

Table 3contains the values of the probabilities πie that i customers
obtain service in the system at an arbitrary time moment, =i 0, 25, for
the system with the MAP having the coefficient of correlation 0.2 de-
scribed above and the PH distribution of the service time of order 4.
These values are presented in the second column of Table 3. The third
column contains the values of the corresponding probabilities in the
case when the arrival flow has the same average arrival rate, but the
inter-arrival times are not correlated.

The values of the key performance measures of the system with the
correlated arrival process are the following:

- the average number of customers receiving service at an arbitrary
moment is =N 15.042045035003023,

- the intensity of output of customers that obtained service in the
system is =T 7.902110155717249,

- the probability of an arbitrary customer loss is
=P 0.20977585778138863,loss
- the probability of a customer loss at the entrance to the system is

=−P 0.19123967707217554,ent loss

- the probability of a customer loss due to impatience is
=−P 0.018536180709213094.imp loss

It is evidently seen from Table 3 that the most probable numbers of
customers in the system with the MAP having correlation 0.2 are 0 (the
system is empty) and N capacity of the system is exhausted. The
probability of empty system is 0.19823. The probability of the full
system is 0.14356. The reason of this effect is the correlation in the
arrival process. Positive correlation of inter-arrival times implies that
the time intervals when customers arrive rarely (and the server starves)
alternate with periods when a lot of customers arrives and the server’s
capacity is maximally used.

The values of the probabilities πie for the system with the stationary
Poisson arrival process with the same average arrival rate given in the
third column show that the distribution of the number of customers in

service is almost uniform. Probabilities πie that i customers obtain
service monotonically decrease from 0.040403 for =i 0 to 0.034734 for

=i 25.
The values of the main performance measures of the system with the

stationary Poisson arrival process are as follows:
- =N 12.16929103626954,
- =T 9.501722257254754,
- =P 0.04982777427452467,loss
- =−P 0.0347337639068962,ent loss

- =−P 0.015094010367629774.imp loss
These results again confirm the importance of account of correlation

and variance of inter-arrival times. The existence of correlation and
high variance causes much higher loss probability and larger average
number of customers in the system.

6. Conclusion

The problem of computing the steady-state distributions of the
number of customers and the sojourn time distribution for the system
with the Markovian arrival process, phase type distribution of the ser-
vice time, limited processor sharing discipline and impatient customers
is solved in this paper. We compared two possible approaches for de-
scription of the system behavior by the multi-dimensional Markov
chain and illustrated the advantage of the approach which suggests
account of the number of customers receiving service at each phase.
Advisability of using in computations the graphics processing unit is
discussed in brief. The results can be used for managerial decisions
relating to organization of multiplexing in various communication
networks with account of possible variability of intensities of arrival
and service processes. As a possible interesting generalization of the
considered model for a future research, we can mention combination of
the limited processor sharing system as a model of operation of the cell
of the wireless network with the queueing model where the shares of
the bandwidth dedicated to service of customers are not equal but de-
pend on the distance from the customer to the base station of the cell,
see [8].
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