~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Khurana, Archana; Adlakha, Veena G.; Lev, Benjamin

Article
Multi-index constrained transportation problem with
bounds on availabilities, requirements and commodities

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Khurana, Archana; Adlakha, Veena G.; Lev, Benjamin (2018) : Multi-index
constrained transportation problem with bounds on availabilities, requirements and commodities,
Operations Research Perspectives, ISSN 2214-7160, Elsevier, Amsterdam, Vol. 5, pp. 319-333,
https://doi.org/10.1016/j.0rp.2018.10.001

This Version is available at:
https://hdl.handle.net/10419/246357

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

.: BY https://creativecommons.org/licenses/by/4.0/
Mitglied der
WWW.ECOMSTOR.EU K@M 3
. J . Leibniz-Gemeinschaft


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2018.10.001%0A
https://hdl.handle.net/10419/246357
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Operations Research Perspectives 5 (2018) 319-333

journal homepage: www.elsevier.com/locate/orp

Contents lists available at ScienceDirect

Operations Research Perspectives

Operations »

Research
Perspectives

Multi-index constrained transportation problem with bounds on R

Check for

availabilities, requirements and commodities el

Archana Khurana®, Veena Adlakha®, Benjamin Lev®"

@ Williams E. Kirwan Hall, Department of Mathematics, University of Maryland, College Park, MD 20742, United States
® Department of Management and International Business, Merrick School of Business, University of Baltimore, MD 21201, United States

© LeBow College of Business, Drexel University, Philadelphia, PA, United States

ARTICLE INFO ABSTRACT

Keywords:

Classical transportation problem
Multi index

Impaired flow

Unbalanced

Optimal solution

In this paper, we consider a multi-index constrained transportation problem (CTP) of axial constraints with
bounds on destination requirements, source availabilities, and multiple types of commodities. The specified
problem is converted into a related transportation problem by adding a source, a destination, and a commodity,
making it equivalent to a standard axial sum problem. This related problem is transformed into a multi-index
transportation problem that can be solved easily. The provided solution method is very useful for transporting
heterogeneous commodities. A transportation model may sometimes have various capacity constraints on the

flow between pairs of origins and destinations. Moreover, budgetary, political, and emergency situations may
impair or enhance the flow between origins and destinations, making it critical for a manager to reevaluate
allocations. These considerations have motivated us to explore the multi-index CTP with impaired and enhanced
flow. We present several numerical examples to demonstrate the proposed algorithms.

1. Introduction

In the classical transportation problem (TP), a commodity is trans-
ported from each of m sources to each of n destinations. The sum of the
amounts available at the sources is equal to the sum of the demands at
the various destinations. The goal is to determine the amounts of the
commodity to be transported over all routes so that the total trans-
portation cost is minimized. Many researchers have extensively studied
such cost-time transportation problems. Appa [2] discussed variants of
the transportation problem. Brigden [5] addressed transportation with
mixed constraints. Klingman and Russel [21] solved a specialized
method of the TP with additional linear constraints. Adlakha et al. [1]
studied the branching method for fixed-charge transportation problems.

In the literature, the TP is generally presented as a two-dimensional
linear transportation problem that can be solved by application of the
Modified Distribution Method (MODI). MODI is an efficient method of
checking the optimality of the initial feasible solution by determining
the unused route with the largest negative improvement index. Once
the largest index is identified, it becomes necessary to trace only one
closed path. This path helps determine the maximum number of units
that can be shipped via the best unused route. Haley [12,13] introduced
the solid transportation problem with m origins, n destinations and p
types of commodities as an extension of the MODI method. Corban [7]

* Corresponding author.

developed a solution procedure for three-dimensional transportation
problems with axial constraints. Solid transportation problems under
different uncertainty environments have been studied by several au-
thors ([3,23]). Khurana and Adlakha [17] presented the multi-index
fixed charge bi-criterion transportation problem. Khurana [16] studied
three-dimensional trans-shipment problems. Recently, Sinha et al. [26]
studied profit-maximizing solid transportation problems.

There may be situations when, due to external factors, the route
capacity must be fixed, leading to a constrained transportation pro-
blem. Wagner [30] studied transportation problems with capacity
constraints. Charnes and Klingman [6] discussed transportation with
limits on the node requirements. Mishra and Dass [24] approached
solid transportation with limits on the availability, demand and trans-
portation modes. Verma and Puri [29] addressed transportation with
limits on rows and columns, followed by a study of capacitated trans-
portation with limits on rim by Dhaiya and Verma [8]. Dangalchev [9]
gave an algorithm to solve non-linear non-convex capacitated trans-
portation problems. Gupta and Arora [11] studied bottleneck capaci-
tated transportation with limits on rim. Khurana and Verma [18] stu-
died two-dimensional capacitated trans-shipment transportation with
limits on rim.

There are situations in which the total flow of transportation over
particular routes may need to be restricted or enhanced. For example,
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in emergency situations, the demand of fire trucks, police cars or am-
bulances might have to be increased while the supply of consumer
goods might have to be curtailed. This might compel some factories to
restrict or enhance their production to meet the required demand.
Khanna et al. [15] discussed controlling flow in two-dimensional TPs.
Bandopadhyaya and Puri [4] discussed impaired flow multi-index TPs
with axial constraints. Thirwani et al. [27] and Thirwani [28] discussed
restricted flow and enhanced flow, respectively, in fixed charge bi-cri-
terion TPs. A problem of restricted and enhanced flow in linear frac-
tional TPs was presented by Khurana and Arora [20]. Thereafter,
Khurana and Arora [19] developed an algorithm for solving fixed
charge bi-criterion indefinite quadratic transportation problems with
enhanced flow. Kowalski et al. [22] studied a fast and simple branching
algorithm for solving small scale fixed-charge transportation problem.
Hu et al. [14] investigated transit time in decision making of trans-
portation service procurement. Nomani et al. [25] presented a weighted
model based on goal programming to solve multi-objective transpor-
tation problems. Recently, Di et al. [10] gave a transportation network
design for maximizing flow-based accessibility.

In this paper, we provide a solution method for a constrained
transportation problem (CTP) with axial constraints with bounds on
source availabilities, destination demands and various commodities.
We discuss solution methods for the CTP with impaired and enhanced
flows and extend the methods to handle situations of unbalanced con-
strained transportation problems. The maximum number of iterations
required in our proposed procedure to solve the constrained solid
transportation problem would be "™"PCy,,,,p(m, n, p defined after pro-
blem P1). Note that the best polynomial running time for two-dimen-
sional constrained transportation problems is O(m log n (m + n log n))
(Orlin, 1988 [31]).

2. The three-dimensional constrained transportation problem
with axial constraints

The "Three Axial Sums" problem deals with transportation of var-
ious commodities from a set of different warehouses to different mar-
kets, where total availabilities, demands and quantity of different
commodities to be transported are specified. We discuss the 3-dimen-
sional CTP having bounds on availabilities, demand and different
commodities. The problem can be written as

P1: Minimize )}, >, >, iy subject to

aiSZZXUkSAi, iel

T K (@)
<Y Y xu< B, jeJ

T K 2
e < zzxiijEk, ke K

T T 3
Ljk < Xy < gk iel,jel, kek 4

where I = {1, 2, ...... mb, J=11,2, ... n), K=1{1,2, ... ,p} are respec-
tively set of origins, destinations and commodities;a; and A;are the
minimum and maximum availability at the ith origin, respectively, b;
and Bjare the minimum and maximum demand at the jth destination
respectively, ex and Ej are the minimum and maximum availability of
the kth commodity and c;is the unit cost of transportation from the ith
origin to the jth destination. Let Ly and uybe the lower and upper
bounds on the (i, j)th route for the kth type of commodity.

To solve problem P1, a related solid problem is formulated with a
dummy supply point, a dummy destination and an extra commodity.
The related 3-dimensional transportation problem is given as follows:

P2: Minimize ), 3 3’ ¢y Subject to
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2 ZK'YUF A, ie I'=1u{m+ 1}
ZI’ZK’YUkZB}’ je I'=Ju{n+1}
22y Yu=E k€ K'=Ku{p+1}
where

" A, iel
TS B, i=m+ 1
B; jelJ
B =g ]. ;
J AL jEn+l
o Ey, kekK
YA+ B B k=p+1
e S ype < w iel,jel kek
0< ZKyin+1k+ ijijp+1 + Yin+1p+1 <A -,
0= ZKym+1jk+ Ziyijp+1 + Vnstpsr < B — b, jEJ

iel

0< ijm+1jk + Z,—yin+1k + Vnstnee < Bk — e, kek
ZkYmHnHk 20keK’

ik = Cijk» iel,jel, kek

Cipr1=M, iel,jeJ

Cint1k = Cmae =0, I1€LjEJ, k€K

C§n+1p+1 = c:n+1jp+1 = Chpmsc =0, (€I, jET,

keK’ (5)

Note 1: In case of balanced constrained transportation problem,
2uAi =B =2,E, thus E; = Y FE fork=p+1 in problem
(P2) above.

The problem P2 is a “Three Axial Sum” problem that can be re-
formulated as a transformed multi-index TP by using the following
definitions by Haley [13]:

Ci=cip@<m+1,j<n+1, k<p+1), ¢'limizps2=0
Clipr2=0(<m+1,j<n+1), cjpn=M>Ism+1),
(k=0 (E<m+1L,k<p+1), (hugpr2=M({<n+1),
O =0G<n+1L k<p+1), lmu=Mk<p+1)
Let R = Max (A}, B, E})

ijik

A =R({(<n+1;k<p+1), Bu=Rk<p+1Li<m+1),
Ej=R(i<m+1;j<n+1),

Apyxk =(m+ 1R -Ej(k<p+1),
=(m+1DR-Bj(j<n+1),

=m+DR-A[(<m+1),

Ajp+2
Byiai
Bumsa=(m+ DR - Ei(k<p+1),
Eniyj=@+DR-B;(<n+1),
Epni2=(@P+DR-Aj(i<m+1),

An+2p+2 = Bp+2m+2 = Eptom+2 =R

Let P3 denote the problem with these modified constraints and the
objective function as minimize}" "> :‘:12 P2 ¢y Problem P3 can
be conveniently solved by Haley's [12] method.
Remark 1. The number of non-zero variables Xy in a basic feasible

solution for a solid transportation problem is mnp—(m-—1)(n—1)
P-1).

Remark 2. For a solid transportation problem, first we find a basic
feasible solution, then the shadow costs uj, vk, wy for basic cells are
evaluated so that uj + vi; + w; = ¢y There are mn + np + pm shadow
costs and only mn+np + pm—-m—-n—-p—1 non-zero x;’s. So,
m + n + p—1 shadow costs are set at zero.

Definition. - M- Feasible Solution for constrained transportation problem:
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A feasible solution {y;}, i€ I', je J, ke K' to (P2) is called a M-feasible
solution if yy,,, =0, i €1, jEJ

Theorem 1. There is a one-to-one correspondence between a feasible
solution of problem P1 and an M-feasible solution of problem P2. The
proof of Theorem 1 is provided in the Appendix.

Theorem 2. The values of the objective function of P1 at a feasible
solution and of P2 at its corresponding feasible solution are same.

Proof. Let {x;x}; x s x x be corresponding feasible solutions of P1 and
{y,-jk }rxrxk be corresponding feasible solution of problem P2 with
objective function value as Z. Then,

Z= Z[’ Z]’ ZK’ cijk’yijk
=2 Z:J Z:KC;JVCVUk + 2 2k Cine sk T Zj h o1+ 1jk
+ EI EJ cl{jp+1yijp+l+
ZJ c;n+1jp+Lym+1jp+1 + Z[ C{n+1p+1yin+1p+1 + ZK Crnt1ns It 1nt1k
+ C;n+1n+1p+]ym+1n+1p+1
= 20 2y 2 Ciidge + 2y 24 Ciip+ iipn
+ Constnsipsntinsiper  (Arom(s))

= X 2y 2k Cijkyyje (byM—feasibilityandas ¢jy = e i € I, j € J, k € K

= value of the objective function P1 at{x;x}r x s x k-
Theorem 3. For every optimal feasible solution to P1, there exists an
optimal feasible solution to P2, and vice versa.

Proof. Follows obviously along the same lines as in Theorem 3 of
Khurana and Verma [18]

3. The 3-dimensional impaired flow CTP with bounds on
availabilities, demand and commodities

Consider the case of sudden shift of demand in the markets which
may restrict the flow of commodities to various destinations. This could
happen due to existing political environment, change in economic
conditions or imposed restrictions on company budgets. These situa-
tions may require a government/country/company to reserve stock of
some goods (e.g., weapons, medicines, grains etc.). This situation leads
an impaired flow 3-dimensional CTP with bounds on source avail-
abilities, destination demands and various types of commodities.

Consider the case of 3-dimensional transportation problem, where
the impaired/restricted flow is exactly known. Let F be the specified
total flow level. Thus, the flow constraint 3 3 > x; = F is introduced
into problem P1 resulting in the following TP.

P4: Minimize )}, >, > cjiXyi subject to

a; < 3 2k Xik <A, iel
b <Y, 2kXis B, jeEJ
e < zl ZJ xiij Ey, ke K

ZIZJZKxijk=F
Lje < X < gk iel,jelJ, kek

where F is chosen such that

{Zi ai, Zj bj, Zk e} < F< min{ZiA,-, Ej Bj, Zk E;}

To solve problem P4, a related solid problem is formulated with a
dummy supply point, a dummy destination and an extra commodity.
The related 3-dimensional transportation problem is given as follows

P5: Minimize 3} 3 - 7 cixody, Subject to

max
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Yy X ¥p=AL i€ I'sIu{m+1}

Z]’ZK’Yzjk= Aj, i€ I'=IU{m+1}21’2K’Yyk=B}v
je JI'=Juin+1}

Yr2yYu=E k€ K'=Ku{p+1}

2 2y 2V = F

where

A;, iel

Y B—F, i=m+1’

B;, jeJ
B’ = ;
IT A -F j=n+1
B Ey, kekK

FTZA+ S B - Yk Ec—F, k=p+1

Lig <yy <up I€L je], keK
By the definition of M-feasibility
o iel Yy L <A-a

b;

n p+1

Zj:lyijp+1 + Zk:1 Yin+1k < Ai —a
m p+1 . p+1

Zi:lyijp+1 + Zkzl In+ije = Bi—b, jeEJ=> Zk=1 Insije = B —
m n

Zi=1yin+1k + Zj:lym+ljk + Ym+1,n+1k < Ep— e kek

iel,jel, kek

iel,jel

Cinstk =Cmp =0 1€ jEJ, k€K

cl{n+1p+1 = c;n+1jp+1 =0 i€l VAS J

kekK

’
cijk = cijk

4 p—
Cijp+1 = M

Cm+in+1k = M

where M is a sufficiently large positive integer. The problem P5, being a
“Three Axial Sum” problem, can be reformulated as a multi-index
transportation problem by applying Haley's method [13] and as dis-
cussed in problem P3 can thus be solved using Haley [12] method.
Definition: Corner feasible solution (cfs) of P5
A feasible solution {y; ]k},ep jer, ek’ of P5 is a (CFS) corner feasible
solution if y,,,1,,1, =0k € K'.
Remark 3. We can tighten the bounds of the variables in problem P2.

Aslye < X < Uik iel,jeJ, k €K, this implies that
Z:je] z:keK lijk < Zje] Z:keK Xijk < Zje] ZkeK Uijk iel, (9]
Zie[ EkeK L < Eie[ ZkeK Xk < Ziel EkeK uge JE€J D
and
DXl D £ Y Duge  kek (D)
iel jeI iel jer iel jer

Inequalities (1) and (I) together imply that

aj= max{a,, > z,,k} < Z Zx,,k <m1n{Al, 22

JjeJ kek JjeJ kek

}
-y
J--

=A; i€l

Inequalities (2) and (II) imply that

b= max{b > zyk] < Z nyk <mm{

iel kek

js Z Z Uijk

iel kek

eJ

Inequalities (3) and (III) imply that

e = max{ek, Z Z lyk} < Z Zx,jk <m1n{Ek, Z Z Uijk

iel jel iel jel

€K
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Thus, the problem P1 reduces to following problem:
Pla: Minimize Y}, >, > cjX; subject to

HTEDIDIS SV VA A =D |
by < 2 Ygxiks By, JEJT
e < 2, 2y xi<El, k€K

e < Xy < ugge iel,jel, kek

And the related P2a of Pla is
P2a: Min 3 > 2 Ciitij subject to

ZJ’ ZK L= AL,

21’ ZK’ lje = B,;"
Z[' E]' L= E';{,

ie I'=Iu{m+ 1}
je J=Jun+1}
ke K'=Kufp+1}

where
" {A;, iel
i = roa 5
2B i=m+1
B B, jelJ
TS AL j=n+1 ’
B Ej, kekK
KT\ DA+ S B - S Ek k=p+1

Lije < tjpe < uge iel,jel, kekK
0< EK lins1kt ZJ tip+1 + tinepr1 <A — @
0 < D bnrrjet Xy tipar + tmrrjprs <Bj—b jEJT
0< Zj stk + 2 tinetk + tnginse < Ev—er k€K
Ek tusinsk = 0k € K’

iel,jel, kekK

iel

’
Cijk = Cijk

Cipt1 =M iel,jeJ
C;n+1k:C:n+ljk:0 i€el,jel, kek

’ o o _ . ’ . ’ ’
Cint1p+1 = Cmitpt1 = Cmrinre =0 1 €T, jEJ, k€K

Note 2: Bounds 0Nty 11jp+1; tin+1p+1 a0d b 1ns1k, fori€l, jeJ, keK
are tighter compared to B; — b;, A; — a;, andE; — e;.

Note 3: A non-feasible extreme point of P5 is never an optimal so-
lution of P5 sincecyiin41p+1 = M
Lemma 1. For all feasible solutions to P4 there exists a corner feasible
solution to P5, and vice versa.

Theorem 4. The objective function values of P4 at a feasible solution
{Xjtier jes, kexand P5 at its corresponding corner feasible solution
Dicier, jer, kex-are equal.

Lemma 2. For every optimal solution among the cfs to P5, there exists
an optimal solution to P4.

Theorem 5. Optimizing P4 is equivalent to optimizing P5, provided P4
has a feasible solution.

4. The 3-dimensional enhanced flow CTP with bounds on
availabilities, demand and commodities

Now consider the case of a sudden rise in demand in the market
whereby requiring an enhanced flow. Many circumstances may give
rise to such a situation — for example, a natural calamity, election times
or holidays seasons. This is a case of enhanced flow 3-dimensional
transportation problem where, assume that, the flow is enhanced to a
known specified level F. Thus, the flow constraint}}, >, > x; = F is
introduced resulting in the following transportation problem.

P6: Minimize Y}, >, > Cjic Xy subject to
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Z]ZKxiijai iel
ZIZKxUkij jeJ

2 2 Xik = ek kek
Z]ijKxijk=F

Lijk < Xy < e iel,jel, kek

where F is chosen such that F > max{} a;, Zj by, > e

A related solid problem is formulated to solve P6, with a dummy
supply point, a dummy destination, and an extra commodity. The re-
lated 3-dimensional transportation problem is given as follows

P7: Minimize 3}, 3/ ¥, ¢y subject to

Yyl Yp=A, i€ I'sIuim+1}
ZI/ZK/yijk=B’j, jeJ=Jufn+1}
22y Yu=E k€ K'=Ku{p+1}
2 ZJ ZKyzjk =F

where

Z:":l Zl{‘:l Ujjk iel

Ziyilz;;lZf:luijk_F’ i=m+1’

’

B; _ 2;71 Zgz1uijk jelJ . :
Zi:le:lZf:luijk —-F, j=n+1
E;c _ Z£1E?=1uijk jeJ
27;127:125:1”% —F, k=p+1
Lig <yy <up Vi€l jel kek
Z?:lyijm-l + Zi::yinﬂk < Z;lzl Zle Ujjk — a; Vi

5211 yin+1k
< Z:Ll P ug—a YV iEl
YEETATE'D Vil NRTEED Yill) YT T R
eJ = 25211 ym+1jk
= Zilzizluijk_bj vVijelJ
i Ve + 2;:1Ym+1jk + Vrtnerk < Diey El;:l ujp —e Vv ok

€K

el =>

(By the definition of M-feasibility)

CEjk=Cijk iel,jel, kekK
Cipr1=M iel, jelJ

Cint1k = Cup1je = 0 iel,jel, keK
C£n+1p+1 = C:'n+1jp+1 =0 i€l jer
Cstnsik = M kek'

where M is a sufficiently large positive integer. Theorems and remarks
for the 3-dimensional CTP with enhanced flow can be developed along
the similar lines as for the 3-dimensional CTP with restricted flow.

5. Unbalanced 3-dimensional CTP
Consider the following balanced 3-dimensional CTP
P6: Minimize ), >, > CixXyi subject to
2y 2 Xi= i, 1€
ZI ZK Xijk= bj, ] elJ
ZI Z]x,-jk= €k, ke K
liijxiijMijk VieI,je],keK
In the above problem, for any feasible solution we

have}) a; = X bj = X e.
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The problem P6 becomes unbalanced constrained transportation
problem (UCTP) if any of the above availability, demand or commodity
constraints are in the form of inequalities. We discuss several forms of
UCTP and demonstrate the solution procedure by modifying the UCTP
to a problem like P1.

Case I: High storage costs at some sources may cause a manager to
over supply to destinations. Alternatively, an anticipation of political
unrest or war may cause a manger to keep emergencies stocks at the
sources. In such cases, the following UCTP is formulated:

P7: Minimize Y}, >, > CiieXyi subject to

Zinjks a;, iel
J K

(6)

Z Z X,-ij bj, j elJ
T K (@)
Z Z Xijk= €k, ke K
T 7 (8)
ljg <xjp Supe i€l jel, kek 9)

We assume here uy is finite for all iel, jeJ, keK.

Inequality (8) implies that
ZZIUkSZZXUkSZZuUk iel,
jET kek jeI kek jeJ kek (10)
IO EDIDIE DI IR )
iel kek iel kek iel kek an
and
ZZlUkSZZxUkSZZuUk kekK
iel jel iel jel iel jeJ 12)

Using (10) and (11), problem P7 reduces to be like problem P1 as
follows:
P8: Minimize )}, >, > Xy subject to

ai < Zj ZKXU"S Aj, iel
b, <Y, Ykxpus< B, jeEJ
er < 2y 2y xps El, k€K
Ljie < Xy < Ui iel,jel, kek

where a; = Zje] Diek lij Ai=ai, bj=Db, Bj=3 ¥k Uik ek
=e, Ep=e
Case II: Consider the case where, along with conditions on avail-
ability and demand constraints as in Case I, additional constraints re-
stricting the amount of different types of commodities to be shipped are
imposed. Then the problem takes the following form:
P9: Minimize )}, >, > cjieXyi subject to

Table 1

Operations Research Perspectives 5 (2018) 319-333

2y 2 XS @i, L€
ZI ZKxiij b, jeJ
21 ijl:,-ks e, keK
Ljk <xjp Sue Vi€l jel, kekK

Problem P9 can easily be modified to a problem like P1. Using 9),
((10) and (11) the above can be modified as follows:
P10: Minimize ), >, > cixXji subject to

ai <Y Ygxps A, i€l
by <Y, Tpxps B, jEJT
e < 2y 2y X< Ef. k€K
Ly < X < Uik iel,jel, kek

,_ . ;_ ' _ /
where a;= Eje] Diex i Ai=ai, byj=1by, Bj= 3 Yok ik ek

=2 Zje] Lk, B = ex
which can be solved easily.

A variety of other cases may arise. For example, (1) high storage
cost at a source may prompt a manager to supply excess amounts of all
k-types of commodity to some destinations; (2) a manage may wish to
have some inventory at the sources to handle crisis; (3) demand at some
destinations may be greater than the availability at sources, creating a
need for increasing production at sources and still not meeting demand
of some destinations. Alternatively, a manger might try to meet demand
at a destination by over-producing. All these specified problems may be
transformed to P1, on similar lines as discussed above, and hence may
be solved.

6. Numerical illustrations: a laptop manufacturing company

Consider the case of company XYZ that produces various types of
laptops. These laptops are produced at New York (i = 1), California
(i = 2) and Chicago (i = 3). Once produced the laptops are shipped to
Washington DC (j = 1), Maryland (j = 2) and Philadelphia ( = 3).
There are (k) types of laptops, namely, type I (k = 1) with 8 in screen,
type II (k = 2) with 12 in screen and type III (k = 3) with 16 in screen
which are being transported.

Let O1, 02 and O3 denote factories at New York, California, and
Chicago. Let D1, D2 and D3 denote the distribution centers at
Washington DC, Maryland, and Philadelphia respectively. The handling
cost or the shipping cost (c;x) paid per laptop for type I is $1, type II is
$2, and type III is $2 when the goods are transported from New York to
Washington DC (O1 to D1). Similarly, the shipping cost paid per laptop
for type I is $3, type II is $4, and type III is $1 when the goods are
transported from O1 to D2 while the costs in case of transportation from
01 to D3 are $2, $4 and $6 respectively. The shipping cost per laptop
for different types from O2 to D1 are $4, $2 and $2; from O2 to D2 are
$3, $3 and $2; and from O2 to D3 are $2, $1 and $3. lastly, the shipping

Cost of the 3-dimensional transportation with limits on rim (P1).

=1 =2 =3 ai| &
1 3
=1 2 4 4 30| 40
7] 1 ]
4 3 2
1=2 2 3 1 15| 30
A A 3]
4 L] 2
i=3 5 4 2 10| 20
3] 7| 4]
bj 15 20 25
Ej 25 25 40

with 61:20, E1:30, 62:30, E2:40, 63:15, E3:20
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Table 2 cost from O3 to D1 for different types are $4, $5 and $3; from O3 to D2
Lower and upper bounds on laptops of different types. are $5, $4 and $2; while from O3 to D3 the shipping costs are $2, $2
xim 1 12 X1 0 7 Xa11 1 3 and $4.
X112 2 10 Xo12 1 10 Xa12 0 9 Assume that at O1 there is a min and max limit of 30 and 40 laptops
X113 0 8 X213 1 8 X313 2 11 of all types in a month while O2 the limits are 15 and 30 laptops of all
X121 2 10 X221 2 5 X321 3 7 types in a month. At O3 the limits are 10 and 20 laptops of all types in a
im g Zo im (1) 3 im (1) : month. These give us availability constraints. The minimum and max-
xzj 0 8 xzzj 2 6 xz: 1 4 imum requirements of laptops of all types at D1 are 15 and 25 re-
X132 3 5 X232 1 10 X332 0 10 spectively, while for D2 are 20 and 25 respectively and for D3 are 25
X133 2 6 X233 0 4 X333 1 9 and 40 respectively. These give us requirement constraints. The
minimum and maximum number of laptops transported of type I are 20
and 30 respectively, while for Type II it is 30 and 40 and for Type III it is
15 and 20 respectively. These give us commodity constraints.
Table 3

Cost of the related 3-dimensional transportation (P2).

=1 =2 =3 =4 i
1 3 2
i=1 2 4 4 1] 40
2 1 [ 1]
] | M 1]
4 3 2 1]
=2 2 3 1 0 30
2 2 3 1]
] | M 1]
4 ] 2 1]
=3 5 4 z i 20
3 2 4 1]
] | ] 1]
1] 1] 1] 1]
1] 1] 1] 1] an
=4 1] 1] 1] 1]
1] 1] 1] 1]
B = 4 a0 with E1=30, E,=40, E3=20, E4=90
Table 4

Cost of the transformed multi-index TP (P3).

B
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330

340

Ag>

324
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Table 5
Cost matrix of the related impaired flow 3-dimensional TP (P5).
[=1 =2 = =4 i
[ 3] 2 o]
=1 | 2 [ 4 _’_4 [ o 40
L2 | 1| | [
2 1 1 i
4 3 N 0
=2 z 3 1 0 30
L2l | L2l | 3
2 1 1 0
4 5 N 0
=3 5 4 2 0 20
L3 | L2l | 4
M 1 1 0
0 0 lof 1
0 0 0 M 15
=4 Lol | Lo | 0
0 i i M
Ej 25 25 40

with E|:30, E2:40, E3:20, E4:15

The above data is conveniently presented in the cost matrix given in
Table 1 and Figure 1 below. The last 2 rows and 2 columns list the
minimum and maximum availability and requirements.

Assume that the bounds on number of laptops of Type I to be
transported from O1 to D1 are (1, 12), for Type II (2, 10) and (0, 8) for
Type III. Similarly, the limits on laptops of Type I, II and III to be
transported from O1 to D2 are (2, 10), (0, 7) and (2, 10) respectively
while the bounds from O1 to D3 for different types of laptops are (0, 8),
(3, 5) and (2, 6) respectively. Table 2 provides the bounds for rest of the
variables wherex;represents the number of type k (I, II, III) of laptops
transported from the origin Oi (i = 1, 2, 3) to distribution center Dj
(G=1,23

The manager wishes to determine the number of laptops to be
shipped so that the total shipping cost is minimized. The problem can
be stated as a 3-dimensional (3 X 3 X 3) capacitated linear transpor-
tation with limits on availabilities, demand and different commodities
as in Example 1 below.

Example 1. The following 3-dimensional CTP with bounds on
availabilities, demand and different commodities is given.

P1: Minimize Zle 23:1 Ei:1 cjikXxyk subject to

3 3 3 3
0= Zj:l D k<40, 15 < Zj:l D1 %k <30
10 < Z;zl Zi=lx3jk§20 (Availabilityconstraints)
3 3 3 3
15< 0 Y xu<25 , 20 < Y D xik<25
25 < Zle Eizlxi3ks40 (Requirementconstraints)
33 3 3
20< Y X, xps30 , 30 < X, X xyp<40
15 < Zle ijlx,-jgszo (Commodityconstraints)

The bounds on the number of laptops Type L, II and III transported
can be formulated mathematically as follows.

1<xp; <12,2<x;; <10, 0<x;3 < 8 fromOltoD1;
1<xp; <12,2<x;; <10, 0<x;3 < 8 fromOltoD2;
0<x3 <8 3<x3 <5, 2<x33 <6, fromOltoD3;
0<x%; £7,1<x%; <10, 1 <x%;3 <8, fromO2toD]1;
2<X1 <5 0<% <9, 1<x;3 <7 fromO2oD2;

2<)3 <6,1<X; <10, 0<x3; <4, fromO2toD3;
1<x:11 £3,0<x3p <9,2<x;3 <11, fromO3toD1;
3<x31 £7,0<x3p <6,1<x33 <8, fromO3toD2;
1<x31 <4, 0<x33 <10, 1 <x333 <9 fromO3toD3.

To solve the above TP, we need to transform it to the related TP as
follows

P2: Minimize Z?;l ijl 22:1 ¢y subject to

4 4 .
T o Y=40,30,20,90 i=1,2,3,4
S o Yx=25.25,40,90 j=1,2,34
T Y yp=30,40,20,90 k=1,2,34

1<y 12,225y, €10, 0<y;;3 8,225y, <10, 05y <7,

2<Y; £10,0<25 <8, 3<y, <5,

20133 £6, 05y, 7, 15y, £10, 1 <53 8, 2<yyy <5,
7

0<yy <
1<y 10, 0<y,33 <4, 1<x311 £3,0=<y3;, £9,2<y;3 <11,

35y 7,05y, <6, 1 <y5;
1<y < <

Y + Yz + Yz + Y1ag <10

Vo1 + Yoaz + Vouz + Yous <15

V3q1 F Vaaz + Va3 + Yaay <10

Y1 + Yz + Yz + s <10

Yzt Yaop + Vizz + s 5

Yisy + Yazz + Yazz + Nz 15

Y+ Yo + Vs + Y1+ Y + Yz + g S 10
Viaz + YVaaz + Va2 + Yz + Vaoa + Yazz + Yaap <10
Y143+ Yauz + Va3 + s + Vos + Mgz + Yz <5
Yaar + Yaaz + Yoz + Yoas 20

By the definition of M-feasibility, in all the above inequalities,
Yja=0,V iel={1, 2,3}, jeJ={1, 2, 3} and the costs ¢y are
provided below.

The above related problem can be solved by changing it into

Origins (i) Shipping paid on laptops of type (k=1,2,3) Destinations (j)
(Availability) (Requirement)
(Min., Max.) (Min., Max.)

(25,40)
(10,20)
(20,30) (30,40) (15,20)
((Min., Max.) No. of Laptops which can be transported
from all origins to all destinations of Type I, Il and I1I)

Fig. 1. Flow chart for cost matrix of Table 1.
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Origins (i)

# of laptops transported of different types (k=1,2,3) Destinations (j)

Fig. 2. Optimal solution of Example 1.

transformed multi-index transportation P3 whose cost matrix is pro-
vided below Table 3).

By solving transformed transportation problem P3 we can get the
solution of the 3-dimensional

TP with bounds on availabilities, demand and different commod-
ities.

Therefore, optimal feasible solution of the 3-dimensional TP with
bounds on availabilities, demand and different commodities is obtained
from the solution of the transformed transportation problem by solving
cost matrix given in Table 4 and solution of transformed problem P2 is
given as follows

Origins (i)  # of laptops transported of different types (k=1,2,3) Destinations (j)

Operations Research Perspectives 5 (2018) 319-333

X1 =9, X2 =9, X115 =72, X121 = 2, X23 =10, Xq25 = 78, X33, = 3,
X133 = 2, X135 = 185, Xi44 = 5,

X145 = 85, X151 =79, X520 = 78, Xi53 = 78, Xy54 = 85, %12 =1,

X13 =1, X15 =88, X1 =2, X =1,
X3 = 1, X5 = 86, X31 = 2, X3 = 10, X35 =78, Xgq = 12,
Xoa5 = 78, Xs51 = 86, Xo5p = 78, Xps3 = 88,

%54 =78, X311 =1, X313 =2, X315 = 87, X321 =3, X33 =1, X35 = 86,

X331 =1, X330 =6, X333 =1,

X335 = 82, X344 = 5, Xzus = 85, X351 = 80, X352 = 84, X353 = 86,
X354 = 90, Xa14 =2, Xg15 = 88, Xg4 =5,

Xap5 = 85, X434 = 15, X435 = 75, Xg41 = 5, Xgap = 10, Xg43 = 2,
Xaaa = 51, Xaas = 22, X451 = 85, X452 = 80,

X453 = 88, X454 = 17, Xs11 = 80, Xs12 = 80, X513 = 87, X514 = 88,
Xsp1 = 83, Xsp =89, Xsp3 = 78, Xsp4 = 85,

Xs31 = 87, Xsp = 71, Xs33 = 87, X534 =75, Xsq1 = 80, X542 = 80,
X543 = 88, Xsqq = 22, Xs55 = 90

with objective function value z = 141. The optimal basic feasible so-
lution is described in the flow chart (Figure 2) as below.

Example 2. Consider the case of impaired flow when the stocks of
laptops at the factories is restricted to a total of 75. This results in an

Origins (i)  # of laptops transported of different types (k=1,2,3) Destinations (j)

Fig. 3. Optimal solution of Example 2.

Table 6

Fig. 4. Optimal solution of Example 3.

Cost of the transformed multi-index transportation problem.

Ay

326
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Table 7

Data for the test problems.

Operations Research Perspectives 5 (2018) 319-333

Test prob- cyx written in form of Lower and upper Lower and upper Lower and upper Lower bounds (LB) and upper Lower bounds (LB) and upper
lem #. ij as column and k as bounds of availability = bounds of demand bounds of commodity bounds (UB) of decision variables bounds (UB) of decision variables
row Xijk LB UB Xijk LB
6.1 123 a; =10,A; =25 b; =15,B; =35 e; =25, E; = 30 x111 1 10 x31117
11122 a; =15, A, = 40 b, =20, B, = 25 ey =15, E; = 20 X112 2 12 X312 09
1.2341 az =15, A3 =20 b3 =10, B3 = 35 e3 = 20, E3 = 40 x11309 X313 211
1.3246 a;=10,A, =25 by = 15, B4 = 40 X121 111 X321 37
14221 X122 07 X322 07
21422 X123 2 10 X323 18
22332 X131 0 8 X331 14
23213 X132 35 X332 0 10
24321 X133 2 6 X333 0 12
31453 X141 3 10 X341 3 10
32542 X142 27 X342 2 11
33224 Xx14319 X343 18
34211 X211 07 X411 211
41122 X212 1 10 X412 17
42312 Xx21318 X413 27
43213 X221 25 X421 18
44212 X222 011 X422 110
X223 17 X423 08
X231 26 X431 3 10
X232 1 10 X432 0 10
X233 0 4 X43317
X241 16 X441 1 6 X442 0 10
X242 011 X443 212
X24308
6.2 1234 a; =10,A, =25 by =15,B; =35 e; =15, E; = 30 X114 1 11 X434 17
111518715 a, =15, A, = 40 b,=14,B, =25 e, =10, E; = 25 X124 0 10 X444 0 8
1.2914116 az; =12, A3 = 20 b3 =11,B3 =35 ez = 20, E3 = 30 X134 07 X451 07
1.3104124 a;=14,A,=25 by =17,B, =30 es=14,E4 = 40 X144 0 12 X452 0 8
1.48101310 as =16, As = 30 bs =10, Bs = 25 X151 17 X453 0 11
1531158 X152 2 8 X454 0 8
21192017 12 X153 1 11 Xs11 312
2.215211410 X154 0 10 X512 2 10
2320241811 X214 08 X513 17
2416192312 X224 19 Xs14 2 12
251112178 X234 1 10 Xs21 0 10
311411810 X244 211 Xs22 0 11
3224201311 X251 112 Xs23 18
3317161512 X252 0 10 Xs24 2 10
341113713 X253 2 5 X531 0 8
358111016 Xas4 111 Xs32 0 11
4124283115 X314 0 11 Xs33 112
4214192120 X324 06 X534 0 8
4318211412 X334 07 Xs41 07
449102015 X344 0 8 Xs42 0 10
4512111112 X351 0 10 Xs431 9
511081315 X352 0 6 Xs44 0 11
521261119 X353 05 Xs51 07
538151210 X354 0 6 Xs52 0 8
541242012 X414 011 Xss3 2 11
5511141517 X42418 Xss4 0 10
Test prob- Cijk Lower and upper Lower and upper Lower and upper Lower bounds (LB) and upper Lower bounds (LB) and upper
lem #. written in form of ij  bounds of availability = bounds of demand bounds of commodity bounds (UB) of decision variables bounds (UB) of decision variables
as column and k as
row
6.3 12345 a; =10,A, =25 by =15,B; =35 e; =15, E; = 30 X115 0 12 xa15 0 13
1.115187 1512 a; =15, A, = 40 by=15,B, = 25 e, =10, E; = 25 X125 118 X425 0 14
1.291411610 az; =15, A3 = 25 bs; =10, B3 = 35 ez = 20, E3 = 30 X135 0 10 X435 0 15
1.310412145 a;=15A,=25 by = 20, B, = 30 ey =25, E4 =40 X145 0 15 X445 0 12
1.481013106 as = 20, As = 35 bs = 10, Bs = 40 es = 15, Es = 40 X155 0 18 X455 0 8
153115812 ag = 20, Ag = 45 bs = 20, B = 35 X161 0 10 X461 0 10
161178910 X162 0 12 X462 0 12
21920171212 X163 0 17 X463 0 13
221521141013 X164 0 19 Xa64 0 14
232024181117 X165 0 20 X465 0 15
241619211221 X215 1 12 Xs15 17
25111217 822 X225 0 11 Xs25 2 12
26121416 21 17 X235 1 12 Xs35 0 13
3.1141181011 X245 0 15 Xs45 0 10
3.22420131112 X255 0 12 Xss5 0 20
3.317161512 14 X261 0 12 Xs61 0 10
34111371315 X262 0 15 Xse2 0 11
358111016 16 X263 0 17 X563 0 9

(continued on next page)
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Table 7 (continued)
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Test prob- cyx written in form of Lower and upper Lower and upper Lower and upper Lower bounds (LB) and upper Lower bounds (LB) and upper

lem #. ij as column and k as  bounds of availability = bounds of demand bounds of commodity bounds (UB) of decision variables bounds (UB) of decision variables
ToW Xijk LB Xijk LB UB
362151089 X264 0 12 Xse4 011
412428311512 X265 0 8 Xses 0 10
421419112013 X315 117 Xe15 0 10
431821141214 X325 0 15 Xeas 0 11
44910201511 X335 0 11 Xe3s 0 12
451211111212 X345 0 10 Xeas 0 10
4611131416 18 X3ss 112 Xess 0 8
51108131516 X361 013 Xes1 0 8
52126111917 X362 0 12 Xee2 0 10
53815121016 X363 0 11 Xeo3 0 12
5412491214 X364 0 13 Xe6s 0 8
5511141517 21 X365 0 14 Xees 0 9
567127129
6.1111591412
6.2121210156
6.3711111621
6.4211712920
6.5228137 14
6.61591485

6.4 123456 a; =10, A; =25 b;=15,B; =35 e; =15, E; = 30 X116 0 11 X416 07
111518715128 a,=15,A, =40 by =15,B; = 25 e, =10, E; = 25 X126 1 8 X426 0 8
12914116107 a3 =15, A3 =25 b3 =10, B3 = 35 e3 = 20, E3 = 30 X136 0 12 X436 0 9
1.3104121455 ay=15A,=25 by = 20, B, = 30 e4=25,E4 =40 X146 0 14 X446 0 10
148101310610 as= 20, As = 35 bs = 10, Bs = 40 es = 15, Es = 40 X156 0 16 X456 0 11
1.531158128 ag = 20, Ag = 45 be = 20, Bg = 35 e6 = 30, Eg = 50 X166 0 21 X466 0 12
1.6117891011 a; = 15, A; = 40 b, = 25, B7 = 45 X171 07 X471 0 11
1.71011125227 X172 0 11 X472 012
2192017121214 X173 08 X473 0 8
2.2152114101311 X174 0 21 X474 011
2.3202418111713 X175 0 15 X475 0 12
241619211221 14 X176 0 11 X476 0 8
2511121782215 X216 0 12 Xs16 0 9
2612141621178 X226 0 13 Xs26 0 11
271315172359 X236 0 15 Xs36 0 12
3114118101111 X246 0 16 Xs46 0 13
3.2242013111212 X256 0 7 Xss6 0 12
331716151214 14 Xa66 0 11 Xse6 0 7
3411137131515 X271 013 Xs71 08
35811101616 16 X272 0 14 X572 0 6
3621510898 X273 0 15 X573 0 9
3.79811121113 X274 07 X574 0 12
4.1242831151214 X275 012 Xs75 0 21
421419112013 21 X276 0 12 Xs76 0 11
43182114121422 X316 013 X616 0 9
449102015117 X326 0 14 Xe26 0 21
45121111121211 X336 0 15 Xe36 0 12
46111314161812 X346 0 10 Xeag 0 7
4710111517 1523 X356 09 Xes6 0 8
5.1108131516 26 X366 0 8 Xee6 0 12
52126111917 21 X371 011 Xe71 0 12
53815121016 14 X372 0 10 Xe72 0 10
54124912148 X373 0 12 Xe73 0 12
5.5111415172111 X374 0 14 Xe74 011
56712712912 X375 08 Xe75 0 11
5781181187 X376 09 Xe76 0 21
6.11115914128 X716 07 X771 0 4
6.2121210156 11 X726 0 8 X772 05
6.37111116 2115 X736 0 19 X773 0 6
6.4 21171292010 X746 0 11 X774 07
6.5228137 1412 X756 0 10 X775 0 8
6.6159148513 X766 0 12 X776 0 9

6.7171021121611
7111112011710
7291291018 12
7312112411911
741371116 14 14
7.51421121511 21
761522139108
7741061789
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Table 9
Complexity analysis of the capacitated solid transportation problem.
- A~ . S al A
'f ? T T 'H' ? T" cl\ll cl\ll Problem Complexity (proposed procedure)
T 8%8cSs:d
X KA R RS KK (P1) O(mnp, m + n + p)
6§ FA NN (P2) o((m+ 1+ 1@p+1),m+n+p+3)
oonn ®3) O((m + 2)(n + 2)(p + 2), mp + np + mn + 4(m + n + p) + 12)
n < - X
S JF8FFSES P4 O(mnp, m +n +p + 1)
§ TS (P5) O((m+ D(n+ D +1),m+n+p+4)
T T TR TR TR TR
2 I8 3Ipzgdsy
R EE
A IR I R impaired/restricted flow 3-dimensional CTP with bounds on
T TR TR TR TR TR o . .
e 2 E2E95c8 availabilities, demand and different commodities (P4). We have taken
e GBI IO BT N e B e . . I EVR] ey .
XoOR R R R XK xR the same cost matrix, availabilities, demands and capacities as in
— NN MmANANAN . e . .
AR NN Example 1, with an additional flow constraint given below.
2 523 Isoey
g X SRS LSS 3 3 3
E N i X X =75 (75<90)
8 W oY QLoD oNom ¥ i=1 j=1 k=1
] o RS- S BN
= = R XX XXX XX
8 § dd T~
£ N I T T T T T
9 < N = ® 1 OH ~ T O
E S FoSFSFTeS In this case, we find the solution of the related 3-dimensional
= e N e R A transportation problem for impaired flow as follows:
E T T T TR TR T 4 od wd .
g 53833 z3358 P5: Minimize };,_, ¥, ¥, Ciud subject to
o B R R KX X XXX =XX

Yo Do V=40, 30,20, 15 i=1,2,3,4

S Y ¥=25,25,40,15 j=1,2,3,4

g
% % T Xl %p=30,40,20,15 k=1,2,3,4
g Lf 21‘3:1 Z;:1 Zi:lyijk =75
T‘éx &
"E.,% § with same bounds, as in Problem P2 of Example 1. The costs ¢ of the
s - related three-dimensional transportation problem for impaired flow are
o provided in Table 5 below.
- TE The above related problem can be solved by changing it into trans-
§ o formed multi-index transportation whose cost matrix is provided below.
ge By solving transformed transportation problem, we can get the so-
§ é lution of the impaired flow-dimensional TP with bounds on avail-
E § abilities, demand and different commodities (Figs. 1 and 2).
gj:% - Therefore, an optimal feasible solution of the 3-dimensional TP
E 5 B having bounds on availabilities, demand and commodities with re-
striction on total flow can be obtained from the solution of the trans-
formed transportation problem by solving cost matrix given in Table 5.
%A The optimal basic feasible solution in terms of original variables from
) transformed problem P2 with objective function value as 151 is de-
“% 5 scribed by flow chart in Fig. 3 below.
£8 Example 3. Consider the case when the manager wishes to enhance the
g § supply of }aptops (the total tr.ansp.oFtation flow) due to beginning to the
g g semester in Colleges and Universities, say.
This gives rise to 3-dimensional enhanced flow CTP with bounds on
El availabilities, demand and different commodities (P4). We have taken
Zgo the same cost matrix, availabilities, demands and capacities as taken in
g . Example 1, with anaaddiStionag flow constraint as given below.
8 % P6: Minimize 3., >/, X, ¢y subject to
6 a 3 3 .
. . et Zpe1 Y230, 15,10 i=1,2,3
v
Tg g Y p>15.20,25 j=1,2,3
B % T T Y2 20,30,15  k=1,2,3
S i 3 o3 w3 _
= . Din1 Zj:l ey Xije = 70

with upper and lower limits on the decision variables, like Example 1.

Now, to solve this enhanced flow problem, we convert the given
problem into a related capacitated multi-index transportation problem
as below with costs c,-J’-k for i, j, k = 1,2,3,4 same as of Table 5.

P7: Minimize ¥, ijl o ik ygSubject to

Table 8 (continued)
Test problems no

330



A. Khurana et al.

T ko =76, 66,67,139  i=1,2,3,4
S T V=78,69,62,139  j=1,2,3,4
S Zj=1yyk=62, 76,71,139 k=1,2,3,4

1<y €12, 2<y135 €10, 0<ypy3 <8, 2<y1y3 <10, 0<yyp < 7,
2<y153 £10,0<x3 < 8 3<y3 <5

25033 26, 0<yy1 <7, 1<y <10, 1<yy3 <8 2<yp; <5 0y
1<yn3

1<y 10,05 yy33 <4, 1<x311 <3, 0<y315p £9,225y353 <11, 3<y3y

<7, 2<y3 <6

0<y;» <6, 1<yp; <8,

1<y <4 0<y33 <10, 1 <y333
Y141 + V142 + Y1az + Y144 < 46

Y241 + Yaa2 + Va3 + Yaag <51

Y341 + Vaap + Va3 + Yaaq <57

Wan1 + a1z + Yz + Vg S 63

Yao1 + iz + Yoz + Yaoa <49

Wizt + a3z + a3z + Yaza <37

Yia1 + Vo1 + V341 + a1 + Va1 + Yaz1 + aan S 42
Y142 + Y4z + V3a + Wa12 + Yaop + Nazp + Yaap < 46
Y1az + Va3 Yaaz + Y3 + o3 + Yazz + Yaaz < 56

IN
©

Using definition of M-feasibility, in all the above inequalities,

yl-j4=0, iel={1,23},jel={1, 2, 3}

Problem P7 is again converted into an equivalent multi-index
transportation problem P8 [13]. The optimal feasible solution of the
enhanced flow 3-dimensional TP with bounds on availabilities, demand
and commodities is obtained from the solution of the equivalent
transformed multi-index transportation problem P8. The optimal solu-
tion of in terms of original variables from equivalent transformed
problem P8 with optimal objective function value as 143 as described
by the flow chart in Fig. 4 below.

7. Computational results

Two test problems were initially solved for multi-index CTP with
bounds on availabilities, demand and commodities. At first, the con-
straint of restricted flow was added to both the test problems, and then
the enhanced flow constraint was added to both the test problems, and
the new problems were solved. The data for the test problems are given
in Table 7 below and the results are summarized in Table 8. Note that
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the lower and upper bounds of the decision variables which are not
defined for test problems 6.2, 6.3 and 6.4 in Table 6 are same as of
problem 6.1. To test the validity of the proposed solution method to the
larger scale problems, we, further, solved several other problems in-
creasing in size to 10 X 10 x 9. The data and the solutions of these
problems are not included here to avoid redundancy. The test problems
were solved using GAMS (General Algebraic Modeling System) on a
computer with Intel Pentium Processor 1.70 GHz having 8 GB RAM. We
solved both the original problems and the transformed problems and
noticed a computation time of less than 5s for each problem.

The computational complexity O(m, n) pertaining to each of the
solid transportation problem from P1 to P5 with m nodes and n arcs is
presented below (Table 9).

8. Conclusion

We have provided a solution method for a constrained transporta-
tion problem (CTP) with axial constraints with bounds on source
availabilities, destination demands, and various commodities. We also
discussed solution methods for the case of impaired and enhanced flow
in a CTP, which involves the addition of a flow constraint to a given
CTP. We discuss an extension of the methods to handle situations of
unbalanced constrained transportation problems. The solution method
consists of transforming a given CTP into a related solid problem by
adding a dummy supply point, a dummy destination and an extra
commodity. The related problem—a “Three Axial Sum” problem—can
be reformulated as a multi-index transportation problem by applying
Haley's method [13] and thus can be solved using Haley's [12] method.
The solution method is very useful for transporting heterogeneous
commodities. The maximum number of iterations required in our pro-
posed procedure to solve the constrained solid transportation problem
is shown to be "™"Cy,,.,, where m, n, and p represent the number of
origins, destinations and commodities, respectively. Future work
should extend the solution method for solving time constrained trans-
portation problems with axial constraints with bounds on rim condi-
tions. Further research could also explore cost-time trade-off pairs for
the problem in order to identify the optimal pair according to the
priority between time and cost.

Theorem 1. There is one-to-one relationship between a feasible solution of problem P1 and a M-feasible solution of problem P2.

Proof. Let {y; }be a M-feasible solution of problem P2. Define {xy }, i€l,j €J,k €K by the following transformation:

Xjk=Yy VIELjEJ keEK

<

As lijk = Yijk
AlSO, Z]’ ZK’yijk: Al{
= E] zKyijk+ zKyin+1k+ Zinij + yin+1p+1 = Ai
= Z] ZKyijk = Ai - (ZKyin+1k+ Z]yy'pﬂ + yin+1p+1)
> a; <Y, DV S A viel

Vie IcTI
Viel
Viel

Since 0 < ¥ Vins1kt 2y Va1 T Vnaiprr S A —ai ¥V i €1, but yy = Xy

> a< Y Mxp <A Viel
J K

Similarly, it can be shown that
<Y Yxu<B Vje€L e<) D xu<E Vkek
I K 17

So X defined by (A) is a feasible solution of problem P1.

(A)

ugp Vieljed kek, (A) implies that ljx < yj < upe VieljelJ kek.

l[as Aj=A; Viel]

Viel, jelJ, kek

Conversely, {x;}, i€l j€J, keKlet be a feasible solution of problem P1.

Define
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Vi =xx Vi€l jel kek ®)
zym+1jk+ zyijp+l + ym+1jp+1 = Bj - Z Zyijk v J €J

K i T K (@]
Z-))in+1k+ Zyijp-H + yin+lp+l = Ai - Z Zyijk vViel

K 7 T K (D)
Zym+1jk + zym+lk + Ynstnee = Bk — Z zyijk Vkek

7 T T T (E)
and

zym+1n+1k = Z Z Z X + Z Zyle“

K T 7 K i #

Sincelj < xj < uz VieljeJ, keK, so Ly < yj < up VieljelJ kek,

(1) and (D) together imply that 0 <} ¥y i+ 2 Vjpe1 + Vinsrper <A —a Vi€ Iand
(2) and (C) together imply that 0 <37r 3, 1+ 2 Vips1 T Ymrijpsn <Bj— b ¥V j€J, and
(3) and (D) together imply 0 < 3. ¥ i 1jc +2; Vns1k + Ynetnse < Be—e V k€K

In all the above inequalities, By the definition of M-feasibility, the second summation would be zero as y;,,;, =0 Vi€, j€J
Clearly ZK'ym+1n+1k = 21 Zj ZK X + Zi ijijp+1 = E{ Z/ EK Xije = 0 (By M'feaSibﬂity) thus Zkym+1n+1k 20 VkeK
Consider, foriel

2y Zx ik = 2y LYk T g Yinrik T 2y Vipa1 + Yinripar

= 2 Xk + D Vnrrk + 2y Vipr1 + Ai = 2y D Xijk — D Y1k~ 2y Vyp+1 Using (B) and (D)

=A=A' Viel

Fori=m+1

Z]’ ZK’Ymij = Zj EKYmij + ZKym+1n+1k + Ejym+1jp+1 + Yt in+1pr1
=2 ZKymij + Dk ik T 2p By — 2 g Xije — zKymij_ Ziyiijrl) using(1)and(C)
= ZI Z] ZK Xije + ZJ B — 21 ZJ ZK X using(F)
= Z]Bj
Similarly, 3\ ¥ vV =B/ VYj€Jand ¥, ¥y =2, 4, j=n+1
Consider, for k € K*
Z[’ Z]’yijk = Z[ Ejyijk + Z]yin-Hk + ijm+1jk +ym+1n+1k
=2 foijk + 2 Ve + Z]merljk +E -2, ZJ Xije = 2y Vins1k — Z,ymwk using(B)and(E)
=E, = Ek’ Vkek
Fork=p+1

2 2 Vg1 = 2 2 Vipr1 T 2pVinripsr T 2y Ymrtjpr1 T Vmrintipl

= 21 Z]yijp+1 + Zlyin+1p+1 + Ym+1n+1p+1 + ZJ (Bj - E} szijk - ZKymij_ Eiysz+1) (from (C))

= 2 2y Vip+1 T 2y Vinsrpr1 F Ynatnatpar T 20 B = 2y 2y D Ve = 2y 2 Y™ 21 2 Yip+1

= D nsiprt T Ymrinripr + 2 B — Xy 2y Dk ik = 2 2ux Y1k

= D Ynaipr1 T Ymrinripr + 2 B — Xy 2 Dk ik = 2y 2g Yk T Dg Yt int k™ D It int 1k

= Y Vinripr1 T Ymarnarper + 2 Bi = 2y 20 D Ve = 20y 2 Ymarje T 2 Y na ik

= D Vnaiprt T D mrinrik T Ymainriper T 20 B — 2y 20 D Yk — 2y Dug Ymijk — 2up 2g Ynrik T 2 2o Vi 1k
= Y Vinsipr1 T g Inrineik F Inrinriprr T 2 2 Vnrik + 20 Bi = 2 O 2y Ve + 2y Vw2 Yinsik)
= D Vnsipr1 T 2 Ymrinsik + 2y g Vimee T 25 B — X B (from(E))

= Zlyin+1p+1 + Z{ Zj ZK Xijke + EI Ejyszﬂ + E} EKyin+1k + ZJ Bj - ZK Ey (from (F))

=2 2y g Xk + 2 Z]yijp+1 + 2 Dk Ynsrk + 2 Bi — 2 Bk

= 20 (X X Xije + Xy Vipar + g Vinew) + 2y B — X Ex (from (B)and (D))

= Z{Ai + Z]Bj - ZKEk

So{yljk }rxrxk’ defined by equations (B) through (F) is a M-feasible solution of problem P2.
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