
Khurana, Archana; Adlakha, Veena G.; Lev, Benjamin

Article

Multi-index constrained transportation problem with
bounds on availabilities, requirements and commodities

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Khurana, Archana; Adlakha, Veena G.; Lev, Benjamin (2018) : Multi-index
constrained transportation problem with bounds on availabilities, requirements and commodities,
Operations Research Perspectives, ISSN 2214-7160, Elsevier, Amsterdam, Vol. 5, pp. 319-333,
https://doi.org/10.1016/j.orp.2018.10.001

This Version is available at:
https://hdl.handle.net/10419/246357

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2018.10.001%0A
https://hdl.handle.net/10419/246357
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

Multi-index constrained transportation problem with bounds on
availabilities, requirements and commodities
Archana Khuranaa, Veena Adlakhab, Benjamin Levc,⁎

aWilliams E. Kirwan Hall, Department of Mathematics, University of Maryland, College Park, MD 20742, United States
bDepartment of Management and International Business, Merrick School of Business, University of Baltimore, MD 21201, United States
c LeBow College of Business, Drexel University, Philadelphia, PA, United States

A R T I C L E I N F O

Keywords:
Classical transportation problem
Multi index
Impaired flow
Unbalanced
Optimal solution

A B S T R A C T

In this paper, we consider a multi-index constrained transportation problem (CTP) of axial constraints with
bounds on destination requirements, source availabilities, and multiple types of commodities. The specified
problem is converted into a related transportation problem by adding a source, a destination, and a commodity,
making it equivalent to a standard axial sum problem. This related problem is transformed into a multi-index
transportation problem that can be solved easily. The provided solution method is very useful for transporting
heterogeneous commodities. A transportation model may sometimes have various capacity constraints on the
flow between pairs of origins and destinations. Moreover, budgetary, political, and emergency situations may
impair or enhance the flow between origins and destinations, making it critical for a manager to reevaluate
allocations. These considerations have motivated us to explore the multi-index CTP with impaired and enhanced
flow. We present several numerical examples to demonstrate the proposed algorithms.

1. Introduction

In the classical transportation problem (TP), a commodity is trans-
ported from each of m sources to each of n destinations. The sum of the
amounts available at the sources is equal to the sum of the demands at
the various destinations. The goal is to determine the amounts of the
commodity to be transported over all routes so that the total trans-
portation cost is minimized. Many researchers have extensively studied
such cost-time transportation problems. Appa [2] discussed variants of
the transportation problem. Brigden [5] addressed transportation with
mixed constraints. Klingman and Russel [21] solved a specialized
method of the TP with additional linear constraints. Adlakha et al. [1]
studied the branching method for fixed-charge transportation problems.

In the literature, the TP is generally presented as a two-dimensional
linear transportation problem that can be solved by application of the
Modified Distribution Method (MODI). MODI is an efficient method of
checking the optimality of the initial feasible solution by determining
the unused route with the largest negative improvement index. Once
the largest index is identified, it becomes necessary to trace only one
closed path. This path helps determine the maximum number of units
that can be shipped via the best unused route. Haley [12,13] introduced
the solid transportation problem with m origins, n destinations and p
types of commodities as an extension of the MODI method. Corban [7]

developed a solution procedure for three-dimensional transportation
problems with axial constraints. Solid transportation problems under
different uncertainty environments have been studied by several au-
thors ([3,23]). Khurana and Adlakha [17] presented the multi-index
fixed charge bi-criterion transportation problem. Khurana [16] studied
three-dimensional trans-shipment problems. Recently, Sinha et al. [26]
studied profit-maximizing solid transportation problems.

There may be situations when, due to external factors, the route
capacity must be fixed, leading to a constrained transportation pro-
blem. Wagner [30] studied transportation problems with capacity
constraints. Charnes and Klingman [6] discussed transportation with
limits on the node requirements. Mishra and Dass [24] approached
solid transportation with limits on the availability, demand and trans-
portation modes. Verma and Puri [29] addressed transportation with
limits on rows and columns, followed by a study of capacitated trans-
portation with limits on rim by Dhaiya and Verma [8]. Dangalchev [9]
gave an algorithm to solve non-linear non-convex capacitated trans-
portation problems. Gupta and Arora [11] studied bottleneck capaci-
tated transportation with limits on rim. Khurana and Verma [18] stu-
died two-dimensional capacitated trans-shipment transportation with
limits on rim.

There are situations in which the total flow of transportation over
particular routes may need to be restricted or enhanced. For example,
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in emergency situations, the demand of fire trucks, police cars or am-
bulances might have to be increased while the supply of consumer
goods might have to be curtailed. This might compel some factories to
restrict or enhance their production to meet the required demand.
Khanna et al. [15] discussed controlling flow in two-dimensional TPs.
Bandopadhyaya and Puri [4] discussed impaired flow multi-index TPs
with axial constraints. Thirwani et al. [27] and Thirwani [28] discussed
restricted flow and enhanced flow, respectively, in fixed charge bi-cri-
terion TPs. A problem of restricted and enhanced flow in linear frac-
tional TPs was presented by Khurana and Arora [20]. Thereafter,
Khurana and Arora [19] developed an algorithm for solving fixed
charge bi-criterion indefinite quadratic transportation problems with
enhanced flow. Kowalski et al. [22] studied a fast and simple branching
algorithm for solving small scale fixed-charge transportation problem.
Hu et al. [14] investigated transit time in decision making of trans-
portation service procurement. Nomani et al. [25] presented a weighted
model based on goal programming to solve multi-objective transpor-
tation problems. Recently, Di et al. [10] gave a transportation network
design for maximizing flow-based accessibility.

In this paper, we provide a solution method for a constrained
transportation problem (CTP) with axial constraints with bounds on
source availabilities, destination demands and various commodities.
We discuss solution methods for the CTP with impaired and enhanced
flows and extend the methods to handle situations of unbalanced con-
strained transportation problems. The maximum number of iterations
required in our proposed procedure to solve the constrained solid
transportation problem would be + +Cmnp

m n p(m, n, p defined after pro-
blem P1). Note that the best polynomial running time for two-dimen-
sional constrained transportation problems is O(m log n (m+ n log n))
(Orlin, 1988 [31]).

2. The three-dimensional constrained transportation problem
with axial constraints

The "Three Axial Sums" problem deals with transportation of var-
ious commodities from a set of different warehouses to different mar-
kets, where total availabilities, demands and quantity of different
commodities to be transported are specified. We discuss the 3-dimen-
sional CTP having bounds on availabilities, demand and different
commodities. The problem can be written as

P1: Minimize c xI J K ijk ijk subject to

a x A i I,i
J K

ijk i
(1)

b x B j J,j
I K

ijk j
(2)

e x E k K,k
I J

ijk k
(3)

l x u i I j J k K, ,ijk ijk ijk (4)

where = = =I m J n K p{1, 2, ......, }, {1, 2, ......, }, {1, 2, ......, } are respec-
tively set of origins, destinations and commodities;ai and Aiare the
minimum and maximum availability at the ith origin, respectively, bj
and Bjare the minimum and maximum demand at the jth destination
respectively, ek and Ek are the minimum and maximum availability of
the kth commodity and cijis the unit cost of transportation from the ith
origin to the jth destination. Let lijk and uijkbe the lower and upper
bounds on the (i, j)th route for the kth type of commodity.

To solve problem P1, a related solid problem is formulated with a
dummy supply point, a dummy destination and an extra commodity.
The related 3-dimensional transportation problem is given as follows:

P2: Minimize c yI J K ijk ijksubject to

= = +
= = +

= = +
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Note 1: In case of balanced constrained transportation problem,
= =A B EI i J j K k, thus = = +E E for k p 1k K k in problem

(P2) above.
The problem P2 is a “Three Axial Sum” problem that can be re-

formulated as a transformed multi-index TP by using the following
definitions by Haley [13]:
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Let P3 denote the problem with these modified constraints and the
objective function as minimize =

+
=
+

=
+ c y .i

m
j
n

k
p

ijk ijk1
2

1
2

1
2 Problem P3 can

be conveniently solved by Haley's [12] method.
Remark 1. The number of non-zero variables xijk in a basic feasible
solution for a solid transportation problem is mnp−(m−1)(n−1)
(p−1).

Remark 2. For a solid transportation problem, first we find a basic
feasible solution, then the shadow costs ujk, vki, wij for basic cells are
evaluated so that ujk+ vki+wij=cijk. There are mn+ np+ pm shadow
costs and only mn+np+ pm−m−n−p−1 non-zero xijk’s. So,
m+n+p−1 shadow costs are set at zero.

Definition. - M- Feasible Solution for constrained transportation problem:
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A feasible solution {yijk}, i∈ I', j∈ J', k∈ K' to (P2) is called a M-feasible
solution if =+y i I j J0 , ,ijp 1

Theorem 1. There is a one-to-one correspondence between a feasible
solution of problem P1 and an M-feasible solution of problem P2. The
proof of Theorem 1 is provided in the Appendix.

Theorem 2. The values of the objective function of P1 at a feasible
solution and of P2 at its corresponding feasible solution are same.

Proof. Let {xijk}I× J×K be corresponding feasible solutions of P1 and
× ×y{ }ijk I J K be corresponding feasible solution of problem P2 with

objective function value as Z. Then,

=

= + +

+ +
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(byM feasibilityandas , ,
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I J ijp ijp

J m jp m jp I in p in p K m n k m n k

m n p m n p
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1 1 1 1

1 1
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1 1
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=value of the objective function P1 at{xijk}I× J×K.
Theorem 3. For every optimal feasible solution to P1, there exists an
optimal feasible solution to P2, and vice versa.

Proof. Follows obviously along the same lines as in Theorem 3 of
Khurana and Verma [18]

3. The 3-dimensional impaired flow CTP with bounds on
availabilities, demand and commodities

Consider the case of sudden shift of demand in the markets which
may restrict the flow of commodities to various destinations. This could
happen due to existing political environment, change in economic
conditions or imposed restrictions on company budgets. These situa-
tions may require a government/country/company to reserve stock of
some goods (e.g., weapons, medicines, grains etc.). This situation leads
an impaired flow 3-dimensional CTP with bounds on source avail-
abilities, destination demands and various types of commodities.

Consider the case of 3-dimensional transportation problem, where
the impaired/restricted flow is exactly known. Let F be the specified
total flow level. Thus, the flow constraint xI J K ijk= F is introduced
into problem P1 resulting in the following TP.

P4: Minimize c xI J K ijk ijk subject to

=

a x A i I
b x B j J
e x E k K

x F
l x u i I j J k K
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where F is chosen such that max
< <a b e F A B E{ , , } min{ , , }i i j j k k i i j j k k

To solve problem P4, a related solid problem is formulated with a
dummy supply point, a dummy destination and an extra commodity.
The related 3-dimensional transportation problem is given as follows

P5: Minimize c yI J K ijk ijk subject to
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whereM is a sufficiently large positive integer. The problem P5, being a
“Three Axial Sum” problem, can be reformulated as a multi-index
transportation problem by applying Haley's method [13] and as dis-
cussed in problem P3 can thus be solved using Haley [12] method.

Definition: Corner feasible solution (cfs) of P5
A feasible solution y{ }ijk i I j J k K, , of P5 is a (CFS) corner feasible

solution if =+ +y k K0m n k1 1 .
Remark 3. We can tighten the bounds of the variables in problem P2.

Aslijk≤ xijk ≤ uijk i∈ I, j∈ J, k∈ K, this implies that

l x u i I I

l x u j J II

, ( )

( )
j J k K ijk j J k K ijk j J k K ijk
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Thus, the problem P1 reduces to following problem:
P1a: Minimize c xI J K ijk ijk subject to

a x A i I
b x B j J
e x E k K
l x u i I j J k K
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,

,
, ,
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And the related P2a of P1a is
P2a: Min c tI J K ijk ijk subject to
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Note 2: Bounds on + +tm jp1 1, + +tin p1 1 and + +tm n k1 1 , for i∈ I, j∈ J, k∈ K
are tighter compared to B b ,j j A a ,i i andE ek k.

Note 3: A non-feasible extreme point of P5 is never an optimal so-
lution of P5 since =+ + +c Mm n p1 1 1
Lemma 1. For all feasible solutions to P4 there exists a corner feasible
solution to P5, and vice versa.

Theorem 4. The objective function values of P4 at a feasible solution
{xijk}i∈ I, j∈ J, k∈ Kand P5 at its corresponding corner feasible solution
y{ }ijk i I j J k K, , are equal.

Lemma 2. For every optimal solution among the cfs to P5, there exists
an optimal solution to P4.

Theorem 5. Optimizing P4 is equivalent to optimizing P5, provided P4
has a feasible solution.

4. The 3-dimensional enhanced flow CTP with bounds on
availabilities, demand and commodities

Now consider the case of a sudden rise in demand in the market
whereby requiring an enhanced flow. Many circumstances may give
rise to such a situation – for example, a natural calamity, election times
or holidays seasons. This is a case of enhanced flow 3-dimensional
transportation problem where, assume that, the flow is enhanced to a
known specified level F. Thus, the flow constraint xI J K ijk= F is
introduced resulting in the following transportation problem.

P6: Minimize c xI J K ijk ijk subject to
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where F is chosen such that >F a b emax{ , , }i i j j k k
A related solid problem is formulated to solve P6, with a dummy

supply point, a dummy destination, and an extra commodity. The re-
lated 3-dimensional transportation problem is given as follows
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(By the definition of M-feasibility)

=
=
= =

= =
=

+

+ +

+ + + +

+ +

c c i I j J k K
c M i I j J
c c i I j J k K
c c i I j J
c M k K

, ,
,

0 , ,
0 ,

ijk ijk

ijp

in k m jk

in p m jp

m n k

1

1 1

1 1 1 1

1 1

where M is a sufficiently large positive integer. Theorems and remarks
for the 3-dimensional CTP with enhanced flow can be developed along
the similar lines as for the 3-dimensional CTP with restricted flow.

5. Unbalanced 3-dimensional CTP

Consider the following balanced 3-dimensional CTP
P6: Minimize c xI J K ijk ijk subject to

=
=
=

x a i I
x b j J

x e k K
l x u i I j J k K

,
,
,

, ,

J K ijk i

I K ijk j

I J ijk k

ijk ijk ijk

In the above problem, for any feasible solution we
have = =a b eI i J j K k.
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The problem P6 becomes unbalanced constrained transportation
problem (UCTP) if any of the above availability, demand or commodity
constraints are in the form of inequalities. We discuss several forms of
UCTP and demonstrate the solution procedure by modifying the UCTP
to a problem like P1.

Case I: High storage costs at some sources may cause a manager to
over supply to destinations. Alternatively, an anticipation of political
unrest or war may cause a manger to keep emergencies stocks at the
sources. In such cases, the following UCTP is formulated:

P7: Minimize c xI J K ijk ijk subject to

x a i I,
J K

ijk i
(6)

x b j J,
I K

ijk j
(7)

=x e k K,
I J

ijk k
(8)

l x u i I j J k K, ,ijk ijk ijk (9)

We assume here uijk is finite for all i∈ I, j∈ J, k ∈ K.
Inequality (8) implies that

l x u i I ,
j J k K

ijk
j J k K

ijk
j J k K

ijk
(10)

l x u j J
i I k K

ijk
i I k K

ijk
i I k K

ijk
(11)

and

l x u k K
i I j J

ijk
i I j J

ijk
i I j J

ijk
(12)

Using (10) and (11), problem P7 reduces to be like problem P1 as
follows:

P8: Minimize c xI J K ijk ijk subject to

a x A i I
b x B j J
e x E k K
l x u i I j J k K

,
,
,

, ,

i J K ijk i

j I K ijk j

k I J ijk k

ijk ijk ijk

where = = = =

= =

a l A a b b B u e

e E e

, , , ,

,

i j J k K ijk i i j j j i I k K ijk k

k k k
Case II: Consider the case where, along with conditions on avail-

ability and demand constraints as in Case I, additional constraints re-
stricting the amount of different types of commodities to be shipped are
imposed. Then the problem takes the following form:

P9: Minimize c xI J K ijk ijk subject to

x a i I
x b j J

x e k K
l x u i I j J k K

,
,
,

, ,

J K ijk i

I K ijk j

I J ijk k

ijk ijk ijk

Problem P9 can easily be modified to a problem like P1. Using 9),
((10) and (11) the above can be modified as follows:

P10: Minimize c xI J K ijk ijk subject to

a x A i I
b x B j J
e x E k K
l x u i I j J k K

,
,
,

, ,

i J K ijk i

j I K ijk j

k I J ijk k

ijk ijk ijk

where = = = =

= =

a l A a b b B u e

l E e

, , , ,

,

i j J k K ijk i i j j j i I k K ijk k

i I j J ijk k k
which can be solved easily.

A variety of other cases may arise. For example, (1) high storage
cost at a source may prompt a manager to supply excess amounts of all
k-types of commodity to some destinations; (2) a manage may wish to
have some inventory at the sources to handle crisis; (3) demand at some
destinations may be greater than the availability at sources, creating a
need for increasing production at sources and still not meeting demand
of some destinations. Alternatively, a manger might try to meet demand
at a destination by over-producing. All these specified problems may be
transformed to P1, on similar lines as discussed above, and hence may
be solved.

6. Numerical illustrations: a laptop manufacturing company

Consider the case of company XYZ that produces various types of
laptops. These laptops are produced at New York (i=1), California
(i=2) and Chicago (i=3). Once produced the laptops are shipped to
Washington DC (j=1), Maryland (j=2) and Philadelphia (j=3).
There are (k) types of laptops, namely, type I (k=1) with 8 in screen,
type II (k=2) with 12 in screen and type III (k=3) with 16 in screen
which are being transported.

Let O1, O2 and O3 denote factories at New York, California, and
Chicago. Let D1, D2 and D3 denote the distribution centers at
Washington DC, Maryland, and Philadelphia respectively. The handling
cost or the shipping cost (cijk) paid per laptop for type I is $1, type II is
$2, and type III is $2 when the goods are transported from New York to
Washington DC (O1 to D1). Similarly, the shipping cost paid per laptop
for type I is $3, type II is $4, and type III is $1 when the goods are
transported from O1 to D2 while the costs in case of transportation from
O1 to D3 are $2, $4 and $6 respectively. The shipping cost per laptop
for different types from O2 to D1 are $4, $2 and $2; from O2 to D2 are
$3, $3 and $2; and from O2 to D3 are $2, $1 and $3. lastly, the shipping

Table 1
Cost of the 3-dimensional transportation with limits on rim (P1).
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cost from O3 to D1 for different types are $4, $5 and $3; from O3 to D2
are $5, $4 and $2; while from O3 to D3 the shipping costs are $2, $2
and $4.

Assume that at O1 there is a min and max limit of 30 and 40 laptops
of all types in a month while O2 the limits are 15 and 30 laptops of all
types in a month. At O3 the limits are 10 and 20 laptops of all types in a
month. These give us availability constraints. The minimum and max-
imum requirements of laptops of all types at D1 are 15 and 25 re-
spectively, while for D2 are 20 and 25 respectively and for D3 are 25
and 40 respectively. These give us requirement constraints. The
minimum and maximum number of laptops transported of type I are 20
and 30 respectively, while for Type II it is 30 and 40 and for Type III it is
15 and 20 respectively. These give us commodity constraints.

Table 2
Lower and upper bounds on laptops of different types.

x111 1 12 x211 0 7 x311 1 3
x112 2 10 x212 1 10 x312 0 9
x113 0 8 x213 1 8 x313 2 11
x121 2 10 x221 2 5 x321 3 7
x122 0 7 x222 0 9 x322 0 6
x123 2 10 x223 1 7 x323 1 8
x131 0 8 x231 2 6 x331 1 4
x132 3 5 x232 1 10 x332 0 10
x133 2 6 x233 0 4 x333 1 9

Table 3
Cost of the related 3-dimensional transportation (P2).

Table 4
Cost of the transformed multi-index TP (P3).
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The above data is conveniently presented in the cost matrix given in
Table 1 and Figure 1 below. The last 2 rows and 2 columns list the
minimum and maximum availability and requirements.

Assume that the bounds on number of laptops of Type I to be
transported from O1 to D1 are (1, 12), for Type II (2, 10) and (0, 8) for
Type III. Similarly, the limits on laptops of Type I, II and III to be
transported from O1 to D2 are (2, 10), (0, 7) and (2, 10) respectively
while the bounds from O1 to D3 for different types of laptops are (0, 8),
(3, 5) and (2, 6) respectively. Table 2 provides the bounds for rest of the
variables wherexijkrepresents the number of type k (I, II, III) of laptops
transported from the origin Oi (i=1, 2, 3) to distribution center Dj
(j=1, 2, 3

The manager wishes to determine the number of laptops to be
shipped so that the total shipping cost is minimized. The problem can
be stated as a 3-dimensional (3×3×3) capacitated linear transpor-
tation with limits on availabilities, demand and different commodities
as in Example 1 below.
Example 1. The following 3-dimensional CTP with bounds on
availabilities, demand and different commodities is given.

P1: Minimize = = = c xi j k ijk ijk1
3

1
3

1
3 subject to

= = = =

= =

= = = =

= =

= = = =

= =

x x

x

x x

x

x x

x

30 40 , 15 30 ,

10 20 (Availabilityconstraints)

15 25 , 20 25 ,

25 40 (Requirementconstraints)

20 30 , 30 40 ,

15 20 (Commodityconstraints)

j k jk j k jk

j k jk

i k i k i k i k

i k i k

i j ij i j ij

i j ij

1
3

1
3

1 1
3

1
3

2

1
3

1
3

3

1
3

1
3

1 1
3

1
3

2

1
3

1
3

3

1
3

1
3

1 1
3

1
3

2

1
3

1
3

3

The bounds on the number of laptops Type I, II and III transported
can be formulated mathematically as follows.

x x x fromO toD
x x x fromO toD
x x x fromO toD
x x x fromO toD
x x x fromO toD
x x x fromO toD
x x x fromO toD
x x x fromO toD
x x x fromO toD

1 12, 2 10, 0 8 1 1;
1 12, 2 10, 0 8 1 2;
0 8, 3 5, 2 6, 1 3;
0 7, 1 10, 1 8, 2 1;
2 5, 0 9, 1 7, 2 2;
2 6, 1 10, 0 4, 2 3;
1 3, 0 9, 2 11, 3 1;
3 7, 0 6, 1 8, 3 2;
1 4, 0 10, 1 9 3 3.

111 112 113

111 112 113

131 132 133

211 212 213

221 222 223

231 232 233

311 312 313

321 322 323

331 332 333

To solve the above TP, we need to transform it to the related TP as
follows

P2: Minimize = = = c yi j k ijk ijk1
4

1
4

1
4 subject to

= =

= =

= =

+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + + + + +
+ + + + + +
+ + + + + +
+ + +

= =

= =

= =

y i

y j

y k

y y y y y

y x y
y y y y y

y y y
y y x y y

y y y
y y y

y y y y
y y y y
y y y y
y y y y
y y y y
y y y y
y y y y y y y
y y y y y y y
y y y y y y y
y y y y

40, 30, 20, 90 1, 2, 3, 4

25, 25, 40, 90 1, 2, 3, 4

30, 40, 20, 90 1, 2, 3, 4

1 12, 2 10, 0 8, 2 10, 0 7,

2 10, 0 8, 3 5,
2 6, 0 7, 1 10, 1 8, 2 5,

0 9, 1 7, 2 6,
1 10, 0 4, 1 3, 0 9, 2 11,

3 7, 0 6, 1 8,
1 4, 0 10, 1 9

10
15
10

10
5
15

10
10
5

0

j k ijk

i k ijk

i j ijk

1
4

1
4

1
4

1
4

1
4

1
4

111 112 113 121 122

123 131 132

133 211 212 213 221

222 223 231

232 233 311 312 313

321 322 323

331 332 333

141 142 143 144

241 242 243 244

341 342 343 344

411 412 413 414

421 422 423 424

431 432 433 434

141 241 341 411 421 431 441

142 242 342 412 422 432 442

143 243 343 413 423 433 443

441 442 443 444

By the definition of M-feasibility, in all the above inequalities,
= = =y i I j J0 , {1, 2, 3}, {1, 2, 3}ij4 and the costs cijk are

provided below.
The above related problem can be solved by changing it into

Origins (i) Shipping paid on laptops of type (k=1,2,3) Destinations (j)     
(Availability) (Requirement)
(Min., Max.) (Min., Max.)         

O1

O2

O3

D1

D2

D3

1,2,2

3,4,1
2,4,6

4,2,2

3,3,2
2,1,3

4,5,3 5,4,2

2,2,4

(30,40)

(15,30)
_

(10,20)
(20,30) (30,40) (15,20)

((Min., Max.) No. of Laptops which can be transported 
from all origins to all des!na!ons of Type I, II and III)

(15,25)

(20,25)

(25,40)

Fig. 1. Flow chart for cost matrix of Table 1.

Table 5
Cost matrix of the related impaired flow 3-dimensional TP (P5).
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transformed multi-index transportation P3 whose cost matrix is pro-
vided below Table 3).

By solving transformed transportation problem P3 we can get the
solution of the 3-dimensional

TP with bounds on availabilities, demand and different commod-
ities.

Therefore, optimal feasible solution of the 3-dimensional TP with
bounds on availabilities, demand and different commodities is obtained
from the solution of the transformed transportation problem by solving
cost matrix given in Table 4 and solution of transformed problem P2 is
given as follows

= = = = = = =
= = =
= = = = = =
= = = =
= = = = = =
= = = =
= = = = = = =
= = =
= = = = = =
= = = =
= = = = = =
= = = =
= = = = = =
= = = =
= = = = = =
= = =

x x x x x x x
x x x
x x x x x x
x x x x
x x x x x x
x x x x
x x x x x x x
x x x
x x x x x x
x x x x
x x x x x x
x x x x
x x x x x x
x x x x
x x x x x x
x x x

9, 9, 72, 2, 10, 78, 3,
2, 185, 5,
85, 79, 78, 78, 85, 1,
1, 88, 2, 1,
1, 86, 2, 10, 78, 12,
78, 86, 78, 88,
78, 1, 2, 87, 3, 1, 86,
1, 6, 1,
82, 5, 85, 80, 84, 86,
90, 2, 88, 5,
85, 15, 75, 5, 10, 2,
51, 22, 85, 80,
88, 17, 80, 80, 87, 88,
83, 89, 78, 85,
87, 71, 87, 75, 80, 80,
88, 22, 90

111 112 115 121 123 125 132

133 135 144

145 151 152 153 154 212

213 215 221 222

223 225 231 232 235 244

245 251 252 253

254 311 313 315 321 323 325

331 332 333

335 344 345 351 352 353

354 414 415 424

425 434 435 441 442 443

444 445 451 452

453 454 511 512 513 514

521 522 523 524

531 532 533 534 541 542

543 544 555

with objective function value z=141. The optimal basic feasible so-
lution is described in the flow chart (Figure 2) as below.
Example 2. Consider the case of impaired flow when the stocks of
laptops at the factories is restricted to a total of 75. This results in an

Origins (i) # of laptops transported of different types (k=1,2,3)   Destinations (j)

O1

O2

O3

D1

D2

D3

12,5,0

2,0,10
0,3,2

0,4,1

2,0,3
2,10,0
3

1,0,2 3,0,1

1,10,1

Fig. 3. Optimal solution of Example 2.

Origins (i)     # of laptops transported of different types (k=1,2,3)   Destinations (j)

O1

O2

O3

D1

D2

D3

11,9,0

2,0,10
0,3,2

0,1,1

2,1,1
2,10,0
3

1,0,2 3,0,1

1,6,1

Fig. 4. Optimal solution of Example 3.

Table 6
Cost of the transformed multi-index transportation problem.

Origins (i)     # of laptops transported of different types (k=1,2,3)   Destinations (j)

O1

O2

O3

D1

D2

D3

9,9,0

2,0,10
0,3,2

0,1,1

2,1,1
2,10,0
3

1,0,2 3,0,1

1,6,1

Fig. 2. Optimal solution of Example 1.
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Table 7
Data for the test problems.

Test prob-
lem #.

cijk written in form of
i.j as column and k as
row

Lower and upper
bounds of availability

Lower and upper
bounds of demand

Lower and upper
bounds of commodity

Lower bounds (LB) and upper
bounds (UB) of decision variables

Lower bounds (LB) and upper
bounds (UB) of decision variables

xijk LB UB xijk LB UB

6.1 1 2 3
1.1 1 2 2
1.2 3 4 1
1.3 2 4 6
1.4 2 2 1
2.1 4 2 2
2.2 3 3 2
2.3 2 1 3
2.4 3 2 1
3.1 4 5 3
3.2 5 4 2
3.3 2 2 4
3.4 2 1 1
4.1 1 2 2
4.2 3 1 2
4.3 2 1 3
4.4 2 1 2

a1= 10, A1= 25
a2= 15, A2= 40
a3= 15, A3= 20
a4= 10, A4= 25

b1= 15, B1= 35
b2= 20, B2= 25
b3= 10, B3= 35
b4= 15, B4= 40

e1= 25, E1= 30
e2= 15, E2= 20
e3= 20, E3= 40

x111 1 10
x112 2 12
x113 0 9
x121 1 11
x122 0 7
x123 2 10
x131 0 8
x132 3 5
x133 2 6
x141 3 10
x142 2 7
x143 1 9
x211 0 7
x212 1 10
x213 1 8
x221 2 5
x222 0 11
x223 1 7
x231 2 6
x232 1 10
x233 0 4
x241 1 6
x242 0 11
x243 0 8

x311 1 7
x312 0 9
x313 2 11
x321 3 7
x322 0 7
x323 1 8
x331 1 4
x332 0 10
x333 0 12
x341 3 10
x342 2 11
x343 1 8
x411 2 11
x412 1 7
x413 2 7
x421 1 8
x422 1 10
x423 0 8
x431 3 10
x432 0 10
x433 1 7
x441 1 6 x442 0 10
x443 2 12

6.2 1 2 3 4
1.1 15 18 7 15
1.2 9 14 11 6
1.3 10 4 12 4
1.4 8 10 13 10
1.5 3 11 5 8
2.1 19 20 17 12
2.2 15 21 14 10
2.3 20 24 18 11
2.4 16 19 23 12
2.5 11 12 17 8
3.1 14 11 8 10
3.2 24 20 13 11
3.3 17 16 15 12
3.4 11 13 7 13
3.5 8 11 10 16
4.1 24 28 31 15
4.2 14 19 21 20
4.3 18 21 14 12
4.4 9 10 20 15
4.5 12 11 11 12
5.1 10 8 13 15
5.2 12 6 11 19
5.3 8 15 12 10
5.4 12 4 20 12
5.5 11 14 15 17

a1= 10, A1= 25
a2= 15, A2= 40
a3= 12, A3= 20
a4= 14, A4= 25
a5= 16, A5= 30

b1= 15, B1= 35
b2= 14, B2= 25
b3= 11, B3= 35
b4= 17, B4= 30
b5= 10, B5= 25

e1= 15, E1= 30
e2= 10, E2= 25
e3= 20, E3= 30
e4= 14, E4= 40

x114 1 11
x124 0 10
x134 0 7
x144 0 12
x151 1 7
x152 2 8
x153 1 11
x154 0 10
x214 0 8
x224 1 9
x234 1 10
x244 2 11
x251 1 12
x252 0 10
x253 2 5
x254 1 11
x314 0 11
x324 0 6
x334 0 7
x344 0 8
x351 0 10
x352 0 6
x353 0 5
x354 0 6
x414 0 11
x424 1 8

x434 1 7
x444 0 8
x451 0 7
x452 0 8
x453 0 11
x454 0 8
x511 3 12
x512 2 10
x513 1 7
x514 2 12
x521 0 10
x522 0 11
x523 1 8
x524 2 10
x531 0 8
x532 0 11
x533 1 12
x534 0 8
x541 0 7
x542 0 10
x543 1 9
x544 0 11
x551 0 7
x552 0 8
x553 2 11
x554 0 10

Test prob-
lem #.

cijk
written in form of i.j
as column and k as
row

Lower and upper
bounds of availability

Lower and upper
bounds of demand

Lower and upper
bounds of commodity

Lower bounds (LB) and upper
bounds (UB) of decision variables

Lower bounds (LB) and upper
bounds (UB) of decision variables

6.3 1 2 3 4 5
1.1 15 18 7 15 12
1.2 9 14 11 6 10
1.3 10 4 12 14 5
1.4 8 10 13 10 6
1.5 3 11 5 8 12
1.6 11 7 8 9 10
2.1 9 20 17 12 12
2.2 15 21 14 10 13
2.3 20 24 18 11 17
2.4 16 19 21 12 21
2.5 11 12 17 8 22
2.6 12 14 16 21 17
3.1 14 11 8 10 11
3.2 24 20 13 11 12
3.3 17 16 15 12 14
3.4 11 13 7 13 15
3.5 8 11 10 16 16

a1= 10, A1= 25
a2= 15, A2= 40
a3= 15, A3= 25
a4= 15 A4= 25
a5= 20, A5= 35
a6= 20, A6= 45

b1= 15, B1= 35
b2= 15, B2= 25
b3= 10, B3= 35
b4= 20, B4= 30
b5= 10, B5= 40
b6= 20, B6= 35

e1= 15, E1= 30
e2= 10, E2= 25
e3= 20, E3= 30
e4= 25, E4= 40
e5= 15, E5= 40

x115 0 12
x125 1 18
x135 0 10
x145 0 15
x155 0 18
x161 0 10
x162 0 12
x163 0 17
x164 0 19
x165 0 20
x215 1 12
x225 0 11
x235 1 12
x245 0 15
x255 0 12
x261 0 12
x262 0 15
x263 0 17

X415 0 13
x425 0 14
x435 0 15
x445 0 12
x455 0 8
x461 0 10
x462 0 12
x463 0 13
x464 0 14
x465 0 15
x515 1 7
x525 2 12
x535 0 13
x545 0 10
x555 0 20
x561 0 10
x562 0 11
x563 0 9

(continued on next page)
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Table 7 (continued)

Test prob-
lem #.

cijk written in form of
i.j as column and k as
row

Lower and upper
bounds of availability

Lower and upper
bounds of demand

Lower and upper
bounds of commodity

Lower bounds (LB) and upper
bounds (UB) of decision variables

Lower bounds (LB) and upper
bounds (UB) of decision variables

xijk LB UB xijk LB UB

3.6 21 5 10 8 9
4.1 24 28 31 15 12
4.2 14 19 11 20 13
4.3 18 21 14 12 14
4.4 9 10 20 15 11
4.5 12 11 11 12 12
4.6 11 13 14 16 18
5.1 10 8 13 15 16
5.2 12 6 11 19 17
5.3 8 15 12 10 16
5.4 12 4 9 12 14
5.5 11 14 15 17 21
5.6 7 12 7 12 9
6.1 11 15 9 14 12
6.2 12 12 10 15 6
6.3 7 11 11 16 21
6.4 21 17 12 9 20
6.5 22 8 13 7 14
6.6 15 9 14 8 5

x264 0 12
x265 0 8
x315 1 17
x325 0 15
x335 0 11
x345 0 10
x355 1 12
x361 0 13
x362 0 12
x363 0 11
x364 0 13
x365 0 14

x564 0 11
x565 0 10
x615 0 10
x625 0 11
x635 0 12
x645 0 10
x655 0 8
x661 0 8
x662 0 10
x663 0 12
x664 0 8
x665 0 9

6.4 1 2 3 4 5 6
1.1 15 18 7 15 12 8
1.2 9 14 11 6 10 7
1.3 10 4 12 14 5 5
1.4 8 10 13 10 6 10
1.5 3 11 5 8 12 8
1.6 11 7 8 9 10 11
1.7 10 11 12 5 22 7
2.1 9 20 17 12 12 14
2.2 15 21 14 10 13 11
2.3 20 24 18 11 17 13
2.4 16 19 21 12 21 14
2.5 11 12 17 8 22 15
2.6 12 14 16 21 17 8
2.7 13 15 17 23 5 9
3.1 14 11 8 10 11 11
3.2 24 20 13 11 12 12
3.3 17 16 15 12 14 14
3.4 11 13 7 13 15 15
3.5 8 11 10 16 16 16
3.6 21 5 10 8 9 8
3.7 9 8 11 12 11 13
4.1 24 28 31 15 12 14
4.2 14 19 11 20 13 21
4.3 18 21 14 12 14 22
4.4 9 10 20 15 11 7
4.5 12 11 11 12 12 11
4.6 11 13 14 16 18 12
4.7 10 11 15 17 15 23
5.1 10 8 13 15 16 26
5.2 12 6 11 19 17 21
5.3 8 15 12 10 16 14
5.4 12 4 9 12 14 8
5.5 11 14 15 17 21 11
5.6 7 12 7 12 9 12
5.7 8 11 8 11 8 7
6.1 11 15 9 14 12 8
6.2 12 12 10 15 6 11
6.3 7 11 11 16 21 15
6.4 21 17 12 9 20 10
6.5 22 8 13 7 14 12
6.6 15 9 14 8 5 13
6.7 17 10 21 12 16 11
7.1 11 11 20 11 7 10
7.2 9 12 9 10 18 12
7.3 12 11 24 11 9 11
7.4 13 7 11 16 14 14
7.5 14 21 12 15 11 21
7.6 15 22 13 9 10 8
7.7 4 10 6 17 8 9

a1= 10, A1= 25
a2= 15, A2= 40
a3= 15, A3= 25
a4= 15 A4= 25
a5= 20, A5= 35
a6= 20, A6= 45
a7= 15, A7= 40

b1= 15, B1= 35
b2= 15, B2= 25
b3= 10, B3= 35
b4= 20, B4= 30
b5= 10, B5= 40
b6= 20, B6= 35
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impaired/restricted flow 3-dimensional CTP with bounds on
availabilities, demand and different commodities (P4). We have taken
the same cost matrix, availabilities, demands and capacities as in
Example 1, with an additional flow constraint given below.
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In this case, we find the solution of the related 3-dimensional
transportation problem for impaired flow as follows:
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with same bounds, as in Problem P2 of Example 1. The costs cijk of the
related three-dimensional transportation problem for impaired flow are
provided in Table 5 below.

The above related problem can be solved by changing it into trans-
formed multi-index transportation whose cost matrix is provided below.

By solving transformed transportation problem, we can get the so-
lution of the impaired flow-dimensional TP with bounds on avail-
abilities, demand and different commodities (Figs. 1 and 2).

Therefore, an optimal feasible solution of the 3-dimensional TP
having bounds on availabilities, demand and commodities with re-
striction on total flow can be obtained from the solution of the trans-
formed transportation problem by solving cost matrix given in Table 5.
The optimal basic feasible solution in terms of original variables from
transformed problem P2 with objective function value as 151 is de-
scribed by flow chart in Fig. 3 below.
Example 3. Consider the case when the manager wishes to enhance the
supply of laptops (the total transportation flow) due to beginning to the
semester in Colleges and Universities, say.

This gives rise to 3-dimensional enhanced flow CTP with bounds on
availabilities, demand and different commodities (P4). We have taken
the same cost matrix, availabilities, demands and capacities as taken in
Example 1, with an additional flow constraint as given below.
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with upper and lower limits on the decision variables, like Example 1.
Now, to solve this enhanced flow problem, we convert the given

problem into a related capacitated multi-index transportation problem
as below with costs cijk for i, j, k=1,2,3,4 same as of Table 5.
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Table 9
Complexity analysis of the capacitated solid transportation problem.

Problem Complexity (proposed procedure)

(P1) O(mnp, m+ n+p)
(P2) O((m+1)(n+1)(p+1), m+ n+ p+3)
(P3) O((m+2)(n+2)(p+2), mp+np+mn+4(m+n+p)+ 12)
(P4) O(mnp, m+ n+p+1)
(P5) O((m+1)(n+1)(p+1), m+n+p+4)
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2 10, 0 8, 3 5,
2 6, 0 7, 1 10, 1 8, 2 5, 0 9,

1 7, 2 6,
1 10, 0 4, 1 3, 0 9, 2 11, 3 7,

0 6, 1 8,
1 4, 0 10, 1 9

46
51
57

63
49
37

42
46
56

j k ijk

i k ijk

i j ijk

1
4

1
4

1
4

1
4

1
4

1
4

111 112 113 121 122

123 131 132

133 211 212 213 221 222

223 231

232 233 311 312 313 321

322 323
331 332 333

141 142 143 144
241 242 243 244
341 342 343 344
411 412 413 414
421 422 423 424
431 432 433 434
141 241 341 411 421 431 441
142 242 342 412 422 432 442
143 243 343 413 423 433 443

Using definition of M-feasibility, in all the above inequalities,

= = =y i I j J0 , {1, 2, 3}, {1, 2, 3}ij4

Problem P7 is again converted into an equivalent multi-index
transportation problem P8 [13]. The optimal feasible solution of the
enhanced flow 3-dimensional TP with bounds on availabilities, demand
and commodities is obtained from the solution of the equivalent
transformed multi-index transportation problem P8. The optimal solu-
tion of in terms of original variables from equivalent transformed
problem P8 with optimal objective function value as 143 as described
by the flow chart in Fig. 4 below.

7. Computational results

Two test problems were initially solved for multi-index CTP with
bounds on availabilities, demand and commodities. At first, the con-
straint of restricted flow was added to both the test problems, and then
the enhanced flow constraint was added to both the test problems, and
the new problems were solved. The data for the test problems are given
in Table 7 below and the results are summarized in Table 8. Note that

the lower and upper bounds of the decision variables which are not
defined for test problems 6.2, 6.3 and 6.4 in Table 6 are same as of
problem 6.1. To test the validity of the proposed solution method to the
larger scale problems, we, further, solved several other problems in-
creasing in size to 10×10×9. The data and the solutions of these
problems are not included here to avoid redundancy. The test problems
were solved using GAMS (General Algebraic Modeling System) on a
computer with Intel Pentium Processor 1.70 GHz having 8 GB RAM. We
solved both the original problems and the transformed problems and
noticed a computation time of less than 5 s for each problem.

The computational complexity O(m, n) pertaining to each of the
solid transportation problem from P1 to P5 with m nodes and n arcs is
presented below (Table 9).

8. Conclusion

We have provided a solution method for a constrained transporta-
tion problem (CTP) with axial constraints with bounds on source
availabilities, destination demands, and various commodities. We also
discussed solution methods for the case of impaired and enhanced flow
in a CTP, which involves the addition of a flow constraint to a given
CTP. We discuss an extension of the methods to handle situations of
unbalanced constrained transportation problems. The solution method
consists of transforming a given CTP into a related solid problem by
adding a dummy supply point, a dummy destination and an extra
commodity. The related problem—a “Three Axial Sum” problem—can
be reformulated as a multi-index transportation problem by applying
Haley's method [13] and thus can be solved using Haley's [12] method.
The solution method is very useful for transporting heterogeneous
commodities. The maximum number of iterations required in our pro-
posed procedure to solve the constrained solid transportation problem
is shown to be + +Cmnp

m n p, where m, n, and p represent the number of
origins, destinations and commodities, respectively. Future work
should extend the solution method for solving time constrained trans-
portation problems with axial constraints with bounds on rim condi-
tions. Further research could also explore cost-time trade-off pairs for
the problem in order to identify the optimal pair according to the
priority between time and cost.

Appendix

Theorem 1. There is one-to-one relationship between a feasible solution of problem P1 and a M-feasible solution of problem P2.

Proof. Let {yijk }be a M-feasible solution of problem P2. Define {xijk } , i∈ I, j∈ J, k∈ K by the following transformation:

=x y i I j J k K, ,ijk ijk (A)

As lijk≤ yijk ≤ uijk ∀ i∈ I, j∈ J, k∈ K, (A) implies that lijk≤ yijk ≤ uijk ∀ i∈ I, j∈ J, k∈ K.
Also, =y A i I IJ K ijk i

+ + + = =
= + +

+ + + +

+ + + +

y y y y A i I as A A i I
y A y y y i I

a y A i I

[ ]
( )

J K ijk K in k J ijp in p i i i

J K ijk i K in k J ijp in p

i J K ijk i

1 1 1 1

1 1 1 1

Since + ++ + + +y y y A a i I0 K in k J ijp in p i i1 1 1 1 , but =y x i I j J k K, ,ijk ijk

a x A i Ii
J K

ijk i

Similarly, it can be shown that

b x B j I e x E k K;j
I K

ijk j k
I J

ijk k

So xijk defined by (A) is a feasible solution of problem P1.
Conversely, {xijk}, i∈ I, j ∈ J, k∈ Klet be a feasible solution of problem P1.
Define
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=y x i I j J k K, ,ijk ijk (B)

+ + =+ + + +y y y B y j J
K

m jk
i

ijp m jp j
I K

ijk1 1 1 1
(C)

+ + =+ + + +y y y A y i I
K

in k
J

ijp in p i
J K

ijk1 1 1 1
(D)

+ + =+ + + +y y y E y k K
J

m jk
I

in k m n k k
I J

ijk1 1 1 1
(E)

and

= ++ + +y x y
K

m n k
I J K

ijk
i j

ijp1 1 1
(F)

Sincelijk≤ xijk ≤ uijk ∀ i∈ I, j∈ J, k∈ K, so lijk≤ yijk ≤ uijk ∀ i∈ I, j ∈ J, k∈ K,

(1) and (D) together imply that 0 + ++ + + +y y y A a i IK in k J ijp in p i i1 1 1 1 and
(2) and (C) together imply that 0 + ++ + + +y y y B b j JK m jk i ijp m jp j j1 1 1 1 , and
(3) and (D) together imply ++y0 j m jk1 ++ + +y y E e k Ki in k m n k k k1 1 1

In all the above inequalities, By the definition of M-feasibility, the second summation would be zero as =+y i I j J0 ,ijp 1
Clearly = + =+ + +y x y x 0K m n k I J K ijk i j ijp I J K ijk1 1 1 (By M-feasibility) thus + +y k K0k m n k1 1
Consider, for i ∈ I

= + + +
= + + +
= =

+ + + +

+ + + +

y y y y y
x y y A x y y

A A i I
using (B) and (D)

J K ijk J K ijk K in k J ijp in p

J K ijk K in k J ijp i J K ijk K in k J ijp

i i

1 1 1 1

1 1 1 1

For i=m+1

= + + +
= + +
= +
=

+ + + + + + + + +

+ + + + +

y y y y y
y y B x y y

x B x
B

( ) using(1)and(C)
using(F)

J K m jk J K m jk K m n k J m jp m n p

J K m jk K m n k J j I K ijk K m jk i ijp

I J K ijk J j I J K ijk

J j

1 1 1 1 1 1 1 1 1

1 1 1 1 1

Similarly, =y B j JI K ijk j and =yI K ijk = +A j n, 1I i .
Consider, for k ∈ K‘

= + + +
= + + +
= =

+ + + +

+ + + +

y y y y y
x y y E x y y

E E k K
using(B)and(E)

I J ijk I J ijk I in k J m jk m n k

I J ijk I in k J m jk k I J ijk I in k J m jk

k k

1 1 1 1

1 1 1 1

For k= p+1

= + + +
= + + +
= + + +
= + +
= + + +
= + + +
= + + + +
= + + + + + +
= + + +
= + + + +
= + + +
= + + +
= +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + +

+ + + + + + + + + +

+ + + + + + + +

+ + + + + + + + + +

+ + + + + + + + + +

+ + + + +

+ + + +

+ +

+ +

y y y y y
y y y B x y y from C
y y y B y y y

y y B y y
y y B y y y y
y y B y y y
y y y B y y y y
y y y y B y y y
y y y B E E
y x y y B E F

x y y B E
x y y B E B D

A B E

( ) ( ( ))

( )
(from ( ))

(from ( ))

( ) (from ( ) and ( ))

I J ijp I J ijp I in p J m jp m n p

I J ijp I in p m n p J j I K ijk K m jk i ijp

I J ijp I in p m n p J j I J K ijk J K m jk I J ijp

I in p m n p J j I J K ijk J K m jk

I in p m n p J j I J K ijk J K m jk K m n k K m n k

I in p m n p J j I J K ijk J K m jk k m n k

I in p k m n k m n p J j I J K ijk J K m jk I K in k I K in k

I in p K m n k m n p I K in k J j K I J ijk J m jk i in k

I in p K m n k I K in k J j K k

I in p I J K ijk I J ijp I K in k J j K k

I J K ijk I J ijp I K in k J j K k

I J K ijk J ijp K in k J j K k

I i J j K k

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1

1 1

So × ×y{ }ijk I J K defined by equations (B) through (F) is a M-feasible solution of problem P2.
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