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A B S T R A C T

Controlling traffic flow on roads is an important traffic management task necessary to ensure a peaceful and safe
environment for people. The number of cars on roads at any given time is always unknown. Type-2 fuzzy sets
and neutrosophic sets play a vital role in dealing efficiently with such uncertainty. In this paper, a triangular
interval type-2 Schweizer and Sklar weighted arithmetic (TIT2SSWA) operator and a triangular interval type-2
Schweizer and Sklar weighted geometric (TIT2SSWG) operator based on Schweizer and Sklar triangular norms
have been studied, and the validity of these operators has been checked using a numerical example and extended
to an interval neutrosophic environment by proposing interval neutrosophic Schweizer and Sklar weighted ar-
ithmetic (INSSWA) and interval neutrosophic Schweizer and Sklar weighted geometric (INSSWG) operators.
Furthermore, their properties have been examined; some of the more important properties are examined in
detail. Moreover, we proposed an improved score function for interval neutrosophic numbers (INNs) to control
traffic flow that has been analyzed by identifying the junction that has more vehicles. This improved score
function uses score values of triangular interval type-2 fuzzy numbers (TIT2FNs) and interval neutrosophic
numbers.

1. Introduction

Issues related to traffic congestion is regularly experienced in daily
life. Controlling traffic signals is one of the areas in which fuzzy logic is
most popularly employed in transportation engineering. Traffic con-
gestion affects the safety of the people, disrupts routine (daily/ev-
eryday) activities and the quality of lifestyle and leads to a commercial,
natural and health burden for the government and related organiza-
tions. Traffic control aims to reduce the negative effects of traffic by
establishing intelligent models to correct state calculation, control and
forecasting. The theory of triangular norms provides the mathematical
properties, and these properties represent the crucial qualities of the
control system, such as stability. Control problems have attracted
considerable attention in the control community [1,4,11].

As real-world problems in nature often involve uncertainty, fuzzy
logic has been applied successfully to deal with impreciseness. This
theory is based on the concepts of degree to deal with uncertainties in a
field of knowledge. This logic agrees with linguistic and imprecise
traffic data as well as in modeling signal timings. Modeling the control

is the basic principle of fuzzy signal control with respect to a human
expert's knowledge. The model of the fuzzy controller needs an expert's
knowledge and experience in the traffic control field in developing the
linguistic protocol that produces the input of the control in the system.
As fuzzy logic exploits linguistic information, reproduces human
thinking and captures the uncertainty of the real-world problems, it is
successful in producing good performance for various practical pro-
blems [2].

A fuzzy logic system works with the use of IF-THEN rules, where the
knowledge will be often uncertain. It is very useful for decoy approx-
imation. If the antecedent and consequent parts are type-1 fuzzy sets
(T1FSs), then the system is called type-1 fuzzy logic system (T1FLS),
whereas in type-2 fuzzy logic system (T2FLS), the antecedent or con-
sequent set will be of type-2 fuzzy sets (T2FSs). The membership
function of T2FS is a three-dimensional one, which includes upper and
lower membership functions, and the area between them is called the
footprint of uncertainty (FOU) [3,6,13,18]. For a set of regional linear
models, the Takagi Sugeno model will be used for an optimized output
[14,30–31].
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As noise is nonlinear, systems that use traditional logic and elec-
tronics fail to deal with the complex nature of the signal in terms of
algorithms and circuits. Fuzzy logic is the most appropriate method to
describe imprecise characteristics accurately [12]. Traffic congestion
problems may arise owing to different conditions such as insufficient
number of lanes, broken road surface, high volume of vehicles, irra-
tional allocation of signaling system and poor visibility of the road.
Furthermore, traffic congestion increases the level of pollution, as in
most of the cases, the engines of the vehicles are left running.

To mitigate these problems, a new methodology has been im-
plemented by accompanying the automated sensor approach in the
system of traffic signaling. In early years, and at present, in some places,
traffic is controlled by the usage of hand signs by the traffic police,
signals and markings. This impreciseness cannot be dealt with by type-1
fuzzy as it is precise in nature, whereas type-2 fuzzy, an extension of
type-1 fuzzy, can handle a high level of uncertainty [17]. The approach
of type-2 fuzzy will overcome the consequence of time delay in control
systems [19,20]. Hence, fuzzy logic controllers have been applied for
controlling several physical processes successfully [15,22].

Type-1 fuzzy set induces a unique membership value to every set
element between 0 and 1 and is useful to model knowledge, but it fails
to deal with special uncertainties such as different opinions of experts
on the same concept. It also cannot deal with only degree of truth and is
not able to minimize the noise. In spite of these shortcomings, different
opinions may produce different membership functions, therefore a
model can be designed using T2FS [23].

T-norms and t-conorms are the triangular norms and preferable
operators for controlling the system as it satisfies Commutativity,
Idempotency, monotonicity and boundary conditions, which represent
the qualities of a good system and generalize conjunction and dis-
junction respectively. Fuzzy conjunction is used for the system to decide
the particular decision in a given period of time. Additionally, it is an
operation between two membership degrees, which describes two fuzzy
sets treated as a premise in an inference system. T-norms use some
parameters of the system to control the inference, and may have dif-
ferent behavior based on the parameters [24].

Interval-valued neutrosophic sets (IVNSs) are determined by an
interval membership grade, interval indeterminacy grade and interval
nonmembership grade [32,33]. The generalization of intuitionistic
fuzzy is the neutrosophic set with the indeterminate reasoning, and
interval-valued neutrosophic set is the general case of single-valued
neutrosophic environment. Using these concepts, the uncertainty of the
problem can be dealt with effectively, as the neutrosophic concept deals
with indeterminacy also. Interval-valued sets, especially neutrosophic
sets, handle indeterminacy with the lower and upper membership
functions, and hence uncertainty in a real- world problem can be solved
in an optimized way [26,35–37]. Many aggregation operators have
been proposed under single-valued and interval-valued neutrosophic
environments and applied in decision-making problems to choose the
best option [25,27,34,38,39].

By considering the determinate part and indeterminacy, a neu-
trosophic number can be formed and interchanged in the form of an
interval number. Using this concept and the operational laws of neu-
trosophic matrices, traffic flow can be identified in each intersection by
considering neutrosophic linear equations, and is an effective way of
finding traffic flow [43]. In addition, some models have been designed
to avoid accidents, and unwanted situations while inspecting and col-
lecting information about individuals [49–51].

The rest of the paper is arranged as follows. In, Section 2, a litera-
ture review is provided for the proposed concept, and this will show the
novelty of the methods proposed in this paper. In Section 3 and
Section 5.1, basic concepts have been given. In Section 4, operational
laws, aggregation operators and their properties are examined with a
numerical example and applied in traffic flow control under triangular
interval type-2 environment. In Section 5, the proposed concepts in
Section 4 have been extended to an interval neutrosophic environment.

In Section 6, traffic flow analysis using the proposed operators are
listed. In Section 7, qualitative analysis is provided for different fuzzy
environments and crisp set as well. In Section 8, conclusion of the
present work is given.

2. Review of literature

The authors of Gupta and Qi [1] proposed the theoretical concepts
of t-norms and methods of fuzzy reasoning. Castro [2] proved that fuzzy
logic controllers (FLCs) are global approximations. Karnik et al. [3]
presented type-2 fuzzy logic systems, which can deal with more un-
certainties. Niittymaki and Pursula [4] proved that signal control using
fuzzy logic can be an efficient controlling method for signalized inter-
sections. Wei et al. [5] presented traffic signal control management
using fuzzy logic and MOGA. Wu and Mendel [6] applied imprecise
bounds in the model of interval type-2 fuzzy logic systems (IT2FLSs).

Wang et al. [7] introduced interval neutrosophic sets based on truth
value. Aguero and Vargas [8] concluded the dynamic structure of dis-
tribution networks using T2FLSs. Wang et al. [9] presented, in detail,
the theoretical concepts about interval based neutrosophic set and its
application in computing. Smarandache [10] proved that a neu-
trosophic set is the logical reasoning and generalization of intuitionistic
fuzzy set. Li et al. [11] proposed a different method for predicting
traffic using type-2 fuzzy logic. Jarrah and Shaout [12] proposed vo-
lume control of motor vehicles using fuzzy logic. Ozek and Akpolat [13]
proposed an operating system for type-2 fuzzy logic tool box.

Petrescu et al. [14] proposed a fuzzy control design for an in-
dependent vehicle governing system where the design is replaced by
some local linear systems, which are defined over the given points and
the union of these systems inclined a Takagi Sugeno model. Algreer and
Ali [15] accomplished position control using fuzzy logic. Wang et al.
[16] introduced single-valued neutrosophic sets (SVNSs). Almaraaashi
et al. [17] constructed generalized T2FLSs using interval type-2 setting
and artificial strengthening. Tellez et al. [18] proposed T2FLSs using
parametric representation. Li et al. [19] described mathematical prop-
erties such as monotonicity of IT2FLSs.

Blaho et al. [20] used type-2 fuzzy logic in diminishing the collision
of impreciseness in a chain of control systems. Singhala et al. [21]
developed a temperature control system using fuzzy logic. Patel [22]
explained the situations and methods in which fuzzy logic can be ap-
plied. Comas et al. [23] defined measures to determine the degree of
truth and the theoretical background of the decision support system.
Qin and Liu [24] proposed Frank triangular norms for triangular in-
terval type-2 fuzzy set and applied it in a decision-making process.

Ye [25] improved the correlation coefficient of SVNSs, examined
their properties and extended the concept to interval neutrosophic sets
(INSs). They also applied the proposed concepts in decision-making
problems. Ye [26] generalized Jaccard, Dice and cosine similarity
measures in vector space and presented three vector similarity mea-
sures between simplified NSs (SNSs). They also used it in a decision-
making problem. Ye [27] proposed the concept of SNS, its operational
laws and two aggregation operators, namely, simplified neutrosophic
weighted (SNW) arithmetic average operator and SNW geometric
averaging operator and applied them in a decision-making problem.

Singh et al. [28] used comparative analysis of neural network and
fuzzy algorithm in implementing ACC. Shafeek [29] designed an au-
topilot to control the header of an aircraft using PD-like T1 and T2 fuzzy
logic controllers. Wen et al. [30] proposed an intelligent signal con-
troller using T2FL and NSGAII. Lafta and Hassan [31] introduced mo-
bile automation control using fuzzy logic. Broumi and Smarandache
[32] proposed interval-valued neutrosophic soft rough sets. Smar-
andache [33] explained very clearly about neutrosophic theory sym-
bolically. Ye [34] proposed the ranking method on possibility degree
for INNs from the probability aspect. Poyen et al. [35] designed a dy-
namic traffic signal system based on density where the signal timing
changes automatically on sensing traffic. Sharma and Sahu [36]
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reviewed fuzzy logic-based traffic signal control.
Singh et al. [37] analyzed an uncertainty for the provided many-

valued context. Ye [38] proposed new exponential laws of INSs, in-
terval neutrosophic weighted exponential aggregation operator and its
dual operator and applied them in a decision-making problem for
global supplier selection. Ye [39] introduced a credibility induced
INWA averaging operator and a credibility induced INWG averaging
operator and examined their properties. They also presented a measure
of projection between INNs and its ranking method and applied it in a
decision-making problem. Bouyahia et al. [40] used fuzzy switching
linear models to present real-time traffic smoothing from GPS spare
measures. Chen and Ye [41] derived the mathematical properties of
Dombi triangular norms based on a SVNS and applied them in a deci-
sion- making method.

Singh [42] discovered some of the important hidden patterns in the
interval-valued neutrosophic context. Ye [43] presented the concepts of
neutrosophic linear equations (NLEs) and, neutrosophic matrix (NM),
and proposed NM operations for the first time. They also introduced
some solving methods on NMs. Laxmi et al. [44] proposed an intelligent
system for traffic control to enable emergency vehicles to pass without
any disruptions. Noormohammadpour and Raghavendra [45] have
brought out the important characteristic of traffic control in data cen-
ters. Shi and Ye [46] derived Dombi aggregation operators of neu-
trosophic cubic sets and applied them in a decision-making process. Liu
and Wang [47] proposed interval-valued intuitionist fuzzy Schwei-
zer–Sklar power aggregation operators and applied them in a decision-
making problem for supplier selection.

Broumi et al. [48] discussed the lack of knowledge partially for [0,
1] using IVNSs. Nagarajan et al. [49] applied triangular norms under a
type-2 fuzzy environment for edge detection on a DICOM image.
Mayouf et al. [50] developed an accident management system applic-
able for cellular technology in public transportation. Sumia and Ranga
[51] proposed a new intelligent traffic management system (TMS).
Ankam et al. [52] designed a new TMS for the benefit of vehicle owners
to carry the documents such as license and insurance during in-
vestigation by the authorities.

This review is the motivation of the present study, as the use of
aggregation operators for controlling traffic flow has not yet been stu-
died.

3. Fundamental perception

In this section, basic concepts of a traffic control system, role of
fuzzy logic, output methods from fuzzy linguistic terms and structure of
the fuzzy control system have been given for better understanding.

3.1. Traffic signal control [33]

This is a pretimed or induced or flexible control and is described as
follows.

Pretimed Controllers - Such controllers decide the signal timings
in advance, which are collected from earlier pattern of traffic, and re-
peat the same.

Actuated Controllers – These will identify the moving and inter-
rupted traffic on each lane towards cross-roads and estimate the dura-
tion of the signal phase.

Adaptive Controllers – These identify the entire cross-roads and
modify the signal phase and response timings to real-time traffic.

3.2. Levels of signal control [33]

The fuzziness of signal control can be classified into three levels,
namely, input, control and output levels, and are described as follows.

Input Level – Here, a partial picture of the succeeding traffic en-
vironment will be drawn using measurements.

Control Level – At this level, there will be various possibilities and

it is difficult to decide the right or the best possibility because the re-
lationship of source and reaction of the signal control cannot be ex-
plained.

Output Level – Here, the exact criteria of the control are not
known, such as extension gap.

3.3. Fuzzy logic in traffic control system [22]

As fuzzy logic is theoretically easy to understand, adaptable, lenient
with uncertain data, can design nonlinear functions of inconsistent
complexity, can be built with the knowledge of the experts, and flexible
with traditional control approach, a fuzzy logic-based control system
has been a successful pursuit to implement intelligence in a traffic
control system.

A nonlinear mapping of an input data set to scalar output is called a
fuzzy logic system. It consists of four parts i.e., fuzzifier, fuzzy rules,
inference engine and defuzzifier. The fuzzy system converts the input to
the output. Here, the linguistic values are divided into fuzzy sets, e.g.,
traffic flow can be defined as low, high and medium. The degree of
addiction to every fuzzy set is shown by membership functions. The
input value of the fuzzy system may exist in more than one fuzzy set.
The corresponding numeric values to fuzzy set are called fuzzification
and the reverse is called defuzzification.

Fuzzy IF-THEN rules are the main logic of the inference system and
involve vague reasoning. Fuzzy rules are well defined using an expert's
knowledge, and hence a mathematical model is not necessary for the
objects and the system is very flexible. The parameters of the mem-
bership functions and its values, operators, fuzzy rules, defuzzification
and other parameters can be modified according to the desired result.

Interval type-2 fuzzy logic systems are used to recognize control
laws to minimize control errors. The output of this system, called the
control signal, is supposed to be monotonic with respect to the error
and/or variation of the error called inputs of the system.

The fuzzy control is found to be preferable in complicated problems
with multi-objective decisions. Various traffic flows contest for the
same time and space and various preferences are frequently set to dif-
ferent flows or vehicle groups.

3.4. Defuzzification methods [19]

The following methods are often applied in a control system to get
the precise output from the fuzzy inputs: Karnik Mendel, Du Ying,
Begian Melek Mendel, Wu Tan and Nie Tan methods.

3.5. Role of membership functions [21]

Application of membership function is an essential role in the stage
of fuzzification and defuzzification of the fuzzy logic system to calculate
the nonfuzzy input values to fuzzy linguistic terms and for the converse.
It is used to measure the linguistic term. An amazing characteristic of
the fuzzy logic lying in the fuzzification of the numerical value is that it
need not be fuzzified using only one membership function, and hence
the value can be described by different sets at a particular time.

3.6. Algorithm of fuzzy logic [5]

The following figure represents the algorithm of traffic control
system using fuzzy logic.

3.7. Triangular norms considered

In this paper, Schweizer and Sklar (SS) triangular norms have been
considered and defined as follows. [38]

D. Nagarajan, et al. Operations Research Perspectives 6 (2019) 100099

3



=

= +

TN p q p q

p q p q p q

T norm: ( , )

1 [(1 ) (1 ) (1 ) (1 ) ] , ,
[0, 1]

1

2 (1)

= = +TCN p q p q p q p q p qT conorm: ( , ) ( ) , , [0, 1]21

(2)

whereφ>0is the parameter.

3.8. Triangular interval type-2 weighted arithmetic/geometric operator [24]

Let =F l l c r r([ , ], , [ , ]),i F F F F Fi i i i i =i n1, 2, ..., be a set of TIT2FNs of
the triangular interval type-2 fuzzy Set X. Let TIT2WAϖ/TIT2WGϖ:
Ωn→Ω if,

=TIT WA F F F F F F2 ( , , ..., ) .....n n n1 2 1 1 2 2 (3)

=TIT WG F F F F F F2 ( , , ..., ) .....n n1 2 1 2 n1 2 (4)

then the function TIT2WA/TIT2WG are called triangular interval type-2
weighted arithmetic and geometric operators respectively, and

= ( , , ..., )n
T

1 2 is the weight vector of = =F i n, 1, 2, ...,i , ϖi≥0
and == 1i

n
i1 . If = ( , , ..., )n n n

T1 1 1 then the TIT2WG operator is re-
duced to a triangular interval type-2 geometric averaging operator of
dimensionn.

3.9. Score function of TIT2FN [24]

To rank two TIT2FNs the following score function is used, defined
by

=
+

+ ×
+ + + +

SF F
l r l l r r c

( )
2

1
4

8
F F F F F F F

(5)

4. Proposed operational laws

The following operational laws can be defined using triangular in-
terval type-2 fuzzy numbers for SS triangular norms. Consider three
triangular interval type-2 fuzzy numbers F F F, ,1 2 andφ>0.

Addition

=F F sum l prod l sum l prod l

sum c prod c

sum r prod r sum r prod r

( ( ) ( ) ) , ( ( ) ( ) ) ,

( ( ) ( ) ) ,

( ( ) ( ) ) , ( ( ) ( ) )

F F F F
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F F F F
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i i

i i i i

1 1
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where ==i 1
2 , ==i 1

2

Numerical Example:
If =F [0.4, 0.5], 0.6, [0.7, 0.8]1 and =F2 [0.5, 0.6], 0.7, [0.8, 0.9] be

any two TIT2FNs and if = 2then

= + +
+
+ +

=

F F [((0.4) (0.5) (0.4) . (0.5) ) , ((0.5) (0.6) (0.5) . (0.6) ) ],
((0.6) (0.7) (0.6) . (0.7) ) ,
[((0.7) (0.8) (0.7) . (0.8) ) , ((0.8) (0.9) (0.8) . (0.9) ) ]

[0.6096, 0.7211], 0.8207, [0.9035, 0.9652]

1 2
2 2 2 2 1/2 2 2 2 2 1/2

2 2 2 2 1/2
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Numerical Example:

= +F F [1 ((1 0.4) (1 0.5) (1 0.4) . (1 0.5) ) ,1 2
2 2 2 2 1/2

+1 ((1 0.5) (1 0.6) (1 0.5) . (1 0.6) ) ]2 2 2 2 1/2

+1 ((1 0.6) (1 0.7) (1 0.6) . (1 0.7) ) ,2 2 2 2 1/2

+[1 ((1 0.7) (1 0.8) (1 0.7) . (1 0.8) ) ,2 2 2 2 1/2

+1 ((1 0.8) (1 0.9) (1 0.8) . (1 0.9) ) ]2 2 2 2 1/2

= =[0.2789, 0.3917], 0.5146, [0.6445, 0.777] TIT2FN

Multiplication by an ordinary number

=v F l l c r r. (( ) ) , (( ) ) , (( ) ) , (( ) ) , (( ) )F F F F F1
v v v v v

1 1 1 1 1

(8)

Here, vis an ordinary number.
Numerical Example:

= =

=

= =

F

F

Consider [0.4, 0.5], 0.6, [0.7, 0.8] and 0.3

0.3. ((0.4) ) , ((0.5) ) , ((0.6) ) , ((0.7) ) , ((0.8) )

[0.2789, 0.3917], 0.5146, [0.6445, 0.777] TIT2FN

1

1
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2
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Power Operation
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c r r
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v
F F

F F

1
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F
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Numerical Example: Consider =v 0.3and F1

=

= =

F 1 ((1 0.4) ) , 1 ((1 0.5) ) , 1

((1 0.6) ) , 1 ((1 0.7) ) , 1 ((1 0.8) )

[0.1421, 0.1877], 0.2403, [0.3032, 0.383] TIT2FN

1
0.3 2 2

2 2 2
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2

0.3
2

0.3
2

0.3
2

0.3
2

4.1. Proposed theorems using TIT2SSWG operator

Here, the SS operator under triangular interval type-2 setting has
been developed and proposed as a triangular interval type-2 Schweizer
and Sklar weighted geometric (TIT2SSWG) operator based on SS tri-
angular norms.

4.1.1. Theorem
Let =F l l c r r([ , ], , [ , ]),i F F F F Fi i i i i =i n1, 2, ..., be a set of TIT2FNs;

then their aggregated value using TIT2SSWG operator is still a TIT2FN,
=l l c r r i n0 1, 1, 2, ...,F F F F Fi i i i i and

=

TIT SSWG F F F

l l

l l

c c

r r

r r
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((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) , 1

((1 ) (1 ) )

n

F F

F

F F

F F

F F

1 2

i i
i

Fi i
i

i i
i

i i
i

i i
i

(10)

where ==i
n

1 , ==i
n

1
Proof. :
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By mathematical induction method, we prove this theorem.
For =n 2
Consider the power operation
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=

=

F l l

c r r

F l l

c r r

TIT WG F F F F

l l

l l c c

r r

r r

1 ((1 ) ) , 1 ((1 ) ) , 1

((1 ) ) , 1 ((1 ) ) , 1 ((1 ) )

1 ((1 ) ) , 1 ((1 ) ) , 1

((1 ) ) , 1 ((1 ) ) , 1 ((1 ) )

2 ( , )

1 ((1 ) (1 ) ) , 1

((1 ) (1 ) ) , 1 ((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) , 1

((1 ) (1 ) )

v
F F

F F

v
F F

F F

F F

F F F F

F F

F F

1 2 1 1

v v

F
v v v

v v

F
v v v

i i
i

i i
i

i i
i

i i
i

i i
i

1
1 1

1 1 1

2
2 2

2 2 2

1 2

where ==i 1
2 , ==i 1

2

For =n k

=

=

TIT SSWG F F F F F F

l l l l

c c

r r r r

2 ( , , ..., ) ...

1 (( ) ( ) ) , 1 (( ) ( ) ) ,

1 ((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) , 1 ((1 ) (1 ) )

k k

F F F F

F F

F F F F

1 2 1 2 k

i i
i

i i
i

i i
i

i i
i

i i
i

1 2

where ==i
k

1 and ==i
k

1
For = +n k 1

=

=

=

+ + +

+
+

+
+

+
+

+
+

+
+

TIT SSWG F F F F F F F

l l l l

c c

r r

r r

l l

c

r r

l l

l l c c

r r r r

2 ( , , ..., ) ( ... )

1 (( ) ( ) ) , 1 (( ) ( ) ) ,

1 ((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) , 1

((1 ) (1 ) )

1 ((1 ) ) , 1 ((1 ) ) ,

1 ((1 ) ) ,

1 ((1 ) ) , 1 ((1 ) )

1 ((1 ) (1 ) ) , 1

((1 ) (1 ) ) , 1 ((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) , 1 ((1 ) (1 ) )

k k k

F F F F

F F

F F

F F

F S

F

F F

F F

F F F F

F F F F

1 2 1 1 2 1k k

i i
i

i i
i

i i
i

i i
i

i i
i

k
k

k
k

k
k

k
k

k
k

i i
i

i i
i

i i
i

i i
i

i i
i

1 2 1

1
1

1
1

1
1

1
1

1
1

where ==
+

i
k

1
1 and ==

+
i
k

1
1

Hence, the result is true for all values of n.
Numerical Example:
For =n 2 the calculation has been given and the computation is

similar for all the values of n. In addition, consider the weight vector
= 0.551 and = 0.452 . Without loss of generality, take

= 2throughout the paper.

=

= +

+

+

+

+

= =

+

+

+

+

+

TIT SSWG F F F F2 ( , )

1 ((1 0.4) (1 0.5) (1 0.4) . (1 0.5) ) , 1

((1 0.5) (1 0.6) (1 0.5) . (1 0.6) ) ,

1 ((1 0.6) (1 0.7) (1 0.6) . (1 0.7) ) ,

1 ((1 0.7) (1 0.8) (1 0.7) . (1 0.8) ) , 1

((1 0.8) (1 0.9) (1 0.8) . (1 0.9) )

[0.48, 0.63], 0.7644, [0.8736, 0.9504] TIT2FN

1 2 1
0.55

2
0.45

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

0.55 0.45
2

0.55 0.45
2

0.55 0.45
2

0.55 0.45
2

0.55 0.45
2

4.1.2. Theorem (Idempotency)

= =

=

=
= =

F l l c r r i n

l l c r r i n

F i n F
F TIT SSWG F F F F

Let ([ , ], , [ , ]), 1, 2, ..., be a set of TIT2FNs, 0

1, 1, 2, ..., .

If all , 1, 2, ..., are equal, i.e.,
then 2 ( , , ..., )

i F F F F F

F F F F F

i i

n1 2

i i i i i

i i i i i

(11)

Proof. :

=

=

=

=
=
=
=
= = == =

= =

= = =

TIT SSWG F F F

l l

l l

m m

r r r r

l l

c r r

l l m

r r

l l c r r
l l c r r

l l c r r
l l c r r

F

2 ( , , ..., )

1 ((1 ) (1 ) ) , 1

((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) , 1 ((1 ) (1 ) )

1 ((1 ) ) , 1 ((1 ) ) ,

(1 (1 ) ) , 1 ((1 ) ) , 1 ((1 ) )

1 ((1 ) ) , 1 ((1 ) ) , 1 ((1 ) ) ,

1 ((1 ) ) , 1 ((1 ) )

[(1 ) , (1 ) ], (1 ) , [(1 ) , (1 ) ]
[(1 ), (1 )], (1 ), [(1 ), (1 )]
[ , ], , [ , ]
[ , ], , [ , ]
, where and

n

F S

S S

S S

F F F F

F F

F F F

F F S

F F

F F F F F

F F F F F

F F F F F

F F F F F

i
n

i
n

1 2

1 1

i t
i

t t
i

t t
i

i i
i

i i
i

i
i
n i

i
i
n i

i
i
n i

i
i
n i

i
i
n i

i i t

i i

i i i i i

i i i i i

i i i i i

1 1

1 1 1

1 1 1

1 1
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4.1.3. Theorem

= =

=
=

=

+

+ + +

+

+ + + + +

F l l c r r i n

l l c r r i n
S l l m r r X

TIT SSWG F S F F F F
TIT SSWG F F F F

Let ([ , ], , [ , ]), 1, 2, ..., be a set of TIT2FNs,

0 1, 1, 2, ..., . if
([ , ], , [ , ]) is also a TIT2FN on then,

2 ( , , ..., )
2 ( , , ..., )

i F F F F F

F F F F F

n S S S S S

n n n n

n n

1

1 1 2 1 1

1 2 1

i i i i i

i i i i i

n n n n n1 1 1 1 1

(12)

Proof. :

=+F F l l

l l

c c

r r r r

Since, 1 (*(1 ) *(1 ) ) , 1

(*(1 ) *(1 ) ) ,

1 (*(1 ) *(1 ) ) ,

1 (*(1 ) *(1 ) ) , 1 (*(1 ) *(1 ) )

i n Ft Ft

Ft Ft

Ft Ft

Ft Ft Ft Ft

1
1

1

1

1 1

where = = +* t i n, 1 , = = +* t i n, 1
Consider LHS,

=

= +

+

+

+

+

= + +

+ +

+ +

+ +

+ +

+ + +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

TIT SSWG F S F F F F

l l

l l

c c

r r

r r

l l l l

l l l l

c c c c

r r r r

r r r r

l l l l

l l l l

c c c c

r r r r

r r r r

2 ( , , ..., )

1 ((*(1 ) ) ( *(1 ) )) , 1

((*(1 )) ( *(1 )) ) ,

1 ((*(1 ) ) ( *(1 ) )) ,

1 ((*(1 ) ) ( *(1 ) )) , 1

((*(1 )) ( *(1 )) )

1 ((1 ) (1 ) (1 ) (1 ) ) , 1

((1 ) (1 ) (1 ) (1 ) ) ,

1 ((1 ) (1 ) (1 ) (1 ) ) ,

1 ((1 ) (1 ) (1 ) (1 ) ) ,

1 ((1 ) (1 ) (1 ) (1 ) )

1 (((1 ) (1 ) ) ((1 ) (1 ) )) ,

1 (((1 ) (1 ) ) ((1 ) (1 ) )) ,

1 (((1 ) (1 ) ) ((1 ) (1 ) )) ,

1 (((1 ) (1 ) ) ((1 ) (1 ) )) ,

1 (((1 ) (1 ) ) ((1 ) (1 ) ))

n n n n

Fi Fi
i

Fi Fi

i

Fi Fi
i

Fi Fi
i

Fi Fi
i

Fi Fn Fi Fn
i

Fi Fn Fi Fn
i

Fi Fn Fi Fn
i

Fi Fn Ft Fn
i

Fi Fn Fi Fn
i

Fi Fn Fi Fn
i

Fi Fn Fi Fn
i

Fi Fn Fi Fn
i

Fi Fn Fi Fn
i

Fi Fn Fi Fn
i

1 1 2 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

(13)

=

=

= + +

+ +

+ +

+ +

+ +

+

+ + +

+ +

+ +

+ +

+ +

+ +

+ +

TIT SSWG F F F F

l l l l

c c

r r r r

l l c

r r

l l l l

l l l l

c c c c

r r r r

r r r r

RHS 2 ( , , ..., )

1 ((1 ) (1 ) ) , ((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) , ((1 ) (1 ) )

1 ((1 ) ) , 1 ((1 ) ) , (1 (1 ) ) ,

1 ((1 ) ) , 1 ((1 ) )

1 (((1 ) (1 ) ) ((1 ) (1 ) )) ,

1 (((1 ) (1 ) ) ((1 ) (1 ) )) ,

1 (((1 ) (1 ) ) ((1 ) (1 ) ))

1 (((1 ) (1 ) ) ((1 ) (1 ) )) ,

1 (((1 ) (1 ) ) ((1 ) (1 ) ))

n n

Fi Fi
i

Fi Fi
i

Fi Fi
i

Fi Fi
i

Fi Fi
i

Fn
i

Fn
i

Fn
i

Fn
i

Fn
i

Fi Fn Fi Fn
i

Fi Fn Fi Fn
i

Fi Fn Fi Fn
i

Fi Fn Fi Fn
i

Fi Fn Fi Fn
i

1 2 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

(14)

From (13) and (14), the theorem holds.

4.1.4. Theorem

= =

=

> =

=

+ + + + + +

F l l c r r i n

l l c r r i n

k F l l c r r X

TIT SSWG F F F TIT SSWG F F F

Let ([ , ], , [ , ]), 1, 2, ..., be a set of TIT2FNs,

0 1, 1, 2, ..., . If

0, ([ , ], , [ , ]) is a TIT2FN on

then,
2 ( , , ..., ) ( 2 ( , , ..., ))

i F F F F F

F F F F F

n F F F F F

k k
n

k
n

k

1

1 2 1 2

i i i i i

i i i i i

n n n n n1 1 1 1 1

(15)

Proof. :

=

=

=

=

k S l l

c r r

TIT SSWG F F F

l l

l l

c c

r r

r r

l l

l l

c c

r r

r r

. 1 ((1 ) ) , 1 ( (1 ) ) , 1

((1 ) ) , 1 ((1 ) ) , 1 ( (1 ) )

LHS 2 ( , , ..., )

1 ([((1 ) ) ( (1 ) )] ) , 1

([((1 ) ) ( (1 ) )] ) ,

1 [([((1 ) )]) ([ ( (1 ) )]) ] ,

1 ([((1 ) ) ( (1 ) )] ) , 1

([((1 ) ) ( (1 ) )] )

1 ((1 ) (1 ) ) , 1

((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) , 1

((1 ) (1 ) )

i F F

F F F

k k
n

k

F F
k

F F
k

F
k

F
k

F F
k

F F
k

F F

F F

F F

F F

F F

1 2

i
k

i
k

i
k

i
k

i
k

i i
i

i i

i

i i
i

i i
i

i i

i

i i
k i

i i

k i

i i
k i

i i
k i

i i
k i

(16)
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=

=

=

TIT SSWG F F F

l l

l l

c c

r r

r r

l l

l l

c c

r r

r r

RHS ( 2 ( , , ..., ))

1 ((1 ) (1 ) ) , 1

((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) , 1

((1 ) (1 ) )

1 ((1 ) (1 ) ) , 1

((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) ,

1 ((1 ) (1 ) ) , 1

((1 ) (1 ) )

n
k

F F

F F

F F

F F

F F

F F

F F

F F

F F

F F

1 2

i i
k i

i i

k i

i i
k i

i i
k i

i i
k i

i i
k i

i i

k i

i i
k i

i i
k i

i i
k i

(17)

From (16) and (17),

=TIT SSWG F F F TIT SSWG F F F2 ( , , ..., ) ( 2 ( , , ..., ))k k
n

k
n

k
1 2 1 2

4.1.5. Theorem (Stability)
Let =F l l c r r([ , ], , [ , ]),i F F F F Fi i i i i =i n1, 2, ..., be a set of TIT2FNs,

l l c r r0 1,F F F F Fi i i i i =i n1, 2, ..., . If =+Fn 1

+ + + + +l l c r r([ , ], , [ , ])F F F F Fn n n n n1 1 1 1 1 is also a TIT2FN on X. If k>0
then,

=
+ + +

+

TIT SSWG F F F F F F
TIT SSWG F F F F

2 ( , , ..., )
( 2 ( , , ..., )) .

k
n

k
n n

k
n

n
k

n

1 1 2 1 1

1 2 1 (18)

Proof. :

From theorems 4.1.4. and 4.1.5. T

=
+ + +

+

IT SSWG F F F F F F
TIT SSWG F F F F

2 ( , , ..., )
( 2 ( , , ..., ))

k
n

k
n n

k
n

n
k

n

1 1 2 1 1

1 2 1

is true.

4.2. Proposed theorems using TIT2SSWA operator

In this section, the same theorems are listed out and the proof is
similar

4.2.1. Let Fi = ([lFi, lFi ], cFi, [rFi, rFi ]), =i n1, 2, ..., be a set of TIT2FNs;
then their aggregated value using TIT2SSWA operator is still a TIT2FN, 0≤
lFi l cF Fi i rFi =r i n1, 1, 2, ...,Fi and

=

TIT SSWA F F F

l l l l

c c r r r r

2 ( , , ..., )

(( ) ( ) ) , (( ) ( ) ) ,

(( ) ( ) ) , ((1 ) ( ) ) , (( ) ( ) )

n

F F F

F F F F F F

1 2

i i
i

Fi i
i

i i
i

i i
i

i i
i

(19)
where ==i

n
1 , ==i

n
1

=
= =

F i n F
F TIT SSWA F F F F

If all , 1, 2, ..., are equal, i.e.,
then 2 ( , , ..., ) .

i i

n1 2 (20)

=
+ + +

+

TIT SSWA F F F F F F
TIT SSWA F F F F

2 ( , , ..., )
2 ( , , ..., )

n n n n

n n

1 1 2 1 1

1 2 1 (21)

=TIT SSWA k F k F k F k TIT SSWA F F F2 ( , , ..., ) 2 ( , , ..., )n n1 2 1 2 (22)

=+ + +

+

TIT SSWA k F F k F F k F F k
TIT SSWA F F F F

2 ( , , ..., )
2 ( , , ..., )

n n n n

n n

1 1 2 1 1

1 2 1 (23)

4.3. Proposed method for traffic flow control using TIT2SSWA operator

The traffic flow of the junction is considered during rush hour on a
working day inFig. 2. The arrow marks represent the direction of the
flow in each direction. The average number of vehicles per hour coming
in and departing at each intersecting point are taken as triangular in-
terval type-2 fuzzy numbers instead of crisp numbers. The aim of this
work is to identify the junction that has a higher number of vehicles
(traffic) that need to be cleared first using the score value of the IT2FNs,
and the result can be concluded based on the greater score value.

Using Eq. (19),

=

= +

+

+

+

+

=

+

+

+

+

+

TIT SSWA Z Z Z Z2 ( , ) (0.45) (0.55)

((0.6) (0.2) (0.6) . (0.2) )

, ((0.7) (0.3) (0.7) . (0.3) ) ,

((0.8) (0.4) (0.8) . (0.4) ) ,

((0.9) (0.5) (0.9) . (0.5) )

, ((1) (0.6) (1) . (0.6) )

[0.62, 0.73], 0.84, [0.92, 1]

1 2 1 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

0.45 0.55
2

0.45 0.55
2

0.45 0.55
2

0.45 0.55
2

0.45 0.55
2

Similarly,

=
=

TIT SSWA Z Z Z Z2 ( , ) (0.45) (0.55)
[0.56, 0.68], 0.78, [0.87, 0.9]

2 3 2 3

=
=

TIT SSWA Z Z Z Z2 ( , ) (0.45) (0.55)
[0.41, 0.53], 0.65, [0.75, 0.85]

3 4 3 4

=
=

TIT SSWA Z Z Z Z2 ( , ) (0.45) (0.55)
[0.56, 0.68], 0.79, [0.88, 0.95]

4 1 4 1

Finding the score values (SVs)
Using Eq. (5)

= + + × + + + + =SV Z Z( , ) 0.62 1
2

1 0.62 0.73 0.92 1 4(0.84)
8

1.51 2

Similarly,

= = =SV Z Z SV Z Z SV Z Z( , ) 1.33, ( , ) 1.05, ( , ) 1.372 3 3 4 4 1

From the score values, the junction between Z1and Z2 has a higher
value, and therefore it is recommended that this junction has more
traffic and may be cleared first.

5. Neutrosophic perspective

The concept of interval type-2 fuzzy sets can be extended to interval
neutrosophic sets. As fuzzy sets handle only truth and false membership
grades whereas neutrosophic sets handle not only truth and false
membership grades but also indeterminacy grade, extension of the
above results would provide an efficient way of handling uncertainties
existing in the real-world problems.

The above theorems have been extended to an interval neutrosophic
setting. The following are the basic concepts related to interval neu-
trosophic sets.
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5.1. Basic concepts

In this section, essential definitions of interval neutrosophic set and
numbers are given, and based on these definitions, Schweizer and Sklar
operations of INNs have been proposed.

5.1.1. Interval Neutrosophic Set (INS) [46]
Let U be a nonempty set. An interval neutrosophic set Bis defined as

follows.
=B x T x I x F x x B{ , ( ), ( ), ( ) | }, where the intervals

=T x T x T x( ) [ ( ), ( ) ] [0, 1]L U , =I x I x I x( ) [ ( ), ( ) ] [0, 1]L U ,
=F x F x F x( ) [ ( ), ( ) ] [0, 1]L U for x ∈ Uare the grades of the truth-

membership, indeterminacy-membership and false-membership re-
spectively.

5.1.2. Interval neutrosophic numbers [32]
Let =X x x x{ , , ..., }n1 2 be an INS, where =xj

T T I I F F[ , ], [ , ], [ , ]j
L

j
U

j
L

j
U

j
L

j
U for =j n1, 2, 3, ..., is a collection of INNs

andT T I I F F, , , , , (0, 1)j
L

j
U

j
L

j
U

j
L

j
U , > 0andδ>0. Then, the SS T-norm

and T-conorm operations on INNs, are defined as follows.

5.2. Proposed schweizer and sklar operations of interval neutrosophic
numbers

Addition:

= + +

x x

T T T T T T T T{[(( ) ( ) ( ) ( ) ) , (( ) ( ) ( ) ( ) ) ]
,

L L L L U U U U

1 2

1 2 1 2
1/

1 2 1 2
1/

(24)

+

+

+

+

I I I I

I I I I

F F F I

F F F F

[1 ((1 ) (1 ) (1 ) (1 ) ) , 1

((1 ) (1 ) (1 ) (1 ) ) ],

[1 ((1 ) (1 ) (1 ) (1 ) ) , 1

((1 ) (1 ) (1 ) (1 ) ) ]}

L L L L

U U U U

L L L L

U U U U

1 2 1 2
1/

1 2 1 2
1/

1 2 1 2
1/

1 2 1 2
1/

Numerical Example:
If =x [0.7, 0.8], [0.0, 0.1], [0.1, 0.2]1 and =x2

[0.4, 0.5], [0.2, 0.3], [0.3, 0.4] are the two INNs and = 2then

Fig. 1. Traffic control system using fuzzy logic.

Fig. 2. Traffic flow on the road with four junctions using triangular interval type-2 fuzzy numbers.
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=

+
+

x x

{
[((0.7) (0.4) (0.7) . (0.4) )
, ((0.8) (0.5) (0.8) . (0.5) ) ],

1 2

2 2 2 2 1/2

2 2 2 2 1/2

+
+
+
+

= =x x

[1 ((1 0) (1 0.2) (1 0) . (1 0.2) ) , 1
((1 0.1) (1 0.3) (1 0.1) . (1 0.3) ) ],

[1 ((1 0.1) (1 0.3) (1 0.1) . (1 0.3) ) , 1
((1 0.2) (1 0.4) (1 0.2) . (1 0.4) ) ]}

{[0.76, 0.85], [0.11, 0.13], [0.05, 0.12]} INN

2 2 2 2 1/2

2 2 2 2 1/2

2 2 2 2 1/2

2 2 2 2 1/2

1 2

Multiplication:

= +

+

+ +

+ +

x x

T T T T

T T T T

I I I I I I I I

F F F I F F F F

{[1 ((1 ) (1 ) (1 ) (1 ) )

1 ((1 ) (1 ) (1 ) (1 ) ) ],

[(( ) ( ) ( ) ( ) ) , (( ) ( ) ( ) ( ) ) ],

[(( ) ( ) ( ) ( ) ) , (( ) ( ) ( ) ( ) ) ]}

.

L L L L

U U U U

L L L L U U U U

L L L L U U U U

1 2

1 2 1 2
1/

1 2 1 2
1/

1 2 1 2
1/

1 2 1 2
1/

1 2 1 2
1/

1 2 1 2
1/

(25)

Numerical Example:

= +
+

+ +
+ +
= =

x x

x x

{[1 ((1 0.7) (1 0.4) (1 0.7) . (1 0.4) ) ,
1 ((1 0.8) (1 0.5) (1 0.8) . (1 0.5) ) ],
[((0) (0.2) (0) . (0.2) ) , ((0.1) (0.3) (0.1) . (0.3) ) ],
[((0.1) (0.3) (0.1) . (0.3) ) , ((0.2) (0.4) (0.2) . (0.4) ) ]}

{[0.35, 0.47], [0.2, 0.31], [0.3148, 0.44]} INN

1 2
2 2 2 2 1/2

2 2 2 2 1/2

2 2 2 2 1/2 2 2 2 2 1/2

2 2 2 2 1/2 2 2 2 2 1/2

1 2

Multiplication by an ordinary Numbers:

=g x g T g T g I

g I

g F g F

. {[( ( ) ) , ( ( ) ) ], [1 ( (1 ) ) , 1

( (1 ) ) ],

[1 ( (1 ) ) , 1 ( (1 ) ) ]}

L U L

U

L U

1 1
1/

1
1/

1
1/

1
1/

1
1/

1
1/

(26)

Numerical Example: Consider =g 0.2

=

= =

x(0.2). {[(0.2(0.7) ) , (0.2(0.8) ) ], [1 (0.2(1 0.0) ) ,1
(0.2(1 0.1) ) ],

[1 (0.2(1 0.1) ) , 1 (0.2(1 0.2) ) ]}
{[0.3130, 357], [0.55, 0.5976], [0.5976, 0.6422]} INN

1
2 1/2 2 1/2 2 1/2

2 1/2

2 1/2 2 1/2

Power Operation:

=x g T g T g I

g I

g F g F

{[1 ( (1 ) ) , 1 ( (1 ) ) ], [( ( ) ) ,

( ( ) ) ],

[( ( ) ) , ( ( ) ) ]}

g L U L

U

L U

1 1
1/

1
1/

1
1/

1
1/

1
1/

1
1/

(27)

Numerical Example: Consider =g 0.2

=

= =

x {[1 (0.2(1 0.7) ) , 1 (0.2(1 0.8) ) ], [(0.2(0.0) ) ,
(0.2(0.1) ) ],

[(0.2(0.1) ) , (0.2(0.2) ) ]}
{[0.8658, 0.9106], [0.0, 0.0447], [0.0447, 0.0894]} INN

1
0.2 2 1/2 2 1/2 2 1/2

2 1/2

2 1/2 2 1/2

5.2.1. Proposed score function
For ranking INNs, a new score function is proposed in this section,

defined by

= + + +SF F T T I I I F( ) 1
2

[( ) ( ) ( 1) ]F
L

F
U

F
L

F
U

F
U

F
U2

(28)

5.3. Proposed theorems using INSSWG operator

The following theorems are proved using the proposed aggregation
operator

5.3.1. Theorem
Let =x T T I I F F[ , ], [ , ], [ , ]j j

L
j
U

j
L

j
U

j
L

j
U , =j n1, 2, 3, ..., be a collection

of INNs and their weight vector is = ( , , ..., )n1 2 , [0, 1]i
and == 1j

n
j1 . Then, the aggregated value of the interval neutrosophic

Schweizer and Sklar weighted geometric (INSSWG) operator is still an
INN, i.e.,

=

INSSWG x x x

T T

T T

I I

F F F F

( , , ..., )

{[1 ((( (1 ) ) ( (1 ) )) , 1

(( (1 ) ) ( (1 ) )) ) ],

( ( ) ) , ( ( ) ) ,

[(( ( ) ) ( ( ) )) , (( ( ) ) ( ( ) )) ]}

n

j j
L

j j
L

j j
U

j j
U

j I j j
L

j I j j
U

j j
L

j j
L

j j
U

j j
U

1 2
1/

1/

( )

1/

( )

1/

1/ 1/

j
L

j
U

(29)

where ==i
n

1 , ==i
n

1 .
Proof. :

Mathematical induction is used to prove this theorem.
When =n 2, using SS triangular norms, we get,

=

= +

+

+

+

+

+

=

INSSWG x x x x

T T T T

T T T T

I I I I

I I I I

F F F I

F F F F

T T

T T

I I

F F F F

( , )

{[1 ( (1 ) (1 ) (1 ) (1 ) ) ,

1 ( (1 ) (1 ) (1 ) (1 ) ) ]

[( ( ) ( ) ( ) ( ) )

, ( ( ) ( ) ( ) ( ) ) ],

[( ( ) ( ) ( ) ( ) )

, ( ( ) ( ) ( ) ( ) ) ]}

{[1 ((( (1 ) ) ( (1 ) )) , 1

(( (1 ) ) ( (1 ) )) ) ],

( ( ) ) , ( ( ) ) ,

[(( ( ) ) ( ( ) )) , (( ( ) ) ( ( ) )) ]}

L L L L

U U U U

L L L L

U U U U

L L L L

U U U U

j j
L

j j
L

j j
U

j j
U

j I j j
L

j I j j
U

j j
L

j j
L

j j
U

j j
U

1 2 1 2

1 1 2 2 1 1 2 2
1/

1 1 2 2 1 1 2 2
1/

1 1 2 2 1 1 2 2
1/

1 1 2 2 1 1 2 2
1/

1 1 2 2 1 1 2 2
1/

1 1 2 2 1 1 2 2
1/

1/

1/

( )

1/

( )

1/

1/ 1/

j
L

j
U

1 2

where ==j 1
2 , ==j 1

2 .
When =n k,

=

=

INSSWG x x x x x x

T T

T T

I I

F F F F

( , , ..., ) ...

{[1 ((( (1 ) ) ( (1 ) )) , 1

(( (1 ) ) ( (1 ) )) ) ],

( ( ) ) , ( ( ) ) ,

[(( ( ) ) ( ( ) )) , (( ( ) ) ( ( ) )) ]}

k k

j j
L

j j
L

j j
U

j j
U

j I j j
L

j I j j
U

j j
L

j j
L

j j
U

j j
U

1 2 1 2
1/

1/

( )

1/

( )

1/

1/ 1/

k

j
L

j
U

1 2
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where ==j
k

1 , ==j
k

1 .
When = +n k 1,

=

=

=

+ +

+ +

=
+

=
+

=
+

=
+

=
+

=
+

=
+

=
+

=
+

=
+

=
+

=
+

+INSSWG x x x x x x x x

T T

T T

I I

F F F F x

T T

T T

I

I

F F

F F

( , , ..., , ) ( ... )

{[1 ((( (1 ) ) ( (1 ) )) , 1

(( (1 ) ) ( (1 ) )) ) ],

( ( ) ) , ( ( ) ) ,

[(( ( ) ) ( ( ) )) , (( ( ) ) ( ( ) )) ]}

1 ( (1 ) ) ( (1 ) ) , 1

( (1 ) ) ( (1 ) ) ,

( ( ) )

, ( ( ) ) ,

( ( ) ) ( ( ) )

, ( ( ) ) ( ( ) )

k k k k

i i
L

i i
L

i i
U

i i
U

i I i i
L

i I i i
U

j j
L

j j
L

j j
U

j j
U

k k

j
k

j j
L

j
k

j j
L

j
k

j j
U

j
k

j j
U

j
k

j I j
k

j j
L

j
k

j I j
k

j j
U

j
k

j j
L

j
k

j j
L

j
k

j j
U

j
k

j j
U

1 2 1 1 2 1
1/

1/

( )

1/

( )

1/

1/ 1/
1 1

1
1

1
1

1/

1
1

1
1

1/

1
1

( ) 1
1

1/

1
1

( ) 1
1

1/

1
1

1
1

1/

1
1

1
1

1/

k k

i
L

i
U

j
L

j
U

1 2 1

Hence, the theorem is true for all values of n.
Numerical Example: For =n 2
Consider the same x1and x2, and consider the weight vectors

= 0.551 and = 0.451

=
= +

+
+
+
+

+
=

INSSWG x x x x( , )
{[1 (0.55(1 0.7) 0.45(1 0.4) (0.55(1 0.7) )(0.45(1 0.4) )) ,

1 (0.55(1 0.8) 0.45(1 0.5) (0.55(1 0.8) )(0.45(1 0.5) )) ]
[(0.55(0) 0.45(0.1) (0.55(0) )(0.45(0.1) )) ,
(0.55(0.1) 0.45(0.3) (0.55(0.1) )(0.45(0.3) )) ]
[(0.55(0.1) 0.45(0.3) (0.55(0.1) )(0.45(0.3) )) ,
(0.55(0.2) 0.45(0.4) (0.55(0.2) )(0.45(0.4) )) ]}

{[0.5489, 0.6367], [0.0671, 0.2140], [0.2140, 0.3040]}.

1 2 1
0.55

2
0.45

2 2 2 2 1/2

2 2 2 2 1/2

2 2 2 2 1/2

2 2 2 2 1/2

2 2 2 2 1/2

2 2 2 2 1/2

5.3.2. Theorem
If = n n n(1/ , 1/ , ...,1/ )then,

= ( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

INSSWG x x x

T T

T T

I I I I

F F F F

( , , ..., )

1 (1 ) (1 ) , 1

(1 ) (1 ) ,

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( )

n

n j
L

n j
L

n j
U

n j
U

n j
L

n j
L

n j
U

n j
U

n j
L

n j
L

n j
U

n j
U

1 2

1 1 1/

1 1 1/

1 1 1/ 1 1 1/

1 1 1/ 1 1 1/

(30)

where ==i
n

1 , ==i
n

1 . Therefore, INSSWG operator reduces into an
interval neutrosophic Schweizer and Sklar weighted arithmetic
(INSSWA) operator when the weight vector = n n n(1/ , 1/ , ...,1/ ).

5.3.3. Theorem (Idempotency)

=

= =
=

x T T I I F F

j n x x
INSSWG x x x x

Let [ , ], [ , ], [ , ] ,

1, 2, 3, ..., be a collection of INNs and if , then
( , , ..., ) .

j j
L

j
U

j
L

j
U

j
L

j
U

j

n1 2 (31)

Proof. :

=

=

=
=
=
=

INSSWG x x x

T T

T T

I I

F F F F

T T

T T
T T I I F F

T T I I F F
x

( , , ..., )

{[1 ((( (1 ) ) ( (1 ) )) , 1

(( (1 ) ) ( (1 ) )) ) ],

( ( ) ) , ( ( ) ) ,

[(( ( ) ) ( ( ) )) , (( ( ) ) ( ( ) )) ]}

{[1 ((1 ) ) , 1 ((1 ) ) ],

, , ,

{[1 ((1 )), 1 ((1 ))], [( ), ( ) ], [( ), ( )]}
{[1 , 1 ], [ , ], [ , ]}
{[ , ], [ , ], [ , ]}

n

i i
L

i i
L

i i
U

i i
U

i I i i
L

i I i i
U

j j
L

j j
L

j j
U

j j
U

L U

F F I I

L U
I I F F

L U L U L U

L U L U L U

1 2
1/

1/

( )

1/

( )

1/

1/ 1/

1/ 1/

( )

1/

( )

1/

( )

1/

( )

1/

( ) ( ) ( ) ( )

i
L

i
U

L U L U

L U L U

Hence, the theorem is proved.
Numerical computation can be performed as in theorem 5.3.1.

5.3.4. Theorem (Boundedness)
Let =x j n, 1, 2, ...,j be a collection of INNs and let

=

=

+

+

x

T T I I

F F

x

T T I I

F F

x INSSWG x x x x

min( ), min( ) , max( ), max( ) ,

max( ), max( ) and

max( ), max( ) , min( ), min( ) ,

min( ), min( ) . then,

( , , ..., )

j
j
L

j
j
U

j
j
L

j
j
U

j
j
L

j
j
U

j
j
L

j
j
U

j
j
L

j
j
U

j
j
L

j
j
U

n1 2 (32)

Proof. :

T T T T T T

I I I I I I

F F F F F F

Since, min( ) max( ), min( ) max( )

min( ) max( ), min( ) max( )

min( ) max( ), min( ) max( )

j
j
L

j
L

j
j
L

j
j
U

j
U

j
j
U

j
j
L

j
L

j
j
L

j
j
U

j
U

j
j
U

j
j
L

j
L

j
j
L

j
j
U

j
U

j
j
U

the following inequalities are holding good.
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T T

T T

T T

T T

T T

T T

I I I I

I I

I I I I

I I

F F F F

F F

F F F F

F F

1 (( min(1 ) ) ( min(1 ) ))

1 (( (1 ) ) ( (1 ) ))

1 (( max(1 ) ) ( max(1 ) ))

1 (( min(1 ) ) ( min(1 ) ))

1 (( (1 ) ) ( (1 ) ))

1 (( max(1 ) ) ( max(1 ) )) ,

(( min( ) ) ( min( ) )) (( ( ) ) ( ( ) ))

(( max( ) ) ( max( ) )) ,

(( min( ) ) ( min( ) )) (( ( ) ) ( ( ) ))

(( max( ) ) ( max( ) )) ,

(( min( ) ) ( min( ) )) (( ( ) ) ( ( ) ))

(( max( ) ) ( max( ) )) ,

(( min( ) ) ( min( ) )) (( ( ) ) ( ( ) ))

(( max( ) ) ( max( ) ))

j j
L

j j
L

j j
L

j j
L

j j
L

j j
L

j j
U

j j
U

j j
U

j j
U

j j
U

j j
U

j j
L

j j
L

j j
L

j j
L

j j
L

j j
L

j j
U

j j
U

j j
U

j j
U

j j
U

j j
U

j j
L

j j
L

j j
L

j j
L

j j
L

j j
L

j j
U

j j
U

j j
U

j j
U

j j
U

j j
U

1/

1/

1/

1/

1/

1/

1/ 1/

1/

1/ 1/

1/

1/ 1/

1/

1/ 1/

1/

Therefore, +x INSSWG x x x x( , , ..., )n1 2 . Hence, the
result.Numerical computation can be performed as in theorem 5.3.1.

5.3.5. Theorem (Stability)
Let =x T T I I F F[ , ], [ , ], [ , ]j j

L
j
U

j
L

j
U

j
L

j
U , =j n1, 2, 3, ..., be a collection

of INNs and their weight vector is = ( , , ..., )n1 2 , [0, 1]i
and == 1j

n
j1 . If =+ + + + + + +x T T I I F F[ , ], [ , ], [ , ]n n

L
n
U

n
L

n
U

n
L

n
U

1 1 1 1 1 1 1 is also
an INN and k>0 then

=
+ + +

+

INSSWG x x x x x x
INSSWG x x x x

( , , ..., )
( ( , , ..., ))

k
n

k
n n

k
n

n
k

n

1 1 2 1 1

1 2 1 (33)

Proof. :

Based on the operational laws and above results, the following re-
sults are true for INNs.

=+ + +

+

INSSWG x x x x x x INSSWG x x x
x

( , , ..., ) ( , , ..., )n n n n n

n

1 1 2 1 1 1 2

1 (34)

=INSSWG x x x INSSWG x x x( , , ..., ) ( ( , , ..., ))k k
n

k
n

k
1 2 1 2 (35)

From (34) and (35), it is obvious that,

=
+ + +

+

INSSWG x x x x x x
INSSWG x x x x

( , , ..., )
( ( , , ..., ))

k
n

k
n n

k
n

n
k

n

1 1 2 1 1

1 2 1

Numerical computation can be performed as in theorem 5.3.1.

5.4. Proposed theorems using INSSWA operator

Here, statements of the above theorems are given, and the proof is
similar.

5.4.1. Theorem
Let =x T T I I F F[ , ], [ , ], [ , ]j j

L
j
U

j
L

j
U

j
L

j
U , =j n1, 2, 3, ..., be a collection

of INNs and their weight vector is = ( , , ..., )n1 2 , [0, 1]i
and == 1j

n
j1 . Then, the aggregated value of the interval neutrosophic

Schweizer and Sklar weighted averaging (INSSWA) operator is still an
INN, i.e.,

=

INSSWA x x x

T T T T

I

I I

F F

F F

( , , ..., )

{[((( ( ) ) ( ( ) )) , (( ( ) ) ( ( ) )) ) ],

1 ( (1 ) ) , 1

(( (1 ) ) ( (1 ) )) ,

[1 (( (1 ) ) ( (1 ) )) , 1

(( (1 ) ) ( (1 ) )) ]}

n

j j
L

j j
L

j j
U

j j
U

j I j j
L

j j
U

j j
U

j j
L

j j
L

j j
U

j j
U

1 2
1/ 1/

(1 )

1/

1/

1/

1/

j
L

(36)

= =
=

x i n x x INSSWA x x x
x

If all , 1, 2, ..., areequal, i.e., then ( , , ..., )
. .

i i n1 2

(37)

=+ + +

+

INSSWA x x x x x x INSSWA x x x
x

( , , ..., ) ( , , ..., )n n n n n

n

1 1 2 1 1 1 2

1 (38)

=INSSWA k x k x k x k INSSWA x x x( , , ..., ) ( , , ..., )n n1 2 1 2 (39)

=+ + +

+

TIT SSWA k F F k F F k F F k
TIT SSWA F F F F

2 ( , , ..., )
2 ( , , ..., )

n n n n

n n

1 1 2 1 1

1 2 1 (40)

5.5. Proposed method for traffic flow control using INSSWA operator

For the same experiment as in the previous case, the average
number of vehicles per hour coming in and departing at each inter-
secting point is taken as INNs instead of crisp numbers as in Fig. 3. The
aim of this work is to identify the junction that has more vehicles
(traffic), which need to be cleared first using the score value of the INN
and the higher score value represents the junction that has more traffic.

Using Eq. (36),

=
= +

+
+

+
+

+
=

INSSWA Z Z Z Z( , ) (0.45) (0.55)
[(0.45(0.3) 0.55(0.4) (0.45(0.3) )(0.55(0.4) )) ,

(0.45(0.7) 0.55(0.6) (0.45(0.7) )(0.55(0.6) )) ],
[1 (0.45(1 0.2) 0.55(1 0.1) (0.45(1 0.2) )(0.55(1 0.1) )) ,
1 (0.45(1 0.3) 0.55(1 0.2) (0.45(1 0.3) )(0.55(1 0.2) )) ],
[1 (0.45(1 0.3) 0.55(1 0.2) (0.45(1 0.3) )(0.55(1 0.2) )) ,
1 (0.45(1 0.4) 0.55(1 0.3) (0.45(1 0.4) )(0.55(1 0.3) )) ]

[0.35, 0.61], [0.22, 0.29], [0.29, 0.37]

1 2 1 2
2 2 2 2 1/2

2 2 2 2 1/2

2 2 2 2 1/2

2 2 2 2 1/2

2 2 2 2 1/2

2 2 2 2 1/2

Similarly,

=
=
=
=
=
=

INSSWA Z Z Z Z

INSSWA Z Z Z Z

INSSWA Z Z Z Z

( , ) (0.45) (0.55)
[0.38, 0.58], [0.22, 0.30], [0.26, 0.34]

( , ) (0.45) (0.55)
[0.35, 0.62], [0.23, 0.31], [0.23, 0.32]

( , ) (0.45) (0.55)
[0.4, 0.57], [0.23, 0.31], [0.22, 0.29]

2 3 2 3

3 4 3 4

4 1 4 1

Finding the score values (SVs)
Using Eq. (28),

= + × + +

=

SV Z Z( , ) 1
2

[(0.35 0.61) (0.22 0.29) (0.29 1) 0.37]

0.89

1 2
2

Similarly, =SV Z Z( , ) 0.85,2 3 =SV Z Z( , ) 0.84,3 4 =SV Z Z( , ) 0.834 1
Based on the score values, the junction between Z1and Z2 has higher

value, and therefore it is recommended that this junction may be
cleared first as it has more traffic.

6. Traffic flow using proposed operators

The proposed operators under interval type-2 fuzzy environment
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and interval neutrosophic environment are listed in Table 1. Controlling
traffic flow has been handled using TIT2SSWA and INSSWA operators.
There is a similar procedure for the geometric case.

In Table 1, junction (Z1, Z2)has the higher score value, as de-
termined using both the proposed methods, and therefore the traffic
may be cleared in that junction first.

7. Qualitative comparison of traffic control management using
crisp sets, fuzzy sets, type-2 fuzzy sets, neutrosophic set and
interval neutrosophic sets

In this section, a comparative analysis has been done with ad-
vantages and limitations of different types of sets such as crisp, fuzzy,
type-2 fuzzy, neutrosophic and interval valued neutrosophic sets in
traffic control management. This analysis will be helpful in under-
standing the role of all types of sets mentioned and will provide the
motivation for conducting research on these areas and applying them in
real-world problems according to the capacity of the type of sets. From
the analysis, it is found that interval-based fuzzy and neutrosophic sets
can handle more uncertainties than the single-valued type of sets. This
point will give a different perspective to new researchers.

Traffic control m-
anagement

Advantages Limitations

Using crisp sets • Fixed time period for all traffic
densities
• Achieved to characterize the
real situation appropriately

• Cannot act while there is a
fluctuation in traffic density
• Unable to react immediately
to unpredictable changes
such as a driver's behavior
• Unable to handle rapid mo-
mentous changes that disturb
the continuity of the traffic

Using fuzzy sets • Various time durations can be
considered according to the
traffic density
• Follow a rule-based approach
that accepts uncertainties

• Adaptiveness is missing
while computing the con-
nectedness of the interval-
based input
• Cannot be used to show

• Able to model the reasoning of
an experienced human being
• Adaptive and intelligent
• Able to apply and handle real-
life rules identical to human
thinking
• Admits fuzzy terms and con-
ditions
• Has the best security
• Makes it simpler to convert
knowledge beyond the domain

uncertainty as it applies crisp
and accurate functions
• Cannot handle uncertainties
such as stability, flexibility
and on-line planning comple-
tely as consequences can be
uncertain

Using type-2 fuzzy
sets

• Rule-based approach that ac-
cepts uncertainties completely
• Adaptiveness (Fixed type-1
fuzzy sets are used to calculate
the bounds of the type-reduced
interval change as input
changes)
• Novelty (the upper and lower
membership functions may be
used concurrently in calculating
every bound of the type-re-
duced interval)

• Computational complexity
is high as the membership
functions are themselves
fuzzy

Neutrosophic set • Deals not only with uncer-
tainty but also indeterminacy
owing to unpredictable envir-
onmental disturbances

• Unable to round up and
down errors of calculations

Interval neutro-
sophic set

• Deals with more uncertainties
and indeterminacy
• Flexible and adaptable
• Able to address issues with a
set of numbers in the real unit
interval, not just a particular
number
• Able to round up and down
errors of calculations

• Unable to deal with criterion
incomplete weight informa-
tion

8. Conclusion

Controlling and clearing traffic is an essential daily traffic man-
agement task. In this paper, operational laws, and aggregation

Fig. 3. Traffic flow on the road with four junctions using interval neutrosophic numbers.

Table 1
Aggregated traffic flow and score value.

Junction TIT2SSWA SV INSSWA SV

(Z1, Z2) 〈[0.62, 0.73], 0.84, [0.92, 1]〉 1.5 〈[0.35, 0.61], [0.22, 0.29], [0.29, 0.37]〉 0.89
(Z2, Z3) 〈[0.56, 0.68], 0.78, [0.87, 0.9]〉 1.33 〈[0.38, 0.58], [0.22, 0.30], [0.26, 0.34]〉 0.85
(Z3, Z4) 〈[0.41, 0.53], 0.65, [0.75, 0.85]〉 1.05 〈[0.35, 0.62], [0.23, 0.31], [0.23, 0.32]〉 0.84
(Z4, Z1) 〈[0.56, 0.68], 0.79, [0.88, 0.95]〉 1.37 〈[0.4, 0.57], [0.23, 0.31], [0.22, 0.29]〉 0.83
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operators have been proposed under triangular interval type-2 fuzzy
and interval neutrosophic environments. The validity of the proposed
concepts has been verified using a numerical example. Furthermore, a
novel traffic flow control method using the proposed operators is pro-
posed. An improved score function is also proposed. Using TIT2SSWA
and INSSWA operators, the traffic flow is analyzed with the score values
using the score functions and the same can be derived using TIT2SSWG
and INSSWG operators. The junction identified as having more traffic is
the same for both the methods applied.
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