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A B S T R A C T

We propose herein the application of Benders decomposition with stochastic linear programming instead of the
mix integer linear programming (MILP) approach to solve a lot sizing problem under uncertain demand, par-
ticularly in the case of a large-scale problem involving a large number of simulated scenarios. In addition, a
special purpose method is introduced to solve the sub problem of Benders decomposition and reduce the pro-
cessing time. Our experiments show that Benders decomposition combined with the special purpose method
(BCS) requires shorter processing times compared to the simple MILP approach in the case of large-scale pro-
blems. Furthermore, our BCS approach shows a linear relationship between the processing time and the number
of scenarios, whereas the MILP approach shows a quadratic relationship between those variables, indicating that
our approach is suitable in solving such problems.

1. Introduction

In the field of operations research, a lot sizing problem is an im-
portant problem that aims to find a production approach with the
lowest total cost. In this case, the total cost comprises the production,
inventory, out-of-stock and machine set-up costs. Given a certain de-
mand, finding a solution to this problem is generally easy because it
only involves deterministic costs; however, customer demand is un-
certain in real-world scenarios. This type of lot sizing problem with the
introduction of demand uncertainty is referred to as the lot sizing
problem under uncertain demand. In this study, we particularly con-
sider the deterministic (production and machine set-up costs) and sto-
chastic (inventory and out-of-stock costs that might occur in different
situations) costs to find robust solutions (number of products produced
in each period) that minimise the total cost, including the deterministic
and stochastic costs. In practice, decision-making for dynamic lot sizing
under certain demands does not include risky cost assessments because
of additive inventory/back order/lost sale costs caused by demand
uncertainty effects that generally exist in practice and can be re-
presented by a large set of possible scenarios. Thus, with the ad-
vancement of both computer hardware and software, especially for Big
Data Analytics, a more advanced quantitative technique can be devel-
oped to fulfil these requirements. Stochastic linear programming [1] is
one of the several techniques that can achieve this through the simu-
lation of possible scenarios that are transformed into a mathematical

model. Mix integer linear programming (MILP) can then be applied to
obtain the solution. Although this technique provides a robust solution
to the lot sizing problem, it involves a large number of simulated sce-
narios, which generate a considerably large mathematical model for
MILP. Therefore, this technique has a major drawback in that it requires
a considerably long processing time to obtain the solution.

In this study, we apply Benders decomposition [2,3] with stochastic
linear programming instead of directly using MILP to alleviate the
abovementioned problems. In particular, we separate the primal pro-
blem into a master problem and a sub problem. Furthermore, we de-
velop a special-purpose method to solve the sub problem to reduce the
processing time in the case of large-scale problems.

2. Literature review

A lot sizing problem was defined by Wagner and Whitin [4] as a
mathematical model to find a production approach with the lowest
total cost under a certain demand. However, as previously mentioned,
the customer demand in the real world is uncertain. Whybark and
Williams [5] discussed the possible consequences of uncertain factors
for a Material Requirements Planning system, with uncertain demand
being one of the factors in their study. Several studies have also con-
sidered various solutions to the lot sizing problem under uncertain
demand. For example, Sox [6] presented a solution to the dynamic lot
sizing problem under random demand and non-stationary cost
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conditions by transforming the problem into a mixed-integer nonlinear
programming model and applying a method based on the Wagner–-
Whitin algorithm to find an optimised solution. The two primary results
of this study are increasing the computational efficiency and demon-
strating that the lot sizes used in the rolling-horizon implementation of
this algorithm are bounded below by the optimal lot sizes for a sto-
chastic dynamic programming formulation. Bertsimas [7] proposed a
robust optimisation approach for inventory theory by transforming the
problem into a mathematical model to find a solution: a linear pro-
gramming or mix integer programming (MIP) model in the case of no
fixed costs and fixed costs, respectively. Bertsimas further demonstrated
the optimality of base-stock policies in the proposed framework when
the optimal stochastic policy is base stock and in other instances, where
the optimal stochastic policy is not known. Brandimarte [8] re-
commended a solution for the capacitated lot sizing problem (CLSP)
under uncertain demand using a scenario tree model based on which
the CLSP can be transformed into an MIP model to obtain the solution.
In addition, he proposed a heuristic approach based on the fix-and-relax
strategy as an alternative method. The computational complexity sig-
nificantly increases as the size of the scenario tree increases when the
nested Benders decomposition approach is used to find a solution.
Furthermore, Tempelmeier and Herpers [9] used the ABCβ heuristic to
find a solution to the dynamic CLSP with random demand under a fill
rate constraint condition. This heuristic is as flexible as the determi-
nistic variant. Although our numerical study shows that the Silver–Meal
criterion dominates over the other cost criteria in the same manner as in
the case of deterministic demand conditions, the least unit cost criterion
does not, which is later transformed into a column generation heuristic
[10] by incorporating a column generation technique. The quality of
the solutions is compared with the results obtained by applying the
ABCβ heuristic of Tempelmeier and Herpers [9] alone. Using the pro-
posed heuristic is fast and provides solutions that are superior to those
of the ABCβ heuristic on average. In another study, Tempelmeier and
Hilger [11] proposed the transformation of the same problem into a
linear programming model and solved it using a variant of the fix-and-
optimise heuristic. This heuristic provides better solutions than the
column-generation heuristic in cases with a small number of products
and high-capacity utilisations. However, the linear programming model
contains an error; therefore, it is corrected by integrating an extra
binary decision variable and two additional constraints into the model
[12]. Vargas [13] presented an optimised solution for the Wagner–-
Whitin dynamic lot-size model problem under random demand. Their
study is interesting because their method can be used to resolve the lot-
size problem under a normally distributed uncertainty. In addition, the
results presented here are expected to provide a better performance
benchmark for existing heuristics and form the basis for a new gen-
eration of production scheduling heuristics for the stochastic case of the
dynamic lot-size model and its extensions. Agra et al. [14] studied the
manufacturing problems in a make-to-order production approach under
uncertain demand and proposed a robust optimised solution by trans-
forming the problem into an MIP model; however, in the case of a large-
scale problem, obtaining a solution might not be possible. Therefore,
two additional techniques were proposed, namely the elite heuristic
and tournament heuristic approaches. These heuristics are fast and
provide solutions that typically have considerably small optimality
gaps. Overall, the tournament heuristic was better than the elite heur-
istic only for the case wherein the number of elite elements selected was
small (m̂ =5); otherwise, in all other cases, the elite heuristic out-
performed the tournament heuristic. In 2017, Brahimi et al. [15] re-
viewed the literature regarding the single-item dynamic lot sizing
problems, then categorised and summarised them. The literature re-
lated to uncertain demand is discussed in their review.

As previously mentioned, Benders decomposition [2,3] is a tech-
nique for solving complex or large-scale problems by dividing them into
two problems, namely the master problem and the sub problem. Each
problem is then solved to obtain the final solution. Benders

decomposition has been adopted in several previous studies. Pishvaee
et al. [16] enhanced Benders decomposition to an accelerated Benders
decomposition to obtain solutions to problems in medical supply chains
under uncertainty and compared its efficiency in terms of the proces-
sing time with MILP in the CPEX programme. Khatami et al. [17] ap-
plied Benders decomposition to stochastic programming to obtain a
solution for the reverse supply chain network with demand and return
uncertainties using Cholesky's factorisation and k-means clustering
methods to reduce the number of scenarios. Wheatley et al. [18] pre-
sented a method using Benders decomposition to solve an inventory-
location problem under uncertain demand (Poisson-distributed) with
service constraints and an exact method for resolving the sub problem.
Sadeghian and Ardehali [19] adopted a double Benders decomposition
approach to find an economic dispatch scheduling solution for in-
tegrated heat and power systems to maximise economic profits and
minimise environmental emissions. Hemmati et al. [20] proposed the
application of Benders decomposition to reduce the time required to
obtain a solution for the sustainable energy hub design problem under
uncertainty in the case when simulation leads to a large MILP model.
Furthermore, Kergosien et al. [21] proposed the application of Benders
decomposition together with the Tabu search heuristic to solve pro-
blems comprising the uniform parallel machine scheduling problem
and the multi-trip travelling salesman problem with only one salesman.
In 2017, the aforementioned research related to Benders decomposition
was also included in a review [22].

Based on the literature review, Benders decomposition is generally
used to solve a problem involving uncertainty to reduce the problem
size. However, to the best of our knowledge, Benders decomposition has
never been applied to obtain a solution for a lot sizing problem under
uncertain demand using stochastic linear programming. Benders de-
composition is applied to solve similarly structured problems; hence,
Bahu and Zionts [24] applied Benders decomposition for the multi-item
scheduling problem to find the solution of decision variables in the sub
problem. Moreover, they applied the principle of complementary
slackness to decrease the time required to find solutions. Hence, in this
study, we focused on the application of Benders decomposition with
stochastic linear programming to reduce the processing time required
to obtain a solution for the lot sizing problem under uncertain demand
in the case that the resulting problem from the simulation is a large-
scale one.

3. Research method

3.1. Lot sizing problem model

The lot sizing problem model employed herein is the Wagner's basic
production model [4]. The details of this model are as follows:

Model 1: Lot Sizing Model

∑ ∑ ∑ ∑= + + +− +Minimize Z c x g I h I e P
t

t t
t

t t
t

t t
t

t t
(1)

− + =+ −x I I D1 1 1 1 (2)

+ − − − = ≤ ≤−
+

−
− + −x I I I I D t T( ) ( ) 2t t t t t t1 1 (3)

≤x MPt t (4)

≥+ −x I I, , 0t t t (5)

∈P {0, 1}t (6)

where,
Decision variables:
xt is the number of products produced in time period t;
Pt is the production status in time period t;

+It is the number of inventory in time period t;
−It is the number of out-of-stock products in time period t;
Parameters:
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ct is the production cost per unit in time period t;
Dt is the demand in time period t;
gt is the out-of-stock cost per unit in time period t;
ht is the inventory cost per unit in time period t;
et is the machine set-up cost in time period t;
T is the last time period; and
M represents Big M (i.e. the convergence of a large value to infinity).
Model 1 can be explained as follows: Eq. (1) sets a target for the

total cost optimisation, whereas Eqs. (2) and (3) specify that a sum of
manufactured products and inventory or out-of-stock products must be
equal to demand. Furthermore, Eq. (4) specifies a constraint that a
product can be made when a machine is set up, whereas Eq. (5) spe-
cifies that the number of products, inventory and out-of-stock products
must be greater than zero. Finally, Eq. (6) indicates that a production
status of ‘1’ indicated ‘In Production’, whereas ‘0’ indicates ‘Not in
Production’.

3.2. Problem statements

The problem model used can be defined as follows:

• Only one type of product is manufactured.

• The production cost is equal in every scenario.

• Demand is uncertain.

• The number of products manufactured is equal in every scenario.

• An unlimited number of products can be manufactured in every time
period, and this number must always be greater than or equal to
zero.

• The number of products that is manufactured can be higher or lesser
than the demand.

• The number of inventory and out-of-stock products varies according
to the demand.

• The cost of inventory and out-of-stock products varies according to
the scenarios.

This problem requires a robust solution to minimise the total cost in
every scenario. Therefore, as many scenarios as possible must be si-
mulated to find a suitable production approach for all scenarios. Thus,
this problem is translated into a mathematical model as follows:

Model 2: Lot Sizing Model under Uncertain Demand (modified from
Chapter 16 in Wagner [23])

∑ ∑ ∑ ∑= + + +− +Minimize Z c x g I h I e P
t

t t
t s

t s t s
t s

t s t s
t

t t
,

, ,
,

, ,
(7)

− + = ∀+ −x I I D ss s s1 1, 1, 1, (8)

+ − − − = ≤ ≤ ∀−
+

−
− + −x I I I I D t T s( ) ( ) 2 ,t t s t s t s t s t s1, 1, , , , (9)

≤x MPt t (10)

≥+ −x I I, , 0t t s t s, , (11)

∈P {0, 1}t (12)

where,
Decision variables:
xt is the number of products produced in time period t;
Pt is the production status in time period t;

+It s, is the number of inventory in time period t under scenario s;
−It s, is the number of out-of-stock products in time period t under

scenario s;
Parameters:
ct is the production cost per unit in time period t;
Dt, s is the demand in time period t under scenario s;
gt, s is the out-of-stock cost per unit in time period t under scenario s;
ht, s is the inventory cost per unit in time period t under scenario s;
et is the machine set-up cost in time period t;

T is the last time period; and
M represents Big M (i.e., the convergence of large value to infinity).
Model 2 can be explained as follows: Eq. (7) sets a target for the

total cost optimisation in every scenario, whereas Eqs. (8) and (9)
specify that the demand in scenario s must be equal to the sum of the
manufactured products and inventory or out-of-stock products in sce-
nario s. Furthermore, Eq. (10) specifies a constraint that a product can
be produced when the machine is set up, whereas Eq. (11) specifies that
the number of products, inventory and out-of-stock products must be
greater than zero. Finally, Eq. (12) specifies that the production status
of ‘1’ indicates ‘In Production’, whereas ‘0’ indicates ‘Not in Production’.

3.3. Applying benders decomposition

We applied herein two models of Benders decomposition: (i) a sub
problem model in which at least one type of decision variable is sub-
stituted by a constant in the primal problem, after which the problem is
transformed into the dual problem; and (ii) Benders relaxed master
problem (also called Benders optimality cut), a model derived from the
application of the properties of the weak duality theorem in linear
programming, which is used to obtain a solution by adapting the strong
duality theorem, and uses convolution of target value in the primal
problem and Benders optimality cut for verification. The applications of
these two models are described below.

3.3.1. Application of the sub problem model
The application of the sub problem model begins with the sub-

stitution of a decision variable xt by a constant in Model 2, which is the
primal model. Model 2 can then be transformed to a dual model as
follows:

Model 3: Sub Problem Model

∑ ∑= −Maximize W D x y( *)
t s

t s t t s, ,
(13)

− ≤ − ≤ ≤ ≤ − ∀+h y y g t T s1 1,t s t s t s t s, , 1, , (14)

− ≤ ≤ ∀h y g sT s T s T s, , , (15)

where,
Decision variables:
x *t substitutesxtby a constant in Model 2, and
yt, s is a decision variable generated from the transformation of

Model 2 into a dual problem.
Model 3 is a dual model obtained using Model 2 after substituting xt

with a constant to becomex *t . x *t can then be moved from the left-hand
side to the right-hand side in Eqs. (8) and (9). Model 3 will be used to
find the value of yt, s, which will, in turn, be used in the Benders op-
timality cut model.

3.3.2. Application of the benders optimality cut model
After obtaining the value for yt, s using Model 3, the weak duality

theorem is applied to create the Benders optimality cut model as fol-
lows:

Model 4: Benders Optimality Cut Model

Minnimize T (16)

∑ ∑ ∑ ∑ ∑≥ − − + ∀T D y y c x e P j* [ * ]
t s

t s t s j
t s

t s j t t
t

t t, , , , ,
(17)

≤ ∀x MP t,t t (18)

≥ ∈ ∀x P t0, {0, 1}t t (19)

where,
y*t s j, , is the value of yt, s obtained from Model 3 in iteration j.
Model 4 is obtained by substituting the value of yt, s obtained from

Model 3 in iteration j for y*t s j, , in Eq. (17) to find the value of xt until such
a value is obtained when T in Model 4 and Z in Model 1 are equal based
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on the strong duality theorem.

3.4. Creation of a special-purpose method for yt, s in model 3

This special-purpose method is based on the idea of exchanging
advance optimisation's classroom to solve the lot sizing problem under
uncertain demand in case of no set-up costs. The three primary ap-
proaches to solve this problem are: 1) linear programming in primal
problem, 2) linear programming in dual problem and 3) Benders de-
composition. The Benders decomposition approach requires the most
time in solving the problem because it uses the linear programming
approach to solve the sub problem, which involves many decision
variables nearby in the primal problem. In the specific structure of the
sub problem, it is interesting to study another approach in problem-
solving instead of using the linear programming method.

However, this study aimed to create a special-purpose method to
find the solution to the required sub problem instead of using the linear
programming method that the sub-problem structure is only shown in
Model 3. The concept of this special-purpose method can be explained
below.

In finding a value for the decision variables that can maximise the
value of the objective equation, we generally consider the coefficient of
decision variables in the objective equation if those variables are in-
dependent. The underlying idea is that when a coefficient is positive,
the decision variables will have a value closer to the upper bound;
otherwise, they will have a value at the lower bound. Based on this
principle, we can immediately obtain the required value if the decision
variables in Eq. (13) are made independent of each other.

Therefore, the structure of Model 3 is modified as follows to make
the decision variables in Eq. (13) independent of each other:

Step 1. Define variable ut, s.
Step 2. Define = ++y y ut s t s t s, 1, , and substitute it in Eq. (14), which

will change the equation's structure as follows:

− ≤ + − ≤+ +h y u y gt s t s t s t s t s, 1, , 1, ,

− ≤ ≤h u gt s t s t s, , ,

Finally, the structure of Eq. (14) is changed as follows:
− ≤ ≤h u gt s t s t s, , , .

Step 3. Substitute = ++y y ut s t s t s, 1, , in Eq. (13) to change the
equation's structure as follows:

∑ ∑= −Maximize W D x y( *)
t s

t s t t s, ,

Separate the equation as:

∑ ∑

∑

= − + −

+ + −

Maximize W D x y D x y

D x y

( *) ( *)

... ( *)
s

s s
s

s s

s
T s T T s

1, 1 1, 2, 2 2,

, ,

Substitute = ++y y ut s t s t s, 1, , in the equation to obtain:

∑ ∑

∑

= − + + − +

+ + −

Maximize W D x u y D x u y

D x y

( *)( ) ( *)( )

... ( *)
s

s s s
s

s s s

s
T s T T s

1, 1 1, 2, 2, 2 2, 3,

, ,

Continuously substitute = ++y y ut s t s t s, 1, , in the equation until

∑

∑

∑

= − + + +

+ − + + +

+ + −

−

−

Maximize W D x u u y

D x u u y

D x y

( *)( ... )

( *)( ... )

... ( *)

s
s s T s T s

s
s s T s T s

s
T s T T s

1, 1 1, 1, ,

2, 2 2, 1, ,

, ,

Then, rearrange the equation as

∑

∑ ∑

∑ ∑

∑ ∑

= −

+ ⎡

⎣
⎢ − + − ⎤

⎦
⎥

+ +⎡

⎣
⎢ − + + − ⎤

⎦
⎥

+ ⎡

⎣
⎢ − + + − ⎤

⎦
⎥

− − −

Maximize W D x u

D x D x u

D x D x u

D x D x y

( *)

( *) ( *)

... ( *) ... ( * )

( *) ... ( *)

s
s s

s
s

s
s s

s
s

s
T s T T s

s
s

s
T s T T s

1, 1 1,

1, 1 2, 2 2,

1, 1 1, 1 1,

1, 1 , ,

Arrange the mathematical equation as

∑ ∑ ∑ ∑ ∑= − + −
=

−

= =

Maximize W D x u D x y[[ ( *)] ] [[ ( *)] ]
s t

T

j

t

j s j t s
s t

T

t s t T s
1

1

1
, ,

1
, ,

Finally, the structure of Eq. (13) is presented as follows:

∑ ∑ ∑ ∑ ∑= − + −
=

−

= =

Maximize W D x u D x y[[ ( *)] ] [[ ( *)] ]
s t

T

j

t

j s j t s
s t

T

t s t T s
1

1

1
, ,

1
, ,

Step 4 Restructure Model 3 to obtain Model 5.
The new sub problem model, Model 5, is then obtained as follows:

∑ ∑ ∑

∑ ∑

=
⎡

⎣
⎢
⎢

⎡

⎣
⎢ −

⎤

⎦
⎥

+ ⎡

⎣
⎢

⎡

⎣
⎢ − ⎤

⎦
⎥

⎤

⎦
⎥

⎤

⎦
⎥
⎥

=

−

=

=

Maximize W (D x*) u

(D x*) y

s
t 1

T 1

j 1

t

j,s j t,s

s t 1

T

t,s t T,s
(20)

− ≤ ≤ ≤ ≤ − ∀h u g t T swhere 1 1,t s t s t s, , , (21)

− ≤ ≤h y gT s T s T s, , , (22)

= + ≤ ≤ − ∀+y y u t T swhere 1 1,t s t s t s, 1, , (23)

Thus, Model 5 is obtained from Model (3), wherein decision vari-
ables ut, s and yT, s in Eq. (20) are related to each other at time period
T− 1 in Eq. (23) as = +− −y y uT s T s T s1, , 1, . However, the value of −yT s1,
can be derived if −uT s1, and yT, s are known; therefore, even if ut, s and yT,
s have a relationship at time period T− 1, they are independent. The
coefficient of ut, s is the cumulative frequency of −D x( *)j s j, from j=1 to
j= t (t=1, …, T-1), whilst the coefficient of yT, s is the cumulative
frequency of −D x( *)t s t, from 1 to T. Thus, in principle, finding a so-
lution (yt, s) from Model 3 can be described as follows:

• If the coefficient of ut, s and yT, s is positive, set ut, s and yT, s as gt, s
and gT, s, respectively.

• If the coefficient of ut, s and yT, s is less than or equal to 0, set ut, s and
yT, s as − ht s, and − hT s, , respectively.

The value of ut, s and yT, s is then used to obtain yt, s in Eq. (23),
thereby acquiring a solution for Model 3.

3.5. Combining benders decomposition with the Special-purpose method

Benders decomposition combined with the previously introduced
special-purpose method (together referred to as BCS) can be used as
follows to find the solution for the lot sizing problem under uncertain
demand:

Step 1. Set an initial answer xt, where the solution must be in a
range of possible solutions for Model 2.

Step 2. Substitute xt to x *t in Model 2 and find the value of yt, s in
iteration j using the special-purpose method.

Step 3. Substitute the value of yt, s from iteration j to y*t s j, , in Model 4
to obtain the value of xt, Pt and T using MILP.

Step 4. Substitute xt and Pt from Step 3 to find the value of Z using
Model 2, specifically Eqs. (8) to (10). +It s, and −It s, can be calculated as

A. Witthayapraphakorn and P. Charnsethikul Operations Research Perspectives 6 (2019) 100096

4



follows:

• Consider Eq. (8): = −+I x Ds s1, 1 1, and −It s, =0 if the value of x1 is
greater than or equal toD1, s. However, = −−I D xs s1, 1, 1 and +I s1, =0 if
the value of x1 is less than D1, s.

• Consider Eq. (9): = + − −+
−
+

−
−I x I I Dt s t t s t s t s, 1, 1, , and −It s, =0 if the

value of + −−
+

−
−x I It t s t s1, 1, is greater than or equal to Dt, s. However,

= − + −−
−
+

−
−I D x I I( )t s t s t t s t s, , 1, 1, and +It s, =0 if the value of

+ −−
+

−
−x I It t s t s1, 1, is less than Dt, s.

• Substitute the value of xt,Pt, +It s, and −It s, in Eq. (7) to obtain the value
of Z.

Step 5. Compare the value of Z from Step 4 with the value of T from
Step 3. If T is not equal to Z, take the value of xt from Step 3 to

Fig. 1. Steps to find the solution for the lot sizing problem under uncertain demand using BCS.

Table 1
Results of Experiment 1.

Scenario Problem scale (m×n) Processing time (s)

MILP BCS

1000 5005×10,010 11.7061 0.2266
2000 10,005× 20,010 130.4895 0.3933
3000 15,005× 30,010 294.7193 0.4107
4000 20,005× 40,010 579.9738 0.4367
5000 25,005× 50,010 977.2036 0.4724
6000 30,005× 60,010 – 0.5037
7000 35,005× 70,010 – 0.6536
8000 40,005× 80,010 – 0.6738
9000 45,005× 90,010 – 0.7854
10,000 50,005× 100,010 – 1.6678

Table 2
Results of Experiment 2.

Scenario Problem scale (m×n) Processing time (s)

MILP BCS

500 5010×10,020 7.4921 0.6413
1000 10,010× 20,020 32.0065 0.9158
1500 15,010× 30,020 60.7807 0.9961
2000 20,010× 40,020 157.2473 1.0638
2500 25,010× 50,020 700.7136 1.4635
3000 30,010× 60,020 – 1.9329
3500 35,010× 70,020 – 2.2179
4000 40,010× 80,020 – 2.3773
4500 45,010× 90,020 – 3.056
5000 50,010× 100,020 – 3.219

Table 3
Results of Experiment 3.

Scenario Problem scale (m×n) Processing time (s)

MILP BCS

200 3015×6030 0.2444 0.9119
400 6015×12,030 4.9386 1.6481
600 9015×18,030 10.5739 1.7538
800 12,015× 24,030 48.1299 1.8151
1000 15,015× 30,030 70.6503 2.3841
1200 18,015× 36,030 81.9115 2.6132
1400 21,015× 42,030 88.26 3.6186
1600 24,015× 48,030 384.4042 5.8284
1800 27,015× 54,030 495.5283 6.8886
2000 30,015× 60,030 – 7.3389

Table 4
Results of Experiment 4.

Scenario Problem scale (m×n) Processing time (s)

MILP BCS

200 4020×8040 0.418 3.3065
400 8020×16,040 4.1471 3.3792
600 12,020× 24,040 12.0243 4.6506
800 16,020× 32,040 36.1055 4.9598
1000 20,020× 40,040 74.8652 5.9521
1200 24,020× 48,040 82.477 7.788
1400 28,020× 56,040 – 10.6545
1600 32,020× 64,040 – 12.1189
1800 36,020× 72,040 – 14.4019
2000 40,020× 80,040 – 16.4084
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repeatedly obtain another value of yt, s in Step 2 until T=Z. The value
of xt, Pt, +It s, and −It s, in Step 4 will be the right solution that leads to the
final result when T=Z.
Remark. Condition T=Z might be replaced by Z− T< β, where β is
tending to 0 (β is used to construct a stopping condition whilst finding
solutions using the special-purpose method).

The abovementioned steps are summarised as a flowchart in Fig. 1.

3.6. Using MILP and genetic algorithm (GA) in MATLAB to compare with
BCS

• The MILP approach is used to solve Model 2 using intlinprog() in
MATLAB to consider all decision variables (xt, Pt, +It s, and −It s, ).

• The GA approach is used to solve Model 2 using ga() in MATLAB to
construct the solutions of xt, where Pt, +It s, and −It s, are varied by xt,
and the crossover fraction in ga() is set equal to 0.5. If the value of xt
is more than zero, Pt is equal to one. However, if this is not true, Pt is
equal to zero. This approach to find +It s, and −It s, is similar to the
technique of Step 4 in Section 3.5.

Fig. 2. Relationship between the number of scenarios and the processing time in the case of the BCS approach.

Fig. 3. Relationship between the number of scenarios and the processing time in the case of the MILP approach.
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3.7. Creating the test problem in MATLAB

The scenario is randomised under the uniform distribution condi-
tion using the randi() function to construct the test problem. These
random scenarios are disposed in Model 2 for problem testing.

4. Experiment design and results

Our experiments involved comparing our proposed BCS approach
with that of the MILP to directly solve Model 2. However, this com-
parison was only in terms of efficiency. In terms of effectiveness, both
techniques had similar solutions considering that our BCS approach was
based on Benders decomposition and a linear programming technique
that will always result in an optimised solution.

The efficiency was measured in terms of the processing time for
both methods by adjusting two experimental factors, namely the
number of scenarios, which would reveal the relationship between the
processing time and the number of scenarios when the latter increases,
and the number of time periods, which would show the relationship
between the processing time and the number of scenarios when the
number of time periods increases. The four following experiments were
conducted based on this:

• Experiment 1 spans five time periods with the number of simula-
tions involving 1000–10,000 scenarios.

• Experiment 2 spans 10 time periods with the number of simulations
involving 500–5000 scenarios.

• Experiment 3 spans 15 time periods with the number of simulations
involving 200–2000 scenarios.

• Experiment 4 spans 20 time periods with the number of simulations
involving 200–2000 scenarios.

In addition to the abovementioned four patterns, the study results
showed the problem testing in a very large-scale problem to represent
the efficiency of the BCS approach by comparing it with GA instead of

MILP. The problem cannot find the solution if BCS is compared with
MILP. Moreover, the solutions from solving by BCS and GA were used to
compare the quality.

• Experiment 5 spans 40 time periods with the number of simulations
involving 1000–10,000 scenarios.

All experiments were performed on MATLAB R2016a on a computer
with the following specifications: Intel Core i7-7700 CPU 3.60 GHz and
RAM 16GB.

Tables 1–4 show the results from our four experiments.
Remark. n=variables and m=constrains

The results in Tables 1–4 clearly show that in the case of a large
number of scenarios, our BCS approach required a shorter processing
time compared to the MILP approach to obtain the same result. Fur-
thermore, when the problem structure is large at any point, the MILP
approach cannot be used to find the solution, but our approach can.
However, note that when testing with a small number of scenarios, the
MILP approach requires a slightly shorter processing time than our BCS
approach.We plotted a graph to visualise the relationship between the
processing time and the increasing number of scenarios for BCS and
MILP (Figs. 2 and 3).

Figs. 2 and 3 depict that a linear relationship with R2>0.88 existed
between the number of scenarios and the processing time in the case of
the BCS approach. The relationship in the case of the MILP approach
showed a quadratic trend with R2>0.9, implying that in the case of a
large number of scenarios for the lot sizing problem under uncertain
demand, the BCS approach will perform more efficiently than the MILP
approach.

Thus, in summary, we can conclude from the obtained results that
the BCS approach is suitable for the lot sizing problem under uncertain
demand in the case of a large-scale problem because of the addition of
more scenarios. This result can be attributed to the fact that the BCS
approach only considers two decision variables of the MILP approach,
namely xt and Pt. Therefore, adding more scenarios has an insignificant
impact considering that the increasing number of scenarios will be re-
flected in variables +It s, and −It s, , which in turn, do not affect the decision
variables that are considered in the case of the subsequent MILP.

However, this is not the case when applying the MILP approach to
directly solve a problem based on Model 2 because it considers all
decision variables (xt,Pt, +It s, and −It s, ). Therefore, adding more scenarios
directly affects the performance because +It s, and −It s, in Model 2 will
consequently increase, thereby directly affecting all the decision vari-
ables. In addition, the MILP approach cannot obtain the solution when
the number of scenarios is considerably high because of many decision
variables. Table 5 presents the solutions from Experiment 5.

Table 5 illustrates that solving the problem using the BCS approach
resulted in the shortest processing time in the case of all experiments.
Furthermore, these solutions had the highest quality. The difference in
the percentage of the quality of the results using the GA and BCS

Table 5
Results of Experiment 5.

Scenario Problem scale (m×n) Processing time (s) % GA difference from
BCS

BCS GA

1000 40,040×80,080 32.73 46.62 3.96%
2000 80,040×160,080 36.12 223.74 4.86%
3000 120,040× 240,080 42.47 240.39 5.60%
4000 160,040× 320,080 44.63 303.33 8.62%
5000 200,040× 400,080 48.90 312.73 2.49%
6000 240,040× 480,080 51.02 362.49 2.23%
7000 280,040× 560,080 55.47 466.73 8.88%
8000 320,040× 640,080 58.60 719.96 4.37%
9000 360,040× 720,080 60.89 1122.20 2.53%
10,000 400,040× 800,080 68.47 1823.90 8.95%

Fig. 4. Relationship between the number of scenarios and the processing time (GA and BCS).
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approach to solve the problem was 2–9%. Fig. 4 shows the relationship
between the processing times and the number of scenarios when the GA
and BCS approaches were used to solve the problem.

Fig. 4 depicts a linear relationship between the processing times and
the number of scenarios when the problem was solved using the BCS
approach similar to Experiments 1–4 with R2 equal to 0.98. The re-
lationship between the processing times and the number of scenarios
when the problem was solved using the GA approach was in the form of
a power function with degree 2 and R2 equal to 0.98. Based on these

relationships and the solution quality in Table 5, we can confirm that
solving the problem is more efficient when using the BCS approach
instead of the GA approach.

The GA approach in this research was applied from a function in
MATLAB; hence, the solution may not be of high quality. Thus, it will
be developed to solve this problem in the future.

Fig. 5. Convergence of Z-T to 0.

Table 6
Show Data Z-T convergence to 0.

Round Z-T Round Z-T Round Z-T Round Z-T Round Z-T Round Z-T Round Z-T Round Z-T

1 1,211,909.56 41 5238.1 81 1169.98 121 114.21 161 39.75 201 6.57 241 0.82 281 0.09
2 264,753.57 42 5100.67 82 1022.45 122 113.86 162 39.21 202 5.39 242 0.8 282 0.09
3 185,690.7 43 5038.81 83 996.93 123 108.92 163 38.46 203 5.14 243 0.78 283 0.08
4 115,770.13 44 4949.66 84 953.94 124 108.9 164 37.58 204 5.05 244 0.77 284 0.08
5 115,770.13 45 4403.73 85 947.74 125 108.7 165 36.5 205 4.78 245 0.64 285 0.08
6 65,792.79 46 3938.73 86 907.43 126 108.66 166 36.22 206 4.25 246 0.63 286 0.08
7 65,792.79 47 3884.96 87 878.1 127 104.49 167 35.6 207 4.23 247 0.62 287 0.08
8 65,792.79 48 3860.86 88 862.87 128 102.22 168 33.99 208 4.09 248 0.54 288 0.06
9 65,792.79 49 3816.77 89 836.7 129 99.22 169 33.3 209 4.05 249 0.47 289 0.05
10 65,792.79 50 3799.05 90 434.9 130 96.36 170 33.06 210 4.03 250 0.41 290 0.05
11 65,792.79 51 3226.79 91 315.1 131 90.18 171 33.03 211 3.96 251 0.37 291 0.05
12 65,792.79 52 2894.84 92 262.79 132 89.87 172 32.39 212 3.65 252 0.34 292 0.04
13 53,383 53 2794.72 93 242.63 133 88.88 173 31.71 213 3.48 253 0.33 293 0.04
14 53,383 54 2766.76 94 222.08 134 85.1 174 31.37 214 3.43 254 0.32 294 0.04
15 53,383 55 2744.35 95 219.37 135 84.7 175 24.64 215 2.92 255 0.31 295 0.04
16 49,807.62 56 2372.98 96 218.24 136 82.77 176 21.45 216 2.86 256 0.3 296 0.03
17 49,807.62 57 2039.63 97 210.72 137 80.22 177 21.37 217 2.75 257 0.27 297 0.03
18 49,807.62 58 1989.23 98 208.82 138 79.65 178 18.45 218 2.7 258 0.27 298 0.03
19 49,807.62 59 1961.96 99 203.6 139 77 179 17.35 219 2.4 259 0.25 299 0.03
20 41,022.64 60 1895.85 100 199.05 140 75.01 180 16.35 220 2.25 260 0.25 300 0.03
21 31,269.54 61 1884.72 101 189.99 141 73.9 181 16.21 221 2.09 261 0.25 301 0.03
22 17,050.95 62 1859.97 102 187.45 142 71.23 182 15.6 222 2.03 262 0.24 302 0.03
23 16,876.84 63 1763.89 103 179.35 143 69.64 183 14.79 223 1.96 263 0.23 303 0.03
24 16,768.98 64 1732.42 104 162.07 144 68.44 184 14.53 224 1.82 264 0.23 304 0.02
25 16,429.56 65 1721.29 105 151.75 145 65.54 185 14.01 225 1.8 265 0.23 305 0.02
26 12,821.98 66 1703.08 106 149.67 146 63.41 186 12.57 226 1.77 266 0.21 306 0.02
27 12,531.12 67 1668.71 107 146.79 147 62.91 187 12.55 227 1.73 267 0.19 307 0.02
28 12,281.47 68 1441.38 108 139.02 148 62.18 188 12.4 228 1.72 268 0.19 308 0.02
29 12,147.87 69 1393.45 109 138.95 149 61.73 189 12.13 229 1.7 269 0.19 309 0.02
30 10,525.96 70 1383.49 110 137.19 150 61.63 190 12.01 230 1.64 270 0.18 310 0.01
31 10,405.84 71 1379.08 111 134.96 151 58.18 191 10.49 231 1.42 271 0.18 311 0.01
32 9644.78 72 1325.21 112 131.82 152 58.16 192 10.1 232 1.37 272 0.18 312 0.01
33 9479.33 73 1275.17 113 128 153 58.15 193 9.84 233 1.32 273 0.16 313 0
34 7993.26 74 1263.01 114 127.67 154 55.4 194 9.64 234 1.22 274 0.15
35 7964.88 75 1231.5 115 124.27 155 53.26 195 9.45 235 1.08 275 0.14
36 6670.76 76 1230.53 116 123.05 156 52.75 196 8.9 236 0.89 276 0.14
37 6594.5 77 1216.24 117 120.98 157 52.18 197 8.58 237 0.86 277 0.1
38 6530.85 78 1200.21 118 119.62 158 52.03 198 8.25 238 0.84 278 0.1
39 6436.29 79 1188.42 119 117.46 159 41.89 199 6.06 239 0.84 279 0.09
40 5603.16 80 1181.51 120 117.27 160 41.29 200 5.69 240 0.84 280 0.09
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5. Conclusions

Our experimental results indicated that the application of BCS for
stochastic linear programming to solve the lot sizing problem under
uncertain demand, especially in the case where the problem is large
(resulting from an increase in the number of scenarios), is an efficient
approach in terms of the processing time compared with the MILP ap-
proach because the BCS approach had a positive, linear relationship
between the processing time and the number of scenarios, whereas the
MILP approach had a positive, quadratic relationship between both
variables. In addition, the BCS approach can address the problem even
when it is considerably large, in which case, it cannot be handled using
the MILP approach. Although the MILP approach requires a shorter
processing time than the BCS approach in the case of small problems,
this difference is insignificant. In conclusion, our proposed BCS ap-
proach is better than the MILP approach in solving the lot sizing pro-
blem under uncertain demand.

6. Future research

The value of Z-T converged to zero in the case of the BCS approach.
In particular, the value of Z-T gradually decreased after it approached
close to zero, which is the reason why many iterations were used in
solving the problem. For example, the iterations in the experiment that
spans 40 time periods with the number of simulations involving 10,000
scenarios are 313. Fig. 5 shows the convergence of Z-T to zero with the
values of Z-T listed in Table 6.

Fig. 5 denotes that the values of Z-T rapidly decreased initially, after
which they gradually decreased when the value approached zero.The
number of iterations to solve the problem was 78. This finding showed
that the BCS approach can be used to improve the quality of the solu-
tion by increasing the speed of convergence to zero.

The technique of increasing the speed of Z-T convergence to zero is
referred to as ‘accelerating Benders decomposition’. Vahdat and
Vahdatzad [25], Pishvaee et al. [16] and Saharidis et al. [26] used
different techniques in their studies to add other constraints into the
Benders optimality cut model instead of the cut constraint to decrease
the number of iterations during problem solving. This technique used
an approach to construct the valid inequality equations specified for
some problem. Moreover, Costa et al. [27] constructed more than one
cut constraint for solving each iteration using the heuristic method.
Poojari and Beasley [28] used the GA approach to solve the problem of
Benders optimality cut model instead of using the MILP approach. His
technique led to different solutions using different cut constraints.

Two approaches for improving the quality of BCS that might be
undertaken in the future include adding valid inequality equations to
Model 4 in the case that the model can construct the valid inequality
equations and 2) constructing many cut constraints instead of con-
structing the valid inequality equations.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.orp.2018.100096.
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