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A B S T R A C T

This paper originally proposes two unique closed-form solutions, respectively to risky assets only and a risk-free
asset existing situations, of the mean-variance-skewness (MVS) optimization model subject to mean-sknewness-
normalization constraints for portfolio selection. The efficient frontier and capital allocation surface (CAS) re-
spectively derived from the two solutions are two hyperboloids, and tangent to each other at one hyperbola
referred to as the market portfolio curve. Moreover, this curve intersects the mean-skewness plane of the
portfolio return wtih zero-variance (zero-risk) at a line. Calculating the distance between a point on the coin-
cident curve with the vertex of the CAS, we present a novel ratio to measure the performance of the risk-adjusted
returns of market portfolio. The ratio is similar to the Sharpe ratio, moreover, under the more realistic as-
sumption that portfolio returns follow a skew-normal distribution, the novel ratio can quantify the degree (or
absence) of market portfolio exuberance.

1. Introduction

In the modern portfolio theory proposed by Markowitz [18], ob-
taining a mean-variance (MV) efficient portfolio denotes finding a
weight vector (proportions) of assets in a portfolio, which makes the
minimal variance of the portfolio return (gross-rate), and is subject to
the two constraints: a certain and pre-specified mean of the portfolio
return has to be achieved; the weights have to be summed up to 1. In
order to clearly addressing the issue of this traditional theory, at first,
some notations need to be reformulated here.

Definition 1. Suppose that there exist �∈p assets with their returns
= …X i p{ | 1, , }i . Let �∈Xi be a random variable, and all of them can be

vectorized as a random vector �≜ … ∈⊺ ×X X X[ ]p
p

1
1. Then, its mean

vector �∈ ×μ ,p 1 covariance matrix �∈ ×Σ ,p p coskewness matrix
�∈ × +Δ p p p( ) are defined as

≜ ≜
≜ − − ≜
≜ − − ⊗ − ≜

⊺

⊺ ⊺

μ m
Σ μ μ M

μ μ μ M

E X
E X X
E X X XΔ

( ) ,
{[ ][ ] } ˜ ,
{[ ][ ] [ ] } ˜ .

1

2

3

Here, μ, Σ, and Δ can also be considered as the first moment m1, second
central moment M̃ ,2 third central moment M̃3 of X, respectively. ⊗ denotes
Kronecker product. When the investor proportionately selects these assets as

a portfolio, the portfolio return X can be calculated by = ⊺wX X , where
≜ … ⊺w w w[ ]p1 is the weight vector (proportions) subject to =⊺w 1 1,p and
≜ … ⊺1 [1 1]p is a p×1 unitary vector. Then, the mean μ̄, variance σ̄,

skewness γ of X can be defined as

≜ =
≜ − =
≜ − = ⊗

⊺

⊺

⊺

w μ
w Σw
w w w

μ E X
σ E X μ
γ E X μ Δ

¯ ( ¯ ) ,
¯ {[ ¯ ¯] } ,
¯ {[ ¯ ¯] } ( ).

2 2

3 3

Then, based on these notations and above assumption, the MV optimization
model is formulated as

= =

⊺

⊺ ⊺

w Σw

w 1 w μ μ

min

s. t. 1, ¯ .
w

p (1)

Here, note that the portfolio return is characterized by a normal
distribution, its higher-order moments (> 2) are zero, and not be
considered in the model. Hence, the solution of this model is so simple
as to be widely used until now.

However, Peiro [20] with plenty of other empirical studies pointed
out that the portfolio returns do not follow the normal distributions.
Accordingly, a variety of recent researches suggested using the
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skewness or higher order moments to improve the MV optimization
model in portfolio theory. The improved one via the skewness is re-
ferred to as mean-variance-skewness (MVS) optimization model. For
example, Konno et al. [14] formulated a primal model maximizing the
skewness subject to the fixed mean and variance of the portfolio return:

⊗

= = =

⊺

⊺ ⊺ ⊺

w w w

w 1 w μ w Σwμ σ

Δmax ( )

s. t. 1, ¯ , ¯ .
w

p
2 (2)

In addition, based on the seminal work by Lai [15], given a MVS op-
timization model with two or more goals, e.g., with the skewness and
mean maximizations:

⊗

= =

⊺ ⊺

⊺ ⊺

w w w w μ

w 1 w Σw σ

Δmax ( ), max

s. t. 1, ¯ ,
w w

p
2 (3)

[5,21] with some other researchers suggested using polynomial goal
programming (PGP) approach to find a compromise between multiple
goals. Furthermore, Li et al. [16] proposed a fuzzy method to solve this
multiobjective optimization problem with more goals.

On the other hand, Pressacco and Stucchi [22], Maillet and Jurc-
zenko [17], Jurczenko and Maillet [12], de Athayde and Flores [6],
Mencia and Sentana [19], and Harvey et al. [10] stated that the
skewness of portfolio return needs to be set as a constraint in the MVS
optimization model:

= = ⊗ =

⊺

⊺ ⊺ ⊺

w Σw

w 1 w μ w w wμ γΔ

min

s. t. 1, ¯ , ( ) ¯ .
w

p
3 (4)

Moreover, Dudzinska-Baryla et al. [7] deformed this MVS model as

− + ⊗

= ≥ = ⋯ ≥ ≥

⊺ ⊺ ⊺

⊺

w μ w Σw w w w

w 1

λ λ

w i p λ λ

Δmax ( )

s. t. 1, 0, 1, , , 0, 0.
w

p i

1 2

1 2 (5)

If ⩾ = …w i p0, 1, ,i is left out, this deformation is similar with the MVS
model (4).

However, for all of the models mentioned above, since the first-
conditions of their Lagrangians with respect to w are quadratic equa-
tions, they may have more than one solution.

In recent years, it has been noticed that if the random vector of the
asset returns is characterized by another special distribution beyond the
normal one, the solution of the MVS optimization model may be un-
ique. During this period, Azzalini and Valle [3] introduced the multi-
variate skew-normal distribution, which includes the normal distribu-
tion, but skews it with one simple parameter. It can be used to solve the
problem of the non-unique solution. Azzalini [2] summarized this dis-
tribution family, where a p-dimensional skew-normal random vector is
defined as X∼ SNp(ξ, Ω, α) by three parameters, i.e., the location
vector ξ, scale matrix Ω, and slant vector α. Then, its probability density
function (PDF) is written as

≜ −⊺ −x ξ Ω α x ξ Ω α ω x ξϕ ϕ( ; , , ) 2 ( ; , )Φ( ( )).p p
1

Here, ϕp(x; ξ, Ω) is the PDF of the p-dimensional normal distribution
Np(ξ, Ω); Φ(x) denotes the integral function of ϕ1(x; 0, 1), and ω is a
matrix defined by setting the non-diagonal components of Ω to zero and
obtaining its square root as

≜ ◊ω Ω I( ) ,p
1
2

where ◊ denotes the Hadamard product. In order to accurately describe
the skewness of SNp, Azzalini and Valle [3] introduced a vector para-
meter δ to regulate the skewness, which is similar to the coskewness
matrix, but without correlated components. Every component value of
δ is limited to the interval −( 1, 1), and can be transformed from α using

= + ⊺ −δ α Ωα Ωα(1 ¯ ) ¯ ,
1
2

where =Ω ωΩω¯ . Moreover, δ can be directly calculated as the cube

roots of the skewnesses in the coskewness matrix Δ, or the cube roots of
the uncorrelated components in the third central moment M̃3.

Therefore, for realizing the unique solution of the MSV optimization
model, Simaan [25] seminally supposed that the random vector is on a
spherical distribution, which is similar to the skew-normal distribution
and is proposed by Kelker [13], and can be abbreviated the coskewness
matrix as a skewness vector without cosknewsses. Then, when the
skewness vector is fixed as one constraint to replace the coskewness
matrix, the MVS optimization model can be rewritten as follows.

Definition 2. Suppose there exist �∈p assets with returns
= …X i p{ | 1, , }i . Let these returns be a set of random variables which can

be vectorised as a random vector �≜ … ∈⊺ ×X X X[ ]p
p

1
1 satisfying

X∼ SNp(ξ, Ω, δ). When the investor proportionately selects these assets
as a portfolio, the portfolio return X can be calculated using = ⊺wX X ,
where ≜ … ⊺w w w[ ]p1 is the weight vector subjected to =⊺w 1 1,p and
≜ … ⊺1 [1 1]p is a p×1 unitary vector. Then, the mean ξ̄ , variance ω̄, and

skewness δ̄ of X can be respectively defined as

≜ ≜ ≜⊺ ⊺ ⊺w ξ w Ωw w δξ ω δ¯ , ¯ , ¯ .2

Then, when the skewness vector is fixed as one constraint to replace the co-
skewness matrix, the MVS optimization model can be written as

= = =

⊺

⊺ ⊺ ⊺

w Ωw

w 1 w ξ w δξ δ

min

s. t. 1, ¯, ¯.
w

p (6)

Here, since the first-condition of its Lagrangian with respect to w is a
linear equation, there just exists one solution of this model. Simaan
[25] deduced two linear equations with three unknown coefficients to
represent the solution. However, in our opinion, this solution is not the
final one, which needs to be transformed in a closed form.

Furthermore, Adcock [1] used skew-Student-t distribution to define
another MVS optimization model but without the normalization term

=⊺w 1 1p . Similarly, Gan [8] applied the skew-normal distribution to
define a model as

= =

⊺

⊺ ⊺

w Ωw

w ξ w δξ δ

min

s. t. ¯, ¯,
w

without the normalization term too.
Therefore, our purpose of this paper is to derive the unique closed-

form solution of the MVS optimization model (6) based on the skew-
normal distribution and subject to mean-sknewness-normalization
constraints. Then we can derive the efficient frontier and capital allo-
cation surface (CAS) from the solutions, which are tangent to each other
at one partial hyperbola referred to as the curve of market portfolio.
The concept of the efficient frontier will be extended from two-di-
mensional space to three-dimensional space. By measuring the distance
from a point in the curve of market portfolio to the variance-axis
through the vertex of CAS, a novel ratio of return versus risk will be
presented here. It is similar to the Sharpe ratio, but is more flexible with
additional information owing to the more realistic assumption that the
portfolio returns follow the skew-normal distribution. The novel ratio
can measure not only the performance of the risk-adjusted returns of
market portfolio versus their risks, but also the degree (or absence) of
their exuberance that expresses the skewnesses of the risk-adjusted
returns.

2. Preliminaries

For the purposes of comparison, the famous solutions of the tradi-
tional MV optimization model (1), respectively to risky assets only and
a risk-free asset existing situations, are reformulated here. Their de-
tailed deriving processes can be referred to Back [4] or other literatures.
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2.1. Only risky assets

At first, the weight vector w can be derived from the following
theorem when there only exist risky assets in the portfolio.

Theorem 1. Under Definition 1, supposing that only risky assets are
selected by the investor, the Lagrangian � of (1) can be defined as

� ≜ + − + −

= + ⎡
⎣⎢

⎤
⎦⎥
⎛

⎝
⎜
⎡
⎣⎢
⎤
⎦⎥
− ⎡
⎣⎢

⎤
⎦⎥
⎞

⎠
⎟

⊺ ⊺ ⊺

⊺
⊺ ⊺

⊺

w w Σw w 1 w μ

w Σw
1
μ

w

λ λ λ λ μ

λ
λ μ

( , , ) (1 ) ( ¯ )

1
¯ .

p

p

1 2 1 2

1

2 (7)

Here, given the following definitions:

≜ ≜ =

≜ ≜ −

⊺ − ⊺ − ⊺ −

⊺ −

1 Σ 1 1 Σ μ μ Σ 1

μ Σ μ

A B

C P AC B

, ,

, ,
p p p p

1 1 1

1 2 (8)

we can arrive the solution of w:

= ⎡
⎣⎢

−
+

− ⎤
⎦⎥

−w Σ
1 μ μ 1C B

P
A B

P
μ̄ ,p p1

(9)

through Appendix A.2.

Note that w denotes global optimization and implies that an asset
with a negative weight is not eliminated from the portfolio. This result
differs from the findings of the traditional capital asset pricing model
(CAPM) and will be further discussed in Section 4.3.

2.2. Allowing for a risk-free asset

If there exists a risk-free asset among the selected assets, we can also
obtain the solution of the MS optimization model (1).

Definition 3. Let a random vector ≜ … ⊺X X X[ ]p1 be the return vector on p
risky assets with a weight vector wX, and fulfill �∼ μ ΣX ( , )X XX . Let a
random variable R denote the return on a risk-free asset with a weight
≜ − ⊺1 ww 1 ,R p X and fulfill �∼R μ σ( , )R RR

2 . We merge X and R into a
random vector X̃ to denote the return vector on these +p 1 assets, and fulfill

�∼ μ ΣX̃ ( ˜ , ˜), where

≜ ⎡
⎣⎢

⎤
⎦⎥

≜ ⎡
⎣⎢

⎤
⎦⎥

≜ ⎡
⎣⎢

⎤
⎦⎥

≜ ⎡
⎣⎢

⎤
⎦⎥

μ
μ

Σ
Σ Σ
Σ

w wX X
R μ σ w

˜ , ˜ , ˜ , ˜ .X

R

XX XR

RX RR

X
R2

Here, these covariance matrices and variance are defined as

≜ − −
≜ − − ≜
≜ − −

⊺

⊺

Σ μ μ
Σ μ Σ

E X X
E X R μ

σ E R μ R μ

[( )( ) ],
[( )( )] ,
[( )( )].

XX X X

XR X R RX

RR R R
2

Then, the MS optimization model (1) can be rewritten as

= =

⊺

⊺
+

⊺

w Σw

w 1 w μ μ

min ˜ ˜ ˜

s. t. ˜ 1, ˜ ˜ ¯ .
w

p

˜

1 (10)

Theorem 2. Under Definition 3, the Lagrangian � of Eq. (10) is defined as

� ≜ + − + −⊺ ⊺
+

⊺w w Σw w 1 w μλ λ λ λ μ( ˜ , , ) ˜ ˜ ˜ (1 ˜ ) ( ¯ ˜ ˜).p1 2 1 1 2

Since R is a constant and uncorrelated to X, we have =σ 0,RR
2 =Σ 0 ,XR p and

= ⊺Σ 0RX p. Given the notations:

≜ ≜ ≜ ≜ ≜μ μ Σ Σ w wr μ w w, , , , ,X R XX X R0

the constrained minimization problem (10) is equivalent to

+ = + − =

⊺

⊺ ⊺ ⊺

w Σw

w μ w μ w 1w r r μ

min

s. t. (1 ) ¯ .
w

p0 (11)

Then, the corresponding Lagrangian � can be defined as

� ≜ + − − −
= + − − −

⊺ ⊺ ⊺

⊺ ⊺

w w Σw w μ w 1
w Σw u 1 w

λ λ μ r
λ μ r r

( , ) [ ¯ (1 ) ]
[( ¯ ) ( ) ],

p

p

with one Lagrange multiplier λ. Given the following definition:

= − −
= − +

⊺ −u 1 Σ u 1G r r
C Br Ar
( ) ( )

2 ,
p p

1

2 (12)

we can obtain the solution of w:

= ⎡
⎣

−
− ⎤

⎦
−w Σ

μ 1r
G

μ r( ¯ ) ,p1

(13)

through Appendix A.3.

2.3. Efficient frontier

If solutions (9) and (13) are deduced, the corresponding efficient
frontier and market portfolio can be plotted.

Corollary 1. Under the solution (9) of w, let = ⊺w xX̄ , based on Appendix
A.2, its variance is

= = − +⊺w Σwσ
P

Aμ Bμ C¯ 1 ( ¯ 2 ¯ ).2 2
(14)

The above equation can be considered as a bullet-shaped hyperbola,
sometimes referred to as the Markowitz Bullet:

� − + − + =Pσ Aμ Bμ C: ¯ ¯ 2 ¯ 0,EF
2 2 (15)

with its vertex � ≜ μ σ( ¯ , ¯ )EF EF EF at

= = ⎛
⎝
⎞
⎠

μ B
A

σ
A

¯ , ¯ 1 .EF EF

1
2

(16)

We call the bullet-shaped hyperbola efficient frontier of the MV optimization
model.

Corollary 2. On the other hand, under the solution (13) of w, based on
Appendix A.3, the variance of the portfolio return X on w is

= = −⊺w Σwσ
G

μ r¯ 1 ( ¯ ) ,2 2
(17)

or

= ⎧
⎨
⎩

− ⩾

−
σ

μ r G μ r

r μ G
¯

( ¯ )/ , if ¯

( ¯)/ , otherwise
.

1
2

1
2 (18)

This can also be considered as double half-lines:

� − + − =Gσ μ r: ¯ ( ¯ ) 0,CAL
2 2 (19)

referred to as the best possible capital allocation line (CAL), also known as
the capital market line (CML), where its vertex � ≜ μ σ( ¯ , ¯ )CAL CAL CAL is
located at (r, 0).

2.4. Market portfolio

Corollary 3. Merging Eqs. (14) and (17) according to Appendix A.6, the
efficient frontier and CAL are tangent to each other at one tangency point
� ≜∧ ∧ ∧μ σ( ¯ , ¯ ),E C E C E C referred to as market portfolio, where

=

⎧

⎨
⎪

⎩
⎪

−
+ =

−
+ ⩾

−
−

+ = −
−

+

= ⎛
⎝ −

⎞
⎠

∧

∧

μ

P
A AG P

B
A

G
AG P

r μ r

P AG
A AG P

B
A

G
AG P

r

σ G
AG P

¯
( ) ( )

, if ¯

2
( ) ( )

, otherwise

¯ .

E C

EF

E C

1
2

1
2

1
2

1
2

1
2

(20)

Corollary 4. Furthermore, given � ≜∧ ∧ ∧μ σ( ¯ , ¯ ),E C E C E C we can define
Sharpe ratio � ∧S( )E C of return versus risk as
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� ≜

⎧

⎨
⎪

⎩
⎪

−
= ⩾

−
= −

∧

∧

∧

∧

∧

μ r
σ

G μ r

r μ
σ

G
S( )

¯
¯

, if ¯

¯
¯

, otherwise
.E C

E C

E C
EF

E C

E C

1
2

1
2

(21)

In the traditional CAPM, the vertex of the efficient frontier μ̄EF is not
less than the risk-free ratio of return r given the assumption that in-
vestors always maintain long positions. By contrast, this study supposes
that investors can have short positions, while μ̄EF is negative relative to
r. This produces a relatively negative market portfolio, as described in
Section 4.4. In Section 4.5, we propose asset picking rules that are
applicable to both the MV and MVS optimization models.

3. Main theorems

Based on the premises mention above, the MVS optimization model
(6) can be completely solved here in two closed forms.

3.1. Only risky assets

Theorem 3. Under Definition 2, supposing that the investor only selects
risky assets, the Lagrangian � of (6) can then be defined as

� ≜ + − + − + −

= +
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎛

⎝

⎜
⎜

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
−
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎞

⎠

⎟
⎟

⊺ ⊺ ⊺ ⊺

⊺

⊺ ⊺

⊺

⊺

w w Ωw w 1 w ξ w δ

w Ωw
1
ξ
δ

w

λ λ λ λ λ ξ λ δ

λ
λ
λ

ξ
δ

( , , , ) (1 ) ( ¯ ) ( ¯ )

1
¯
¯

.

p

p

1 2 3 1 2 3

1

2

3

(22)

Here, given the following definitions:

≜ − ≜ − ≜ −
≜ − ≜ − ≜ −
≜ + + = + + = + +
= − + − −

P AC B Q AE D R CE F
U BD AF V BF CD W DF BE

AR BW DV BW CQ FU DV FU EP
ACE AF BDF B E CD

, , ,
, , ,

Ξ
2 ,

2 2 2

2 2 2 (23)

which are calculated by

≜ ≜ =

≜ ≜ =

≜ ≜ =

⊺ − ⊺ − ⊺ −

⊺ − ⊺ − ⊺ −

⊺ − ⊺ − ⊺ −

1 Ω 1 1 Ω ξ ξ Ω 1

ξ Ω ξ 1 Ω δ δ Ω 1

δ Ω δ ξ Ω δ δ Ω ξ

A B

C D

E F

, ,

, ,

, ,

p p p p

p p

1 1 1

1 1 1

1 1 1 (24)

we can obtain the solution of w:

= ⎡
⎣⎢

+ +
+

+ +
+

+ + ⎤
⎦⎥

−w Ω
1 ξ δ 1 ξ δ 1 ξ δR W V W Q U

ξ
V U P

δ
Ξ Ξ

¯
Ξ

¯ ,p p p1

(25)

through Appendix A.4.

3.2. Allowing for a risk-free asset

When investors add a risk-free asset to their selected risky assets, the
MVS optimization model (6) can be solved using the following ap-
proach.

Definition 4. Let a random vector ≜ … ⊺X X X[ ]p1 be the return vector on p
risky assets with a weight vector wX, satisfying X∼ SNp(ξX, ΩXX, δX). Let a
random variable R denote the return on a risk-free asset with a weight
≜ − ⊺1 ww 1 ,R p X satisfying ∼R SN ξ ω δ( , , )R RR R1

2 . We will merge X and R
into a random vector X̃ to denote the return vector of these +p 1 assets
where

≜ ⎡
⎣⎢

⎤
⎦⎥

≜ ⎡

⎣
⎢

⎤

⎦
⎥ ≜ ⎡

⎣⎢
⎤
⎦⎥

≜ ⎡
⎣⎢

⎤
⎦⎥

≜ ⎡
⎣⎢

⎤
⎦⎥

ξ
ξ

Ω
Ω Ω
Ω

δ
δ

w w

X X
R ξ ω

δ w

˜ , ˜ , ˜ ,

˜ , ˜ .

X

R

XX XR

RX RR

X

R

X
R

2

Then, the MVS optimization model (6) can be re-written as

= = =

⊺

⊺
+

⊺ ⊺

w Ωw

w 1 w ξ w δξ δ

min ˜ ˜ ˜

s. t. ˜ 1, ˜ ˜ ¯, ˜ ˜ ¯.
w

p

˜

1 (26)

Theorem 4. Under Definition 4, The associated Lagrangian � is

� ≜ + − + −

+ −

⊺ ⊺
+

⊺

⊺

w w Ωw w 1 w ξ

w δ

λ λ λ λ λ ξ

λ δ

( ˜ , , , ) ˜ ˜ ˜ (1 ˜ ) ( ¯ ˜ ˜)

( ¯ ˜ ˜).

p1 2 3 1 1 2

3

Since R is a constant and uncorrelated to X, we have =ω 0,RR
2 =Ω 0 ,XR p

= ⊺Ω 0 ,RX p and =δ 0R . Given the notations:

≜ ≜ ≜
≜ ≜ ≜

ξ ξ Ω Ω
δ δ w w

r ξ
w w

, , ,
, , ,

X R XX

X X R0

the constrained minimisation problem (26) is equivalent to

+ = + − =
=

⊺

⊺ ⊺ ⊺

⊺

w Ωw

w ξ w ξ w 1
w δ

w r r ξ
δ

min

s. t. (1 ) ¯,
¯.

w

p0

(27)
1Then, the corresponding Lagrangian � can be defined as

� = + − − − + −

= + ⎡
⎣⎢

⎤
⎦⎥
⎛

⎝
⎜
⎡
⎣⎢
− ⎤

⎦⎥
− ⎡
⎣⎢

− ⎤
⎦⎥
⎞

⎠
⎟

⊺ ⊺ ⊺ ⊺

⊺
⊺ ⊺

⊺

w w Ωw w ξ w 1 w δ

w Ωw ξ 1
δ

w

λ λ λ ξ r λ δ

λ
λ

ξ r
δ

r

( , , ) [ ¯ (1 ) ] ( ¯ )

¯
¯

( ) ,

p

p

1 2 1 2

1

2

with two Lagrange multipliers λ1 and λ2. Here, given the following
definitions:

≜ − − = − +

≜ − = −

≜ − = − + − + −
= + +

⊺ −

⊺ −

ξ 1 Ω ξ 1

δ Ω ξ 1

G r r C Br Ar

H r F Dr

EG H CE F DF BE r AE D r
R Wr Qr

( ) ( ) 2

( )

Π ( ) 2( ) ( )
2 ,

p p

p

1 2

1

2 2 2 2

2 (28)

we can obtain the solution of w:

= ⎡
⎣⎢

− −
− +

− − ⎤
⎦⎥

−w Ω
ξ 1 δ δ ξ 1E r H

ξ r
G H r

δ
( )

Π
( ¯ )

( )
Π

¯ ,p p1

(29)

through Appendix A.4.

3.3. Efficient frontier

Similar to the MV optimization model, if solutions (25) and (29) are
deduced, the corresponding efficient frontier and tangency portfolio
can be plotted.

Corollary 5. Under the solution (25) of w, let = wX X¯ be the portfolio
return, based on Appendix A.4, its variance is

= = + + + + +⊺w Ωwω R Qξ Pδ Wξ Vδ Uξδ¯ 1
Ξ

( ¯ ¯ 2 ¯ 2 ¯ 2 ¯ ¯).2 2 2

(30)

Similar to the hyperbola mentioned in the mean-variance analysis,
sometimes referred to as the Markowitz Bullet, the above equation can be

1 Jiang et al. [11] proposed a MVS model including a risk-free asset like (27), and
used its solution of w to describe an efficient frontier. Here, we use the solution of w
for the MVS model (27) to generate a best possible allocation surface (CAS). Our
proposed efficient frontier is formed by the solution of w derived from the MVS model
(6). These two surfaces are described in Section 3.3.
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considered as a bullet-shaped hyperboloid:

� − + + + + + + =ω R Qξ Pδ Wξ Vδ Uξδ: Ξ ¯ ¯ ¯ 2 ¯ 2 ¯ 2 ¯ ¯ 0.EF
2 2 2

(31)

with its vertex � ≜ ξ δ ω( ¯ , ¯ , ¯ )EF EF EF EF at

= −
−

= −
−

ξ PW UV
U PQ

δ QV UW
U PQ

¯ , ¯ .EF 2 EF 2 (32)

We call the bullet-shaped hyperboloid a novel efficient frontier of the MSV
optimization model.

Corollary 6. On the other hand, under the solution (29) of w, based on
Appendix A.5, the variance of the portfolio return X on w is

= = − + − −

= + + + − −

⊺w Ωwω E ξ r Gδ H ξ r δ

Er Eξ Gδ Hrδ Erξ Hξδ

¯ 1
Π

[ ( ¯ ) ¯ 2 ( ¯ ) ¯]

1
Π

( ¯ ¯ 2 ¯ 2 ¯ 2 ¯ ¯),

2 2 2

2 2 2

(33)

or

=
⎧
⎨
⎩

− − − ⩾

− −
ω

E ξ r G δ E ξ r G δ

G δ E ξ r
¯

[ ( ¯ ) ¯]/Π , if ( ¯ ) ¯

[ ¯ ( ¯ )]/Π , otherwise
.

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 (34)

This can also be considered as a hyperboloid:

� − + − + − − =ω E ξ r Gδ H ξ r δ: Π ¯ ( ¯ ) ¯ 2 ( ¯ ) ¯ 0,CAS
2 2 2 (35)

referred to as the best possible capital allocation surface (CAS), where its
vertex � ≜ ξ δ ω( ¯ , ¯ , ¯ )CAS CAS CAS CAS is located at (r, 0, 0).

3.4. Market portfolio

Corollary 7.Merging Eqs. (30) and (33), the efficient frontier and CAS are
tangent to each other at one partial quadratic polynomial � ∧E C. It is referred
to as the curve of tangency portfolio. Projecting it on the mean-skewness
plane, we have

�′ − + − + +
+ + + − + − =

∧ Q E ξ P G δ U H ξδ
W E r ξ V H r δ R E r

: ( Π Ξ) ¯ ( Π Ξ) ¯ 2( Π Ξ) ¯ ¯

2( Π Ξ ) ¯ 2( Π Ξ ) ¯ ( Π Ξ ) 0.
E C

2 2

2

Given the definitions:

≜ − ≜ − ≜ +
≜ + ≜ − ≜ −

a Q E b P G c U H
d W E r e V H r f R E r

Π Ξ, Π Ξ, Π Ξ,
Π Ξ , Π Ξ , Π Ξ .2 (36)

Eq. (36) can be written as

�′ + + + + + =∧ aξ bξδ cδ dξ eδ f: ¯ 2 ¯ ¯ ¯ 2 ¯ 2 ¯ 0.E C
2 2

From Appendix A.7, we obtain

= ≥ = ≥ = ≥ac b af d cf e0, 0, 0.2 2 2 (37)

Thus, �′ ∧E C is a coincident line:

�′ = +∧ δ αξ β: ¯ ¯
E C (38)

on the mean-skewness plane, where

≜ − ⎛
⎝
⎞
⎠

≜ − ⎛
⎝
⎞
⎠

α a
c

β
f
c

, .
1
2

1
2

(39)

Its projections on the mean-variance and skewness-variance planes are two
hyperbolas, respectively.

Corollary 8. Furthermore, given a point � ≜ ξ δ ω( ¯ , ¯ , ¯ )a a a a on � ∧ ,E C by
calculating the distance from �a to the variance-axis through � ,CAS we can
define a novel ratio �R( )a as

� ≜
− +ξ r δ

ω
R( )

[( ¯ ) ¯ ]
¯

.a
a a

a

2 2 1
2

(40)

This is similar to the Sharpe ratio (Sharpe [23], 24]), and can be
used to measure the historical risk-adjusted return.

Corollary 9. There exists a point �̂a maximizing �R( )a on � ∧E C. This point
is referred to as market portfolio � ≜∧ ∧ ∧ ∧ξ δ ω( ¯ , ¯ , ¯ ),E C E C E C E C and can be
derived from Appendix A.8.

Corollary 10. Furthermore, given the market portfolio
� ≜∧ ∧ ∧ ∧ξ δ ω( ¯ , ¯ , ¯ ),E C E C E C E C we can define the novel ratio � ∧R( )E C as

� ≜
− +

∧
∧ ∧

∧

ξ r δ
ω

R( )
[( ¯ ) ¯ ]

¯
,E C

E C
2

E C
2

E C

1
2

(41)

to quantify the degree of market portfolio exuberance.

4. Discussion

4.1. Skewness computation

Azzalini and Valle [3] proposed a moment-generating function of
the p-dimensional skew-normal distribution. Based on this, Genton
et al. [9] gave its central third moment:

= − ⎛
⎝
⎞
⎠

⊗ ⊗⊺M δ δ δπ
π π

˜ 4 2 .3

1
2

(42)

Thus, δ can also be calculated by inverting M̃3. To simplify this calcu-
lation, since M̃3 is expressed by the Kronecker cube of δ, and δ is a
vector, M̃3 can be split into scalar expressions as

�+ + + = + = ⋯ −m n p n δ n n p( ( 1) 1, 1) [ ( 1)] , 0, , 1,3
3

except for the correlated components, where

�≜

⎡

⎣

⎢
⎢
⎢
⎢

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

⎤

⎦

⎥
⎥
⎥
⎥

≜ − ⎛
⎝
⎞
⎠

≜ ⋯ ⊺

M

δ

m m m p
m m m p

m p m p m p p

π
π π

δ δ δ p

˜

(1, 1) (1, 2) (1, )
(2, 1) (2, 2) (2, )

( , 1) ( , 2) ( , )

, 4 2 ,

[ (1) (2) ( )] .

3

3 3 3

3 3 3

3
2

3
2

3
2

1
2

Every expression here can be inverted to a closed-form expression to
estimate the corresponding component of δ as

�+ = + + + = ⋯ −−δ n m n p n n p( 1) [ ( ( 1) 1, 1)] , 0, , 1.1
3

1
3

Here, since the cube roots in all of the closed-form expressions are
vectorized as a 1/3 Hadamard power, the above equations can be
written as

  

�= = ⋯ −

≜
⎡

⎣

⎢
⎢

⋯ + + + ⋯
⎤

⎦

⎥
⎥

− ◊

⊺
δ m

m

n p

m m n p n m p p

( ) , 0, , 1,

(1, 1) ( ( 1) 1, 1) ( , ) .
p

1
3

1
3

3 3 3 3
2

(43)

Therefore, = ⊺w δδ̄ contains only the independent elements of the
central third moment M̃ ,3 whereas = ⊗⊺w M w wγ̄ [ ˜ ( )]3

1
3 includes all

elements of M̃3. We consider δ̄ to be the simplified version of γ̄ and let
the optimization model (6) approximate the origin (4) to obtain the
unique closed-form solutions subject to the mean-skewness-normal-
ization constraints.

4.2. Unified form

Theorem 5. Let a standard quadratic form with equality constraints be

=

⊺

⊺

w Sw

T w t

min

s. t. ,
w

(44)

where �∈ ×S n n is a positive definite and invertible matrix, �∈ ×T m n with
m< n and �∈t m. Since w⊺Sw is convex, the Karush–Kuhn–Tucker (KKT)
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points are the global optimal solution in a closed form. With the Lagrangian
function:

� ≜ + −⊺ ⊺w λ w Sw λ t Tw( , ) ( ), (45)

the first-order conditions for w and λ are

�

�

∇ = − =
∇ = − =

⊺w λ Sw T λ
w λ t Tw

( , ) 2 0,
( , ) 0.

w

λ

In the first equation, = − ⊺w S T λ1
2

1 . Substituting w into the second equation,
we get = − ⊺ −λ TS T t2( ) ,1 1 and

= − ⊺ − ⊺ −w S T TS T t( ) .1 1 1 (46)

Corollary 11. Given Eq. (46), the quadratic form w⊺Sw can be expressed
as

=
=

⊺ ⊺ − ⊺ − − − ⊺ − ⊺ −

⊺ − ⊺ −
w Sw t TS T TS S S T TS T t

t TS T t
[ ( ) ] [ ( ) ]

( ) .

1 1 1 1 1 1

1 1 (47)

As shown in the Table 1, the optimization models in Theorems 1–4
can be summarized as a standard and unified quadratic form with
equality constraints in Theorem 5. It is easy to derive their corre-
sponding global optimal solutions for w using the proofs in Appendixes
A.2, A.3, A.4, and A.5.

4.3. Negative weight

A remarkable outcome of the traditional CAPM is the market port-
folio, which is a theoretical bundle of investments comprising every
type of asset available in the global financial market. It lies on the
mean-variance-efficient frontier; in other words, the set of portfolios
with mean-variance characteristics cannot be improved upon. Since the
weight of each asset in a frontier portfolio is proportional to its total
market capitalization, the CAPM is inconsistent with the efficient
frontiers, wherein every frontier portfolio has at least one negative
weight or short position.

By contrast, contingent on whether an individual is allowed to short
sell, this study assumes that an individual’s frontier portfolio has at
least one asset with a negative weight in a submarket, although the
market as a whole has non-negative weights. Therefore, portfolio asset
weight (positive or negative) is used to proportionally measure ex-
posure to a given asset class (long or short).

In this case, a short position on an uncertain asset means borrowing
the asset, selling it now, buying it back later, and then returning it to
the original owner. This means that the asset will have a negative
weight in the portfolio. However, this only holds for an individual if we
add up all promises on a single security, and as a result, certain in-
dividuals will eventually hold that security, causing the market as a
whole to have non-negative weights.

4.4. Relatively negative market portfolio

Under the above-mentioned assumption, the CAL comprises two
tangent lines (upper and lower) drawn from the risk-free rate of return r
to a feasible region for risky assets. If the vertex of the efficient frontier
�EF is greater than the risk-free rate of return r, the upper CAL will be
tangent to the efficient frontier �EF with a tangency point � ∧E C . Here,
the tangency point denotes an optimal market portfolio that offers the
lowest risk for a fixed level of expected returns, irrespective of whether
the portfolio includes the risk-free asset having zero weight

= − ⊺w 1w( 1 )p0 . By contrast, if the vertex of the efficient frontier �EF is
less than the risk-free rate of return r, the lower CAL will be tangent to
the efficient frontier �EF at another tangency point � ∧E C . The two
market portfolios on the upper and lower CALs are considered the po-
sitive and negative market portfolios relative to the risk-free asset and
do not occur simultaneously. However, the traditional CAPM only ac-
cepts the upper CAL with the relatively positive market portfolio.

4.5. Asset picking rule

Given the two assumptions for negative weight and a relatively
negative market portfolio, the following can be considered rules of
thumb for asset picking:

• If there is a relatively positive market portfolio, sell risk-free asset
and buy risky assets aligned with the market portfolio, that is, buy
and sell the risky assets on the basis of their positive (for buying)
and negative (for selling) weights.

• In the case of a relatively negative market portfolio, sell risky assets
in the market portfolio, that is, sell and buy the risky assets on the
basis of their positive (for buying) and negative (for selling) weights
and buy risk-free asset.

The two cases starkly contrast each other. Here, as mentioned
above, selling assets (maintaining a short position) requires security,
particularly if investors do not own them.

It should be noticed that since the risk-free asset in the market
portfolio has zero weight, its quantity for selling or buying is un-
determined. Sometimes investors tend to set the total price of the risk-
free asset for selling and buying equal to that of the risky assets in-
versely for buying and selling.

5. Empirical study

The data set tested here contains daily returns for all stocks except
Visa Inc. included in the Dow Jones Industrial Average index, from
January, 2001 through December, 2014. For comparing the differences
between the MV and MVS models, we extract three subsets from it,
whose time spans are set from January, 2003 through December, 2007,
from January, 2008 through December, 2012, and from January, 2010
through December, 2014, respectively. The effective daily federal funds
rate is considered as the risk-free rate of return, which is fluctuant for
every subset.

First, we present the two solutions of the MV optimization model for
every subsets, and severally plot the results by MATLAB in Figs. 1 (a)–3
(a). The Efficient frontier �EF and CAL �CAL are plotted in red and blue
with their vertexes �EF and � ,CAL respectively. Since �EF is lower than
�CAS for every subset, the corresponding market portfolio � ∧E C is re-
latively negative to the risk-free rate of return, and instructs the in-
vestors to enter into short position. Moreover, since the Sharpe ratios

� ∧S( )E C of the market portfolios for these subsets are 1.9264, 0.2124
and 0.1188, the selling pressure in the first subset is stronger than
others.

On the other hand, by calculating the multivariate skew-normal
distribution of every datasets with R Package ‘sn’, we also give the
two solutions of the MVS optimization model, and plot the results in

Table 1
All of the optimization models in Theorems 1–4 summarized as a standard and
unified quadratic form with their corresponding global optimal solutions of w.

Theorem S T t w

Theorem 1 Σ ⎡
⎣
⎢

⎤
⎦
⎥

⊺

⊺
1
μ

p ⎡
⎣⎢
⎤
⎦⎥

μ
1
¯

Eq. (9)

Theorem 2 Σ − ⊺μ 1r( )p −μ r¯ Eq. (13)

Theorem 3 Ω ⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⊺

⊺

⊺

1
ξ
δ

p ⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ξ
δ

1
¯
¯

Eq. (25)

Theorem 4 Ω ⎡
⎣⎢

− ⎤
⎦⎥
⊺

⊺
ξ 1

δ
r( )p ⎡

⎣⎢
− ⎤

⎦⎥
ξ r

δ

¯
¯

Eq. (29)
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figures (b), (c) and (d) of Figs. 1–3. The efficient frontier �EF and CAS
� CAS are plotted in red and blue with their vertexes �EF and � ,CAS re-
spectively. Then, their tangent curve (the curve of market portfolio)
� ∧E C is drawn in black. Given a portfolio � =ξ( ¯ 0.02)a a marked in ma-
genta in � ∧ ,E C we use the magenta line to indicate the distance

− +ξ r δ[( ¯ ) ¯ ]a a
2 2 1

2 from �a to the variance-axis through � ,CAS and use
another magenta line to denotes ω̄a. Their ratio �R( )a defined by
Corollary 8 is considered as the novel ratio to measure the historical
risk-adjusted return of �a. Moreover, we can obtain the market portfolio
� ∧E C with the greatest novel ratio by Corollary 9, which is marked in
black in � ∧E C. The novel ratios � ∧R( )E C of the market portfolios for
these subsets are 2.0001, 0.7825 and 0.8382, In addition, the pressures
in the first and second subsets are selling pressures according to their
relatively negative market portfolios. Therefore, the selling pressure in
the first subset is stronger than that of the second subset. But since the
market portfolio of the third subset is positive relative to the risk-free
rate of return, its novel ratio bring the investors a buying pressure.
Different from the pressure measured by the Sharpe ratio, this pressure
measured by our proposed ratio is generated by not only the risk-ad-
justed return of the market portfolio with its risk, but also its exuber-
ance. Here, the exuberance reflects the positive or negative skewness of
the risk-adjusted return.

The solutions of weight for MV and MVS models calculated from the
three subsets are shown in Figs. 4–6, respectively. We find that the
overall shapes of weight for MV and MVS models of the first subset in
Fig. 4 are similar to each other, hence both the models suggest the
investors entering into similar short positions. Here, there exist a few

differences between the two solutions of weight, and only DIS, GE, JPM,
MRK, MSFT TRV and UNH are inverse. It denotes that the portfolio
exuberance, determined by the skewness of the risk-adjusted return, is
not outstanding in this MVS model.

For the MV and MVS models of the second subset in Fig. 5, a few
same elements of the two solutions of weight keep the similar and great
values, such as JNJ, KO, MCD and T, but the others have diverse values
with different volumes and inverse sign patterns. Therefore, we con-
sider that the portfolio exuberance is playing an important role in the
optimization of the MVS model for the second subset.

As shown in Fig. 6 for the third subset, except CSCO, GS and IBM, all
of the same elements of the two solutions of weight have significant
differences from each other. It causes the negative portfolio risk-ad-
justed return, thus the MV model suggests the investors entering into a
short position. On the contrary, the MVS model implies that the in-
vestors need to take a long position because the market portfolio has
become exuberant, although its portfolio risk-adjusted return is not
remarkably positive.

6. Concluding remarks

By ignoring the distribution used to characterise the asset and
portfolio returns, the mean-variance-skewness (MVS) optimization
model can be constructed only using the moments from the first to third
or a high-order one. However, its solution is too complicated to be
popularly applied. Hence, finding a probability distribution with a
simple skewness becomes important. The skew-normal distribution

Fig. 1. Solutions of MV and MVS optimization models calculated from the first subset (from January, 2003 through December, 2007). (a): Efficient frontier �EF in red
and CAL �CAL in blue with their vertexes �EF in red and �CAL in blue are tangent at market portfolio � ∧E C in black; (b), (c) and (d): efficient frontier �EF in red and
CAS � CAS in blue with their vertexes �EF in red and �CAS in blue are tangent at the curve of market portfolio � ∧E C in black in three views (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.).
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with its related families gives the opportunity to build a solvable model
(6) due to its simple skewness vector. Based on this, we provided two
unique closed-form solutions of (6) by adapting the model with three
constraints, i.e., the skewness, mean, and normalization. Although
these solutions are more complicated than those of the mean-variance
(MV) optimization model, they are more easily calculated using a
computer than the traditional non-unique or unclosed-form solutions of
the various MVS optimization models.

The efficient frontier and capital allocation surface (CAS) derived
from the solutions are both partial hyperboloids. They are tangent to
each other at one partial hyperbola referred to as the curve of market
portfolio. The concept of the efficient frontier is extended from two-
dimensional space to three-dimensional space.

By measuring the distance from a point in the curve of tangency
portfolio to the variance-axis through the vertex of CAS, a novel ratio of
return versus risk is presented here. It is similar to the Sharpe ratio, but

is more flexible with additional information owing to the more realistic
assumption that the portfolio returns follow the skew-normal distribu-
tion. The novel ratio can measure not only the performance of the risk-
adjusted returns of market portfolio versus their risks, but also the
degree (or absence) of their exuberance, special for the case that the
expected ratio of return is close to zero. Here, the great exuberance
quantified by the great skewness implies the high probability of po-
tential profit for portfolio selection in short time,
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Appendix A

A1. Lemma 1

Lemma 1. An (m×m) matrix −A 1 is the inverse of the (m×m) matrix A, if = =⊺ −AA A A Im
1 . For instance, for =m 2, given

≜ ⎡
⎣⎢

⎤
⎦⎥

A
a a
a a ,11 12

21 22

the inverse of A is

Fig. 2. Solutions of MV and MVS optimization models calculated from the second subset (from January, 2008 through December, 2012). (a): Efficient frontier �EF in
red and CAL �CAL in blue with their vertexes �EF in red and �CAL in blue are tangent at market portfolio � ∧E C in black; (b), (c) and (d): efficient frontier �EF in red
and CAS � CAS in blue with their vertexes �EF in red and �CAS in blue are tangent at the curve of market portfolio � ∧E C in black in three views (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.).
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Fig. 3. Solutions of MV and MVS optimization models calculated from the third subset (from January, 2010 through December, 2014). (a): Efficient frontier �EF in
red and CAL �CAL in blue with their vertexes �EF in red and �CAL in blue are tangent at market portfolio � ∧E C in black; (b), (c) and (d): efficient frontier �EF in red
and CAS � CAS in blue with their vertexes �EF in red and �CAS in blue are tangent at the curve of market portfolio � ∧E C in black in three views (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.).

Fig. 4. Optimized weights for MV and MVS models calculated from the first subset (from January, 2003 through December, 2007). Upper: optimized weight for MV
model; lower: optimized weight for MVS model.
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= ⎡
⎣⎢

−
−

⎤
⎦⎥

=
−

⎡
⎣⎢

−
−

⎤
⎦⎥

−A
A

a a
a a

a a a a
a a

a a

1
det( )

1 ,

1 22 21
12 11

11 22 12 21

22 21
12 11 (48)

where det(A) is the determinant of A. For =m 3, given

≜ ⎡

⎣
⎢

⎤

⎦
⎥A

a a a
a a a
a a a

,
11 12 13
21 22 23
31 32 33

the inverse of A is

Fig. 5. Optimized weights for MV and MVS models calculated from the second subset (from January, 2008 through December, 2012). Upper: optimized weight for
MV model; lower: optimized weight for MVS model.

Fig. 6. Optimized weight for MV and MVS models calculated from the third subset (from January, 2010 through December, 2014). Upper: optimized weight for MV
model; lower: optimized weight for MVS model.
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=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎡
⎣⎢

⎤
⎦⎥
− ⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

− ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
− ⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
− ⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= ⎡

⎣
⎢

− − −
− − −
− − −

⎤

⎦
⎥

−A

et
a a
a a et

a a
a a et

a a
a a

et
a a
a a et

a a
a a et

a a
a a

et
a a
a a et

a a
a a et

a a
a a

a a a a a a a a a a a a
a a a a a a a a a a a a
a a a a a a a a a a a a

d d d

d d d

d d d

,

A

A

et

et

1 1
d ( )

22 23
32 33

21 23
31 33

21 22
31 32

12 13
32 33

11 13
31 33

11 12
31 32

12 13
22 23

11 13
21 23

11 12
21 22

1
d ( )

22 33 23 32 13 32 12 33 12 23 13 22
23 31 21 33 11 33 13 31 11 22 12 21
21 32 22 31 12 31 11 32 11 22 12 21 (49)

where the determinant of A is

= − − − + −
= − − − + −
= − − − + −

Aet a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a

d ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ).

11 22 33 23 32 12 21 33 23 31 13 21 32 22 31

21 12 33 13 32 22 11 33 13 31 23 11 32 12 31

31 12 23 13 22 32 11 23 13 21 33 11 22 12 21 (50)

A2. Proof of theorem 1

The Lagrangian function Eq. (7) in Theorem 1 can be considered as a case of Eq. (45) in Theorem 5. Therefore, by assuming

= = ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢
⎤
⎦⎥

⊺

⊺S Σ T
1
μ

t μ, , 1
¯ ,p

(51)

and substituting them into Eq. (46), we obtain the solution of w in Theorem 1 as

= ⎡
⎣⎢

⎤
⎦⎥
⎛

⎝
⎜
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎞

⎠
⎟
⎡
⎣⎢
⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢
⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

−
−

⎤
⎦⎥
⎡
⎣⎢
⎤
⎦⎥

−
⊺

⊺

⊺ ⊺

⊺
−

⊺

⊺

⊺ −

−
⊺

⊺

⊺ −

−
⊺

⊺

⊺

w Σ
1
μ

1
μ

Σ
1
μ

Σ
1
μ

Σ
1
μ

μ

A B
B C μ

P
C B
B A μ

1
¯

1
¯

1 1
¯

p p p

p

p

1 1
1

1
1

1

(52)

with Eq. (48) in Lemma (1). Moreover, by substituting (51) into Eq. (47) of Corollary 11, we have the corresponding quadratic form in Corollary 1 as

= ⎡
⎣⎢
⎤
⎦⎥

⎡
⎣⎢

−
−

⎤
⎦⎥
⎡
⎣⎢
⎤
⎦⎥

⊺
⊺

w Sw μ P
C B

B A μ
1
¯

1 1
¯ .

(53)

A3. Proof of Theorem 2

The Lagrangian function Eq. (12) in Theorem 2 can be considered as a case of Eq. (45) in Theorem 5. Therefore, by assuming

= = − = −⊺S Σ T μ 1 tr μ r, ( ) , ¯ ,p (54)

and substituting them into Eq. (46), we obtain the solution of w in Theorem 2 as

= − − − −
= − −

− ⊺ − −

− −

w Σ μ 1 μ 1 Σ μ 1
Σ μ 1

r r r μ r
r G μ r

( )[( ) ( )] ( ¯ )
( ) ( ¯ ).

p p p

p

1 1 1

1 1 (55)

Moreover, by substituting (54) into Eq. (47) of Corollary 11, we have the corresponding quadratic form in Corollary 2 as

= − −⊺ −w Sw μ r G μ r( ¯ ) ( ¯ ).1 (56)

A4. Proof of Theorem 3

The Lagrangian function Eq. (22) in Theorem 3 can be considered as a case of Eq. (45) in Theorem 5. Therefore, by assuming

= =
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⊺

⊺

⊺

S Ω T
1
ξ
δ

t ξ
δ

, ,
1
¯
¯

,
p

(57)

and substituting them into Eq. (46), we obtain the solution of w in Theorem 3 as

X. Lu, et al. Operations Research Perspectives 6 (2019) 100094

11



=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎛

⎝

⎜
⎜

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎞

⎠

⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣
⎢
⎢

− − −
− − −
− − −

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−

⊺

⊺

⊺

⊺ ⊺

⊺

⊺

−

⊺

⊺

⊺

⊺ −

−

⊺

⊺

⊺

⊺ −

−

⊺

⊺

⊺

⊺

−

⊺

⊺

⊺

⊺

w Ω
1
ξ
δ

1
ξ
δ

Ω
1
ξ
δ

Ω
1
ξ
δ

Ω
1
ξ
δ

Ω
1
ξ
δ

ξ
δ

A B D
B C F
D F E

ξ
δ

CE F DF BE BF CD
DF BE AE D BD AF
BF CD BD AF AC B

ξ
δ

R W V
W Q U
V U P

ξ
δ

1
¯
¯

1
¯
¯

1
Ξ

1
¯
¯

1
Ξ

1
¯
¯

p p p

p

p

p

1 1

1

1

1

1
2

2

2

1

(58)

with Eq. (49) in Lemma (1). Moreover, by substituting (57) into Eq. (47) of Corollary 11, we have the corresponding quadratic form in Corollary 5 as

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⊺

⊺

w Sw ξ
δ

R W V
W Q U
V U P

ξ
δ

1
¯
¯

1
Ξ

1
¯
¯

.
(59)

A5. Proof of Theorem 4

The Lagrangian function Eq. (28) in Theorem 4 can be considered as a case of Eq. (45) in Theorem 5. Therefore, by assuming

= = ⎡
⎣⎢

− ⎤
⎦⎥

= ⎡
⎣⎢
− ⎤

⎦⎥
⊺

⊺
S Ω T ξ 1

δ
tr ξ r

δ
, ( ) ,

¯
¯

,p

(60)

and substituting them into Eq. (46), we obtain the solution of w in Theorem 4 as

= ⎡
⎣⎢

− ⎤
⎦⎥
⎛

⎝
⎜
⎡
⎣⎢

− ⎤
⎦⎥

⎡
⎣⎢

− ⎤
⎦⎥
⎞

⎠
⎟
⎡
⎣⎢
− ⎤

⎦⎥

= ⎡
⎣⎢

− ⎤
⎦⎥
⎡
⎣⎢

− + −
−

⎤
⎦⎥
⎡
⎣⎢
− ⎤

⎦⎥

= ⎡
⎣⎢

− ⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢
− ⎤

⎦⎥

= ⎡
⎣⎢

− ⎤
⎦⎥

⎡
⎣⎢

−
−

⎤
⎦⎥
⎡
⎣⎢
− ⎤

⎦⎥

−
⊺

⊺

⊺ ⊺

⊺
−

⊺

⊺

⊺ −

−
⊺

⊺

⊺ −

−
⊺

⊺

⊺ −

−
⊺

⊺

⊺

w Ω ξ 1
δ

ξ 1
δ

Ω ξ 1
δ

Ω ξ 1
δ

Ω ξ 1
δ

Ω ξ 1
δ

r r r ξ r
δ

r C Br Ar F Dr
F Dr E

ξ r
δ

r G H
H E

ξ r
δ

r E H
H G

ξ r
δ

( ) ( ) ( ) ¯
¯

( ) 2 ¯
¯

( ) ¯
¯

( ) 1
Π

¯
¯

p p p

p

p

p

1 1
1

1 2
1

1
1

1

(61)

with Eq. (48) in Lemma (1). Moreover, by substituting (60) into Eq. (47) of Corollary 11, we have the corresponding quadratic form in Corollary 6 as

= ⎡
⎣⎢
− ⎤

⎦⎥
⎡
⎣⎢

−
−

⎤
⎦⎥
⎡
⎣⎢
− ⎤

⎦⎥
⊺

⊺

w Sw ξ r
δ

E H
H G

ξ r
δ

¯
¯

1
Π

¯
¯

.
(62)

A6. Proof of Corollary 3

By Eqs. (8) and (12), we have

− = − + − −
= − +
= −

AG P A Ar Br C AC B
A r ABr B
Ar B

( 2 ) ( )
2

( ) ,

2 2

2 2 2

2

which can be written as

− = − −Ar B AG P( ) ,1
2 (63)

or

= − −r B
A

AG P
A

( ) .
1
2

(64)

Then reforming

− = − + −
= − + − − + −

= − − + −

Aμ B Aμ Ar Ar B
A μ r A μ r Ar B Ar B

A Gσ AG AG P σ AG P

( ¯ ) ( ¯ )
( ¯ ) 2 ( ¯ )( ) ( )

¯ 2 ( ) ¯ ,

2 2

2 2 2

2 2 1
2

1
2 (65)
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by Eqs. (17) and (63), we obtain

− − + =
− − + = −

− − =

− + − − + =

− − − + =

APσ A μ ABμ AC
APσ A μ ABμ B AC B

APσ Aμ B P

APσ A Gσ AG AG P σ AG P P

AG P σ G AG P σ G

¯ ( ¯ 2 ¯ ) 0
¯ ( ¯ 2 ¯ )

¯ ( ¯ ) (by Eq.(8))

¯ ¯ 2 ( ) ¯ (by Eq.(65))

( ) ¯ 2 ( ) ) ¯ 0.

2 2 2

2 2 2 2 2

2 2

2 2 2

2

1
2

1
2

1
2

1
2 (66)

Since ⩾σ̄ 0, we get

= ⎛
⎝ −

⎞
⎠

σ G
AG P

¯ .
1
2

(67)

By substituting it into Eq. (17), we have

=

⎧

⎨
⎪

⎩
⎪

−
+ ⩾

−
−

+
μ

G
AG P

r μ r

G
AG P

r
¯

( )
, if ¯

( )
, otherwise

.
EF1

2

1
2 (68)

Moreover, by substituting Eq. (64) into the above equation, we obtain

=

⎧

⎨
⎪

⎩
⎪

−
+ ⩾

−
−

+
μ

P
A AG P

B
A

μ r

P AG
A AG P

B
A

¯
( )

, if ¯

2
( )

, otherwise
.

EF1
2

1
2 (69)

A7. Proof of Eq. (37) in Corollary 7

− = + − − −
= − + − − + +
= − + + − +
= − + − +
+ − − +

= − − − + + − + +
= − + + +
= − + + +
= − +
=

b ac U H Q E P G
U HU H EG QP GQ EP

U QP GQ HU EP
U QP C Br Ar Q

F Dr U r EP
U QP EP FU CQ BQ DU r AQ r
U QP AR AW r AQ r
U QP A R Wr Qr
U QP A

( Π Ξ) ( Π Ξ)( Π Ξ)
Π 2 ΞΠ ( )Ξ Π ΞΠ ΞΠ

Π[ Π Π Ξ 2 Ξ Ξ Ξ]
Π[ Π Π ( 2 ) Ξ

2( ) Ξ Ξ Ξ]
Π[ Π Π ( Ξ 2 )Ξ 2( )Ξ Ξ ]
Π[ Π Π Ξ 2 Ξ Ξ ] (based on Eqs. (70) and (72))
Π[ Π Π Ξ( 2 )]
Π [ Ξ]
0 (based on Eq. (74))

2 2

2 2 2 2 2

2 2

2 2

2

2 2

2 2

2 2

2 2

− = + − − −
= + + − + + −
= − + + +
= − + + +
= − +
=

d af W E r Q E R E r
W EW r E r QR ER EQ r E r

W QR ER EW r EQ r
W QR E R Wr Qr
W QR E

( Π Ξ ) ( Π Ξ)( Π Ξ )
Π 2 ΞΠ Ξ Π ΞΠ ΞΠ Ξ

Π[ Π Π Ξ 2 Ξ Ξ ]
Π[ Π Π Ξ( 2 )]
Π [ Ξ]
0 (based on Eq. (75))

2 2 2

2 2 2 2 2 2 2 2 2 2

2 2

2 2

2 2

− = − − − −
= − + − − + +
= − + − − +
= − − + −
− − − +

= − + − + + − + +
= − + + +
= − + + +
= − +
=

e cf V H r P G R E r
V HV r H CG r PR GR EP r

V PR GR HV r r EP r
V PR C Br Ar R

F Dr W r r EP r
V PR CR BR FV r EP DV AR r
V PR CR CW r CQ r
V PR C R Wr Qr
V PR C

( Π Ξ ) ( Π Ξ)( Π Ξ )
Π 2 ΞΠ ( )Ξ Π ΞΠ ΞΠ

Π[ Π Π Ξ 2 Ξ Ξ Ξ ]
Π[ Π Π ( 2 ) Ξ

2( ) Ξ Ξ Ξ ]
Π[ Π Π Ξ 2( )Ξ ( Ξ 2 )Ξ ]
Π[ Π Π Ξ 2 Ξ Ξ ] (based on Eqs. (71) and (73))
Π[ Π Π Ξ( 2 ]
Π [ Ξ]
0 (based on Eq. (76))

2 2 2

2 2 2 2 2 2 2

2 2 2 2 2

2 2

2 2 2

2 2

2 2

2 2

2 2

+ = − + −
= −
= −

BQ DU B AE D D BD AF
A BE DF

AW

( ) ( )
( )

2

(70)
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+ = − + −
= −
= −

BR FV B CE F F BF CD
C BE DF

CW

( ) ( )
( )

2

(71)

− + + = − + + + +
= − + +
= − − + − + −
= −
=

EP FU CQ EP DV FU EP FU CQ
DV FU CQ
D BF CD F BD AF C AE D

ACE AF
AR

Ξ 2 ( ) 2

( ) ( ) ( )2

2

(72)

− + + = − + + + +
= − +
= − − − + −
= −
=

EP DV AR EP DV FU EP DV AR
DV FU AR
D BF CD F BD AF A CE F
ACE CD
CQ

Ξ 2 ( ) 2

( ) ( ) ( )2

2

(73)

− = − − − −
= − − + −
= − − + −
=

QP U AE D AC B BD AF
A CE ACD AB E ABDF A F
A ACE CD B E BDF AF
A

( )( ) ( )
2

( 2 )
Ξ

2 2 2 2

2 2 2 2 2

2 2 2

(74)

− = − − − −
= − − + −
= − − + −
=

QR W AE D CE F DF BE
ACE CD E AEF BDEF B E
E ACE CD AF BDF B E
E

( )( ) ( )
2

( 2 )
Ξ

2 2 2 2

2 2 2 2 2

2 2 2

(75)

− = − − − −
= − − + +
= − − + +
=

PR V AC B CE F BF AD
AC E B CE ACF BCDF C D
C ACE B E AF BDF CD
C

( )( ) ( )
2

( 2 )
Ξ

2 2 2 2

2 2 2 2 2

2 2 2

(76)

A8. Proof of Corollary 7

The numerator and denominator of Eq. (40) are squared as

− + = − + +

= + + − + +

ξ r δ ξ rξ r δ

α ξ αβ r ξ β r

( ¯ ) ( ¯ 2 ¯ )

( 1) ¯ 2( ) ¯ ( ),

2 2 2 2 2

2 2 2 2

and

= + + + + +

= + + + + + +
+ + +

ω R Qξ Pδ Vδ Wξ Uξδ

Pα Uα Q ξ Pαβ Vα Uβ W ξ
Pα Vα R

¯ 1
Ξ

( ¯ ¯ 2 ¯ 2 ¯ 2 ¯ ¯)

( 2 ) ¯ 2( ) ¯

( 2 ),

2 2 2

2 2

2

by Eq. (39), respectively. Thus squared Eq. (40) can be matrixed by

− +
=

⊺

⊺
t t
t Ψt

ξ r δ
ω

Φ( ¯ ) ¯

¯
,

2 2

2 (77)

where

≜ ⎡
⎣⎢

+ −
− +

⎤
⎦⎥

≜ ⎡
⎣⎢
⎤
⎦⎥

t
α αβ r
αβ r β r

ξΦ
1

,
¯
1

,
2

2 2
(78)

and

≜ ⎡
⎣⎢

+ + + + +
+ + + + +

⎤
⎦⎥

Ψ
Pα Uα Q Pαβ Vα Uβ W

Pαβ Vα Uβ W Pα Vα R
2

2
.

2

2
(79)

Then Eq. (77) can be simplified as

= =
⊺

⊺

⊺ − −

⊺

⊺

⊺
t t
t Ψt

t Ψ Ψ Ψ Ψ t
t Ψ Ψ t

t t
t t

Φ Φ Φ˜ ˜ ˜
˜ ˜ ,

1
2

1
2

1
2

1
2

1
2

1
2 (80)

where

≜ ≜− −Ψ Ψ t Ψ tΦ Φ˜ , ˜ .
1
2

1
2

1
2 (81)

Here, Eq. (80) can be considered as a Rayleigh quotient:
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≜
⊺

⊺t t t
t t

RQ Φ Φ( ˜ , ˜)
˜ ˜ ˜
˜ ˜ .

(82)

Suppose that symmetric matrix Φ̃ is diagonalizable with only real eigenvalues, we obtain

⩾ =t vRQ λ RQ λΦ Φ( ˜ , ˜) , ( ˜ , ) ,min min min (83)

which means tRQ Φ( ˜ , ˜) reaches its minimum λmin (the smallest eigenvalue of Φ̃) when t̃ is vmin (the corresponding eigenvector). Similarly, we have

⩽ =t vRQ λ RQ λΦ Φ( ˜ , ˜) , ( ˜ , ) .max max max (84)

Therefore, after eigenvalue decomposition of Φ̃, by Eq. (84), we obtain the maximum of tRQ Φ( ˜ , ˜) as =vRQ λΦ( ˜ , ) ,max max which is squared of the
novel ratio of the market portfolio � ∧R( )E C

2. Here, let

= ⎡
⎣⎢

⎤
⎦⎥

∧v ηξ
η
¯

,max E C

(85)

where η is a constant, we have =∧ ∧ξ ηξ η¯ ¯ /E C E C . Then we calculate the corresponding ∧δ̄E C by Eq. (38), and then get ∧ω̄E C by Eq. (30) or (33).
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