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A B S T R A C T

In order to find an optimal and time consistent cooperative path in multicriteria multistage game the minimal
sum of relative deviations rule is introduced. Using this rule one can construct a vector-valued characteristic
function that is weakly superadditive. The sustainability of the cooperative agreement is ensured by using an
imputation distribution procedure (IDP) based approach.

We formulate the conditions an IDP should satisfy to guarantee that the core is strongly time consistent (STC).
Namely, if the imputation distribution procedure for the Shapley value satisfies the efficiency condition, the
strict balance condition and the strong irrational-behavior-proof condition, given that the Shapley value belongs
to the core of each subgame along the cooperative path, it can be used as a “supporting imputation” which
guarantees that the whole core is STC. We discuss three payment schedules and check whether they can be used
as supporting imputation distribution procedures for the considered multicriteria game.

1. Introduction

The theory of multicriteria games (multiobjective games or games
with vector payoffs) lies at the intersection of Multiple Criteria Decision
Making (MCDM) and classical game theory. It can be used to model
various real-world situations where several decision makers (or players)
need to consider several goals when choosing their strategies (see, e.g.,
[2,5,19–22,41,44]). As noted in [3], one of the important trends in
MCDM is “the development of adequate dynamic MCDM approaches,
taking into account the influence of time in evolving decision pro-
cesses”. This paper deals with the dynamic properties of cooperative
behavior in n-person multicriteria multistage games with perfect in-
formation [16,24,30] and hence falls in with the specified research
direction.

Different cooperative solutions for static and dynamic games with
vector payoffs were studied in [1,4,5,11,15,17,18,25,26,33,34,36,38].
In order to achieve and implement a long-term cooperative agreement
in multicriteria dynamic games we have to solve the following pro-
blems. First, when players seek to achieve the maximal total vector
payoff of the grand coalition, they face the problem of choosing a un-
ique Pareto efficient payoffs vector. In the dynamic setting it is neces-
sary that a specific method the players agreed to accept in order to
select a particular Pareto efficient solution not only takes into account
the relative importance of the criteria, but also satisfies time

consistency (see, e.g., [10,27,30]). That is to say, a fragment of the
optimal cooperative trajectory in the subgame should remain optimal in
this subgame. For the special case when the criteria have significantly
different importance, and all players arrange the criteria in the same
order the refined leximin algorithm introduced in [15] is a reasonable
approach to find a time consistent cooperative path. Otherwise, say,
when the players rank the criteria in a different order or some of the
criteria have approximately equal importance, the players need to
employ other appropriate methods to select a unique Pareto efficient
solution (see, e.g., [9,35]). In this paper, we use the rule of minimal
sum of relative deviations (MSRD) from the ideal payoffs vector [23] to
find a unique optimal cooperative path, and prove its time consistency.

After choosing the cooperative trajectory it is necessary to construct
a vector-valued characteristic function. To this end, we suggest to use
the ζ-characteristic function introduced in [7] and the MSRD rule in
order to select a particular Pareto efficient solution for the auxiliary
vector optimization problems. We assume that the cooperative multi-
criteria game satisfies the component-wise transferable utility property,
i.e., we allow the payoff to be transferred between the players within
the same criterion k. Note that the main measurable criteria used in
multicriteria resource management problems (for instance, water
supply amount, cost of water purification, the quota for the use of a
common resource, the quota for emissions, profit from the use of a
common resource, etc.) satisfy the required transferable utility
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property. To determine the optimal payoff allocation we explore the
vector analogues of two well known cooperative solutions, namely the
core and the Shapley value [1,33,34].

Lastly, to guarantee the sustainability of the achieved long-term
cooperative agreement one needs to design a consistent imputation
distribution procedure or a payment schedule [28,30,31,37] that
should satisfy a set of useful properties. The detailed review of dynamic
properties the IDP may satisfy for multistage multicriteria games is
presented in [15,17,18]. In this paper we mainly focus on the efficiency
constraint and the strict balance condition as well as strong time con-
sistency (STC) [6,29,30,32,39] and strong irrational-behavior-proofness
(IBP) [45] for individual players and coalitions. Although the criteria
are measured in different units, we use the word payment with respect
to every criterion k for the sake of simplicity and uniformity. It is worth
noting that the IDP-based approach proved to be an effective method to
implement long-term cooperative agreement in single-criterion dy-
namic games (see, e.g., [28,30,31,37]).

In the paper, we establish the exact set of properties that an im-
putation distribution procedure has to satisfy in order to guarantee the
strong time consistency of the core. Namely, if the Shapley value (or
any other single-valued cooperative solution) belongs to the core at
every subgame along the optimal cooperative path, and the payment
schedule satisfies the efficiency, strict balance and strong irrational-
behavior-proof conditions, the core in multicriteria multistage game
satisfies STC if the Shapley value is used as the supporting imputation.
We consider three payment schedules which satisfy the efficiency and
strict balance condition and check the STC of the core for given 3-
person 3-criteria multistage game.

There are a number of possible applications of the proposed method.
In particular, it can be used when analyzing water resources manage-
ment problems which are often modeled as dynamic MCDM problems
(see [20] for the review of water resources conflict resolution models).
For instance, in [21], a multicriteria game theoretic approach is applied
to analyze California’s Sacramento-San Joaquin Delta problem [19],
and “the most likely” Pareto efficient cooperative solution (building a
tunnel or pipeline to move water around the Delta) is proposed. In this
paper we examine an alternative approach to select optimal cooperative
solution, and provide a step-by-step method to implement the long-term
cooperative agreement which guarantees the sustainability of co-
operation.

The contribution of this paper is twofold:

1. we suggest the minimal sum of relative deviations rule as a specific
method to find an optimal and time consistent cooperative trajec-
tory for multicriteria multistage game and to construct a vector-
valued characteristic function. This method for sectioning a unique
Pareto efficient solution differs from the one used in [15] and is
applicable to a broader class of MCDM problems. Note that the
constructed ζ-characteristic function is proved to satisfy weak su-
peradditivity property.

2. we provide a general characterization of the strong time consistent
core in multicriteria multistage games which allows the players to
use any appropriate imputation distribution procedure along the
cooperative trajectory. This is a generalization of the Proposition 3,
proved in [15] for the partial case of the so-called incremental
payment schedule. We propose an example to clarify how the
players can select an appropriate imputation distribution procedure
on the base of their properties analysis.

The paper is organized as follows: The class of finite multistage r-
criteria games in extensive form with perfect information is formalized
in Section 2. In Section 3.1, we prove that the set of all Pareto efficient
strategy profiles does not satisfy the STC property. In Section 3.2, the
minimal sum of relative deviations rule for choosing optimal co-
operative trajectory is formalized and the resulting Pareto optimal so-
lution is proved to be time consistent. A vector-valued ζ-characteristic

function for a multicriteria cooperative game based on the minimal sum
of relative deviations rule is constructed and proved to be weakly su-
peradditive in Section 4. In Section 5.1, we specify which properties the
payment schedule should satisfy to guarantee sustainable cooperation
in dynamic multicriteria game. The general conditions for STC of the
core are proved in Section 5.2. We examine an illustrative example and
compare three different payment schedules in Section 6. Finally,
Section 7 presents a brief conclusion.

2. Multistage multicriteria game with perfect information

We consider a finite multistage multicriteria game (game in ex-
tensive form) with perfect information comprised by the following in-
gredients (see [12,16,17,30] for details):

• = …N n{1, , } is the set of all players.
• K is the (rooted) game tree with the root x0 and the set of all nodes
P.
• S(x) is the set of all direct successors of the node x, and S x( )1 de-
notes the unique predecessor of the node x≠ x0 such that
x S S x( ( ))1 .
• Pi is the set of all decision nodes of the ith player (at these nodes the
player i chooses the following node), =P P ,i j for all i, j∈N, i≠ j,
and =+ =P z{ }n

j
j
m

1 1 denotes the set of all terminal nodes (final posi-
tions), =S z( )j +z Pj

n 1. It holds that ==
+ P Pi

n
i1

1 .
• = … …x x x x( , , , , , )t t T0 1 is the path (or the trajectory) in the game
tree, =x S x t T( ), 1t t1

1 ; = +x z PT
j

n 1; where index t in xt de-
notes the ordinal number of this node in the path ω (in discrete
time).
• = …h x h x h x( ) ( ( ), , ( ))i i i r/1 / is the r-component vector payoff of the
player i computed at the node x∈ P\{x0}. We assume that for all
i∈N, = …k r1, , , and x∈ P\{x0} the respective payoffs are positive,
i.e., hi/k(x)> 0.

In the following, we will write x0 when referring to the multistage
multicriteria game defined above. Since we deal with the multistage
games with perfect information we consider only the class of players’
pure strategies (see [12,24,30] for details). The pure strategy ui( · ) of
the ith player is a function that uniquely determines for each node x∈ Pi
the next node ui(x)∈ S(x) that the player i has to choose at x. Denote by
Ui the set of all possible pure strategies of the player i, and =U Ui N i.
Every pure strategy profile = …u u u U( , , )n1 generates the unique
path = … …+u x x u x u x u x u( ) ( , ( ), , ( ), ( ), , ( )),t t T0 1 1 where =+xt 1
u x S x( ) ( )j t t if xt ∈ Pj, t T0 1.

Furthermore, each path ω(u) generates a collection of the vector
payoffs of all players. We will write

= … =
=

H u H u H u h x u( ) ( ( ), , ( )) ( ( )),i i i r

T

i|1 |
1 (1)

to denote the value of the ith player’s vector payoff function which
corresponds to the strategy profile = …u u u( , , )n1 .

Following [12,30], at every intermediate node +x P Pt n 1 in the
game x0 one can define a subgame xt with the subgame tree K xt and
the subroot xt and a factor-game ΓD with the factor-game tree

=K x K K{ } ( )D
t

xt . Decomposition of the original multistage game x0

at the intermediate node xt onto the subgame xt and the factor-game ΓD

further induces the corresponding decomposition of (pure and mixed)
strategies (see [12,30] for detailes).

Denote by P P( ),i
x

i
Dt = …i n1, , , the restriction of the set Pi onto the

subgame tree K K( ),x Dt and let u u( )i
x

i
Dt denote the corresponding re-

striction of the ith player’s pure strategy ui( · ) in x0 to P P( )i
x

i
Dt . The

strategy profile = …u u u( , , )x x
n
x

1t t t in the subgame generates the path
(trajectory) = …+u x x u x u( ) ( , ( ), , ( ))x x

t t
x

T
x

1t t t t and, therefore, a collec-
tion of all the players’ vector payoffs in this subgame. Similarly to (1),
we will denote by
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= =
= +

H u h u h x u( ) ˜ ( ( )) ( ( )),i
x x

i
x x x

t

T

i
x

1

t t t t t t

(2)

the value of the ith player’s vector payoff function in ,xt and byUi
xt the

set of all possible ith player’s pure strategies in the subgame ,xt

=U Ux
i N i

xt t . Moreover,

= + =

= +
= = +

H u h x u h x u

h u h u

( ) ( ( )) ( ( ))

˜ ( ( )) ˜ ( ( )),

i

t

i
t

T

i
x

i
x

i
x x x

1 1

t

t t t t (3)

where = …u x x x x( ) ( , , , , )x
t t0 1 1t denotes a fragment of path ω(u) im-

plemented before the start of the subgame xt.
Note that, since =P P P ,i i

x
i
Dt we can compose the ith player’s pure

strategy =W u v U( , )i i
D

i
x

it in the original game x0 from her strategies
v Ui

x
i
xt t and u Ui

D
i
D in the subgame xt and the factor-game ΓD

[12,30].
To clarify the notation we consider the following bicriteria game in

extensive form.

Example 1 (A 3-player Bicriteria Multistage Game). Let =n 3, =r 2,
=P x{ },1 0 =P x{ },2 1 =P x{ },3 2 =P x x x x{ , , , },4 3 4 5 6 and

=h x
h x h x h x
h x h x h x

t( )
( ) ( ) ( )
( ) ( ) ( )

, 0.t
t t t

t t t

1/1 2/1 3/1

1/2 2/2 3/2

The game tree K is presented in Fig. 1.Note that the payoff h(xt) at node
xt, t≠0, is given by a matrix whose rows correspond to the criteria, and
the columns correspond to the players.Consider the following strategies
ui( · ) in x0:

= = =u x x u x x u x x( ) , ( ) , ( ) .1 0 1 2 1 2 3 2 3

Strategy profile =u u u u( , , )1 2 3 generates the path =u x x x x( ) ( , , , )0 1 2 3
and the corresponding collection of the players’ vector payoffs

= =H u H u( ) ( ) 12
12 ,1 2

= + + =H u( ) 2
4

2
3

8
3

12
10 .3

There are two subgames x1 and x2 along the trajectory ω(u). The
profile of strategies =u x x( ) ,x

2 1 21 =u x x( )x
3 2 31 generates the path

=u x x x( ) ( , , )x x
1 2 31 1 in the subgame x1 while =u x x( ) ( , )x

0 11 . The
formulae (2) and (3) for player 3 take the form

= = =

= + =

=
H u h u h x u( ) ˜ ( ( )) ( ( ))

2
3

8
3

10
6

,

x x x x x x
3 3

2

3

31 1 1 1 1 1

= + =

= + =

H u h u h u( ) ˜ ( ( )) ˜ ( ( ))
2
4

10
6

12
10

.

x x x x
3 3 31 1 1 1

We will return to this example in Section 3 when examining the
strong time consistency property.

Let a, b∈ Rm and = …k m1, , . To compare the vectors we use the
following notations for vector preferences:

= …
> > = …

a b a b k m
a b a b k m
a b a b a b

, if , 1, , ,
, if , 1, , ,
, if and .

k k

k k

The last inequality implies that the vector b is Pareto dominated by
vector a (and hence b is called “inefficient”).

When the players agree to cooperate in the game ,x0 first they have
to maximize the total payoffs vector = H u( )i

n
i1 w.r.t. the binary rela-

tion ≥ . Let PO ( )x0 be the set of all Pareto efficient pure strategy
profiles from U, i.e.:

u PO if v U H v H u( ) : ( ) ( ).x

i N
i

i N
i0

(4)

In general, the nonempty set PO ( )x0 consists of multiple strategy
profiles (see, e.g., [30,35]), and the problem of choosing a particular
Pareto efficient strategy profile arises.

3. Pareto optimal solution

3.1. Strong time consistency property

In [15], we proved that the set PO ( )x0 of all Pareto efficient pure
strategy profiles for a multistage multicriteria game x0 satisfies the
time consistency property. This implies that if the players choose cer-
tain Pareto optimal strategy profile u that generates the trajectory

= … …+u x x u x u x u x u( ) ( , ( ), , ( ), ( ), , ( )),t t T0 1 1 then in any subgame xt

evolving along the optimal trajectory ω(u), the restrictions of the ori-
ginal strategies ui to the subgame form a Pareto efficient strategy profile
in this subgame.

This property can be strengthened in order to allow for deviations
from the chosen optimal strategy. This extension is referred to as strong
time consistency.

Definition 1 ([30]). The set PO ( )x0 is called strongly time consistent if
u PO ( ),x0 ,xt xt∈ω(u), and for every Pareto efficient strategy

profile W PO ( )x xt t in the subgame the following inclusion holds:

= …u W u W u W PO( , ) (( , ), , ( , )) ( ).D x D x
n
D

n
x x

1 1t t t 0 (5)

This property ensures the compatibility of locally optimal behavior
W( )xt in the subgame with initial optimality requirements
[13,14,28–30]. That is, at any intermediate state xt the players can
“switch” to another strategy profile W xt that is Pareto efficient in the
current subgame xt. The STC guarantees that the compound behavior
obtained as a result of such switching still satisfies Pareto efficiency in
the original game.

However, as the following example demonstrates, a Pareto optimal
strategy profile may not necessarily be strongly time consistent.

Example 1 (Continued). Consider the following strategies in x0:

= = =u x x u x x u x x( ) , ( ) , ( ) ;1 0 1 2 1 2 3 2 3

=H u( ) 36
34 ;

i N
i

= = =v x x v x x v x x( ) , ( ) , ( ) ;1 0 4 2 1 2 3 2 3

=H v( ) 32
39 .

i N
i

Strategy profile u PO ( )x0 generates the trajectory
=u x x x x( ) ( , , , )0 1 2 3 . The subgame x1 has two Pareto optimalFig. 1. The bicriteria game tree.
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strategy profiles ux1 and = =W W x x W x x( ( ) , ( ) )x x x
2 1 2 3 2 61 1 1 :

= =H u H W( ) 30
18 , ( ) 26

21 .
i N

i
x x

i N
i
x x1 1 1 1

The compound strategy profile u W( , )D x1 in the original game x0

generates the trajectory

= =
=

u W x x u x W x W
x x x x

( , ) ( , ( ), ( ), ( ))
( , , , ),

D x x x
0 1 2 6

0 1 2 6

1 1 1

and the corresponding total payoff vector

=H u W( , ) 32
37

i N
i

D x1

which is not Pareto optimal in x0. Hence, the following proposition
holds.

Proposition 1. The set PO ( )x0 in multicriteria multistage game x0 does
not satisfy the strong time consistency property.

3.2. The minimal sum of relative deviations rule

To make a precise prediction on the players behavior in multi-
criteria game one need to specify a rule γ which all the players should
use in order to select the time consistent cooperative path = u¯ ( ¯) and
the corresponding Pareto efficient strategy profile u PO¯ ( )x0 . Now we
are ready to formally introduce such a specific rule which is applicable
for a wide class of multicriteria games with positive payoffs. We will
refer to this rule as the minimal sum of relative deviations (MSRD) rule.

Denote by =H u H u( ) ( )N k i N i k| | the sum of all players’ payoffs
w.r.t. the criterion k, =h x h x( ) ( ),N k i N i k| | xτ ∈ P∖{x0}. Let

=H H u* max ( )k u U N k| . The vector …H H( *, , *)r1 can be interpreted as the
vector of ideal payoffs for the grand coalition N (see, e.g.,
[23,30,35,42]).

Definition 2. According to the MSRD rule the players have to select a
Pareto efficient pure strategy profile u which minimizes the sum of
relative deviations w.r.t. each criterion from ideal payoffs vector H*.
Namely,

=
= =

H H v
H

H H u
H

min
* ( )

*
* ( )

* ,
v U k

r
k N k

k k

r
k N k

k1

|

1

|

or

=

=

=

=

u
H

H v

µ H v

arg max 1
* · ( )

arg max · ( ),

v U k

r

k
N k

v U k

r

k N k

1
|

1
|

(6)

where = >µ
H
1

* 0,k
k

= …k r1, , .

Denote by PO ( )x0 the nonempty set of strategy profiles u∈U which
satisfy (6). If =u u PO|{ ( ), ( )}| 1,x0 let the players choose any
strategy profile u PO ( ),x0 since any such strategy profile generates
the same cooperative path = = …u x x x¯ ( ¯) ( ¯ , ¯ , , ¯ ),T0 1 where =x x¯0 0.

Otherwise note that every trajectory u u PO{ ( ), ( )},l x0

= …l m1, , ¯ ; >m̄ 1 leads to some terminal node = +x z PT
j

n 1l . Let the
players choose terminal node =x zT

j
l with minimal number j, the

corresponding path = = …u x z¯ ( ¯) ( ¯ , , )j0 from {ω(u), u PO ( )}x0

with terminal node zj be the cooperative trajectory (path), and the
strategy profile u PO¯ ( )x0 such that =u( ¯) ¯ be the optimal co-
operative strategy profile.

Remark 1. Strictly speaking, the MSRD rule defined above determines
uniquely only the optimal cooperative trajectory ¯ but not the optimal
strategy profile. The reason for this is that in the definition of a pure

strategy for extensive game there is a certain redundancy (since the
player i’s behavior at some nodes may not affect the outcome of the
game, see [12,24,30] for details). However the strategy profile ū chosen
by the MSRD rule uniquely determines the players’ behavior at all
nodes x̄ ¯t .

Remark 2. One can readily check that u PO ( )x0 if u satisfies (6).
We will suppose in this paper that all the players have agreed to

employ the minimal sum of relative deviations rule in order to find the
cooperative path = = …u x x¯ ( ¯) ( ¯ , , ¯ )T0 generated by the cooperative
strategy profile u PO¯ ( )x0 .

Denote by

=H u H uMax ( ) ( )µ
u U i N

i
i N

i
(7)

the maximal (namely in the sense of minimal sum of relative deviations
rule) total vector payoff. In addition, suppose that at every subgame ,x̄t

x̄ ¯ ,t players choose the strategy profile u Ux x¯ ¯t t such that

=
( )u µ H varg max · ,x

v U k

r

k N k
x x¯

1
|

¯ ¯t
xt xt

t t
¯ ¯ (8)

where the coefficients =µ
H
1

*k
k
are the same as in (6).

We will write ( )PO x̄t to denote the set of all strategy profiles
u Ux x¯ ¯t t that satisfy (8). If strategy profiles from ( )PO x̄t generate
different trajectories in ,x̄t i.e., ( ) ( )u u PO|{ , }| 2,x x x x¯ ¯ ¯ ¯t t t t the
players choose the cooperative path ¯ x̄t in the subgame using the same
approach as in the original game x0 (minimal number j of the terminal
node zj).

Proposition 2. The particular Pareto efficient solution based on the MSRD
rule is time consistent. Namely, suppose that u U¯ satisfies (6), and

= = …u x x¯ ( ¯) ( ¯ , , ¯ )T0 is the cooperative path in x0. Then for each subgame
,x̄t x̄ ¯t along the optimal cooperative path, it holds that

= …
=

( )( )u u u µ H u¯ ¯ , , ¯ arg max · ,x x
n
x

u U k

r

k N k
x x¯

1
¯ ¯

1
|

¯ ¯t t t
xt xt

t t
¯ ¯ (9)

while = …+x x x¯ ( ¯ , ¯ , , ¯ )x
t t T

¯
1t is the corresponding cooperative path in the

subgame x̄t.

Proof. Suppose that (9) does not hold, i.e., there exists u Ux x¯ ¯t t such
that

<
= =

( ) ( )µ H u µ H u· ¯ · .
k

r

k N k
x x

k

r

k N k
x x

1
|

¯ ¯

1
|

¯ ¯t t t t

(10)

Let = …+( ( ) ( ))x x u x u¯ , , ,x
t t

x x¯
1

¯ ¯t t t be the trajectory in the subgame x̄t

generated by ux̄t. Then (10) takes the form

<
= = + = = +

( ( ))µ h x µ h x u· ( ¯ ) · .
k

r

k
t

T

N k
k

r

k
t

N k
x

1 1
|

1 1
|

¯t

(11)

Let, furthermore, = ( )u u u¯ ,i i
D

i
x̄t denote the “compound” strategy in

x0. Then = …u u u( , , )n1 generates the trajectory
= = … …+( ( ) ( ))x x x u x u¯ ¯ , , ¯ , , ,x x

t t
x x¯ ¯

0 1
¯ ¯t t t t in x0.

Adding
= =

µ h x( ¯ )
k

r
k

t
N k1 1 | to both sides of (11) and taking into

account (3) we get

<
= =

µ H u µ H u· ( ¯) · ( )
k

r

k N k
k

r

k N k
1

|
1

|

for some u∈U. The last inequalitiy contradicts the condition
u PO¯ ( ),x0 hence (9) is valid.

Arguing in a similar way (for the case when
>( ) ( )u u PO|{ , }| 1x x x x¯ ¯ ¯ ¯t t t t ) one can verify that = …x x¯ ( ¯ , , ¯ )x

t T
¯t — a

fragment of the optimal path w̄, starting at x̄t — remains the optimal
cooperative path in the subgame x̄t. □
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4. Constructing a characteristic function for multicriteria game

To design a vector-valued characteristic function for multistage
multicriteria game x0 we employ the method described in [7]. The
corresponding ζ-characteristic function is relatively friendly compu-
table and is proved to satisfy the superadditivity property for (single-
criterion) cooperative differential n-person games. This approach im-
plies the following two-stage scheme: first the players select the optimal
cooperative strategy profile u PO¯ ( )x0 using MSRD rule. Then, we
assume that all players from S use the optimal cooperative strategies ū ,j
while the other players (from N\S) seek to minimize (in the sense of
MSRD rule) the total payoffs vector of the players from coalition S:

=

=

=
V S

R S
H u u S N

H u S N
( )

0̄ , ,
Min ( ¯ , ), ,

Max ( ), .

r

µ
u j N S i S i S N S

µ
u U i N i

,j

(12)

Namely, the players from N∖S solve the following optimization
problem:

=

=

=

=

µ H u u

µ H u u

min · ( ¯ , )

· ( ¯ , ).

u j N S k

r

k
i S

i k S N S

k

r

k
i S

i k S N S

, 1
|

1
|

j

(13)

It is worth noting that coefficients μk in (13) are the same as in (6).
Again, if for all uN∖S satisfying (13) =u u| ( ¯ , )| 1,S N S the players

from N∖S can choose any uN∖S meeting (13). Otherwise, they are ex-
pected to choose the path u u( ¯ , )S N S whose terminal node zj has
minimal number j, and corresponding bundle of strategies (uj)j∈N∖S. Let

=H u u H u uMin ( ¯ , ) ( ¯ , )µ
u j N S i S

i S N S
i S

i S N S
,j

denote the minimal (in the sense of the MSRD rule) total vector payoff
of the coalition S.

Definition 3. The vector-valued characteristic function V(S) in
multicriteria game Γ satisfies weak superadditivity property if for all S1,
S2⊆N with =S S1 2 the following vector inequality

+V S S V S V S( ) ( ) ( )1 2 1 2 (14)

does not hold.

Proposition 3. The vector-valued characteristic function (12) is weakly
superadditive.

Proof. Consider proper coalitions S1, S2⊂N, =S S ,1 2
=S S S N1 2 . Let

=

=

( ) ( )
( ) ( )

H u u H u u

H u u H u u

Min ¯ , ¯ , ,

Min ¯ , ¯ , .

µ
u j N S i S

i S N S
i S

i S N S

µ
u j N S i S

i S N S
i S

i S N S

,

,

j

j

1 1
1 1

1
1 1

2 2
2 2

2
2 2

Then for all possible u UN S N S1 1 and u UN S N S2 2

=

=

=

=

( )
( )

( )
( )

µ H u u

µ H u u

µ H u u

µ H u u

,

, ,

,

, .

k

r
k i S i k S N S

k

r
k i S i k S N S

k

r
k i S i k S N S

k

r
k i S i k S N S

1 |

1 |

1 |

1 |

1 1 1

1 1 1

2 2 2

2 2 2 (15)

Suppose that inequality (14) is valid, i.e.

+

+ = …

( )
( )

H u u H u u

H u u k r

( ¯ , ) ¯ ,

¯ , , 1, , ;
i S

i k S N S
i S

i k S N S

i S
i k S N S

| |

|

1
1 1

2
2 2

(16)

and at least one inequality from (16) is strict.
If we multiply each inequality from (16) by μk>0 and then sum up

all the inequalities, we get

= +

+ <

<

+

= =

=

=

=

( )

( )

µ H u u µ H u u u

µ H u u u

µ H u u

µ H u u

( , ) ( , , )

( , , )

,

, .

k

r

k
i S

i k S N S
k

r

k
i S

i k S S N S

k

r

k
i S

i k S S N S

k

r

k
i S

i k S N S

k

r

k
i S

i k S N S

1
|

1
|

1
|

1
|

1
|

1
1 2

2
1 2

1
1 1

2
2 2

The last inequality contradicts system (15).
Hence, (14) does not hold, and V(S) is weakly superadditive.
Obviously, for the coalition =S and =S N the weak super-

additivity property holds trivially. □

5. Long-term implementation of the cooperative solution

5.1. The imputation distribution procedure and its properties

An imputation distribution procedure (or payment schedule) is
known to be a useful method to implement a long-term cooperative
agreement in a dynamic game (see, e.g., [8,17,18,28,30,31,37]). Below,
we introduce a number of properties that can be used to characterize an
imputation distribution procedure. For certainty, we will formulate
these properties for the Shapley value and later on for the core, al-
though they can be readily generalized for an arbitrary imputation (see,
for instance, [17,23,24,30]) from a cooperative solution.

The core and the Shapley value were extended to cooperative
multicriteria games in [1,4,33] and [34]. Denote by N V( , )x x0 0 a
multicriteria game x0 with the vector-valued characteristic function
V x0 defined by (12).

Definition 4 ([40]). The Shapley value of N V( , )x x0 0 is a vector x0

which is defined for every player i∈N as

= n S S
n

V S V S i( | |) ! (| | 1)!
!

( ( ) ( { })).i
x

S N i S

x x

,

0 0 0

(17)

Note that the Shapley value for a cooperative multicriteria game is
proved to satisfy the so-called efficiency property [34,40], i.e.:

= =
= = =

V N h x( ) ( ¯ ).
i

n

i
x x

T

i

n

i
1 1 1

0 0

(18)

However, if a vector-valued characteristic function for multicriteria
game does not satisfy the strong (component-wise) superadditivity
property, the Shapley value may not necessarily satisfy the so-called
individual rationality constraint: V i({ }).i

x x0 0 For every x u¯ ¯ ( ¯),t
denote by ( )N V, ,x x¯ ¯t t = …t 0, , T 1, a subgame along the
cooperative path with the subgame characteristic function V x̄t which
can be computed for this subgame using the same approach as in (12).
Note that

=
= +

V N h x( ) ( ¯ ).x

t

T

i N
i

¯

1

t

(19)
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Let ( )i
x

i N
¯t denote the Shapley value for the subgame ( )N V,x x¯ ¯t .

Denote by = = …x i n{ ( ¯ )}, 1, , ;i k/ = …k r1, , ; = … T1, , the IDP (or
the payment schedule) [17,28,30,31,37]. The payment schedule based
approach means that all the players have agreed to allocate (according
to some specific rule called IDP) the total cooperative vector payoff

=H u V N( ¯) ( )i N i
x0 between the players along the cooperative path

u¯ ( ¯). Then x( ¯ )i k/ denotes the actual current payment that the ith
player receives at node x̄ w.r.t. criterion k (instead of h x( ¯ )i k/ ) when
the players apply the imputation distribution procedure β.If at the
initial time each player is satisfied with the respective share i

x0 of the
total payoff V N( ),x0 then an appropriate payment schedule can be used
to keep the player interested in cooperation at any intermediate time,
i.e., in any subgame xt.

Definition 5 ([17]). The imputation distribution procedure
= x{ ( )}i k t/ satisfies the efficiency condition if

= = …
=

x i n( ¯ ) , 1, , .
t

T

i t i
x

1

0

(20)

Eq. (20) means that the sum of the player i’s actual current payments
along the optimal cooperative path equals to the total amount to be
obtained by the player i according to the cooperative solution. Then the
payment schedule for every player can be reasonably interpreted as a
rule for the step-by-step allocation of the player i’s optimal payoff.

Definition 6. The imputation distribution procedure β satisfies the strict
balance condition if = =t T k r1, ..., ; 1, ,

=
= = = =

x h x( ¯ ) ( ¯ ).
t

i

n

i k

t

i

n

i k
1 1

/
1 1

/
(21)

This condition ensures that at any intermediate state x̄t along the
optimal trajectory the players have collected exactly the amount of
payments that is needed to implement the procedure β.

The next useful dynamic property of a payment schedule — the IBP
condition, introduced in [45] — was extended to multicriteria co-
operative games in [15,17].

Definition 7 ([17]). The imputation distribution procedure
= x{ ( ¯ )},i k t/ = …i n1, , ; = …t T1, , in N V( , )x x0 0 satisfies the strong

(or component-wise) irrational-behavior-proof (IBP) condition for
individual players, if for all i∈N and for any = …t T1, , 1 it holds that:

+
=

x V i V i( ¯ ) ({ }) ({ }).
t

i
x x

1

¯t 0

(22)

Vector inequality (22) implies that every player has a reasonable
incentive to cooperate (at least until the intermediate node x̄t will be
reached) even if he anticipates that the cooperation can be destroyed at
the node x̄t because of the “irrational behavior” of some other players.

Definition 8 ([15]). The imputation distribution procedure β satisfies
the strong irrational-behavior-proof (IBP) condition (for coalitions) if
∀ S⊂N, |S|> 1, for any = …t T1, , 1 it holds that:

+
=

x V S V S( ¯ ) ( ) ( ).
i S

t

i
x x

1

¯t 0

(23)

Two other advantageous properties of payment schedules in
multicriteria game – time consistency and non-negativity – were
investigated in [17,18].

Definition 9 ([17]). The imputation distribution procedure
= x{ ( ¯ )}i k t/ satisfies the time consistency property if

+ = = …
=

x t T i N( ¯ ) 1, , 1, .
t

i i
x

i
x

1

¯t 0

This constraint means that the total payment received by the ith player
along the cooperative path before entering the intermediate node x̄t
plus the ith component of the subgame Shapley value is equal to the
player i’s optimal payoff to be obtained in the original game.

Definition 10. The imputation distribution procedure β satisfies the
non-negativity constraint if

= … = … = …x i n k r t T( ¯ ) 0, 1, , ; 1, , ; 1, , .i k t/

We note that there could be different payment schedules that may or
may not satisfy the properties listed above. Below we consider three
payment schedules and discuss their properties.

The first one, called the incremental imputation distribution proce-
dure is formulated as follows, [17,28]:

= = …
=

x t T
x

( ¯ ) , 1, , 1;
( ¯ ) .

i t i
x

i
x

i T i
x

¯ ¯

¯

t t

T

1

1 (24)

This payment schedule was studied extensively for different classes of
single-criterion dynamic games (see for instance [30]). The incremental
payment schedule is designed to satisfy time consistency, but in general
this IDP does not satisfy the non-negativity condition (two approaches
how to overcome this disadvantage were described in [8,17]).

The proportional imputation distribution procedure is defined as

= = …=x
h x

V N
t T( ¯ )

( ¯ )
( )

· , 1, , .i k t
i
n

i k t

k
x i k

x
/

1 /
/
¯

0
0

(25)

This payment schedule implies the proportional allocation of the total
current vector payoff at every node along the optimal cooperative
trajectory. The proportional IDP obviously satisfies the non-negativity
constraint for multicriteria games with positive payoffs but does not
satisfy time consistency (see, e.g., [17,28]).

Finally, we consider a novel payment schedule as described below.

Definition 11. The V-incremental payment schedule is defined as
follows

= +

+

= …

=
=

x V i V i

n
V N V i

n
V N V i t T

x x

( ¯ ) ({ }) ({ })

1 ( ) ({ })

1 ( ) ({ }) , 1, , 1;

( ¯ ) ( ¯ ).

i t
x x

x

i N

x

x

i N

x

i T i
x

T

i

¯ ¯

¯ ¯

¯ ¯

1

1

t t

t t

t t

1

1 1

0

(26)

This payment schedule is neither non-negative nor time consistent
in general, but it is the most flexible one as the players may postpone
the choice of a particular supporting imputation from the core up to the
final stage of a game.

To conclude, we note that all these payment schedules always sa-
tisfy the efficiency (20) and the strict balance conditions (21).

5.2. Choice of supporting imputation for the core

In the following we will consider the core as the multiple co-
operative solution.

Definition 12 ([33]). The core C V( )x0 of the cooperative game
N V( , )x x0 0 is a set of all imputations = …( , , )n1 satisfying the

inequalities

= V S S N( ), .
i S

i S
x0

(27)

Likewise, for every subgame ( )N V, ,x x¯ ¯t t = …t T1, , 1 we denote by
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C V( )x̄t the core of this subgame.Let A[r× n] denote the set of all
matrices with real components which contain r lines and n columns,
a∈ A[r× n], B⊂A[r× n]. We employ the notation

= +a B a b b B{ : } to define the strong time consistency of the
whole core [6,15].

Definition 13 ([6]). The core C V( )x0 satisfies the strong time consistency
property in the game N V( , )x x0 0 if

1. C V( )x̄t for all = …t T0, , 1.
2. There exists an imputation C V¯ ( )x0 and imputation distribution

procedure = x{ ( ¯ )},i k t/ = …t T1, , , such that == x( ¯ ) ¯ ,t
T

i t i1
= …i n1, , , and

= …
=

( )C V x C V t T( ) ( ¯ ) , 1, , 1.x
t

x

1

¯t0

(28)

Definition 14. The vector ¯ from the core C V( )x0 and the imputation
distribution procedure = x{ ( )}i k t/ which provide condition (28) are
called the supporting imputation and the supporting IDP, respectively.

If the core C V( )x0 satisfies the STC it is possible to find the sup-
porting imputation ¯ inside the core and to redistribute it over time
using payment schedule β such that any deviation from this supporting
solution to any other imputation from the subgame core C V( )x̄t will
result to the vector of payoffs that is also contained in the core C V( )x0 .

Proposition 4. Let for every subgame ( )N V, ,x x¯ ¯t t = …t T0, , 1 formed
along the cooperative path ¯ the core C V( )x̄t be non-empty and contain the
Shapley value x̄t. Let a payment schedule = x{ ( )}i k t/ for Shapley value
satisfy the efficiency condition (20), the strict balance condition (21), and
the strong IBP conditions for individual players (22) and for coalitions(23).

Then the whole core C V( )x0 in the original game N V( , )x0 satisfies the
STC while the Shapley value i

x0 and payment schedule = x{ ( )}i k t/ are
used as a supporting imputation ¯ and supporting imputation distribution
procedure, respectively.

Proof. To verify (28) let us select an arbitrary …t T{1, , 1} and any
imputation ( )C Vt x̄t from the subgame ( )N V,x x¯ ¯t t core. Denote by

= += x^ ( ¯ )i
t

i i
t

1 the resulting vector of the players’ payoffs in
N V( , )x0 .
We have to prove that ^ satisfies inequalities (27), i.e. that
… C V(^ , , ^ ) ( )n

x
1 0 .
Using the strict balance condition (21), (18) and (19) we obtain

= =

= =

= = = +

= = +

x x x

h x h x V N V N

( ¯ ) ( ¯ ) ( ¯ )

( ¯ ) ( ¯ ) ( ) ( ).

i N

t

i
i N

T

i
i N t

T

i

i N

T

i
i N t

T

i
x x

1 1 1

1 1

¯t0

Then

= + =

= + =
=

x

V N V N V N V N

^ ( ¯ )

( ) ( ) ( ) ( ).
i N

i
i N

t

i
i N

i
t

x x x x
1

¯ ¯t t0 0

Since αt is an imputation in the subgame ( )N V, ,x x¯ ¯t t and taking into
account the strong IBP condition for individual players (22) we get

= + +

+
=

x V i V i

V i V i V i V i

^ ( ¯ ) ({ }) ({ })

({ }) ({ }) ({ }) ({ }).

i

t

i i
t x x

i
t

x x x x
1

¯

¯ ¯

t

t t

0

0 0

Thus, ^ is exactly an imputation in the original game N V( , )x0 .
Since ( )C V ,t x̄t using the strong IBP condition for coalitions (23)

we obtain

= +

+

+ >

=
x

V S V S

V S V S V S V S S N S

^ ( ¯ )

( ) ( )

( ) ( ) ( ) ( ), , | | 1.

i S
i

i S

t

i
i S

i
t

x x

i S
i
t

x x x x

1
¯

¯ ¯

t

t t

0

0 0

Hence, the resulting vector of the players’ payoffs ^ despite of the de-
viation made in the subgame ( )N V,x x¯ ¯t t still belongs to the core
C V( )x0 of the original game. □

It is worth noting that Proposition 4 does not depend on a particular
optimal imputation the players select within the core given that this
imputation and corresponding payment schedule satisfy the strong IBP
conditions (22) and (23).

Any of the payment schedules introduced in Section 5.1 can be used
as a supporting imputation distribution procedure. In this case, one
only need to verify whether the Shapley value belongs to the core at
every subgame along the cooperative path and whether it satisfies the
strong IBP conditions for individual players (22) and for coalitions (23).

6. Example. Implementation of three payment schedules for given
multicriteria game

Consider 3-person game with 3 criteria: =n 3, =r 3, =P x{ },1 0
=P x{ },2 1 =P x{ },3 2 =P x x x x{ , , , },4 3 4 5 6 and

=h x
h x h x h x
h x h x h x
h x h x h x

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

.t

t t t

t t t

t t t

1/1 2/1 3/1

1/2 2/2 3/2

1/3 2/3 3/3

The game dynamics and payoffs are presented in Fig. 2.
There exist two Pareto optimal trajectories in this game. Using the

MSRD rule the players choose the optimal cooperative strategy profile
=u u u u¯ ( ¯ , ¯ , ¯ )1 2 3 : =u x x¯ ( ) ,1 0 1 =u x x¯ ( ) ,2 1 2 =u x x¯ ( )3 2 3; which generates the

cooperative trajectory = = =u x x x x x x x x¯ ( ¯) ( , , , ) ( ¯ , ¯ , ¯ , ¯ )0 1 2 3 0 1 2 3 . The
values of the vector-valued ζ – characteristic function (12) for the game

x0 are

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V S( )x0 12 12 6 48 24 18 66
30 6 6 54 60 12 96
18 6 12 48 36 18 72

and the Shapley value for original game x0 is

=
29 26 11
55 19 22
35 20 17

.x0

The vector-valued ζ – characteristic functions and the respective
Shapley values for the subgames along the cooperative path ¯ can be
constructed using the same approach (12).

The subgame N V( , )x x1 1 :

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V S( )x1 6 18 6 30 12 30 42
18 12 18 30 36 42 60
12 18 12 36 24 36 54

Fig. 2. The 3-criteria game tree.
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=
9 24 9

18 18 24
15 24 15

.x1

The subgame N V( , )x x2 2 :

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V S( )x2 6 6 6 12 12 12 18
6 6 12 12 18 30 36
6 6 6 12 12 12 18

=
6 6 6
6 12 18
6 6 6

.x2

One can readily check that the Shapley value satisfies (27) for the
original game and for both subgames along the optimal cooperative
path, i.e., ( )C V ,x x¯ ¯t t =t 0, 1, 2. Therefore, the core C V( )x̄t is
nonempty =t 0, 1, 2. The simplest incremental imputation distribu-
tion procedure (24)

= =x{ ( ¯ )}
20 2 2
37 1 2
20 4 2

,i k
x x

/ 1
¯ ¯0 1

= =x x{ ( ¯ )}
3 18 3

12 6 6
9 18 9

, { ( ¯ )}
6 6 6
6 12 18
6 6 6

i k i k/ 2 / 3

and the proportional payment schedule (25)

=x{ ( ¯ )}
10, (54) 9, (45) 4
20, 625 7, 125 8, 25

8, 75 5 4, 25
,i k/ 1

=x{ ( ¯ )}
10, (54) 9, (45) 4
13, 75 4, 75 5, 5
17, 5 10 8, 5

,i k/ 2

=x{ ( ¯ )}
7, (90) 7, (09) 3
20, 625 7, 125 8, 25

8, 75 5 4, 25
i k/ 3

satisfy the strong IBP conditions for individual players (22) and for
coalitions (23) for all =t 1, 2. Therefore, the whole coreC V( )x0 satisfies
the STC, and the Shapley value x0 can be employed as a supporting
optimal imputation while the players use either the incremental im-
putation distribution procedure (24) or the proportional IDP (25). The
choice of one of the two payment schedules can be made taking into
account which of the two properties - time consistency or non-nega-
tivity - is more important for the players.

On the other hand, the V-incremental payment schedule (26)

=x{ ( ¯ )}
14 2 8
26 8 2
14 4 8

,i k/ 1

= =x x{ ( ¯ )}
4 16 4

12 6 6
10 16 10

, { ( ¯ )}
11 8 1
17 5 14
11 8 1

i k i k/ 2 / 3

does not satisfy the strong IBP condition for coalitions for =t 1 (since
condition (23) is violated for coalition =S {1, 2}). Therefore, in this
game, V-incremental payment schedule does not ensure the sustain-
ability of a long-term cooperative agreement and cannot be used as a
supporting IDP.

7. Conclusion

In this paper, we introduced a new rule that can be used to choose
an optimal and time consistent cooperative trajectory in a multicriteria
multistage game. This rule can be used for a wide class of multicriteria

games with positive payoffs to construct a vector-valued characteristic
function that satisfies weak superadditivity property. The players are
assumed to use the payment schedule based approach to guarantee the
sustainability of a cooperative agreement, i.e. the players design an
appropriate allocation mechanism in order to distribute the optimal
payoff of each player along the cooperative trajectory.

Furthermore, we specify the minimal set of properties a payment
schedule should satisfy to guarantee the STC of the whole core. Namely,
if the payment schedule designed to distribute the Shapley value sa-
tisfies strict balance condition, efficiency condition and the strong IBP
conditions, given that the Shapley value belongs to the core, it can be
employed as a supporting imputation distribution procedure. The STC
of the core implyes that a single deviation from the Shapley value to
any other imputation chosen from the subgame core still lead to the
payments vector from the core of the original multistage game. We
discuss three payment schedules - the incremental, proportional and V-
incremental IDP - and check whether they can be used as supporting
imputation distribution procedures for the given multicriteria game.

An interesting research question is to provide an axiomatic char-
acterization (see, [36,43]) of the proposed MSRD rule for choosing a
unique Pareto efficient solution in multicriteria games.
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