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A B S T R A C T

We consider the problem of minimizing the number of airplanes needed to fly a fixed daily repeating schedule of
flights. We use deficit functions (DF) to decompose an aviation schedule of aircraft flights into aircraft chains
(routes) called a chain decomposition. Each chain visits periodically a set of airports and is served by several
cockpit crews circulating along the airports of this set. The initial step in our approach is to find the minimal
number of aircraft needed to carry out the flight schedule. This is achieved by using the fleet size theorem based
on a DF representation of an aircraft flight schedule. A DF is a step function associated with an aircraft terminal
which changes by+ 1 and−1 at flight departure and arrival times, respectively. DF theory was developed in the
1960–70s by Linis and Maksim (1967) and Gertsbakh and Gurevich (1977). Although the initial application of
DFs was to the Russian AEROFLOT fleet it has subsequently attracted more attention on bus scheduling than
aircraft scheduling. Here we discuss the revival of this method and its crucial use to construct the so-called chain
decomposition of the schedule for a single period. We provide a justification for maximizing the number of
balanced chains (flight sequences with the same start and end terminals). To do this we propose The Maximal
Balanced Chain Problem. These are then converted into a set of infinite periodic flight sequences, each of which
can be carried out by a single aircraft. The conversion is carried out by mapping the single period set of chains
into an Euler graph. To construct the set of mutiperiod chains that are “balanced” (return to the same terminal at
the start) we find all edge disjoint cycle covers of the Euler graph using a modified version of Hierholzer's
algorithm. These cycles are converted back into a balanced multiperiod chain solution and modified to conform
to any maintenance constraints. To insure maintenance check constraints are satisfied for multiperiod chains, it
may be necessary to add deadhead flights. Minimizing the cost of deadhead trips and overnight stays provide the
basis for selecting an optimal routing solution.

1. Introduction

Because airline scheduling is a very complex problem, it has been
tackled by decomposing it into a set of sub problems. The process starts
with the design of a flight schedule involving a flight network, based on
which markets to serve and their customer demands. Then a set of
flights or “flight legs” to meet this demand are determined, each de-
fined by its departure and arrival time. This is followed by the fleet
assignment problem which assigns flights to fleets of different aircraft
types. Then aircraft routes are determined as the sequence of flight legs
flown by individual aircraft. Finally, a crew schedule is determined
which consists of a crew pairing followed by crew rostering. In this
paper we are interested in the aircraft fleet routing problem.

As the aircraft represents the largest cost associated with the op-
eration of an airline, this prompted us to focus on the problem of
finding the least number of aircraft required to meet the demand of a

passenger flight schedule (FS). When reviewing the literature, we found
that most problems start with the assumption that the fleet size and its
composition are already fixed. For example, in the aircraft assignment
problem it is known at the start that the airline has a fixed number of
aircraft of each aircraft type. The solution separates this heterogeneous
fleet into homogeneous sub fleets of identical aircraft types assigned to
different flight collections. There is no consideration whether the given
fleet size is optimal or not. An optimal fleet size is the minimal number
of aircraft needed to service all flights assigned to it. If this differs from
the original fixed number of aircraft, then there is a need to either rent
or buy additional aircraft or dispose of surplus aircraft (both most likely
at inflated market prices).

Our primary goal then is to find the minimum fleet size for a given
fleet type required to service the FS followed by a chain decomposition
(CD). A CD is a decomposition of the flights in the FS into chains of
sequential flights (or routes) carried out by individual aircraft in the
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fleet. Each flight leg must be included in exactly one chain. A chain/
route must start and end at the same terminal, have feasible flight pair
joinings (a flight arriving at a terminal is followed by a flight departing
from the same terminal after an acceptable layover time) and satisfy
maintenance constraints. This is referred to as the aircraft routing
problem. Barnhardt et al. [1] defines a chain (or string) as main-
tenance feasible, if it satisfies all Federal Aviation Administration and
carrier-specified maintenance requirements. The maintenance checks
require each aircraft to undergo checks for every 60 h of flying time.
However, some airlines may require more severe flying time checks.
The maximum time between checks are typically restricted to three to
four calendar days. As these checks can be quite long (typically 4–6 h),
these checks are performed at night. These checks can be conducted at
the aircrafts home base or a designated terminal, where it is assumed
the necessary equipment and labor are available. We do not consider
the long-term maintenance checks which are typically performed once
a year.

The aircraft routing problem has been addressed by many re-
searchers in the past, especially as an integer mathematical program-
ming problem. [2–7]. We adopt a simpler approach based on deficit
function (DF) theory developed in the 1960–70s by Linis and Maksim
[8] and Gertsbakh and Gurevich [9], primarily because of its trans-
parency, visual appeal, and polynomial complexity. Each DF is asso-
ciated with a terminal and is a step function which has unit changes at
flight departure and arrival times. The DF is a discrete multimodal
function with regions of maximal values between which are valleys
referred to as “hollows”. This admits to building chains by joining flight
arrivals to departures. After a chain is completed, its flights are re-
moved and the DFs are redrawn with the remaining flights. Then other
chains are extracted until no flights remain. Each chain then becomes a
single aircrafts route.

It is desirable to obtain a CD in which all its chains are fully ba-
lanced, that is one in which each aircraft returns to the terminal from
whence it started. If the aircraft does not return in time to undergo
required maintenance checks, it is necessary to add costly empty
(deadheading) flights to bring the aircraft associated with an un-
balanced chain and its crew back to the terminal from which it origi-
nated. To avoid this situation, we consider a 2-stage process: First a CD
is found containing the maximal number of single period chains; and
secondly, we offer a method to convert any unbalanced chains into
balanced multiperiod chains (MPCs). A MPC is a concatenation of
single period unbalanced chains. It should be noted, that although this
investigation addresses the airline schedule problem it has applications
to other domains as well, such as ground transportation and even job-
machine scheduling.

The paper is organized as follows. Section 2 provides some back-
ground on DFs and aircraft routing. Section 3 describes the DF approach
and the minimum fleet size theorem. Section 4 describes a method for
determining a CD. Flight joining rules are introduced with the aid of
hollow analysis. In Section 5 the procedure for finding a balanced air-
craft routing that insures a daily repeating schedule of flights. This pro-
ceeds in three stages: Stage 1- Find the Maximal Single Period Balanced
Chain Decomposition, Stage 2 - Converting all single period unbalanced
chains into a Basic Set of balanced MPCs. This stage employs an Euler
graph for converting the unbalanced chains in a CD into a ‘basic set’ of
MPCs, Stage 3 - Expanding the basic set of MPCs in order to create a
daily repeated aircraft schedule. In 6 the routing solution for a 30 flight
- 4 terminal example in terms of a periodic set of balanced MPCs is
displayed. Sections 7 and 8 provide a method to ensure that the
maintenance constraints are satisfied for each aircraft route, and a
means for finding the optimal routing solution among alternatives, re-
spectively. In Section 9 an analysis and comparison of the presented DF
model with other approaches such as integer programming formula-
tions is given. The final section provides a conclusion.

2. Background on deficit functions

Much of the research on aircraft routing assumes a single fleet for a
fixed type of aircraft. Two approaches have been taken. The first is to
solve a fleet assignment problem where the numbers of aircraft of dif-
ferent types, owned by the airline, are given constants. The fleets of
each aircraft type have different capabilities to service flights according
to the number of passengers, range of travel, costs, etc. The solution to
the fleet assignment problem decomposes the set of flights in the ori-
ginal flight schedule into separate subsets to be operated by fleets of a
single type. Mancel et al. [10] provide a state of the art for the airline
fleet assignment problem. Most authors formulate the problem as an
integer linear program. For example, Ozdemir et al. [11] solve a fleet
assignment problem using Turkish Airlines data and Markus et al. [12]
apply it to Lion Air in Indonesia. The second approach is to determine
directly the minimum fleet size (of a given type) required to service the
FS assigned to the fleet. Once the minimum number of aircraft is de-
termined, the routes, or chain of flights, for each aircraft is found. This
in fact partitions the FS into subsets, each being serviced by a single
aircraft.

The seminal paper of Dilworth [13] on a decomposition theorem of
partially ordered sets was the first to address this problem. Methods
such as mathematical programming and network flows, were carried
out in the 1950s and 70s by Dantzig and Fulkerson [14] Bartlett [15]
Salzborn [16]. Then there is the infinite vehicle chain problem ap-
proached from a theoretical point of view of periodic scheduling pro-
blems and partial orders of flights Serafini and Ukovich [17] Orlin [18]
Gertsbakh and Serafini [19]. In parallel, around the decade of the 70s,
we see the start of the DF approach for solving minimum fleet size and
CD problems. DFs were first introduced by Linis and Maksim [8]
Gertsbakh and Gurevich [9] Gertsbakh and Gurevich [20] for airline
scheduling. An English translation of Linis and Maksim's 1967 paper [8]
is provided in Linis and Maksim [21], along with a discussion of its
merit in Gertsbakh et al. [22]. This thread has been continued with a
few scattered papers in the 80s, and subsequently by the work of Ceder
and colleagues with regard to public transit bus and rail scheduling. Liu
and Ceder [23] provide an excellent 50-year retrospective of the use of
the DF approach related to public transport. Lui and Ceder [24] in-
corporate the DF approach to help solve an integrated public transit
timetable and vehicle scheduling problem.

The insertion of “deadheading trips” to further decrease the fleet
size was developed by Ceder and Stern [25], Stern and Ceder [26] in
the context of bus transit scheduling. A second method for reducing the
fleet size, using possible shifts in departure times within given toler-
ances, is described in Ceder and Stern [27]. DFs have also been applied
to machine job scheduling by Gertsbakh and Stern [28]. In a recent
paper, Gertsbakh and Stern [29] describe the use of DFs for crew
planning and rostering in aviation.

3. Deficit function and minimum fleet size theorem

3.1. Definitions and notations

Let I = {i: i = l, . . ., n} denote a set of required flight legs. The
flights are conducted between a set of terminals (airports) K={k: k= l,
. . ., q}. Each flight is to be serviced by a single aircraft and each aircraft
is able to service any flight. For a flight i departing from terminal kid and
arriving at terminal kia, let tid and tia represent its departure and arrival
times, respectively. The arrival time includes an extension of the
duration of each flight by a minimum turn-time. A flight leg i is re-
presented as a quadruple (tid, tia, kid, kia). A flight schedule FS is a set of all
flights {(tid, tia, kid, kia): kid, kia ∈ K, i ∈ I}. Two flights i, j may be serviced
sequentially (feasibly joined) by the same aircraft only if the pre-
cedence relation R is satisfied.

≺ ∋ ≤ =R i j t t and k k: i
a

j
d

i
a

j
d (1)
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Here the arrival time has been prolonged to include the minimum
turn time between any two flights. Denote [0, T] as a daily schedule
horizon (say 24 h) where flights are excluded from crossing the 24:00 h
line. All flights depart and arrive within this time interval, i.e.,
0 ≤ < ≤t t T .d

i
a
i Such a daily FS is said to be balanced.

A deficit function, DF(k, t), is a step function defined for each
terminal k, whose value at time t is equal to the number of flight de-
partures less the number of arrivals over the interval [0, t]. The function
changes by +1 and −1 at flight departure and arrival times, respec-
tively. At these times, the DF is right-continuous
Theorem 1. Minimum Fleet Size Theorem

The minimum number of aircraft required to service a FS equals the
sum of the Max values of q DFs. Here m represents the minimum fleet
size.

∑= ∈
=

m Max{DF(k, t)|t [0, T]}
k 1

q

(2)

Proof. The proof may be found in Linis and Maksim [8].

Corollary 1. The DFs also provide the starting numbers of ac at each
terminal k as:

∈Max{DF(k, t)|t [0, T]}

3.2. DF as a function of plateaus and hollows

A DF is a discrete step function containing multiple regions or in-
tervals of maximal values (plateaus). Regions between plateaus are
denoted as hollows. Let the maximal value of DF(k, t)=DF(k). Let r(k)
equal the total number of such maximal regions for DF(k) defined by a
tuple of adjacent points Mk

r = [ skr, ekr], r= 1,…, r(k). Here, r represents
the rth maximal interval ordered from the left. Note, skr and ekr represent
departure and arrival flights from and to terminal k, respectively (not
necessarily the same). The one exception occurs when the DF reaches its
maximum value at the end of the horizon in which case Mk

r(k) has a
departure not followed by an arrival, and ekr(k)= T. Define the set of
hollow intervals (regions) for each DF(k) as; Hk

0 = [ 0, sk1], Hk
1 = [ ek1,

sk2],…, Hk
r(k)= [ ekr(k), T]. Hk

0 and Hk
r(k) may consist of only one point. It

is now possible to describe the partition of the schedule horizon of DF
(k, t) into a sequence of alternating hollow and maximal intervals, i.e.,
(Hk

0, Mk
1, Hk

1, . . ., Mk
r , Hk

r ,…., Mk
r(k), Hk

r(k)). An example of a FS named
FS30 is given in the Appendix. The FS and its corresponding set of DFs is
displayed in Figs. 1 and 2, respectively.

In Fig. 1. we see that all flights are carried out within a daily 24 h
schedule. A homogeneous fleet is assumed allowing any aircraft to carry
out any flight. For this example, we see from the DF's max values that
the minimum fleet size is12. From Corollary 1 we see that the starting
number of aircraft at terminals A, B, C, D are 1, 4, 4, 3, respectively.

4. Chain decomposition (aircraft routing)

Below we show how to use DFs for a decomposition of the FS into
vehicle routes or chains. It should be noted, that aircraft route and
chain are used interchangeably.

A Chain (C) is an ordered sequence of flights [f1, f2,.., fi, …,fc] such
that, tia ≤ ti+1

d , and kia= ki+1
d ,∀ i = 1,…c-1. A set of chains is a CD; if all

flights in a chain are serviced by a single aircraft, and each flight i ∈ I is
included exactly once in a chain.

It is convenient at this point to introduce the importance of hollows
in the construction of aircraft chains.

4.1. Hollow analysis

Hollows are an important region of the DF to look for possible

joinings between arrival and departure flights to form chains. In order
for a flight j to be joined to a previous flight i it needs to be a feasible
joining satisfying (1). In fact, the 2 hollows in DF(C) allow for a single
feasible joining. We refer to such hollows as a V hollow of depth 1. A V-
Hollow of depth n is monotone decreasing and increasing and corre-
sponds to a sequence of n arrivals followed by n departures with the
number of possible multi-joinings is n!. Any arrival in a V-Hollow can
be joined with any departure. However, there are more complicated
hollows which we refer to as U-Hollows.

A U-Hollow also has n arrivals and n departures, but exhibits at least
one arrival event which is preceded by one or more departure events.
For U-Hollows, with n arrivals and departures, the number of feasible
joining pairs is less than n!. This feature implies that the number of CDs
is finite and bounded.

4.2. Feasible flight joinings

The problem of finding the number of feasible pairs of joinings can
be formulated as an assignment problem with inadmissible cells
whereby only a feasible solution is sought. The inadmissible cells are
determined by identifying the cases in which an arrival event is pre-
ceded by one or more departure events. For example, HB

3 in Fig. 2.
Theorem 2. (Necessary Hollow Joinings) In creating chains, an arriving
flight in any hollow must be connected to a departing flight in the same
hollow, in order to achieve a chain decomposition equal to the minimal fleet
size. Conversely, connecting an arrival flight in a hollow to a departing flight
in any other hollow will result in a chain decomposition exceeding the
minimal fleet size.

Proof. A proof can be found in Gertsbakh and Gurevich [9].

Corollary 2.1. For any feasible CD, it is necessary that the single arrival
and departure of all Hollows of depth 1 must be joined.

Proof. The theorem states for “any hollow”. A Hollow of depth 1 is the
simplest hollow.

Corollary 2.2. The two flight legs comprising a hollow of depth 1 may
be replaced by a single representative flight.

Let tia and tjd be the arrival and departure times of flights i and j
defining a hollow of depth 1 in terminal k. According to Corollary 2.1
flights i and j must be joined. Hence, they can be replaced by a dummy
representative flight =f t t k k( )ij

ij
d

ij
a

ij
d

ij
a, , where =t ,ij

d

= = =t t t k k k k, , ,i
d

ij
a

j
a

ij
d

i
d

ij
a

j
a.

4.3. Chain decomposition

Proposition 1. Given a FS and its associated set of q DFs. Let m equal the
minimum fleet size. Then m flight chains C1, C2,…, Cm may be constructed.

Proof. Gertsbakh and Gurevich [9].
Such a construction is said to be a CD, and may be determined by

the following algorithm.

Chain Decomposition Algorithm
For a FS of n flight legs, q terminals, and a fleet size of m.
Initialization: Replace all necessarily joined jobs in hollows of depth

1 by a single job according to Corollary2.2.

1 Starting from the maximal valued DF, say DF(k, t). Select any flight i
with its starting point tid ∈ Hk

0. Find the arrival time of this flight, tia,
at some terminal kai . Let k= kai and join it to a feasible flight de-
parture tjd ∈ Hk

r according to Eq (1). Continuing joining a flight
arrival with a departure within each hollow visited, until some flight
v arrives at some end hollow Hk

r(k) at time tva. Here no departure flight
is available to feasibly connect a flight v.

2 Remove the chain of flights from the DFs. Recompute the DFs. The
value of the total Max DF decreases by one.
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3 Repeat until all DF(k)s have MaxDF(k)=0
4 This results in a feasible CD.

Gertsbakh and Gurevich [9] also prove that the algorithm termi-
nates after a finite number of m steps.
Proposition 2. The Chain Decomposition Algorithm is of polynomial
complexity O(nq).

Proof:
Step 1. Find max valued DF⇒O(q). Find a flight number in the FS array
⇒O(n).

Step 2. Sequentially check list for element k > arvtime, and if k <
current min⇒O(2n)

Step 3. Update FS and n by removing the flights in the chain C(i), by
finding the flight number in a list ⇒O(n). Update DFs and remove
flights in FS, Precompute plateaus and hollows. All that is needed is a
list of max values of each DF (Find all max values of a list and repeat for
each DF⇒O(nq)

Repeat all m times: + + + + =m O q O n O n O n O nq[ ( ) ( ) (2 ) ( ) ( )]
+ +q n nq m O nq( 4 ) ( ).

5. Finding balanced aircraft routes

Given a CD comprised of a set of chains C of cardinality m. If for a
given chain C =[ f1, f2,.., fi, …,fc], the start and end terminals are the
same, i.e.; kf1d =kfca then the chain is said to be a balanced chain.
Otherwise it is an unbalanced chain. These chains cover a single
period and are referred to as 1T chains. A C can be partitioned into β
and β of balanced and unbalanced chains, respectively.

It is rare that a 1T CD is fully comprised of balanced chains. In order

to obtain a 1T CD (a set of aircraft routes) that are fully balanced it is
necessary to add costly empty (deadheading) flights to bring the air-
crafts associated with the unbalanced chains and their crews back to the
terminal from which they originated. To avoid this situation a method
is proposed to convert the set of unbalanced 1T chains into a family of
balanced chains. Such chains are formed by concatenating several 1T
unbalanced chains into Balanced MPCs. Also, longer MPCs increase the
number of nights and the cost for crew and aircraft to be away from the
home base. Finally, the number and length of MPCs subsequently in-
creases the complexity of finding crew pairing solutions. All of this
provides a justification for finding a 1T CD that has the minimum
number of MPCs, or equivalently a CD that has the maximum number of
IT balanced chains. Thus, we propose a Maximal 1T Balanced Chain
Decomposition problem (MBCP).

As our final goal is to obtain balanced aircraft routings that insure a
daily repeating schedule of flights we propose a three-stage process. In
Stage 1 we solve the MBCP. In Stage 2 we convert any remaining 1T
unbalanced chains into a Basic Set of MPCs. In Stage 3 we expand the
Basic set of MPCs in order to create a daily aircraft schedule.

5.1. Stage 1: finding the maximal balanced chain decomposition

Here we wish to find the Maximal 1T Balanced Chain
Decomposition among all possible CDs. Let � represent the set of all
possible CDs associated with a FS where, each CD is a set C of chains of
cardinality m (m=min fleet size). Let C i (k)∈ S be the ith set of chains
partitioned into β and β of balanced and unbalanced such that the
cardinality of β is k. Partition � into subsets S(k); k= L(k),..,U(k),
where S(k) is the set of all CDs of the form C i (k) and

= ∅ ∀ 〈 ∀ 〉S k k L k and k U k( ) , ( ) ( ). Note, that L(k) and U(k) are not
know a priori. Then the MBCD problem is defined as find the subset:

Fig. 1. The flight schedule FS30 (k=1, 2, 3, 4=A, B, C, D).
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∋ = = … =S k k Max k k L k U k i e k U k( ) { : ( ), , ( )}, . . ; ( ) (3)

The MBCP can be formulated as a multi commodity network pro-
blem which is NP-hard, and therefore we provide a probabilistic
heuristic method. For this purpose, we have developed a method for
generating random chains and selecting the “best” from this set. To
generate a random chain each arrival in a hollow is joined to a ran-
domly chosen (feasible) departure in the same hollow. These arrival -
departure pairs are then placed in a “list of flight joinings”. A chain
builder procedure then traces through the pairs to extract a chain and
the list is updated. The procedure terminates when the list is empty. The
formal algorithm follows.

5.1.1. Random Chain generation algorithm

1 Denote each pairwise arrival - departure joining as a tuple (i,j).
2 Combine all tuples into a list of joinings J.
3 Chain Builder (Create a Chain from J)

a Define a flight chain connection rule (FCCR). For any two tu-
ples in J, if (i - j) and (j- k) connect them into a 3-flight chain of the
form (i-j-k).

b Begin with a Start tuple (0-i) in J
c Using the FCCR find the tuple (i,j) and connect it to (0-i) to obtain
(0-i-j). Find the tuple (j,k) connect to (0-i-j) to obtain (0-i-j-k).
Continue until an end tuple (v-0) is found.

d The resulting chain is C= [0-i-j-k-…..-v-0]
e Update J.

4 After the chain is found remove the tuples from J that formed it.
5 If J is empty STOP, otherwise return to Step 3.

5.1.2. Balanced chains and 100 random CDs
For the example FS30 we generated 100 random CDs. Let RS(k)

denote the set of randomly generated CDs with k balanced chains. Let
the cardinality of RS(k) be r(k). The distribution of r(k) is shown in
Fig. 3. This figure helps us understand the underlying structure of the
solution space of balanced CDs.

In column 3 of Table 1 (Term(s,i) - Term(e,i)) represents the ith
chain's start and end terminals.

5.2. Stage 2: converting unbalanced chains into a basic set of balanced
MPCs

At this stage we describe a method to convert the set of unbalanced
1T chains into a family of balanced chains. We introduce the notion of a
chain period equal to the number of unbalanced 1T chains combined to
form a MPC. For example, consider two unbalanced 1T chains, re-
presented by their terminal endpoints (A-B) and (B-A). Then joining (B-
A) to (A-B) forms a chain [A-B-A] with a chain period of 2T. Note,
connecting the last flight, say x, in B-A to the first flight, say y, in A-B is
a feasible joining because it occurs at the same terminal A and tyd > txa is
satisfied since y departs the day after x arrives. If the schedule is ba-
lanced there always exist a set of balanced MPCs. This conversion can
be carried out by constructing an Euler graph, and using a modified
version of Hierholzer's algorithm, to extract a set of disjunctive cycles.
Each cycle becomes a MPC. As an example, we show, using the CD
RS38, how to construct the associated Euler graph, and from it ex-
tracting the basic set of balanced MPCs. Also, after how to take a basic
MPC and after applying circular shifts generate shifted copies in order
to insure all flights in the FS are serviced daily.
Definition. A MPC is a balanced chain comprised of n ordered
unbalanced 1T chains [C1, C2, …, Ci,Ci+1,…, Cn]. Each pair of
successive unbalanced chains Ci, Ci+1 has Term (e, i)= Term (s,
i+ 1). Also, as a multiperiod balanced chain Term(s,1)=Term (e, n).

Fig. 2. Deficit functions for flight schedule FS30, k=1, 2, 3, 4 (A, B, C, D).
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A MPC does not have any interior balanced sub chains. It is convenient
at times to refer to an MPC with n ordered 1T chains as a nT MPC. Such
a chain is said to have a Chain Period of nT.

The following propositions will be useful in designing an algorithm
to perform this conversion.

Proposition 3. Given a Balanced FS, and its CD with a set of chains
C= {C1, C2,…,Ck,..,Cm}. Let Ck have a start flight i departing from Term(s,
i), and an end flight j arriving at terminal Term(e, j) Let Cs be the set of
chains departing from Term(s, i), and Ce the set of chains ending at Term(e,
i) where Cs⊂ C and Ce⊂ C then the total number of chains with Term(e, j)
and the total number of chains with Term(e, i) are equal, i.e.; /Cs/ = /Ce/.

Proof. This is true since 1T chains must start at some terminal and end
at another terminal within a single time period (since the FS is balanced
i.e.; all flights start and end within a single time period)

Proposition 4. Given a Balanced FS, and a CD, for all chains in β the total

number of chains whose starting terminal is Term(s, i) equals the total
number of chains whose ending terminal is Term(e, j), where for a given
chain in β̄ Term(s, i) ≠ Term(e, j).

Proof. This follows from Proposition 3 after removing all balanced 1T
chains from the CD.

For example, in Table 1, the number of unbalanced chains that start
with terminal C equals 2 as do those that end with terminal C. This is
also true for terminal D. Also, chain 12 starts at B and chain 11 ends at
B.

5.2.1. Euler graph and Hierholzer's algorithm
Euler's Theorem, first given by Hierholzer in 1873 states: A directed

graph has an Eulerian Cycle if the graph is connected and all vertices
have even degree Biggs et al. [30]. To convert 1T unbalanced chains to
balanced MPCs. Define a directed graph G (E, V), where V is a set of
vertices and E is the set of directed edges (i, j) from vertex i to j. Let each
vertex in G correspond to a terminal in V. Let each unbalanced chain i in
β̄, with Dept Term(s,i) ≠ Arv Term(e, j), be represented as a directed arc
(i, j) in E. Balanced 1T chains are loops at a single node, and after
stripping away looped edges corresponding to balanced chains it be-
comes a directed Euler graph

(see Fig. 4.). All vertices are of even degree according to
Proposition 4. A cycle in an Euler graph comprised of n directed edges
(1, 2), (2, 3),…,(n,1), corresponds to a nT MPC of the type [ 1-2 2 - 3
….. n - 1]. Hierholzer's algorithm (1873) finds a set of disjunctive cycles
as it traverses a Euler graph. We denote this set of disjunctive cycles as
the basic set.

5.2.2. Finding the basic MPC set
Theorem 3. Conversion Unbalanced to Balanced

Given a balanced FS whose 1T CD chains are partitioned into β and

Fig. 3. The distribution of r(k) for example FS30.

Table 1
Chain decomposition for RS38 (*= balanced chain).

Chain Flights (Start-End)

1 [17-19] (A-A)*
2 [1-15] (B-B)*
3 [16-26-27-28] (B-B)*
4 [14-2] (B-B)*
5 [25-22-18-9] (C-C)*
6 [10-6-11-12] (C-C)*
7 [29-21-30] (D-D)*
8 [13] (C-D)’
9 [5-24] (D-C)
10 [8] (C-D)”
11 [3-20] (D-B)
12 [7-23-4] (B-C)
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β̄ . There exists a conversion of β into a set of balanced MPCs (Using a
modified Hierholzer's algorithm). We denote this set as the basic set of
MPCs.

Proof. After constructing an Euler graph from the set of unbalanced
single period chains, according to Proposition 4 each terminal type
appears the same number of times at the start and end of the chains.
This insures that each vertex in G, corresponding to a terminal in V, is of
even degree. A cycle in an Euler graph comprised of n directed edges (1,
2), (2, 3),…,(n,1), corresponds to a nT MPC of the type [ 1- 2 2 - 3 ….. n
- 1]. Each edge represents an unbalanced single period chain between a
pair of vertices representing its start and end terminals. Traversing each
cycle from any of its vertices and back covers a sequence of edges
(unbalanced chains). Starting and ending at the same vertex is
tantamount to starting and ending at the same terminal, and hence
the cycle represents a balanced multiperiod chain.

Corollary 3.1. The conversion of a set of unbalanced chains from a
feasible CD results in a basic set of MPCs such that each 1T unbalanced
chain appears exactly once in some MPC and the set of MPCs contains
all 1T unbalanced chains.

Proof. This follows from the fact that a complete cover of the Euler
graph provides a set of disjunctive cycles.

The CD chains for example RS38 are shown in Table 1. Note, since
chains 8 and 10 have different flight sequences, we denote them by C-D’
and C-D”, respectively. Balanced chains are indicated by an asterisk. In
the CD, there are 7 balanced 1T chains, the remaining are unbalanced
β̄ ={(B-C), (C-D)’, (C-D)”, (D-B), (D-C)}. However, according to
Proposition 4 for each terminal type that appears at the start of an
unbalanced chain it also appears end of some other unbalanced chain.
The corresponding Euler graph is shown in Fig. 4. where the loops re-
present the 1T balanced chains. After stripping the loops, we are left
with a 3 vertex directed connected Euler graph.

Referring to the Euler graph in Fig. 4 start from an arbitrary node B
and traverse the unvisited edges (B, C), (C, D)’, (D, B). Remove this
cycle from the graph, but retain nodes C and D in the reduced graph as
they have unvisited arcs attached to them. Select any one of the re-
tained nodes, say C, and traverse the arcs until a second cycle (C, D)”,
(D, C) is obtained. We denote this set of disjunctive cycles as a basic set:
[(C-D)” (D-C)], [(B-C) (C-D)’ (D-B)]. Here we have one 2T MPC and one
3T MPC. Note, because of the two arc traversal options from vertices C
to D, there exists a second basic set from the set of disjunctive cycles
[(C-D)’ (D-C)], [(B-C) (C-D)” (D-B)].

The conversion takes O(E) time, using Hierholzer's algorithm for an
Euler graph G(E,V), since each arc is traversed exactly once.

5.3. Stage 3: Expanding the basic set of MPCs

Because the basic set of MPCs has “collected” the unbalanced 1T
chains to cover a span of several periods, it is no longer the case that all

flight legs are serviced on a daily basis. Thus, it is necessary that all
interior 1T chains of the MPCs be clockwise circular shifted in order to
ensure that all flight legs in the FS appear in a daily schedule. The
number of disjunctive cycles and hence the number of basic MPCs is less
than the number of unbalanced 1T chains. This is true because a cycle is
comprised of at least 2 1T unbalanced chains. It follows that the number
of basic MPCs plus the number of 1T balanced chains is less than m.
Because the unbalanced chains have been collapsed into the basic
chains, we need to resurrect the total chain count to m. This can be
done by expanding each MPC in the basic MPC set into additional
MPCs, in order to restore the total number of MPCs (including the 1T
balanced chains) to m chains. This is necessary because after the con-
catenation, the 1T chains in the basic MPC appear in successive periods.
In order expand the basic MPCs, to ensure that all flights in the FS are
flown each day, we need to apply several Clockwise Circular Shifts
(CSS)s to each basic MPC. This will insure the construction of an air-
craft routing that includes a daily repeating schedule of flights.
Corollary 3.2. Clockwise Circular Shifts: Given a MPC of n ordered 1T
chains (a chain period of nT), where MPC= [C1,C2,..,Ci; Ci+1, .. Cn]. The
chain can be split at any interior point into two parts (say, between Ci

and Ci+1) and a CCS operation applied. The new MPC*= [Ci+1,…,Cn;
C1,…,Ci]. After n-1 CCS operations the MPC provides n-1 offspring
MPC*s. When added to the original MPC a set of n different nT MPCs is
obtained. The CCS operation preserves the balanced aspect of the MPC.

Proof. After applying the CCS operation to all possible interior points,
n-1 offspring MPC*s are obtained. These n-1 MPCs each of period nT,
plus the original nT MPC results in n different nT MPCs. Also, after the
CCS the new MPC is balanced. Let the shift point for the MPC be
between Ci and Ci+1 . Recall for a feasible MPC each pair of successive
unbalanced chains Ci, Ci+1 has Term (e, i)= Term (s, i+ 1). After the
CCS, the first 1T chain becomes Ci+1 as with starting terminal Term (s,
i+ 1) and the last 1T chain becomes Ci with ending terminal Term (e, i).

For a basic set of MPCs, each nT MPC may be expanded in O(n)
operations because the CCS operation finds n-1 shift points and for each
step it takes one operation to rearrange the two parts.

As an example, let a basic MPC with a chain period of 3T be [8] [3-
20] [7-23-4]. Here we have 3 1T unbalanced chains. The flights in
periods 1, 2 and 3 are 8, 3,20 and 7,23,4, respectively. After providing 2
CCSs we obtain the following 3 MPCs: [8] [3-20] [7-23-4], [3-20] [7-
23-4] [8][7-23-4], [8] [3-20]. It can now be seen that in each period all
flights 8, 3, 20, 7, 23, and 4 are serviced daily. Continuing with example
RS38 we create the set of all m balanced MPCs. Here the elements of
each balanced MPC in the basic set are CCSed to obtain additional
balanced MPCs. For the 2T basic MPC we obtain [(C-D)” (D-C)] and [(D-
C) (C-D)”]. For the 3T basic MPC we obtain [(B-C) (C-D)’ (D-B)] and
[(C-D)’ (D-B) (B-C)] and [(D-B) (B-C) (C-D)’]. This results in five MPCs
(2 of length 2T, and 3 of length 3T) as shown in Table 2.

6. Aircraft routes for a daily repeating schedule of flights

Each 1T chain is repeated periodically and represents the trajectory
of a single aircraft. All 2T chains in the basic set are repeated twice after
being clockwise circular shifted. This represents the trajectory of two
aircraft doing in fact the same sequence of flights with a shift by one T.
In general, each nT MPC in the basic set is CCSed n times to represent
the trajectories of n aircraft repeating periodically the same sequence of
flights with shifts of 1T to (n-1)T. As an example, the complete set of
aircraft trajectories for RS38 is shown in Table 2.

The terminals visited (shown in the 5th column) are those for the
start-end terminals of the aircraft flight sequences. The last column
shows the aircraft home base, and the MPC lengths in column 3 indicate
the number of days to return home after leaving the home base. At each
24 h time period all of the 12 original chains whose flights constitute
the entire number of flights in the FS are serviced by the 12 aircraft fleet
as shown in Fig. 5. The figure shows three 24 h time periods, because

C

B

D

(C-D)’

(C-D)”
AA

Fig. 4. Euler Graph for Example RS38.
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the longest MPC is of length 3T. This is repeated every 3 days in order to
obtain a periodic set of aircraft routings.

7. Checking the maintenance constraints

The schedule must now be checked to ensure that the maintenance
constraints are satisfied. If it is necessary to return to the aircrafts home
base after 2 days in order to perform maintenance, then it is necessary
to introduce deadheading trips [B-C], [C-D] and [D-B] at the end of the
second period in the 3T aircraft trajectories of chains 10,11 and 12,
respectively. All 1T and 2T trajectories automatically satisfy this re-
quirement. After the deadheading trips are added feasible flight join-
ings are preserved by switching the last period of the 3T MPCs. To see
this more clearly, consider chain 10 in Fig. 5 which starts at terminal C.
After inserting a deadheading trip [B-C] at the end of period 2, the
aircraft has returned to its base at terminal C for overnight

maintenance. However, now at the start of period 3 the aircraft it must
continue from terminal B. It appears that to resolve this situation a
second reverse deadheading trip [C-B] must be added. However, this is
easily avoided by continuing with the flights in period 3 of MPC 11.
Then MPC 11 continues with the 3rd period of MPC 12 and MPC 12
continues with MPC 10 s 3rd period. The same principle applies if a
maintenance constraint on the total air time of an aircraft is exceeded.
In our case even a more severe check of every 40 h of total air flight
time is satisfied, as it occurs after the 2-day return constraint. If the
maintenance constraint requires each aircraft to return to its home base
after every 3 days, then the current schedule need not be changed.

8. Finding the optimal routing solution

Many consider the aircraft routing problem one of finding a feasible
solution. However, we have shown that there are many alternative

Table 2
Multiperiod Aircraft Trajectories for RS38.

Aircraft Trajectory Original Chain Sequence MPC Length Aircraft Flight Sequence Start-End Terminals Home Base

1 1 1T [17-19] A-A A
2 2 1T [1-15] B-B B
3 3 1T [16-26-27-28] B-B B
4 4 1T [14-2] B-B B
5 5 1T [25-22-18-9] C-C C
6 6 1T [10–6-11-12] C-C C
7 7 1T [29-21–30] D-D D
8 8,9 2T [13] [5-24] C-D-C C
9 9,8 2T [5-24] [13] D-C-D D
10 10,11,12 3T [8] [3-20] [7–23-4] C-D-B-C C
11 11,12,10 3T [3-20] [7-23-4] [8] D-B-C-D D
12 12,10,11 3T [7-23-4] [8] [3-20] B-C-D-B B
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MultiPeriod Chain Decomposition for RS38
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Term                    TermFlt

1 217 2 119

2 41 4 215
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1 217 2 119

2 41 4 215

2 116 1 226 2 327 3 228
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2 17 1 223 2 34

4 25 2 324 3 413

3 413 4 25 2 324

4 13 1 220

2 17 1 223 2 34

3 48

2 17 1 223 2 34

3 48

4 13 1 220

Fig. 5. Aircraft Trajectories for RS38 over a Chain Period of 3T.
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feasible aircraft routing solutions in terms of the number of single
period CDs. Moreover, because of the requirement that all chains be
balanced it is necessary to introduce long multiperiod chains. These
chains have increased anomalies that are costly. The key to our ap-
proach is to try to reduce the number of solutions that contain these
long chains. We show that many of these long chain solutions can be
paired out by solving a MBCP and recording all ties. Also, for each tied
maximal balanced chain CD, there may be many alternative basic MPCs
as a result of tied sets of disjunctive cycles that cover an Euler graph.
Such sets will have the same structure in terms of the number and type
of nT MPCs. This is noted at the end of section 5.5.2. where a second
basic set for example CD RS38 was found. In terms of the MPCs in Fig. 5
it is possible to visualize the second set of balanced MPCs by switching
flights 8 and 13. In order to compare alternative feasible MPC solutions
(aircraft routings) we can consider the costs of inserting deadheading
flights in addition to the cost of overnights when the aircraft and crew
are away from their home base. Let the set of alternative routing so-
lutions be R with cardinality r. Denote the ith solution as Ri. Let the
deadheading and overnight costs be r1i and r2i respectively. Let the
number RS(k0) be the set of CDs such that k0 is the maximal number of
1T balanced chains. For each solution v in RS(k0), let the number of tied
Euler disjoint cycle covers for v be D(v). Then the optimal solution Ri′ is
found by solving (4) and (5).

= +
=

Z Min {(r1i r2i)}
i 1,..,r (4)

where,

∑=
=

r v*D(v)
v 1

|RS(k0)|

(5)

9. Analysis and comparison of DF routing model with integer
programming approaches

In this section we discuss the position of our work in the context of
other approaches in the literature for solving the aircraft routing pro-
blem. In particular, those that incorporate integer programming
mathematical solution methods. The most popular approaches are
based on integer programming models whereby a feasible routing
generator is used to provide a large collection of routings from which a
desired number is selected based on a minimum cost objective. The
main available techniques for addressing aircraft routing almost ex-
clusively relied on up to now is column generation, whereby each
column in the set covering integer LP represents a feasible route.
Methods for the generation of such feasible routings are heuristic, often
based on tree searches. Our random chain generation algorithm of
Section 5.1.1 fits in nicely within this approach.

Aircraft routing solutions can be found in a number of combined
approaches. For example, Barnhart et al. [1] imbed the routing problem
and the aircraft assignment together in one mathematical formulation
using sequences (called "strings") of maintenance feasible flight legs.
Desaulnier et al. [3] proposed a similar approach. The fleet assignment
problem determines which fleet (i.e. aircraft type) is going to operate
each flight in the timetable. Of course, such a heterogeneous fleet as-
signment problem can be reduced to a pure routing problem if the in-
itial fleet is set to one. Aircraft routing solutions can be found in a
second type of combined approach. For example, the integrated main-
tenance aircraft routing and crew pairing problem of Ben Ahmed et al.
[31]. Imbedded in Ben Ahmed's model is the routing model of Haouari
et al. [32]. Haouari described an aircraft routing graph with flight legs
as nodes and feasible connections as arcs. Cordeau et al. [33] also
presents a simultaneous aircraft routing and crew scheduling problem,
and discusses its reduction to an aircraft routing problem. The basis of
the reduced formulation is a path-node matrix where paths represent
routes and nodes flights. We, in contrast, consider not individual routes;
but a collection of individual routes as a complete routing solution for

all aircraft in the fleet which we term a chain decomposition. Of course,
our individual routes can be used as the paths in the formulation of
Cordeau et al. The routing problems imbedded in these integrated
models include a plane count constraint, where by the number of air-
craft in the fleet is given a priori. This is in contrast to our deficit
function approach, where we make no a priori assumption on the
number of aircraft available; but instead find the minimum number of
aircraft needed to service the flight schedule.

Finally, there is the pure aircraft routing model itself, where as-
signment of fleet types has been completed resulting in a set of
homogeneous fleets (i.e. a set of airplanes having similar technical
characteristics). Among the works we found following this approach are
Haouari et al. [32] who solve a routing problem with the objective of
deriving cost-effective maintenance feasible routes. Like our approach,
Haouri also assumes a daily routing problem where a weekly schedule
is derived by solving a sequence of daily problems. In a recent paper,
Khaled et al. [34] formulate the problem as a binary linear program-
ming with flight leg connection restrictions and flow conservation type
constraints. Unlike our approach the authors do not require that the
aircraft routes are cyclic. Eltoukhy et al. [35] use a multi-commodity
network flow-based integer LP formulation to solve the maintenance
routing problem. The model formulations of all these authors are based
on the connection network. This is unlike the column-generation ap-
proach, whereby feasible routings are generated outside of the LP and
inserted as columns into a set covering /partition integer LP. In a recent
paper, Yan and Kung [36] investigate the impact of aircraft routing on
delay propagation with an objective of minimizing the propagated
delay over all flights. Here the problem is formulated as a set covering
problem with flight leg cover and fleet count constraints.

Clark et al. [37] consider a cyclic routing problem which they call
the aircraft rotation problem. Their aircraft rotation problem max-
imizes the through value of connecting flights. The through value is the
potential revenue of passengers remaining on the same aircraft while
making a connection at an airport. Their solution methodology is to
find an Eulerian tour that maximizes value and satisfies maintenance
constraints. The use of an Euler graph to find a rotation is close to our
approach. The difference is that we do not use through values to select
the best rotation, but instead we perform our maintenance check after
the cyclical routes are determined. In particular, Lan et al. [5] state that
most aircraft maintenance routing problems have an objective of
maximizing through revenue, but in practice, this additional revenue is
very difficult to determine accurately and the financial impact is rela-
tively small. The aircraft maintenance routing problem can thus be cast
as a feasibility problem. Lan's observation on feasibility has been
echoed by other authors as well. Liang et al. [38] consider the airline
routing problem to include a short connect penalty cost and a through
revenue between connecting flights, but because these costs are rela-
tively small compared other costs the aircraft routing problem can be
considered as a pure feasibility problem. Weide et al. [39], like others,
use binary decision variables to indicate if a route is in the solution or
not. They also mention that through-values are low compared to op-
erational costs of an aircraft, and since the operational cost of all air-
craft are identical, the aircraft routing problem reduces to a feasibility
problem. Cordeau et al. [33] (2001) state “Since through values are not
considered in the aircraft routing problem, the only costs that remain in
the problem, once fleet size is determined and fixed, are the operational
costs that are associated with the flight legs. However, because all legs
must be covered exactly once and all aircraft of a given type are as-
sumed to have equal operating costs, this is in fact a fixed cost. The
aircraft routing problem thus becomes a feasibility problem to ensure
that each aircraft is maintained appropriately.” Lacasse-Guay et al. [40]
also claim that the aircraft routing problem can be treated as a feasi-
bility problem since the operational costs of aircraft of the same type
are identical. Thus, they say other objectives can be used, such as
minimizing the number of aircraft, maximizing robustness by avoiding
short connections, and maximizing through values. This distinct chorus
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enforces the point of view that minimizing the number of aircraft is a
reasonable objective for the aircraft routing problem.

We found Cardeau et al. [33] to be the closest work to ours. At the
start they reduce an aircraft routing and crew scheduling problem to a
pure routing problem in order to determine the required minimum fleet
size and the initial positions of the aircraft. Starting with a plane count
constraint for very large fixed fleet size they introduce a procedure to
reduce it to obtain the minimum possible fleet. Using this now as a
constraint, they find a set of feasible origin destination paths and
construct a path-node coefficient matrix to be solved for the minimum
number of paths in a set covering problem. This is, albeit, a much more
cumbersome method to find the minimize fleet size then we provide. In
a unique application of the min fleet size, Khaled et al. [34] employ a
density term to characterize instances of a fleet routing problem. The
density of an instance is the ratio of the minimum number of airplanes
necessary to cover a flight schedule divided by the number of airplanes
in the fleet (assumed greater or equal to the minimum number). Thus, a
100% dense instance implies that the current fleet size is equal to the
minimum number required. For lower densities they find that the larger
fleet size allows more flexibility and reduced computation times. Al-
though this is true, it is at the high cost of the use of additional aircraft.
Khaled's approach requires finding the solution to the min fleet size
problem and proceeds to solve it using a complex integer LP, unaware
of the simple solution we offer by our construction of DFs according to
the Minimum Fleet Size Theorem and it's corollary.

All the aforementioned comparisons allow us to bring forth a
number of observations. The first and foremost is that our approach
finds and works with the minimum fleet size, whereas others find
routings for a fixed fleet size owned by the airline. It was surprising that
no literature was found that analyzed the optimization of one of the
main capital resources of an airline i.e., that of the decision of the
number of planes in the fleet. All scheduling analysis assumed the
current number of planes as a given. The advantages of finding the
minimum fleet size are that once it is found airlines can reduce or in-
crease their existing fleet accordingly. Placing our work in the context
of others, the salient difference is that we do not generate individual
feasible single aircraft routings (as in the column generation approach),
which are then combined to form a feasible solution by satisfying flight
leg cover and plane count constraints. Instead, we find complete fea-
sible collections of routes which we designate as CDs. So that each CD
would in effect be a feasible solution to the set covering formulation of
the problem. It is, however, possible to extract individual chains (air-
craft routings) from our chain construction algorithm, and to use these
in the column generating model. Moreover, we found no work that
attempts to directly generate short cyclic routes. We, instead, in-
troduced a procedure to find the maximal number of daily (single
period) balanced chains. Using a CD with the maximal number of single
period balanced (cyclic) chains, induces shorter multiperiod cyclic

routes. These exhibit several good properties of the final solution such
as, improved conditions for repair/maintenance activities and crew
layovers.

10. Conclusion

This paper considers a DF approach for determining the minimal FS
required to service a fleet schedule, followed by a decomposition of the
FS into vehicle routes (called a chain decomposition) for each aircraft in
the minimal fleet. Our goal here is not to provide another large column
generated - integer programming approach to solve these problems.
Our goal is to extend DF theory, and use it to provide some new insights
on how to solve the aircraft routing problem in a less complex way.
After introducing DFs and the minimum fleet size theorem, we attack to
problem of aircraft routing through CDs. We noted an important
characteristic of a CD in terms of the number of balanced and un-
balanced chains. Balanced chains are flight sequences with the same
start and end terminals. To convert any unbalanced into balanced
chains we concatenate them into multiperiod chains MPC. Because the
number and length of MPCs subsequently increases the complexity of
finding crew pairing solutions, and extends the time of aircraft away
from home base we define a Maximal Balanced Chain Problem (MBCP)
to search for CDs with a maximal number of balanced chains The MBCP
can be formulated as a multi commodity network problem which is NP-
hard, and therefore we provide a probabilistic heuristic method. For
this purpose, we develop a method for generating random chains. After
finding the maximal number of balanced chains the remaining un-
balanced chains are converted into balance MPCs. We do this by
mapping the unbalanced chains into an Euler graph and find all edge
disjoint cycle covers of the Euler graph using a modified version of
Hierholzer's algorithm. Finally, we construct an aircraft routing that
insures a daily repeating schedule of flights. All our algorithms have
polynomial complexity. To insure maintenance check constraints are
satisfied for nT MPCs, it is necessary to add deadhead flights. For
multiple routing solutions, minimizing the cost of deadhead trips and
overnight stays provides the basis for selecting an optimal routing so-
lution. On the practicality of our method and its results, airlines may
look at this work to be only of theoretical interest because in reality
they have already invested in an existing fleet of aircraft. To this we
argue that the existing fleet is not economical and suggest to sell of
excess aircraft or buy/lease additional aircraft to meet the required
number needed to service the required flight legs. Also, the minimum
number of required aircraft can be used as a bench mark upon which to
judge the efficiency of their existing fleet size. In cases of a new airline
(perhaps a low-cost contender) starting with a tabula rasa the ideas here
for determining the minimum fleet size, and its chain decomposition
should be appealing.

Appendix: Data. for FS30 (terminals A,B,C,D=1,2,3,4)

FS30

Flt No DepTime ArvTime DepTerm ArvTerm
1 4.5 12.0 2 4
2 14.5 20.5 4 2
3 8.5 15.5 4 1
4 16.5 21.0 2 3
5 9.0 16.0 4 2
6 11.5 13.0 2 3
7 6.0 10.5 2 1
8 11.0 16.5 3 4
9 18.0 21.5 2 3
10 7.0 11.0 3 2
11 13.5 17.0 3 2
12 18.0 23.0 2 3
13 10.5 15.5 3 4
14 7.0 13.5 2 4
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15 13.0 20.0 4 2
16 5.5 8.5 2 1
17 9.0 12.5 1 2
18 15.0 17.5 1 2
19 16.0 19.5 2 1
20 18.5 22.0 1 2
21 8.0 11.0 1 2
22 10.0 13.0 2 1
23 11.0 15.0 1 2
24 18.5 22.5 2 3
25 5.5 8.5 3 2
26 9.0 13.5 1 2
27 14.0 17.0 2 3
28 17.5 21.5 3 2
29 3.0 7.0 4 1
30 12.0 15.0 2 4
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