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A B S T R A C T

In two-dimensional nesting problems (irregular packing problems) small pieces with irregular shapes must be
packed in large objects. A small number of exact methods have been proposed to solve nesting problems, ty-
pically focusing on a single problem variant, the strip packing problem. There are however several other variants
of the nesting problem which were identified in the literature and are very relevant in the industry.

In this paper, constraint programming (CP) is used to model and solve all the variants of irregular cutting and
packing problems proposed in the literature. Three approaches, which differ in the representation of the variable
domains, in the way they deal with the core constraints and in the objective functions, are the basis for the three
models proposed for each variant of the problem. The non-overlap among pieces, which must be enforced for all the
problem variants, is guaranteed through the new global constraint NoOverlap in one of the proposed approaches.

Taking the benchmark instances for the strip-packing problem, new instances were generated for each problem
variant. Extensive computational experiments were run with these problem instances from the literature to evaluate the
performance of each approach applied to each problem variant. The models based on the global constraint NoOverlap
performed consistently better for all variants due to the increased propagation and to the low memory usage.

The performance of the CP model for the strip packing problem with the global constraint NoOverlap was then
compared with the Dotted Board with Rotations using larger instances from the literature. The experiments show
that the CP model with global constraint NoOverlap can quickly find good quality solutions in shorter compu-
tational times even for large instances.

1. Introduction

Two-dimensional irregular cutting and packing problems have been
largely studied in the literature for more than five decades. The problem
consists in placing polygonal shapes (pieces) in a given object (board). The
pieces and the board may have any irregular shape. Different objectives
can be explored depending on the application, for example to maximize
the number of pieces on the board, to minimize the used board length
when cutting all the pieces or to minimize the number of boards needed to
cut the pieces. Wäscher et al. [33] proposed a classification of the variants
of the two-dimensional cutting and packing problems, building on classi-
fications by Dyckhoff et al. [14,15].

In the two-dimensional irregular cutting problems, the most chal-
lenging constraints to deal with are the ones that ensure that the pieces
do not overlap. Although this problem has been already solved by

different approaches, the choice of an adequate representation for the
pieces and the right use of the non-overlap methods are crucial to boost
the efficiency of the solution methods. When the pieces are all rectan-
gular, simple computations over the piece dimensions can be done in
order to check for overlap. However, if one or more pieces are not
rectangular, more sophisticated tools are required to assess whether the
pieces are overlapping or not.

Some geometric tools have been proposed to detect piece overlap.
The raster points approach discretizes the board and the pieces into
matrices. Using these matrices, the places where a piece cannot be
placed to avoid overlap can be defined. This approach is simple, but the
quality of the solution depends on the accuracy of the discretization.

A more rigorous approximation can be reached by using D-functions or
nofit polygons. The D-function returns the relative position between a
point and a line and can be used in several ways to avoid overlap. The D-
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function is a rigorous tool, however the complexity of the analysis highly
depends on the shapes of the pieces and can be huge. The relative posi-
tions between two polygons are captured by the nofit polygon, which
reduces evaluating piece overlap to checking if a point is inside a polygon,
a task that can be done using the D-functions. A complete review of
geometric tools for these problems is available in [8].

Several heuristics were proposed to solve the variants of the nesting
problem. The irregular open dimension problem or strip packing pro-
blem, where only one dimension is open, is the most studied irregular
cutting problem variant and is currently solved by heuristics [6]. Re-
cently, [16] proposed a guided cuckoo search heuristic for the same
problem. Baldacci et al. [3] presented a heuristic to solve the irregular
bin packing problem in case of an irregular board with defects and
quality regions where only a subset of the pieces can be placed. To solve
the irregular cutting stock problem, [28] proposed a heuristic column
generation procedure. Valle et al. [31] created heuristics for irregular
binary knapsack problems and irregular unconstrained knapsack pro-
blems. Using these heuristics, the authors also proposed a heuristic
column generation procedure to solve the irregular cutting stock pro-
blem. To solve the irregular bin packing problems with guillotine cuts,
[22] proposed a constructive heuristic based on a mixed integer pro-
gramming model. More recently, for the same problem, [7] proposed a
beam search algorithm to solve multi and single bin instances and used
the no-fit raster to deal with the geometry of the pieces, [23] developed
a biased random-key genetic algorithm to solve the irregular strip
packing problem, and [1] presented an iterated jostle heuristic with
diversification mechanisms. Sato et al. [27] proposed a heuristic to
solve the irregular strip packing problem using the raster penetration
method to determine the positions of the pieces.

In contrast with the number of available heuristics, only a few exact
methods were proposed to solve irregular cutting and packing problems
and all of them considered only the irregular strip packing problem.
The first exact method for the irregular strip packing problem was
presented by Carravilla et al. [9] and used constraint programming. The
optimality of this method is subject to a discretization inherent to the
finite domain constraint programming paradigm. Ribeiro and Carravilla
[24] proposed the first global constraint for nesting problems. Mixed
integer programming models were also used to tackle the problem.
Fischetti and Luzzi [17] developed a model where the overlap of the
pieces is avoided by using nofit polygons. In this approach, the exterior
part of the nofit polygon is divided into convex areas (slices) and the
non-overlap constraints are built using these structures. Alvarez Valdes
et al. [2] proposed two procedures to generate the slices of the [17]
model. The authors also presented a mixed integer programming model
based on the linear compaction model by Gomes and Oliveira [18].
Cherri et al. [12] developed two models, both allowing the pieces to be
rotated in a finite set of angles. One model uses only direct trigono-
metry to avoid overlap while the other uses the nofit polygon to avoid
the overlaps. Also using direct trigonometry to avoid overlap among
pieces, [11] proposed a mixed-integer quadratically-constrained model
to solve the problem considering the free rotation of the pieces. The
decision variables used in all the models mentioned so far were the
(X,Y)-coordinates of the positioning points of the pieces. Toledo et al.
[29] proposed the dotted-board model where the board is represented
as a mesh of dots. The binary decision variables, associated to each dot
and piece type, are set to 1 if a piece of the corresponding type has its
reference point positioned on the dot. As in [9], the optimality of this
model depends on the discretization used. Leão et al. [20] proposed a
mixed integer programming model to solve the problem. In their ap-
proach, the piece position is discretized over the y-axis but not on the x-
axis, where continuous variables are assumed. For an overview of ar-
ticles on exact methods, see [21].

This paper proposes constraint programming models to solve irre-
gular cutting and packing problems where the decision variables are the
dots in the board as in [29]. For the domains of the decision variables
two approaches are explored: binary domains as in [29], and integer

domains. At the core of the irregular cutting and packing problems is
the constraint that pieces may not overlap. The new global constraint
NoOverlap is proposed, with the corresponding algorithms for propa-
gation and constraint reduction. The NoOverlap constraint can be used
in all the variants of irregular cutting and packing problems.

Using the classification of irregular cutting and packing problems in
the typology of [33], we propose models for all problem variants
combining the non-overlap constraints with variant-specific constraints
and objective functions. To the best of our knowledge it is the first time
in the literature that exact methods are proposed for all the problem
variants of irregular cutting and packing problems.

The computational experiments show that our constraint program-
ming approach can deal with all the variants of irregular cutting and
packing problems. Moreover, using the NoOverlap global constraint, the
computational time required to prove optimality (whenever it is
reached within the given time limit) and the memory used are reduced
with respect to integer programming approaches. Moreover, and al-
though the computational time to prove optimality is typically high in
all the proposed approaches, all the models can quickly find good
quality solutions.

The main contributions of this work are: (1) innovative re-
presentations of discrete placement points for pieces, using variables
with binary and integer domains; (2) constraint programming models
for all the variants of irregular cutting and packing problems classified
by Wäscher et al. [33] (the previous studies in the literature propose
models for only one of these variants); (3) piece rotation at a finite
number of angles as part of the proposed models (only one exact
method in the literature provides piece rotation and only for one var-
iant of the irregular cutting and packing problem); (4) NoOverlap, a
global constraint to avoid the overlap among pieces, and the corre-
sponding algorithms for constraint propagation; and (5) extensions of
the benchmark instances to the variants of irregular cutting and packing
problems, essential to evaluate our models.

The remainder of the paper is organized as follows: Section 2 has an
overview of the Constraint Programming paradigm and of Global
Constraints. Section 3 presents the definition of the irregular cutting
and packing problems that will be solved and some geometric defini-
tions used in the models. Section 4 presents decision variables with
binary and integer domains to represent the problem and proposes non-
overlap constraints for both types of variables. Furthermore, a new
global constraint to avoid the overlap between pieces is introduced. The
NoOverlap global constraint is used with integer domain variables and
is tailored to irregular cutting and packing problems. Section 5 sys-
tematically defines a set of constraints to represent each variant of the
irregular cutting and packing problems as defined in the typology of
[33]. In Section 6, the proposed models are run on several benchmark
problems. The computational results are analyzed, showing the per-
formance of each model and also the versatility of the proposed con-
straint programming approach to solve all the cutting and packing
problem variants. Section 7 presents computational experiments with
larger instances. Focusing on the irregular strip packing problem, this
section compares the results obtained with the constraint programming
model with the global constraint NoOverlap with the results of [10]
( 1I ODP DBM with rotations). Finally, in Section 8 the conclusions
and main open issues are presented.

2. Constraint programming and global constraints

Constraint programming is a computational paradigm where con-
straints are at the core and the methods for manipulating and propa-
gating constraints are tightly integrated with the optimization strate-
gies. A conventional program to determine the feasibility of a problem
may be seen as a single-layer where the constraints must be explicitly
stated. In constraint programming a Constraint Solver is added as a
second layer in the execution environment (see Fig. 1). The gain in
efficiency stems from the fact that the constraints in the Constraint
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Store are actively used for reducing the domains of the variables and
that the Constraint Solver can use a variety of methods depending on
the nature of the constraints.

Constraints in a constraint programming language can be as basic as
linear constraints, but can also express the structure of the problem at a
higher semantic level. Current constraint programming systems offer a
broad selection of constraints that can handle problems such as sche-
duling or shortest routes, and have proven to be very effective in real-
life problems, namely when feasibility is an issue. Constraint pro-
gramming systems are designed to handle a large number of hetero-
geneous constraints and have been successfully applied in several
combinatorial optimization problems. To solve the resource portfolio
planning of make-to-stock products, [32] proposed a constraint pro-
gramming-based genetic algorithm. Clautiaux et al. [13] presented
constraint programming to solve the two-dimensional orthogonal
packing problem, outperforming previous approaches. To solve the
project scheduling problem under resource constraints, [30] proposed a
constraint programming approach using the cumulative global con-
straint. The goal here is to give support to the decision maker by pro-
posing a set of optimal solutions to the problem. Salas et al. [25] de-
veloped non-overlap constraints based on Minkowski sums for polygons
described by non-linear constraints. However, their approach is sensi-
tive to the polygon shape, i.e., the more complex the shapes are, the
harder the problem becomes.

The strength of constraint programming comes from the possibility
of modeling problems at a higher level, using the so-called global
constraints. A global constraint is a specialized constraint for a given
problem, and allows the solver to use features of the problem that are
not manageable if the model is expressed at the atomic level of basic
constraints, such as linear inequalities. Global constraints are at the
core of the solution method for many classes of problems. The Global
Constraint Catalog [4] has an extensive list of global constraints, which
have been incorporated in various constraint programming solvers.
Global constraints have been developed to solve several combinatorial
optimization problems. Kovács and Beck [19] proposed a global con-
straint for the total weighted completion time of activities for a single
capacity resource. Saldanha and Morgado [26] created a global con-
straint to solve the set partitioning problem, which is easy to modify
and has an efficient propagator.

For nesting problems, a global constraint to avoid overlap between
pieces was proposed by Ribeiro and Carravilla [24]. The outside
constraint is based on a model where the decision variables are the
(X,Y)-coordinates of the positioning points of the pieces. The main
limitation of the approach stems from the two-dimensional nature of
the problem: having X and Y coordinates represented as different
variables limits the effectiveness of constraint propagation. Besides
that, the model does not take advantage of piece types, i.e., the ex-
istence of pieces with the same shape. Therefore, this approach cannot
be easily adapted to solve the variants of the irregular cutting problems
where the number of pieces to be cut is not limited. To overcome these
limitations and to improve the constraint propagation, we propose in
this paper constraint programming models to solve irregular cutting
and packing problems where the decision variables are the dots in the

board instead of the (X,Y)-coordinates, with two approaches for the
domains of the decision variables: binary domains and integer domains.

3. Irregular cutting and packing problems

The aim of the two-dimensional irregular cutting problem is to place
convex or non-convex pieces on a board in order to optimize a given
objective while ensuring that the pieces are inside the board and do not
overlap. Depending on the specific variant of the problem considered,
other constraints are added to the models.

3.1. Problem variants and applications

According to the typology of [33], cutting and packing problems
can be classified into six basic variants: Identical Item Packing Problem
(IIPP), Placement Problem (PP), Knapsack Problem (KP), Cutting Stock
Problem (CSP), Bin Packing Problem (BPP) and Open Dimension Pro-
blem (ODP). Furthermore [33] classifies IIPP, PP and KP as output
maximization problems and CSP, BPP and ODP as input minimization
problems. Fig. 2 illustrates the irregular two dimensional cutting and
packing problem variants.

Considering the output maximization problems, in the Identical
Item Packing Problem (IIPP), the goal is to place as many pieces as
possible of the same piece type on the board. In the Placement Problem
(PP) there are several piece types and multiple pieces of each type that
must be placed on the board. The number of pieces of each type to be
cut can be finite (PPc) or large enough to be considered infinite (PP). If
at most one piece of each type has to be placed on the board, we have
the Knapsack Problem (KP). In all variants of the output maximization
problems, the board has finite dimensions and there is typically no
space on the board to cut all the demanded pieces. One or more boards
can be considered to cut the pieces. The objective is to extract the
maximum value from the set of pieces cut (packed) on the board.

Considering the input minimization problems, the resources are
sufficient to cut or pack all the pieces and the usage of these resources
must be minimized. In the Cutting Stock Problem (CSP), the goal is to
use the minimum number of boards to place multiple pieces of several
piece types. When only one piece of each type has to be placed on the
board, the problem is called the Bin Packing Problem (BPP). In the
Open Dimension Problem (ODP), many piece types with several pieces
of each are placed on a board with one (1ODP) or two (2ODP) free
dimensions. The objective for the CSP, BPP, 1ODP and 2ODP is typically
to minimize the amount of resources used to cut all the demanded
pieces. This objective can be reached by minimizing the number of
boards used or the length of the board used to perform the cut. When
solving the 2ODP, several objectives can be considered, such as mini-
mizing the area of the bounding box of the packing, its perimeter, or
other functions of the used length and height of the board.

As all the problems considered in this paper involve irregular pieces,
the prefix I will be used from now on in the names of the problem

Fig. 1. Conventional, single-layer program versus dual-layer CP model
(adapted from Carravilla et al. [9]).

Fig. 2. Irregular cutting and packing problem variants according to the ty-
pology of [33].
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variants.
Many real-world applications in the clothing, shoe manufacturing,

sheet metal cutting and furniture industries require the solution of
problems that fall into some of these variants. The problem variant that
best captures each application domain depends on the industry and
actual problem characteristics.

3.2. Dealing with the geometry

In all the variants of the irregular cutting problems, a finite number
of piece types T, with a fixed number of allowed rotations R, are placed
on a board. In a feasible solution, the pieces are positioned inside the
board and do not overlap. The objective to be considered is either to
maximize the value extracted from the board or to minimize the used
portion of the board (or the number of boards). In the representations
adopted here, each piece is represented by an ordered set of vertices
and by a point, chosen as the piece reference point. The board is dis-
cretized as a regular mesh of dots D, the potential placement positions
for the reference points of the pieces on the board. The mesh is regular,
i.e. the vertical and horizontal distances between the dots are a multiple
of a parameter Δ which determines the gauge of the mesh.

The first condition in a positioning is that each piece is entirely
inside the board. To enforce this condition, we use a geometric con-
struction built for one piece with respect to one board, the so-called
inner-fit polygon (IFP). The IFP of piece type t at rotation r (IFPtr) de-
fines the region of the board where the reference point of this piece type
can be placed, such that t is entirely inside the board. The boards
considered in this work are rectangular, and therefore the inner-fit
polygon can be easily defined based on the vertical and horizontal
distances between the reference point chosen for the piece type and the
sides of the bounding box.

Fig. 3 a illustrates piece type t at rotation r and the horizontal dis-
tances from the reference point to the left- (right-) hand side of the
piece bounding box, ltr

left (ltr
right) and the vertical distances from the re-

ference point to the bottom (top) of the piece bounding box htr
bottom

(htr
top).
Fig. 3 b shows IFPtr, the inner-fit polygon for piece type t at rotation

r, i.e. the locus on the board for the positioning point of this piece type
such that the piece is entirely inside the board. After taking into account
the mesh discretisation, the corresponding set of dots, ,tr is re-
presented in Fig. 3c.

The second condition in a positioning is that pieces do not overlap.
We use the nofit polygon (NFP) to enforce this condition. The NFP of t at
rotation r and t′ at rotation r′ (NFPtr

t r ) summarizes the geometric rela-
tion between these pieces. Using the NFP, we can reduce the test of
overlap between two polygons to a verification of whether a point is
inside, on the border or outside a polygon.

Fig. 4 illustrates the nofit polygon of t at rotation r and t′ at rotation
r′. The pieces are presented in Fig. 4a, the NFPtr

t r is shown in Fig. 4b
(where piece type t is also outlined), and the corresponding set of
points, ,tr

t r in Fig. 4c. If the reference point of t′ at rotation r′ is
inside the NFPtr

t r the pieces overlap; if the reference point of t′ at ro-
tation r′ is on the boundary (outside) NFP ,tr

t r the pieces are touching

(apart). Note that the NFPtr
t r is represented relative to the placement

point of piece type t.
In the models presented in this paper, the board is represented by a

mesh of dots. To avoid the overlap, it is therefore sufficient to consider
only the dots of the mesh inside the nofit polygon. Specifically, given
piece t at rotation r placed at dot d and piece t′ at rotation r′, the set of
dots where piece t′ at rotation r′ cannot be placed, to enforce the non-
overlap with piece t at rotation r, is denoted by tr

t r (Fig. 4c).

4. Constraint programming models for irregular cutting and
packing problems: Decision variables and non-overlap constraints

This section provides two approaches for the representation of
cutting and packing problems in Constraint Programming (CP),
building on the dotted board model proposed in [29]. There, the con-
cept of dot refers to a two-dimensional point in a discretised plane, and
pieces, whatever their shape and dimensions, have a reference point
that is assigned to a specific dot in a solution. Our first approach is the
one proposed in [29]: a binary variable captures the fact that a piece of
a given type is positioned in a dot, with some rotation. In the second
approach, integers are used to uniquely identify piece types and their
rotations, and each dot is represented by a finite domain variable: when
solving a problem, a dot is associated with a set of integer values (the
candidate pieces to be placed there); in a solution, each dot is bound to
a single integer value, either a non-zero value (for some piece posi-
tioned there) or zero if no piece happens to have its reference point on
the dot.

We now introduce the notation for both approaches and the non-
overlap constraints constructed using these variables.

For the remainder of the paper, dots are represented as d ,
where = …D{1 }, is the set of dots for the corresponding board. A
piece of a given type can have multiple occurrences in a problem, so we
assume piece type t , where = …T{1 }, can take one of a specified
set of rotations r ,t where = …R{1 }t t .

The tr and tr
t r are used as the basis for the geometric con-

straints. The constraints to handle the non-overlap of pieces are the
most challenging ones, both in their expression and in the algorithms
for propagating their effects. They convey the essence of all the irre-
gular cutting and packing problem variants.

4.1. CP models based on the dotted board model

In the dotted board model [29], boards are discretized as meshes of
dots, and there is a binary variable for each combination of a piece type
with one of its possible rotations in each dot of the board.

4.1.1. Binary representation for pieces on board dots
The dotted board model uses a binary representation for piece types

on board dots. A binary variable δtrd represents piece type t with rota-
tion r placed on dot d. Specifically, variable δtrd is defined as 1 if the
reference point of a piece of type t at rotation r is on dot d; and 0
otherwise. δtrd is therefore zero for all dots d tr .

This representation follows closely the approach in several

Fig. 3. (a) vertical and horizontal distances from a reference point of a piece (represented by a black dot) to its bounding box; (b) IFP of the piece; (c) set of dots .
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mathematical programming models for the irregular cutting and
packing problem in the literature, where each variable carries the in-
formation concerning a specific piece type, rotation and dot. One fea-
ture of this representation is that it has to deal with a large number of
variables with small (binary) domains. For example, a small problem
where ten piece types, with four possible rotations each, are candidates
to be placed in a board with one hundred dots (a 10× 10 mesh) needs a
number of binary variables in the order of four thousand
( × × =10 4 100 4000 minus the variables that are eliminated by the
inner-fit polygon) to represent the placement of the pieces in a solution.

Non-overlap constraints based on the binary representation
Consider that a piece of type t at rotation r is placed on dot d .

In order to enforce the non-overlap between t and piece type t′ at ro-
tation r′, all the variables ,t r d for the dots d′ inside the nofit polygon
between the two piece types and rotations (d trd

t r ), are set to 0 (if-
then constraint (1)).

= =( ) t t r r d dIf ( 1) Then 0 , , , , , , .trd t r d t t trd
t r

(1)

This constraint propagates when one δtrd is set to 1 in the search, i.e.
when one piece is positioned.

To avoid the overlap for all the pieces,

= = = = | |d D t
T

r
R

t t
T

r
R

trd
t r

1 1 1
t t constraints are needed, where |.|

denotes the cardinality of the set.

4.1.2. Integer representation for pieces on board dots
Using binary variables to represent each scenario of a piece type, a

rotation and a dot where the piece is positioned, leads to a large number
of variables. As an alternative, we consider an integer domain variable
to represent the status of a board dot. With this representation, the
number of variables is reduced while their domains have more values.
For the integer representation we map each piece type t at a
particular rotation r t to a single number ntr given by

= × +n t R r( 1) ,tr
max

where =R Rmaxt t
max . Note that this mapping returns a unique in-

teger for a specific piece type t at rotation r and has a simple inverse
transformation. Given ntr, we obtain the piece type t and its rotation r as

=t n
R

tr
max

=r n n
R

R .tr
tr

max
max

Let γd, d , be the decision variable associated with dot d of the
board. The domain of γd is the set of possible values for ntr

corresponding to the piece types t and rotations r that can be placed on
dot d. The value zero represents the situation where no piece reference
point can be placed on the dot. For ease of notation, and where no
ambiguity may occur, we use the same symbol γd for the domain of
variable γd, initially defined as follows

= n t r d{ | , } {0}, .d tr t tr

Consider an example with three piece types. Piece type 1 has two
possible rotations ( =R 21 ) and piece types 2 and 3 have one rotation
( =R 12 and =R 13 ), therefore =R 2max and ntr will take the following
values:

= × + = × + =n t R r( 1) 0 2 1 111
max

= × + = × + =n t R r( 1) 0 2 2 212
max

= × + = × + =n t R r( 1) 1 2 1 321
max

= × + = × + =n t R r( 1) 2 2 1 531
max .

The mapping results in a unique identification for each piece type
and rotation. Note that the mapping may have gaps in the ranges.

By using this approach, the number of decision variables is sig-
nificantly smaller, specifically, of order T× Rmax. There is however still
a problem with this representation: in a solution, each variable must be
assigned a single value, and therefore this representation prevents the
reference point of more than one piece from being placed on the same
dot. Fig. 5a illustrates two pieces whose chosen reference points lead to
a feasible positioning pattern which would not be possible with our
mapping. But this problem is overcome by choosing only reference
points in the interior of the pieces such that if two pieces are placed on
the same dot, then they overlap (Fig. 5b).

Non-overlap constraints for the integer representation
Consider that a piece of type t at rotation r, mapped as ntr, is placed

on dot d . In order to enforce the non-overlap between t and piece
type t′ at rotation r′, all the variables t r d , for the dots d′ inside the nofit
polygon between the two piece types and rotations (d trd

t r ), piece
type t′ at rotation r′ must be removed from the domain (if-then con-
straint (2))

= ¬ { }n n

t t r r d d

If { } Then ,

, , , , , .
d tr d t r

t t trd
t r (2)

Constraints (2) propagate when variable γd becomes ground to some
positive integer value, i.e., when the reference point of a specific piece t
at rotation r is positioned on dot d. When the domain of a variable is
reduced, more than one feasible value may still be left, corresponding
to the set of piece types and rotations that may still be positioned in the

Fig. 4. (a) piece type t at rotation r and piece type t′ at rotation r′; (b) the nofit polygon NFPtr
t r ; (c) the set of dots trd

t r .

t Fig. 5. (a) placement position for a feasible solution that cannot be expressed in
the integer representation; (b) example with reference points in the interior of the
pieces where the placement position may be expressed using the integer re-
presentation.
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dot. Although the number of constraints to enforce non-overlap is ex-
actly the same in the integer and binary representations, this approach
uses less variables.

4.2. NoOverlap: a new global constraint

Despite the amount of information that the integer representation
has, the non-overlap constraints derived from built-in generic con-
straints such as if-then are not very effective at propagating the effects of
piece positioning. This is a well-known problem in constraint pro-
gramming, where the very flexible expressions for constraints are not
matched by the effectiveness of the built-in constraint propagation and
domain filtering methods. This has led to the systematic exploration of
the mathematic properties of constraints for many well-known pro-
blems, and the development of algorithms to take advantage of problem
structure in constraint programming. Beldiceanu et al. [4] present a
systematic report of 235 global constraints, ranging from general-pur-
pose methods for handling simple dependencies in domain variables,
such as the well-known alldiff constraint, to constraints aimed at real-
world problems such as scheduling or vehicle routing. The common
feature of global constraints is that they include some propagation
methods that account for the specifics of the problem at hand.

For cutting and packing, we already mentioned previous work that
included the development of global constraints. In these approaches the
limitations were due to the difficulty of enforcing the 2-D constraints
intrinsic to the problem, in models where < x, y> representations
were used. The dot-based representations we explore here do not pre-
sent such difficulties, and it is therefore easier to take into account the
structure of cutting and packing constraints. We argue that developing
a new global constraint tailored for the problem reduces the number of
non-overlap constraints and makes propagation more effective.

The new global constraint NoOverlap is now proposed to deal with
the geometric constraints intrinsic to the nesting problem. Let us con-
sider a scenario where piece type t at rotation r is placed on dot d. We
then define Φtrd (constraint 3) to represent the set of dots where no
other piece can be positioned

= { }d d| .trd
t r

trd
t r

, t (3)

Fig. 6 illustrates Φtrd for an example where three pieces (Fig. 6a)
must be positioned. Fig. 6b presents the nofit polygons of piece type t at
rotation r with the two other pieces and corresponding rotations. When
piece t at rotation r is placed on the dot d, NFPtrd

t r and NFPtrd
t r intersect as

shown in Fig. 6c. The dots strictly inside the intersection of the shaded
regions define the set Φtrd.

Φtrd is the set of all dots where no piece can be positioned if piece
type t at rotation r is placed on dot d. Using this set, the NoOverlap
constraint is defined. With NoOverlap, we look for opportunities to

exclude regions of the plane that are known to be forbidden to any
piece type, and can therefore be filtered from the domains of the dot
variables. The exclusion is based on the pre-computation of intersec-
tions between nofit polygons, that can be performed prior to the re-
solution of the problem, and used repeatedly in the search process.

= =

¬

{ }
{ }

d t t r r
n d

d n

, , , ,
If , Then {0}

and .

t t

d t r trd d

trd
t r

d t r

(4)

Given sets Φtrd and ,trd
t r the rules for activation of the constraint

propagator are easily stated, and so are their effects. This constraint is
activated each time variable γd is ground, i.e. takes a specific value. The
domain of all variables in Φtrd set can then be reduced to {0}. Moreover,
the domain of each d , d trd

t r must be reduced by the value nt r ,
for all t and r t .

The constraint propagator is represented in Algorithm 1. In the
second step of the algorithm the filtering of values from the domain of

d can be made more efficient by avoiding the dots that were processed
in the previous step, namely those in set Φtrd. The NoOverlap constraint
propagates just in case γd is bound to a value other than zero. A single
constraint is assigned to each dot and the propagation method is used to
reduce the domains of the variables.

5. CP models for all the variants of irregular cutting and packing
problems

While the non-overlap constraints are present in all irregular cutting
and packing problem variants, for each variant a set of additional
constraints has to be considered. In the following, we present the
constraint programming models for each problem variant shown in
Section 3.1. These models are composed by a set of built-in constraints
based on the binary or integer variable representation and the non-
overlap constraints presented in Sections 4.1.1, 4.1.2 and 4.2.

5.1. Irregular Placement Problem (IPP) and Irregular Identical Item
Placement Problem (IIIPP)

The models for the IPP and the IIIPP are similar, as the difference
between these two problem variants is in the number of piece types and
this is a characteristic of the problem instance.

Fig. 6. Example of set Φtrd.
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In these problems, the board dimensions are defined by the in-
stance, and therefore the initial domains can be determined in the pre-
processing phase using the IFP, as shown in Section 3.2. The models for
the IPP (or IIIPP) are completed by adding the non-overlap constraints
and an appropriate objective function.

In the binary representation, the non-overlap constraints are re-
presented in (1), capturing the fact that when a piece is positioned, any
other piece is excluded from the points in the NFP for the two pieces.

The IPP and the IIIPP are both output maximization problems,
therefore the number of boards available to be cut is fixed and the
objective function must maximize the value of the pieces cut (extracted)
from these boards. Specifically, considering that each piece of type

= …t T1, , has a value vt, the objective function that maximizes the
value can be expressed as:

= =
vmaximize .

d D t

T

r

R

t trd
1 1

t

(5)

If vt is defined as the area of the pieces, this objective minimizes the
waste. The objective function (5) and non-overlap constraints (1)
compose the binary formulation of the IPP and IIIPP.

In the integer representation, the non-overlap constraints may be the
ones in (2) or the proposed global constraint NoOverlap (4), capturing
the fact that when a piece is positioned, other pieces are excluded from
the points in the between the two pieces.

As the pieces are associated to integers that code their position, the
objective function is slightly different. For each piece of type = …t T1, ,
at rotation = …r R1, , ,t the number of dots (γ variables) that were
bound to ntr must be counted and then this number is multiplied by the
piece value. The sum of these values is the objective function value.
This expression can be formulated using the built-in constraint count
that is usually available in constraint programming solvers. Expression
(6) is the objective function for output maximization problems for-
mulated with integer-domain variables.

= ×
= = …

n vmaximize count ( ) .
t

T

d D r R d tr t
1 , 1, , t (6)

The objective function (6) together with constraints (2) define the in-
teger formulation of IPP and IIIPP.

The integer formulation with the global constraint NoOverlap is ob-
tained if the objective function (6) is combined with the new global
constraint NoOverlap (4).

5.2. Constrained Irregular Placement Problem (IPPc) and Irregular
Knapsack Problem (IKP)

The models for the IPPc and the IKP can be built on the model for
the IPP simply by adding a constraint that limits the number of pieces of
each type to cut. In these two variants, as in the IPP, the board di-
mensions are defined by the instance, thus, the initial domains can be
determined in the pre-processing phase using the (see Section 3.2).

The IPPc and the IKP have similar models, because the difference
between these two problem variants is the demand for each piece type,
again a characteristic of the problem instance.

In the binary representation, a set of constraints is required to limit
the number of pieces to cut. These constraints count the number of
times that a piece type is present in the solution and ensure that this
number is less than or equal to the limit qt for piece type t:

= = …
= …

q t Tcount ( 1) , 1, , .
d D r R

trd t, 1, , t (7)
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The model for IPPc and IKP with binary decision variables is
therefore obtained by adding the objective function (5) and con-
straints (1) and (7).

In the integer representation, a set of constraints is required to ensure
that the demand for the pieces is not exceeded. For all piece types t, the
constraints count the number of times the variables assume the value
ntr, for all = …r R1, , ,t and require that this number is less than or equal
to the limit qt for piece type t:

= = …
= …

n q t Tcount ( ) , 1, , .
d D r R d tr t, 1, , t (8)

The model for IPPc and IKP for decision variables with integer
domains is obtained by adding the objective function (6) and con-
straints (2) and (8).

The integer formulation with the global constraint NoOverlap is com-
plete with the objective function (6), constraints (8) and the global
constraint NoOverlap (4).

5.3. Irregular one open dimension problem ( 1I ODP)

The 1I ODP is an input minimization problem, therefore the length
of the board is not known. However, defining an upper bound to the
solution length (L ) is enough for the board to be considered finite and
rectangular. Knowing the value of L , the initial domains of the decision
variables can be determined in the pre-processing phase using the
(see Section 3.2).

In all input minimization problems, the demand qt of each piece of
type = …t T1, , is known and needs to be met. The objective is to
minimize the board length guaranteeing that the demand is met.

In the binary representation, the set of constraints required to ensure
that the demand for the pieces is met count the number of times that
piece type t is in the solution and ensure that this number is equal to the
demand qt:

= = = …
= …

q t Tcount ( 1) , 1, , .
d D r R

trd t, 1, , t (9)

To express the objective function, the position of each piece is
analyzed to determine the value of the objective function. As the goal is
to minimize the used board length, the piece that occupies the right-
most position on the board determines the value for the objective
function. Considering the binary formulation this objective can be re-
presented as:

+
= …
= …

d lminimize max ( ) .
d D

t T
r R

x tr
right

trd

1, ,
1, , t (10)

where dx is the horizontal distance from the left side of the board to dot
d.

Together, the objective function (10) and constraints (1) and (9)
comprise the model of 1I ODP using binary variables.

In the integer representation, a set of constraints is required to account
for the demand. For each = …t T1, , , the number of times that variable
γd assumes the value ntr is counted, for all = …r R1, , ,t an required to be
equal to demand qt of piece type t:

= = = …
= …

n q t Tcount ( ) , 1, , .
d D r R d tr t, 1, , t (11)

In order to measure the objective of 1I ODP, additional constraints
are used. Consider the variable that measures the solution length. We
must ensure that will be at least as long as the solution length.

= + = … = …n d l d D t T r RIf( )Then( ), , 1, , , 1, , .d tr x tr
right

t

(12)

Using constraints (12), the objective function for the irregular 1ODP
can be expressed as:

minimize . (13)

The model for the 1I ODP with integer-domain variables can be re-
presented by objective function (13) supported by Constraints (2), (11)
and (12).

The integer formulation with the global constraint NoOverlap comprises
the objective function (13), constraints (11), (12) and the global con-
straint NoOverlap (4).

5.4. Irregular cutting stock problem (ICSP) and irregular bin packing
problem (IBPP)

The difference between ICSP and IBPP is the demand for each piece
type, i.e. the formulations may be the same and only the instances
differ.

This problem aims to cut all the demanded pieces from N boards,
minimizing the number of used boards. Each piece must be completely
inside one of the boards and it is considered that all the boards have the
same height H and length Lboard.

To address this problem, the number of boards required to cut all
the pieces is estimated. In order to represent the problem using the
same definition for the variables, consider an extended board of height
H and length = ×L N Lboard. N 1 vertical cuts are made in the ex-
tended board dividing it into the N original boards. In order to avoid
placing the pieces over the cuts, some additional constraints on the IFPs
must be considered and will be presented for each kind of variable
domain. Fig. 7 illustrates an example of a board and the new IFPs for a
piece of type t at rotation r (IFPtr).

According to this board definition, the objective function for ICSP
and IBPP is the same as the one used to represent 1I ODP. This objective
ensures that the number of boards used will be minimized and that the
used length of the last board will be reduced, so that the material waste
of this last board is also minimized.

In the binary representation, to define the IFPs, consider that each dot
d∈D has coordinates (dx, dy). The region of IFPtr can be inferred by
fixing the domain of δtrd to zero to avoid piece type t in rotation r to be
over the cuts, i.e. < ×d l kx tr

left L
N or + > + ×d l k( 1) ,x tr

right L
N for

= …k N1, , 1.
Note that as the dots, the dimensions of the pieces and the dimen-

sions of the board are known, the domains of the variables can be re-
duced in a pre-processing phase.

Considering the definition of the board and the corresponding do-
main reductions, the objective function (10) together with Con-
straints (1) and (9) models the ICSP and the IBPP with binary variables.

In the integer representation, similarly to the binary case, the IFPs can
be used to reduce the domains of γd by ntr if < ×d l kx tr

left L
N or

+ > + ×d l k( 1)x tr
right L

N for = …k N1, , 1. These domain reductions
can be done in the pre-processing phase.

Considering the board definition presented in this section and the
corresponding domain reductions, the objective function (13) together
with Constraints (2) and (11) models the ICSP and the IBPP with in-
teger variables.

The integer formulation with the global constraint NoOverlap comprises
the objective function (13) together with constraints (11) and the global
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constraint NoOverlap (4).

5.5. Irregular two open dimension problem ( 2I ODP)

Developing exact methods for the 2I ODP demands some more effort
compared with the other cutting and packing problem variants. In this
problem variant, two board dimensions are estimated. This may lead to
a large number of dots on the board and, consequently, to a formulation
with a large number of variables. Nevertheless, depending on the ob-
jective function, the domains of some variables may be reduced in the
pre-processing phase.

If the objective is to minimize the area of a rectangle that contains
all the pieces and if we assume that all the pieces fit in a rectangle of
area A, then, for each piece type t and rotation r, the (X,Y)-coordinates
of the positioning point of the piece have to respect the following in-
equality:

+ × +x l y h A( ) ( ) .tr
right

tr
bottom (14)

Note that placing a piece that does not respect this inequality on a
dot makes the used board exceed the area A. The objective function
takes advantage of this observation. It is also clear that the board will
be at least as long (high) as the longest (highest) piece type t at rotation
r. Fig. 8 shows a rectangular board where the region defined by in-
equality (14) is represented in light gray. The x and y coordinates in this
board represent +x ltr

right and +y h ,tr
top respectively. Any dot in the gray

area has to be considered, but the rest of the board is excluded under
the assumption of the total area not exceeding A. It is important to
highlight that as these irregular boards are defined at a pre-processing
phase, the domain of some variables can be inferred, reducing the
number of constraints in the model.

When two dimensions are open and the objective is to minimize the
used area, the objective is non linear. This poses no problem to con-
straint programming, as CP models deal with non-linearity in con-
straints or in the objective function.

It is important to highlight that open dimension problems can have
many different objectives. The minimization of the board length and
the minimization of the area of the rectangle were chosen because these
objectives were already studied in the literature.

In the binary representation, to minimize the objective function, this
rectangular area is expressed as:

+ × +
= …
= …

= …
= …

d l d hminimize max ( ) max ( ) .x tr
right

trd y tr
bottom

trdd D
t T
r Rt

d D
t T
r Rt

1, ,
1, ,

1, ,
1, , (15)

To represent the 2I ODP, constraints (1) and (9) are combined with
objective function (15).

In the integer representation, additional constraints are used to define

the objective function. Consider the variable to represent the length
of the solution and to represent the height of the solution.
Constraints (12) ensure that represents the used board length; for the
board width, a similar set of constraints is required:

= + = … = …n d h d D t T r RIf( )Then( ), , 1, , , 1, , .d tr y tr
top

t

(16)

To minimize the area of the rectangle that contains all the pieces,
the objective function is:

×minimize . (17)

The formulation of the 2I ODP with integer variables is obtained
using objective function (17) subject to constraints (2), (11), (12) and
(16).

The integer formulation with the global constraint NoOverlap comprises
the objective function (17) together with constraints (11), (12), (16)
and the global constraint NoOverlap (4).

6. Computational experiments with the constraint programming
models

This section presents computational experiments with all the con-
straint programming models proposed. The experiments were run on a
computer with an Intel Xeon Processor E5-2450 with 64 GB of memory
using the operating system Scientific Linux 6. The maximum solution
time allowed for each problem with any method was one hour. Each
problem formulation was implemented and solved by using the con-
straint programming solver provided by IBM ILOG CPLEX 12.6.

In order to identify the problem variant and the constraint pro-
gramming model used to solve it, we used an abbreviation of the pro-
blem variant’s name and a designation of the model. The constraint
programming models are abbreviated as Bin (binary variables), Int
(integer variables) or IGC (integer variables and the global constraint
NoOverlap). As an example, the irregular placement problem (IPP)
solved by the constraint programming model with binary variables
(Bin) is called IPP Bin.

6.1. Defining instances

The instances used in the computational experiments are based on
well-known instances from the literature on irregular open-dimension

Fig. 7. Board used on irregular cutting stock problems and irregular bin packing problems.

Fig. 8. Board for open dimension problems: the area under the × =x y A curve.
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problems with one open dimension ( 1I ODP). As this is the most studied
variant of the problem, many instances were proposed to evaluate so-
lution methods. To evaluate and compare the performance of the
models proposed, a subset of instances was chosen from ESICUP1. The
chosen instances are Three, Threep2, Threep2w9, Threep3, Threep3w9,
Blaz1, Blaz2, Shapes0, Shapes1, Fu and Dagli. In Table 1, we present
more details for these instances.

As in the IIPP only one piece type must be placed on the board, we
created eight new instances based on instances Blaz2 and Shapes1 that
have convex and non-convex pieces. Each instance has only one piece type
of the original instance, and whenever in the original instance a piece has
allowed rotations, this characteristic is maintained in the new instance.

The mesh used for instances Blaz1, Blaz2, Shapes0 and Shapes1 and
all instances Three has a refinement = 1 and the mesh used to solve
Fu and Dagli has a refinement = 2. Choosing different values of Δ for
the instances ensures that they can be solved by the three proposed
models. Fig. 9 shows how the refinement Δ changes the mesh.

The experiments were run in two phases. In the first phase, this set of
instances and the proposed Δ were used. In the second phase, the model
that performed best in the first phase was used to solve the larger instances
Blaz1, Blaz2, Shapes0, Shapes1, Fu and Dagli and also Jakobs1, Jakobs2
and Shirts with a more refined value for Δ, adapting the instances to each
problem variant studied. The mesh refinement Δ used in each instance in
the second phase is specified in the results tables.

The instances used for each problem variant were derived from
these base instances. Details on the changes made for adapting them to
each problem variant are given in Appendix A.

6.2. Performance of the formulations proposed

This section is dedicated to analyzing the performance of the three
models presented in the previous sections. For that, we solved a set of
instances by using the three models. All the details on the computa-
tional experiments can be found in Appendix B.

Table 2 presents a summary of the results. The first and second
columns show, respectively, the problem name and the number of in-
stances evaluated.

For each problem variant and model, we report the number of
feasible solutions (feas.), the number of optimal solutions (opt.) and the
number of best (or equal) solutions (best). The average time to solve the
instances (Avg. time) is also provided. To perform a fair comparison of
the models, the average time only takes into account the instances in
which optimality was proven by the three formulations.

The performance of the Binary and Integer models is similar. Both
models obtained the same number of feasible solutions for all the
problem variants. Furthermore, the number of instances for which the
solution was proven optimal and the number of best solutions obtained
were close. The average computational time for the integer formulation
is about 24% smaller than the average computational time of the binary
formulation.

In general, the reason why the Binary and Integer models do not
find feasible solutions for all the instances is that they exceed the
computational resource which is limited to 64 GB of RAM in our ex-
periments. As the IGC formulation drastically reduces the number of
variables and constraints of the model, this problem is overcome.

The IGC model found feasible solutions for all the instances tested.
The number of instances for which optimality was proven is slightly
higher compared with the other two formulations and, in most cases,
the solutions of the IGC model are better or equal regarding the com-
putational time. In average the IGC model is about 63% faster than the
Binary model and 51% faster than the Integer model.

These experiments show that constraint programming can be used to

represent and solve all the cutting and packing problems classified in [33],
even when they involve non-linearities such as in the 2I ODP variant.
Moreover, these constraint programming models can easily incorporate
particular features for some applications. In addition to the flexibility of
the formulations, using the proposed global constraint NoOverlap reduces
the number of non-overlap constraints and makes propagation more ef-
fective. This proved to be effective in solving larger instances.

6.3. Memory usage

An important information when an approach is chosen to solve a
problem is the amount of memory it uses. It is clear that each problem
variant uses a different amount of memory since the number of vari-
ables and constraints are different. Notwithstanding the contrast in
memory consumption of the problem variants, the main aspects of the
constraint programming models proposed can be observed in all the
problem variants in different scales.

In this section, the memory requirements of the constraint pro-
gramming models proposed is presented for two irregular cutting and
packing problem variants: an output maximization problem, the IPP,
and an input minimization problem, the 1I ODP. As the memory usage
of instances Three was below 0.03 gigabytes these results were not
considered in the tables.

6.3.1. Memory usage for an output maximization problem, the irregular
placement problem (IPP)

Table 3 shows the memory used to solve the instances presented in
Section B.1.2 for the IPP using the three constraint programming
models proposed. In the table, the first column shows the instance
names. Columns two, three and four show the memory (in gigabytes)
used by the binary model, the integer model and the integer model with
NoOverlap constraint, respectively.

Comparing the amount of memory used by all the methods, it can be
observed that the memory usage of the IPP IGC model is an order of
magnitude lower than in the IPP Bin and IPP Int models. The low
amount of memory required by the IPP IGC is a result of the reduced
number of non-overlap constraints. The number of variables of IPP Int
is lower than in IPP Bin, however the memory usage is similar in both
approaches. This happens because the number of constraints needed to
represent the problem in both approaches is similar and the number of
constraints is considerably higher than the number of variables.

Specifically, as stated in Sections 4.1.1 and 4.1.2, the number of
constraints needed to enforce the non-overlap among pieces in the
Binary and Integer models is = = = = | |d D t

T
t t
T

r
R

r
R

trd
t r

1 1 1
t t while

the number of constraints needed to avoid this overlap using the
NoOverlap constraint is | |. Furthermore, the number of variables
needed to create the non-overlap constraints in the binary model is

× R| | T t while in the integer models only | | variables are needed.
Naturally, the pattern of memory usage for the IPPc is very similar

to the one for the IPP since the models are very similar. The problem
variant IKP also follows the same pattern but globally the number of
constraints and variables is higher, preventing some instances from
being solved. The problem variant IIIPP uses other instances, however
the pattern is similar to the one presented in Table 3.

6.3.2. Memory usage for an input minimization problem, the irregular one
open dimension problem ( 1I ODP)

Input minimization problems usually use more memory than output
maximization ones since the number of decision variables and con-
straints depends on the initial number of dots and consequently on the
initial estimation (upper bound) used for the board length.

Table 4 represents the memory used for the problem variant 1I ODP
to solve the same instances as in Table 3. The content of the columns is
as described for Table 3.

For this problem variant the 1I ODP Bin and the 1I ODP Int used
also considerably more memory to solve the instances compared with

1 EURO Special Interest Group on Cutting and Packing: https://www.euro-
online.org/websites/esicup/

L.H. Cherri, et al. Operations Research Perspectives 6 (2019) 100125

10

https://www.euro-online.org/websites/esicup/
https://www.euro-online.org/websites/esicup/


the 1I ODP IGC. As in this case the need for memory is high, only
instances Blaz1 and Blaz2 could be solved by all the methods. As ex-
pected, the binary and the integer approaches have a similar memory
usage, while the approach with the NoOverlap constraint needs a small
amount of memory compared to them.

The ICSP problem variant is very similar to the 1I ODP, differing
only in the definition of the boards, and consequently their memory
usage is similar. The difference between IBPP and ICSP is that in IBPP
each piece copy is considered as a unique piece type and in ICSP, they
are grouped by types. Therefore, the memory usage has the same

pattern in IBPP and ICSP and is higher for IBPP when there is more than
one copy of each piece type. Finally the 2I ODP problem variant has a
larger memory consumption compared with 1I ODP or ICSP since the
board used in this model has two dimensions to be estimated. Despite
the differences between the models, the pattern of memory usage is the
same as the one presented for the other variants of input minimization
problems.

7. Solving larger instances and comparing with the literature

Section 6.2 showed the flexibility of constraint programming

models to solve different irregular cutting and packing problem var-
iants. It can be observed that, for the same problem variants, the con-
straint programming model with the NoOverlap global constraint - IGC -
performs better than the two other constraint programming models
proposed. Furthermore, as seen in Section 6.3, the memory usage of
IGC is smaller than in the other models by more than one order of
magnitude. For these two reasons, the IGC was the constraint pro-
gramming model chosen to solve the larger instances in Section 7.1 and
to make comparisons with the literature in Section 7.2.

Table 1
Characteristics of the instances used in the computational experiments.

Instance Number of piece types Total number of pieces Vertices by piece (avg.) Feasible rotations Piece shapes

Three 3 3 3.7 0 Convex
Threep2 3 6 3.7 0 Convex
Threep2w9 3 6 3.7 0 Convex
Threep3 3 9 3.7 0 Convex
Threep3w9 3 9 3.7 0 Convex
Blaz1 7 20 6.3 0, 180 Convex and Non-convex
Blaz2 4 16 7.5 0, 180 Convex and Non-convex
Shapes0 4 43 8.7 0 Convex and Non-convex
Shapes1 4 43 8.7 0, 180 Convex and Non-convex
Fu 12 12 3.6 0, 90, 180, 270 Convex
Dagli 10 30 7.3 0, 180 Convex and Non-convex

Fig. 9. A mesh with refinement Δ.

Table 2
Comparison of the performance of the three proposed models.

Bin Int IGC

Prob. Num. Number of Avg. Number of Avg. Number of Avg.

Vari. of inst. feas. opt. best time feas. opt. best time feas. opt. best time

IIIPP 8 8 2 7 959.4 8 2 7 680.1 8 2 7 107.8
IPP 11 9 5 7 14.9 9 5 7 8.6 11 5 10 5.9
IPPc 11 9 5 6 17.6 9 5 6 7.2 11 5 11 2.9
IKP 11 7 4 6 5.8 7 4 6 9.5 11 5 11 385.7
1I ODP 11 7 5 5 59.6 7 5 6 49.7 11 5 11 28.7

ICSP 11 7 4 7 4.4 7 4 6 3.2 11 5 11 3.0
IBPP 11 6 5 6 498.8 6 4 6 430.3 11 5 11 48.6
2I ODP 11 7 5 5 4.4 7 5 6 3.2 11 5 10 3.0

Average 7.5 4.4 6.1 195.6 7.5 4.2 6.2 149.0 10.6 4.6 10.2 73.2

Table 3
Memory usage (in GB) to solve the Irregular Placement Problem (IPP).

Instance IPP Bin IPP Int IPP IGC

Blaz1 3.50 3.00 0.10
Blaz2 1.40 0.96 0.10
Shapes0 16.60 15.40 0.80
Shapes1 35.80 33.40 1.00
Fu om om 0.30
Dagli om om 1.60

om: out of memory.

Table 4
Memory usage (in GB) to solve the Irregular one Open Dimension Problem
( 1I ODP).

Instance 1I ODP Bin 1I ODP Int 1I ODP IGC

Blaz1 9.80 8.60 0.15
Blaz2 2.10 3.00 0.33
Shapes0 om om 2.00
Shapes1 om om 1.40
Fu om om 0.17
Dagli om om 0.84

om: out of memory.
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In Section 7.1, three problem variants are analyzed, specifically IPP,
ICSP and 1I ODP. These problem variants were chosen because of their
practical relevance. In Section 7.2, the results obtained from the IGC for
the problem variant 1I ODP are compared with the results from the
Dotted Board Model proposed by Toledo et al. [29]. All the experiments
in both sections were run using the computer and the solver as de-
scribed in Section 6.

7.1. Solving larger instances

The size of an irregular cutting and packing instance depends on
various factors such as the number of piece types, the total number of
pieces to be placed, the number of piece rotations allowed and the
board size. In our approach, the number of variables and constraints of
the problem is directly related to the discretization of the board, i.e. the
number of dots (or admissible positioning points) on the board.
Considering this, an instance can be considered small or large de-
pending on the discretization used and, in this section, all the instances
are represented by using a mesh with refinement = 0.5.

IPP, ICSP and 1I ODP, the variants of the irregular cutting and
packing problem selected for these experiments were chosen because of
their relevance in the literature. IPP is a classical problem highly stu-
died in the one-dimensional and regular two dimensional cutting and
packing problems. This problem emerges as a cutting pattern generator
in column generation techniques to solve the cutting stock problem,
which can clearly be extended to the irregular case. Column generation
techniques lead to the optimal relaxed solution of the cutting stock
problem and a feasible integer solution should be obtained by heuristics
or branch-and-price techniques. On the other hand, the ICSP model
proposed solves the cutting stock problem exactly and each feasible
solution found during the search is an integer feasible solution to the
problem. Lastly, the 1I ODP is the most studied variant among the ir-
regular cutting and packing problems, therefore it is a natural choice for
the evaluation with large instances.

The instances used are again the ones proposed for the 1I ODP
problem: Blaz1, Blaz2, Shapes0, Shapes1, Fu, Dagli, Shirts, Jakobs1,
Jakobs2. The instances were taken from the ESICUP website. As in the
previous section, the board lengths for the IPP and the ICSP are defined
as equal to the board height. Since the lengths of the solutions for in-
stances Jakobs1 and Jakobs2 are shorter than the board height, the
board height (and length) considered for these instances was half the
one of the original instances to make them more interesting to be solved
by the ICSP.

All the instances and problem variants were solved by using the
constraint programming model with the global constraint NoOverlap
(IGC) and the computational results obtained are presented in Table 5.
The first column has the instance name, the value of the best solution
found and the computational time needed to find this solution with the
IPP (ICSP and 1I ODP) are presented in columns two and three (four and
five and six and seven respectively).

Even for this smaller discretization, a feasible solution was found for
all the problem variants and instances evaluated. Solving the IPP with a
smaller discretization produces strictly better solutions compared with
the results presented in Table 8 (Section B.1.2) for instances Blaz2,
Shapes0, Shapes1, Fu and Dagli. The solution for instance Blaz1 is
however worse than the one presented in Table 8. This may be ex-
plained by the size of the solution space, which is about four times
larger and this may disturb the search for solutions. For the three re-
maining instances that were not considered in the previous tests, Shirts,
Jakobs1 and Jakobs2, feasible solutions were found.

For the ICSP, a solution with equal or better quality was found for
instances Blaz1, Blaz2, Shapes0, Shapes1, Fu and Dagli, with a dis-
cretization = 0.5, comparing with the solutions presented in Table 11

(Appendix B). Furthermore, feasible solutions were found for instances
Shirts, Jakobs1 and Jakobs2. Instances with thousands of pieces, as
solved by the heuristic in [5], could not be solved with this constraint
programming model, but this approach can be an alternative when the
cutting stock problem instances are small. Moreover, using this model,
the used length of each board is minimized, leading to a reduction in
waste which can be specially advantageous in problems with a rela-
tively small number of pieces.

By using a discretization of = 0.5 for the 1I ODP, better solutions
were obtained for instances Blaz2, Shapes0, Shapes1, Fu and Dagli,
compared with the ones presented in Table 13 (Section B.2.3). In the
case of instance Blaz1, a worse solution was found. This is possible since
the solution space is larger ( = 0.5) and better solutions may not be
reached within the time limit. For instances Shirts, Jakobs1 and Ja-
kobs2, the model proposed for 1I ODP was able to find feasible solu-
tions.

Comparing the solutions in columns ICSP IGC and 1I ODP IGC
in Table 5, it can be observed that for instances Shirts and Jakobs2 the
ICSP could find better solutions than the ones found in 1I ODP. This
behavior is expected since the ICSP is more constrained and thus its
solution space is smaller. If, in this smaller search space, there are better
solutions for the ICSP and, consequently, for the 1I ODP, they may be
reached during a time-limited search.

7.2. Comparing with the literature

The results presented in Section 6 demonstrate that an exact ap-
proach based on constraint programming models is flexible and can be
used to solve many variants of cutting and packing problems. A ques-
tion that arises is how the constraint programming approach for irre-
gular cutting and packing problems compares with other exact methods
in the literature. In fact, to the best of our knowledge, the only irregular
cutting and packing problem variant addressed with exact methods in
the literature is the 1I ODP, therefore, the comparison can only be made
with this problem variant. Among the exact approaches proposed in the
literature for the 1I ODP, we had to choose the one with the same so-
lution space, i.e., one where the reference point of the pieces can only
be placed over dots of a discretized board. The Dotted Board Model
(DBM) proposed in [29] has these characteristics, thus, the solutions
obtained by both methods are comparable. Cherri et al. [10] studied the
influence of the discretization used in the model of [29] and proposed a
reformulation allowing the pieces to be rotated.

The instances presented in the beginning of this section were used to
compare the results of DBM and IGC in the resolution of the 1I ODP.
Moreover, four sets of smaller instances were created based on the in-
stances Blaz1, Blaz2, Shapes0 and Shapes1. Specifically, the number of
pieces in the instance was reduced and the other instance features were

Table 5
The best solution found for all the problem variants and instances with = 0.5.

IPP IGC ICSP IGC 1I ODP IGC

Instance Solution Time to
find

Solution Time to
find

Solution Time to
find

Blaz1 203.5 687.4 30.0 1905.3 30.0 193.2
Blaz2 187.5 1717.9 22.0 2400.8 21.5 50.8
Shapes0 1176.0 2995.9 68.0 986.7 65.0 2938.9
Shapes1 1172.0 1124.5 68.0 2605.0 68.0 1867.4
Fu 1430.0 1243.6 34.0 3462.9 34.0 336.3
Dagli 2967.8 2932.6 75.0 524.3 70.0 367.5
Shirts 1815.0 2517.2 65.0 1427.6 65.5 1353.7
Jakobs1 378.5 1506.7 27.0 1729.6 26.5 620.0
Jakobs2 1058.0 2365.3 56.0 144.1 57.0 2983.5
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kept. For example, the instance Shapes0-1 includes one copy of each
piece type while Shapes-2 and Shapes0-3 respectively should cut two
and three copies of each piece type. All the new instances were created
using this method.

In Table 6, we compare the computational results obtained by sol-
ving the 1I ODP using the constraint programming model with the
global constraint ( 1I ODP IGC) with the ones presented in [10]
1I ODP DBMR – Dotted Board Model with Rotations. The name of the
instance is in the first column of the table, columns two and three (four
and five) show the solution length and computational time obtained.

The DBM proved optimality for 6 out of 21 instances while the IGC
proved optimality for only one instance. On the other hand DBM did
not find a solution for eight instances due to lack of memory, while IGC
returned solutions for all the instances. Specifically considering the
standard instances, none of the models was able to prove optimality
within the time limit. Except for the Blaz2 instance, IGC always found
better or equal solutions when compared to DBM. It demonstrates how
the proposed constraint programming model with the global constraint
NoOverlap is powerful to handle large scale instances and indicates a
promising area in the study of specialized lower bounds for 1I ODP.

8. Conclusions

This work introduces constraint programming models to solve all

the variants of irregular cutting and packing problems and presents a
new global constraint NoOverlap to enforce non-overlap between
pieces.

For each problem variant, three constraint programming models are
presented. The models proposed are the first in the literature to solve
some instances to optimality.

The constraint programming models use two kinds of variables:
those with binary and those with integer domains. The models with
binary variables are based on the dotted board model with rotations by
Cherri et al. [10], in which a binary variable is defined for each dot,
piece type and piece rotation. In the models with integer domain
variables, there is only one variable defined for each dot and the values
in the variable domain represent the candidate piece types and their
rotations. The new global constraint NoOverlap is proposed to take
advantage of all the information available for the domains of these
integer variables. This global constraint ensures that the pieces do not
overlap. The constraint is tailored for the problem, and therefore pro-
motes faster propagation. The computational results show the effec-
tiveness of this new global constraint in solving all the problem var-
iants.

Constraint programming is very flexible for modeling combinatorial
optimization problems and allows the use of linear, non-linear or lo-
gical constraints to represent the solution space of the problems.
Therefore, the proposed constraint programming models lend them-
selves very easily to the adaptation to real-world problems where
custom requirements are frequent and additional constraints need to be
included.

The constraints in the proposed models are general enough to be
used in other problem variants. As there are some differences in these
problem variants, an interesting future research line is to develop and
tailor specific global constraints for each problem variant. In addition,
combining the power of constraint programming to find good quality
solutions with other optimization techniques, such as mixed integer
programming, is a promising research line.
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Appendix A. Adapting the instances to all the problem variants

This appendix is dedicated to explain the modifications performed in the instances in order to adapt them to the variants of the cutting and
packing problem presented in [33].

For the irregular ODP with one open dimension, an upper bound on the length of the board L must be defined. The value of L must be carefully
set, because on one hand, it needs to be large enough to contain feasible solutions but, on the other hand, the number of problem variables increases
with this parameter. L is defined here as the length of the first solution found by the model with the global constraint run with a board size big
enough to find a feasible solution in less than one minute. This model was chosen for this processing step because, as shown in Section 6.3, it uses less
memory than the other two approaches. Therefore, for instances Blaz1, Blaz2, Shapes0, Shapes1, Fu, Dagli, Shirts, Jakobs1 and Jakobs2, the board
length L was defined as 32, 24, 80, 77, 38, 85, 89, 16 and 34, respectively.

For the problem variants for which the board has fixed dimensions (KP, PP, IIPP, BPP and CSP), the board length is defined as equal to the height,
following the approach of [28], and the board height is known since the instances are originally from the strip packing problem.

Table 6
The best solution found for all the instances with = 0.5.

1I ODP DBMR 1I ODP IGC

Instance Solution Time Solution Time

Blaz1-1 7.5 TL 7.5 TL
Blaz1-2 20.0 TL 14.0 TL
Blaz1-3 28.0 TL 21.0 TL
Blaz2-1 7.0 35.9 7.0 520
Blaz2-2 11.0 5745.9 11.0 TL
Blaz2-3 15.0 TL 15.0 TL
Shapes0-1 14.0 211.5 14.0 TL
Shapes0-2 14.0 223.7 14.0 TL
Shapes0-3 26.0 TL 23.0 TL
Shapes1-1 14.0 435.0 14.0 TL
Shapes1-2 14.0 1942.1 14.0 TL
Shapes1-3 25.0 TL 20.0 TL
Blaz1 om om 30.0 TL
Blaz2 21.0 TL 21.5 TL
Shapes0 om om 65.0 TL
Shapes1 om om 68.0 TL
Fu om om 34.0 TL
Dagli om om 70.0 TL
Shirts om om 65.5 TL
Jakobs1 om om 26.5 TL
Jakobs2 om om 57.0 TL

om: out of memory; TL: Time limit (5 h).
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For all the input minimization problems, where demand is strict, the demand of the original instance is maintained. In the problem variants were
the pieces must have a value, the value of each piece is set as its area.

Each IIPP instance contains only one piece type of Blaz2 or Shapes1 instances as depicted in Figs. 10 and 11. The new instances kept the piece
rotations from the pieces of the original instance.

The new instances are identified by the name of the instance where the piece was taken off and the suffix < >i , where < i> is the number
associated to the piece in the instance.

Appendix B. Results for all the problem variants and the three proposed models

In this section we present the results obtained for all the problem variants with the constraint programming models proposed in the paper.

B1. Output maximization problems

Regarding output maximization problems, the board is well defined, and the problem is to decide which pieces will be cut and their positioning
points on the board. The results comparing the three models proposed for the variants of this problem class are presented in the following sections.

B1.1. Irregular identical item placement problem (IIIPP)

The irregular identical item placement problem (IIIPP) consists of cutting multiple copies of a single irregular piece type from a board with fixed
dimensions. Table 7 presents the results for the IIIPP obtained by the three models proposed. The instance name is in the first column, columns two
and three present the value of the best solution found and the time to obtain this solution for the model with binary domains. Columns four and five
(six and seven) have the corresponding content of columns two and three for the model with integer domains variables (for the model with the
proposed NoOverlap constraint).

As this problem variant deals with only one piece type, the binary and integer representations are very similar. Considering the solution values,
all the approaches reach the same values except for instances Shapes1-3, where the best solution was found by the model with binary decision
variables and, Shapes1-4, where the best solution was found by the integer program with the global constraint proposed NoOverlap.

The integer program with the global constraint was able to find solutions that are better or have the same value, faster than the other for-
mulations proposed except for instances Shapes1-3 and Blaz2-3. This is due to the fact that, even for one piece type, the global constraint can
significantly reduce the number of constraints necessary to avoid piece overlap.

Fig. 10. Assigning numbers to pieces in instance Blaz2.

Fig. 11. Assigning numbers to pieces in the Shapes1 instance.

Table 7
Results for the irregular identical item placement problem (IIIPP).

IIIPP Bin IIIPP Int IIIPP IGC

Instance Solution Time to
find

Solution Time to
find

Solution Time to
find

Blaz2-1 144.0* 1040.2 144.0* 779.8 144.0* 0.0
Blaz2-2 155.0* 1.4 155.0* 1.3 155.0* 0.4
Blaz2-3 168.0* 0.2 168.0* 0.3 168.0* 0.3
Blaz2-4 121.0* 878.5 121.0* 580.3 121.0* 215.5
Shapes1-1 880.0* 119.4 880.0* 473.3 880.0* 1.8
Shapes1-2 1080.0* 174.5 1080.0* 30.9 1080.0* 0.8
Shapes1-3 952.0* 2982.4 924.0* 1128.9 924.0* 3067.4
Shapes1-4 1160.0* 115.0 1180.0* 301.1 1220.0* 4.4

*: optimal solution.
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B1.2. Irregular placement problem (IPP)

The irregular placement problem (IPP) aims to place a number of pieces on a board in order to maximize the resulting value. Table 8 presents the
results for the IPP. Refer to the description of Table 7 for a detailed description of the contents of the columns.

All the models were able to prove optimality for the five instances Three, although the IPP IGC proved it faster than the other models. Note
that for the IPP, instances Three, Threep2 and Threep3 are equal since there are no demand constraints, and the board has the same dimensions. For
the same reason, the results of Threep2w9 and Threep3w9 are the same. For instances Blaz1, Balz2, Shapes0, Shapes1, Fu and Dagli none of the three
models was able to prove optimality in the given time limit. IPP IGC obtained solutions with the same or better quality than the two other models
except for the instance Blaz1.

Regarding computational times, for the instances where all the models reached solutions with the same value, IPP IGC was the fastest model.
For the instance Shapes1, IPP Int and IPP IGC found solutions with the same value but IPP IGC was more than three times faster than
IPP Int.

B1.3. Irregular placement problem with demand constraints (IPPc)

The irregular placement problem with demand constraints (IPPc) has a smaller solution space compared with the irregular PP without demand
constraints. This happens because, with a specified number of pieces to allocate, situations where the domains of the variables can be reduced are
more likely to occur. Table 9 presents the results of the computational experiments for IPPc and for each proposed model. Refer to the description of
Table 7 for a detailed description of the contents of the columns.

Table 8
Results for the irregular placement problem (IPP) without demand constraints.

IPP Bin IPP Int IPP IGC

Instance Solution Time to
find

Solution Time to
find

Solution Time to
find

Three 36.0* 0.3 36.0* 0.3 36.0* 0.0
Threep2 36.0* 0.3 36.0* 0.3 36.0* 0.0
Threep2w9 81.0* 36.7 81.0* 21.0 81.0* 14.8
Threep3 36.0* 0.3 36.0* 0.3 36.0* 0.0
Threep3w9 81.0* 36.7 81.0* 21.0 81.0* 14.8
Blaz1 214.0* 1449.6 209.0* 773.2 210.0* 1596.5
Blaz2 178.0* 333.6 178.0* 293.3 178.0* 102.9
Shapes0 1104.0* 1934.0 1108.0* 2946.1 1128.0* 3156.4
Shapes1 1096.0* 400.9 1104.0* 1888.6 1104.0* 467.9
Fu om* om om* om 1402.0* 3053.0
Dagli om* om om* om 2493.5* 1459.0

*: optimal solution. om: out of memory.

Table 9
Results for the irregular placement problem with demand constraints (IPPc).

IPPc Bin IPPc Int IPPc IGC

Instance Solution Time to
find

Solution Time to
find

Solution Time to
find

Three 23.0* 0.1 23.0* 0.1 23.0* 0.0
Threep2 34.0* 0.2 34.0* 0.2 34.0* 0.2
Threep2w9 46.0* 0.3 46.0* 0.3 46.0* 0.0
Threep3 35.0* 0.3 35.0* 0.3 35.0* 0.3
Threep3w9 57.0* 87.3 57.0* 35.3 57.0* 13.9
Blaz1 191.5* 601.4 192.0* 2820.8 192.5* 963.0
Blaz2 168.0* 28.5 168.0* 47.6 168.0* 6.5
Shapes0 1024.0* 2501.7 1064.0* 1458.5 1072.0* 1782.7
Shapes1 1044.0* 2265.7 1048.0* 2478.0 1052.0* 601.2
Fu om* om om* om 1083.0* 1.4
Dagli om* om om* om 2688.1* 2102.4

*: optimal solution. om: out of memory.
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The IPPc IGC was the only approach able to find a feasible solution for instances Fu and Dagli. It was also possible to prove optimality for
instance Fu in eight seconds. This happens because, as the demand for the items is constrained, all the pieces can be placed inside the board, thus,
there is no better solution to cut all the pieces from the board. For instance Blaz2, the IPPc Bin, IPPc Int and IPPc IGC found solutions with
the same value, although the IPPc IGC reached this solution more than four times faster than the IPPc Bin and more than seven times faster than
the IPPc Int. For instances Three, all models proved the solution optimality, however the IPPc IGC proved this optimality in smaller or equal
computational time.

Considering the differences between the problems, it may seem that, for the same instance, the solutions for the IPPc will be worse than the
solutions for the IPP. However, for instance Dagli, the solution obtained by IPPc IGC has a better value than the one obtained by the IPP IGC.
This is due to the fact that, with the demand constraints, the IPPc solution space can be drastically reduced allowing the solution method to make a
more thorough search.

B1.4. Irregular knapsack problem (IKP)

The irregular knapsack problem (IKP) can be viewed as a special case of in which the demand of each piece is limited to one unit. An instance of
IPPc can therefore be easily converted into an instance of IKP considering that each demanded item is a piece of a different type. Clearly it is better to
consider the pieces of the same type together since it reduces the number of constraints used to represent the problem in all models. In order to
evaluate the performance of the solution method over this problem variant, the same instances solved by the IPPc were solved by the IKP, con-
sidering each piece copy as a different piece type. Table 10 presents the results of the computational experiments for IKP and for each proposed
model. Refer to the description of Table 7 for a detailed description of the contents of the columns.

For this problem, the binary and integer programs can only solve instances Three and Blaz1 and Blaz2. For the other instances, the memory used
exceeds the limit imposed (64 gigabytes).

Except for Threep3w9, all the models prove the optimal solution for instances Three. Note that, despite IKP Bin and IKP Int having the same
solution found by IKP IGC, only IKP IGC could prove the solution optimal. The solution values obtained for instance Blaz1 with IKP Bin and
with IKP Int are worse than those from IKP IGC. For instance Blaz2, the three models reached the same solution value, however the IKP IGC
was able to find this solution faster than the other models.

The IKP IGC model found feasible solutions for all the instances. This happened because, by using the proposed global constraint to avoid
overlap, the number of constraints needed to represent the feasible solution space is reduced, consuming less memory. Furthermore, as this con-
straint propagates faster, good quality solutions could be found, even considering that each demanded piece is of a different type.

As presented in Section 5.2, the models for the IPPc and IKP are the same. It can be observed that no solution found by IKP is better than the
solution found by IPPc. This behavior was expected since considering the same-type pieces in the same constraints reduces the number of constraints
in the model and avoids symmetric solutions.

B2. Input minimization problems

Unlike output minimization problems, in input minimization problems either the board size or the number of the boards to be used are
unknown. In this case, bounds for the board size or for the number of boards should be estimated in order to define the mesh of dots used to represent
the board.

Table 10
Results for the irregular knapsack problem (IKP).

IKP Bin IKP Int IKP IGC

Instance Solution Time to
find

Solution Time to
find

Solution Time to
find

Three 23.0* 0.1 23.0* 0.1 23.0* 0.0
Threep2 34.0* 2.7 34.0* 1.7 34.0* 0.6
Threep2w9 46.0* 1.0 46.0* 1.0 46.0* 0.0
Threep3 35.0* 22.6 35.0* 41.8 35.0* 5.0
Threep3w9 57.0* 2.8 57.0* 2.8 57.0* 1923.1
Blaz1 180.5* 996.9 185.5* 2889.4 190.5* 3166.0
Blaz2 168.0* 171.9 168.0* 202.2 168.0* 26.1
Shapes0 om* om om* om 948.0* 1291.5
Shapes1 om* om om* om 1036.0* 1388.0
Fu om* om om* om 1083.0* 1.4
Dagli om* om om* om 2572.9* 1278.6

*: optimal solution. om: out of memory.
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B2.1. Irregular cutting stock problem (ICSP)

The irregular cutting stock problem (ICSP) aims to cut all the pieces from boards using the minimum number of boards. In this paper, the
irregular cutting stock problem is formulated similarly to 1I ODP, minimizing the number of boards used to perform the cuts and also minimizing the
used length of the “last” board. The computational results for ICSP are presented in Table 11. Refer to the description of Table 7 for a detailed
description of the contents of the columns.

For all the models proposed of ICSP, feasible solutions were only found for instances Three, Blaz1 and Blaz2. Considering instances Three, the
optimality was proven in less than ten seconds by all the models and ICSP IGC was the fastest approach. For instance Blaz1, ICSP Bin and
ICSP IGC found a better quality solution than ICSP Int. In this case ICSP IGC was twice as fast as ICSP Bin to find this solution. All the
methods reach the same solution value for Blaz2, but ICSP IGC was slightly faster than the other methods. For the other instances, ICSP IGC
was able to find feasible solutions within the time limit.

B2.2. Irregular bin packing problem (IBPP)

As in the ICSP, the irregular bin packing problem (IBPP) aims to cut all the demanded pieces by using the minimum number of boards, but the
demand of each piece is limited to one unit. The model of this problem is equal to the ICSP model, but the instances were adapted to represent the
problem as described in Section B.1.4, i.e. considering that each demanded item is a piece of a different type. The results for the IBPP are presented in
Table 12. Refer to the description of Table 7 for a detailed description of the contents of the columns.

Table 11
Results for the irregular cutting stock problem (ICSP).

ICSP Bin ICSP Int ICSP IGC

Instance Solution Time to
find

Solution Time to
find

Solution Time to
find

Three 6.0* 0.2 6.0* 0.1 6.0* 0.0
Threep2 11.0* 0.3 11.0* 0.3 11.0* 0.2
Threep2w9 8.0* 3.5 8.0* 1.0 8.0* 0.3
Threep3 17.0* 10.0 17.0* 9.4 17.0* 8.8
Threep3w9 12.0* 7.9 12.0* 5.4 12.0* 5.2
Blaz1 30.0* 2746.3 34.0* 72.7 30.0* 1385.1
Blaz2 23.0* 18.4 23.0* 8.3 23.0* 5.2
Shapes0 om* om om* om 69.0* 740.3
Shapes1 om* om om* om 70.0* 1250.7
Fu om* om om* om 34.0* 63.8
Dagli om* om om* om 76.0* 3081.0

*: optimal solution. om: out of memory.

Table 12
Results for IBPP.

IBPP Bin IBPP Int IBPP IGC

Instance Solution Time to
find

Solution Time to
find

Solution Time to
find

Three 6.0* 0.2 6.0* 0.1 6.0* 0.1
Threep2 11.0* 5.2 11.0* 1.0 11.0* 1.0
Threep2w9 8.0* 22.0 8.0* 8.4 8.0* 3.5
Threep3 17.0* 2168.4 17.0* 3.5 17.0* 853.2
Threep3w9 12.0* 1967.7 12.0* 1711.9 12.0* 189.6
Blaz1 om* om om* om 34.0* 14.2
Blaz2 23.0* 312.1 23.0* 146.8 23.0* 5.3
Shapes0 om* om om* om 73.0* 3424.9
Shapes1 om* om om* om 75.0* 1649.2
Fu om* om om* om 34.0* 63.8
Dagli om* om om* om 78.0* 2453.5

*: optimal solution. om: out of memory.
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IBPP Bin and IBPP Int found a solution only for instance Blaz2 and for instances Three. On the other hand, IBPP IGC found solution for all
the instances. All the models reached the same solution value for instance Blaz2 but IBPP IGC was more than 20 times faster than IBPP Int to
find the solution and IBPP Int found the solution 2 times faster than IBPP Bin. Comparing the solutions of IBPP IGC with the solutions
obtained for equivalent model ICSP IGC for the same set of instances, with ICSP IGC strictly better solutions were found, except for instance Fu,
because this instance has already a demand of one for all the pieces. For instance Threep3, only IBPP Int could not prove the solution optimal. For
the other instances Three, all the methods proved the solution optimal and IBPP IGC was always faster than IBPP Bin and IBPP Int.

B2.3. Irregular one open dimension problem ( 1I ODP)

The irregular one open dimension problem ( 1I ODP) is the variant of irregular cutting and packing problems most found in the literature. Table 13
presents the results obtained by the 1I ODP models proposed for the set of selected instances. Refer to the description of Table 7 for a detailed
description of the contents of the columns.

The initial length of the board (L ) had to be estimated for all the instances, following the procedure presented in Appendix A. The estimated
values of L are larger than the board height, meaning that, for these instances, more dots are needed to represent the board compared to output
maximization problems, and therefore, the models demand more resources. Consequently, instances Shapes0, Shapes1, Fu and Dagli could only be
solved by the model with the NoOverlap constraint. For the instance Blaz1, the 1I ODP IGC model was able to find a better solution compared with
the other two approaches proposed. Moreover, 1I ODP IGC and 1I ODP Int found a better solution for Blaz2 compared with the one obtained
with the 1I ODP Bin, but 1I ODP IGC was about ten times faster than 1I ODP Int. For instances Three, all the models were able to prove the
solution optimality and the 1I ODP IGC was faster than the other models.

Table 13
Results for the irregular one open dimension problem ( 1I ODP).

1I ODP Bin 1I ODP Int 1I ODP IGC

Instance Solution Time to
find

Solution Time to
find

Solution Time to
find

Three 6.0* 0.1 6.0* 0.1 6.0* 0.0
Threep2 10.0* 0.8 10.0* 0.8 10.0* 0.4
Threep2w9 8.0* 1.2 8.0* 1.2 8.0* 0.5
Threep3 14.0* 42.6 14.0* 44.9 14.0* 37.8
Threep3w9 12.0* 253.1 12.0* 201.37 12.0* 105.1
Blaz1 30.0* 2571.9 30.0* 893.3 28.0* 2791.2
Blaz2 23.0* 73.9 22.0* 50.1 22.0* 5.3
Shapes0 om* om om* om 65.0* 673.81
Shapes1 om* om om* om 71.0* 1313.3
Fu om* om om* om 34.0* 221.1
Dagli om* om om* om 76.0* 1577.6

*: optimal solution. om: out of memory.

Table 14
Results for the irregular two open dimension problem ( 2I ODP).

2I ODP Bin 2I ODP Int 2I ODP IGC

Instance Solution Time to
find

Solution Time to
find

Solution Time to
find

Three 40.0* 0.2 40.0* 0.2 40.0* 0.1
Threep2 70.0* 12.3 70.0* 14.6 70.0* 5.6
Threep2w9 70.0* 15.6 70.0* 15.2 70.0* 6.9
Threep3 96.0* 649.7 96.0* 726.0 96.0* 442.0
Threep3w9 96.0* 678.4 96.0* 1250.5 96.0* 430.0
Blaz1 520.0* 2800.8 494.0* 3184.9 423.0* 866.2
Blaz2 284.0* 2482.6 280.0* 4.9 288.0* 37.9
Shapes0 om* om om* om 3024.0* 1080.9
Shapes1 om* om om* om 2704.0* 1558.4
Fu om* om om* om 1225.0* 2349.1
Dagli om* om om* om 4290.0* 3557.6

*: optimal solution. om: out of memory.
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B2.4. Irregular two open dimension problem ( 2I ODP)

Considering the irregular two open dimension problem ( 2I ODP) the two dimensions of the board have to be estimated. Therefore, even if some
dots are not considered, as proposed in Section 5.5, the number of dots in the 2I ODP models is higher than the number of dots in the other input
minimization problems presented. Table 14 presents the computational results for the 2I ODP models. Refer to the description of Table 7 for a
detailed description of the contents of the columns.

The only model that could find solutions for all the instances was the 2I ODP IGC. Optimal solutions were proved by all the models for instances
Three, however the 2I ODP IGC was faster. The two other models were only able to solve instances Three, Blaz1 and Blaz2. For instance Blaz1, the
best solution was found by the 2I ODP IGC model and the worst solution was found by the 2I ODP Bin model. But for the instance Blaz2 the
solution obtained by 2I ODP IGC was the worst solution compared to the other models. This can occur as the problem is small enough to be well
explored by all models and some solutions can be found faster by some models. The 2I ODP IGC was the only model able to find solutions for the
remaining instances.
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