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A B S T R A C T

The manufacturing sector is under constant pressure to increase profitability in a growingly competitive inter-
national market in which differentiation is not tied to manufactured products or utilized technologies but to
business processes optimization. In this context, business analytics offer the opportunity to harness the knowl-
edge and value hidden within enterprise information systems to revolutionize innovation, enhance supply chain
management and production, accurately target marketing and sales efforts, as well as develop and manage
profitable after-sales services. While the literature to date presents numerous specific applications in which
business analytics techniques were successfully deployed to improve specific business units, it is evident that a
comprehensive enterprise approach is missing. In the present work, a pathway to attain market leadership
through the effective use of business analytics is defined suggesting focus must center on three increasingly
challenging barriers. Firstly, “standardization” of collection, aggregation and storage of data must be accom-
plished. Then, an “organizational culture evolution” that outgrows intuition and embraces data-driven decision-
making is needed to create the perfect ecosystem for business analytics to produce actionable results and re-
commendations. In turn, these must guide “business model innovation” efforts to tackle new value creation, and
capture and secure market leadership.

1. Introduction

Using past performance information in order to make informed
business decisions has been an enduring trend. In fact, the term business
intelligence (BI), often credited to Howard Dressner [1] but first coined
by H. P. Luhn in 1958 [2], refers to the objective understanding of
important business phenomena [3]. It concentrated on capturing and
querying data with a strong focus on reporting of past events and gave
managers fact-based comprehension of their organizations, allowing
them to outgrow intuition when making decisions. However, with the
pass of time, business intelligence started to show its shortcomings. It
was designed to deal with small volumes of static data generally seg-
regated on what are now known as legacy IT systems. In addition, it was
a time-consuming process focused on describing past observations but
offered no explanations with regards to their causes and it did not
concern itself with the future of the business. Hence, BI evolved to in-

clude business analytics (BA), defined as “the extensive use of data,
statistical and quantitative analysis, explanatory and predictive models,
and fact-based management to drive decisions and actions” [4]. In other

words, critical business data is analyzed with the objective of aiding
enterprises better understand their business and the market in which
they operate. The focus expanded from answering “what happened”,
“how often” and “where” to include explanations as to “why”, “what if
this trend continues”, “what will happen in the future” and “what is the
ideal scenario”. Using subject specific jargon, these questions corre-
spond to analytical tasks widely known as statistical analysis, fore-
casting, predictive modeling and optimization. The insights obtained
from the deployment of these tools are centered around business
practices and methodologies and are used to make timely business
decisions [5].

The manufacturing sector represents almost one tenth of all en-
terprises within the EU-28’s non-financial business economy [6]. In
2013, it employed 29.7 million people and accounted for 26.1% of all
the value added generated by the non-financial business economy. In
contrast to this optimistic figures, the manufacturing sector was de-

scribed as having the second lowest level of profitability with a gross
operating rate of 7.9%, 1.6 percentual points below the non-financial
business economy average. As such, the industry is under constant
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pressure to reduce costs and increase margins while competing with
developing economies. As a result, manufacturing enterprises are
transitioning what has come to be known as the fourth industrial re-
volution, popularized as “Industrie 4.0”1 [21], in which automation is
coupled with ubiquitous cyber-physical systems giving rise to the In-
ternet of Things (IoT) and massive generation of data. This was ex-
pected to be the starting point of some remarkable solutions to well
known manufacturing hurdles, especially after a 2011 McKinsey report
[22] indicated that the manufacturing sector had a competitive ad-
vantage over others with regard to data availability and the talent to
exploit it. However, the adoption of BA to derive insights and drive
business decisions has been scant opening a chasm between industry
leaders and laggards.

The present work reviews the accomplishments of the manu-
facturing industry in adopting BA to derive value from data. In
Section 2, a general definition of business analytics is presented as a
starting point for this study. In Section 3, specific examples of BA ap-
plications within different manufacturing domains are succinctly ana-
lyzed. The challenges associated with the application of BA in the
manufacturing industry are discussed in Section 4. In Section 5, the
definition of BA in manufacturing is completed by listing the building
blocks and actors involved. Finally a pathway for successful application
of BA that conducts to value creation and market leadership is pre-
scribed in Section 6, before presenting some concluding remarks
(Section 7). The objective of this work is two-fold. Firstly, to identify
current trends as well as the reasons hindering the adoption of data-
driven decision making. Secondly, to define a road map for practi-
tioners to take their organizations from intuition decision-making to
market leaders capable of creating and capturing value through data-
driven business model innovation. While the concepts of “Industry 4.0”
[8–11], “smart manufacturing” [19,20], “big data” [23] and the “in-
dustrial internet of things” [15–17] are related to the increased atten-
tion in business analytics in manufacturing, this work does not discuss
them specifically. The reader is therefore encouraged to refer to the
relevant literature.

2. What is business analytics?

While there are multiple definitions of BA (see [24] for a compre-
hensive list) and a widely accepted one was introduced in Section 1,
this work upholds the more general definition proposed by Holsapple
et. al. in which business analytics is “concerned with evidence-based
problem recognition and solving that happen within the context of
business situations” [24]. While the authors found that there is general
consensus about the nature of business analytics regarding it being
“fact-based” or “data-based” and involving “decision-making”, they
chose to expand upon these terms:

• “Fact” / “data” were replaced with “evidence” because the latter
“includes hard facts, reliable measurements, justified estimates,
well-reasoned approximations, unbiased observations, credible ex-
planations, authoritative advice, and the like. It does not include
arbitrary or unfounded beliefs, guesses, opinions, speculations,
conjectures, suspicions, or hearsay. A body of evidence is not driven
by desires, emotions, politics, or ideology; nor is it a captive of
preconceptions.”
• “Decision-making” was replaced with “problem recognition and
solving”, a richer and more flexible term that recognizes the use of

BA in areas that are not decisional.

This choice of definition gives a first indication that, in the context
of this work, business analytics is considered an ecosystem encom-
passing all business aspects of an organization. This ecosystem is
composed of building blocks (Section 5.1) and actors (Section 5.2) that
work in unison to boost organizational performance and deliver value
to customers.

It must be noted that BA is different from knowledge management
approaches such as knowledge discovery from databases (KDD). KDD is
the “nontrivial process of identifying valid, novel, potentially useful,
and ultimately understandable patterns in data” [25] and as such is
fundamentally a statistical endeavor. Knowledge management ap-
proaches of this kind belong to what Chen et. al. [5] described as
business intelligence and analytics (BI&A) 1.0, i.e. the use of data
mining and statistical analysis developed in the 1970s and 1980s on
mostly structured data collected by organizations through various le-
gacy systems and stored in commercial relational databases. BA as
understood by this work, is fed with data more in line with what Chen
et. al. [5] described as BI&A 2.0 and 3.0 where web-based unstructured
content and mobile- and sensor-based content are utilized in combi-
nation with structured data to extract value. Furthermore, BA techni-
ques have evolved from traditional data mining and statistical analysis
to include techniques that can adequately handle unstructured data
(such as text, images, audio and video) as well as real-time data pro-
cessing, cloud and distributed computing, among others.

In addition, given the context of Industry 4.0, the complementarity
of human labor and cyber physical production systems (CPPS) cannot
be ignored [26]. Human-machine interaction is an integral part of
modern industries. Thus, a sustainable definition of business analytics
must account for the transition from cooperation to active collaboration
in human-centered CPPS in modern manufacturing plants. This active
collaboration characterized by cyber-physical-socio interactions,
knowledge exchange and reciprocal learning [26], has changed the
roles of humans and machines from mere data workers and data pro-
ducers to active collaborators capable of recognizing and solving pro-
blems towards a shared goal.

In this sense, we propose to extend the definition of BA proposed by
Holsapple et. al. [24] as follows: business analytics is concerned with
evidence-based problem recognition and solving that happen within the
context of business situations as the result of active collaboration between
human labor and modern cyber physical production systems working to-
wards a shared goal.

3. Business analytics in manufacturing: Domains to exploit

Insights derived from BA can enhance productivity [27] and com-
petitiveness, boost innovation [28] and growth as well as generate new
manners of competition [29] and value capture [30] across organiza-
tions. BA contributes to an organization’s agility by providing timely
and accurate information [31]. In addition, the prevalent use of data
ensures transparency, aids the discovery of market needs [32], uncovers
process or service variability, improves performance [27] and assists in
the adoption of more sustainable practices [33]. In the specific case of
the manufacturing sector, the previously mentioned McKinsey report
[22] highlighted four main areas in which BA proves to be a differ-
entiating factor for industry leaders at the expense of late adopters.
These are summarized in Fig. 1, and expanded upon in the following
sections.

3.1. Research & development and product design

The current paradigm of manufacturing involves global supply
chains where an intricate chain of suppliers dispenses material re-
sources to the original equipment manufacturer (OEM) to bring a pro-
duct to the market. Communications among the numerous players

1 “Industrie 4.0” (or “Industry 4.0”) is a 2011 German initiative [7–11]. In
Luxembourg, it is known as “The Third Industrial Revolution” after Jeremy
Rifkin’s homonymous book [12] and later policy and strategic advice to the
Luxembourgish Ministry of Economy [13]. Close concepts in the Anglo-Saxon
world are known as “Industrial Internet” [14–17] and “Smart Manufacturing”
[18–20].
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involved are cumbersome for established value chains and even more so
during the developmental stages of new products. Hence, the first do-
main in which BA could aid manufacturing is research and development
(R&D) and product design. In this regard, technologies that facilitate
interoperability along the value chain play a central role. For example,
cross-enterprise Product Lifecycle Management (PLM)2 systems provide
a platform for co-creation of products using designs and inputs from
numerous players along the supply chain. This collaboration and ex-
perimentation moves the burden of innovation across the OEM orga-
nizational boundaries, and in this process aids decision making as well
as the selection of appropriate suppliers while reducing costs and time
to prototyping. Yet, consumer input is crucial for successful design-to-
value [34]. Open innovation, where customers take a leading role in the
design of new offerings, expands the information pool regarding needs,
applications and solution technologies that would be most valued by a
potential consumer [35] and, in turn, are most important to secure
success in the market. Traditional point-of-sale data and customer
feedback are complemented with customer-firm social media interac-
tion changing the relationship between market actors and strength-
ening brand engagement.

3.1.1. Time-to-market
The time that it takes from the conception of a new product until it

is available for sale is known as “time-to-market” (TTM). In general, it is
used as a metric to determine competitiveness in terms of product de-
velopment. In light of continuous product life-cycle shortening and
increased international competition, the manufacturing industry strives
to reduce the TTM of new product offerings for multiple reasons [36].
In first place, reduced TTM extends sales life and therefore improves
profitability. In addition, getting to the market ahead of the competi-
tion results in the application of premium fees to products which in-
creases revenues, a bigger market share, as well as giving the manu-
facturer the opportunity to establish industry standards and develop a
technological edge [37]. Furthermore, a shorter TTM has been asso-
ciated with increased flexibility to respond to changing customer trends
leading to improved levels of customer satisfaction and customer loy-
alty which, in turn, may increase sales. Moreover, reduced TTM has
been associated with lower product development costs, faster break-
even and improved operational and business performance.

3.1.2. Shortening product development through open innovation
Since 80% to 90% of the TTM is absorbed during the design phase

[37], involving suppliers and customers in the development of new
product offerings have an enormous impact on TTM. To this end, a new
paradigm for R&D was proposed by Chesbrough in 2003, known as
open innovation [38]. It assumes that companies should make use of
both internal and external ideas as well as, internal and externals paths
to market to advance their technology [39]. Two possible sources of
external ideas are customers and suppliers.

Customer involvement, also known as customer co-creation, gives
manufacturers access to a pool of knowledge about needs and pre-
ferences that aid the decision making process. After all, managers agree
that (big) data analytics should be applied to gain customer insights and
adjust, customize and/or develop new service offerings [40]. Through
customer co-creation, customers voluntarily and freely provide feed-
back and inform about products shortcomings [35]. This information
can be used by manufacturers to make changes early on during the new
product development process. The involvement of suppliers [41] re-
duces development costs, aids the standardization of components, en-
sures consistency between the design and the suppliers capabilities and
limits the number of engineering changes. Involving suppliers gives the
OEM access to knowledge and technical skills outside the firm [36]
which improves quality and reduces the number of defects, helps
identifying technical problems early on and increases the number of
proposed solutions. However, it must be noted that companies embra-
cing open innovation are expected to go through a learning phase,
specially when it comes to structuring development agreements with
external organizations, before truly benefiting from faster development
cycles [39].

3.2. Supply chain management

Supply Chain Management (SCM) is another domain in which BA can
derive insights to boost performance [40,42–45]. As with other man-
ufacturing domains, promoting efficiency and minimizing operating
costs are frequently cited as areas for the application of BA. In the
words of an interviewed executive, BA helps “build a stronger re-
lationship with our suppliers as a means of shortening lead times, and
improving delivery reliability and certainty” [31]. In fact, one of the
most critical issues in SCM relies on the volatility of demand coupled
with insufficient flexibility and responsiveness from suppliers to con-
tinuously shifting consumer demands. A common consequence is
known as the bullwhip effect3 [47,48], where orders to suppliers tend

Fig. 1. The four manufacturing domains that can benefit from the adoption of
business analytics according to [22]. A fifth domain, concerned with end-of-life
and reverse logistics, is added as the result of product-oriented policies that
increase industrial responsibility with respect to appropriate product disposal
and/or recycling. While this figure lists several relevant disciplines within each
domain, it is not a comprehensive list.

2 Process of managing the entire lifecycle of a product from inception,
through engineering design and manufacture, to service and disposal.

3 Formally, the bullwhip effect is defined as the amplification of demand
variability along a supply chain when a company purchases from suppliers
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to have larger variance than sales, and this distortion amplifies as it
propagates upstream. A related effect, called the ripple effect, occurs
when a disruption cannot be localized and cascades downstream af-
fecting SC performance and altering its structure [45]. Research
[45,49] has shown that business analytics has the potential to reduce
these effects given the “volume”, “variety”, “velocity”, “value” and
“veracity” levers of big data. Thus, the Holy Grail of BA for SCM is
transparent information flow to aid accurate market trend predictions
and guarantee data-driven decision-making [44]. In this regard, a
competitive advantage is to be gained from aggregating high quality
data from production, inventories and retailers [50]. This once far-
fetched idea is now possible thanks to blockchain technology [45,51]
where distributed, immutable information contained in a ledger is
visible to all stakeholders helping them overcome mistrust and boosting
efficiency and visibility along the chain [52–54]. However, it must be
noted that these technologies and applications require companies in-
volved in the supply chain to collaborate and willingly share all re-
levant data [49].

3.2.1. Supply/demand match
Perfect matching of supply and demand requires accurate knowl-

edge of customer preferences with regard to the products and features
that are perceived as most valuable, as well as the quantities that
consumers would be willing to purchase. In addition, products must be
priced reconciling manufacturing costs and the rates that customers are
willing to pay [55,56]. This hints at a few different tasks: using cus-
tomer input in order to produce successful products, forecast demand to
manufacture the appropriate quantities, and suitable pricing. In the
following paragraphs, a few examples regarding modern practices in
these areas are presented.

From market research to customer co-creation using social media
Traditionally, customer input was obtained through market research
where a representative sample of the target customer population would
either respond to surveys, participate in focus groups or interact with
prototypes and describe their experiences [57]. Products and innova-
tions were developed within organizational boundaries and customers
were external to this process. Nowadays, managers want to leverage BA
to gain customer insights to adjust, customize and/or develop new
products and service offerings [40]. Many industries are taking ad-
vantage of modern communication technologies to strengthen brand
engagement through customer co-creation [58]. This term is used to
describe the approach towards product development where customers
take an active role on the design of a new offering, through colla-
boration with manufacturers on a voluntary, creative, social and
sometimes competitive setting [35]. The main objective of such ap-
proach resides on increasing the pool of information held by the man-
ufacturer with regards to needs, applications and technological solu-
tions. The producer capitalizes on this information by increasing the “fit
to market” of new offerings and their potential to capture monopolistic
rents. One flourishing area of research in this regard evaluates the
impact of social media in customer co-creation as part of the innovation
process [35,58,59]. The challenge resides on extracting actionable in-
sight from the myriad of social media posts comprised of mostly un-
structured data in the form of text, audio, images and video. Actionable
intelligence can be extracted from social media posts by means of social
media analytics which refers to collecting, monitoring, analyzing,
summarizing and making visualizations of social media data [60,61],
processed using innovative techniques such as natural language pro-
cessing and text mining [62]. These insights are a key source of in-
formation for product design, innovation, marketing, and customer and
stakeholder relations management and therefore, are an essential

component of BA.
Demand forecasting Demand forecasting refers to accurately esti-

mating the number of units that will be sold and is of great importance
to produce items in adequate quantities to maximize service levels
while keeping capital investments on inventory low. In addition, de-
mand forecasting is used to support strategic decisions such as capacity
expansion and transformation, technology migration, tool procurement
and outsourcing [63]. Deficient forecasting increases the likelihood of
obsolescence, urgent orders, inefficient resource utilization and the
spread of the bullwhip effect along the supply chain [64]. As with other
aspects of the manufacturing industry, demand forecasting is highly
variable across industry sectors and therefore cannot be easily stan-
dardized. For example, the fast fashion industry manufactures products
with short life-cycles and brief selling seasons characterized by im-
pulsive purchase patterns, great demand volatility and low predict-
ability for a large variety of items [65,66]. Research has found that
short selling seasons along with high levels of uncertainty and lack of
historical data (as a result of continuous innovative product releases)
are hard barriers to overcome for accurate demand forecasting [67]. As
a result, industry leaders found a trade-off with supply chain respon-
siveness that allows them to complement forecasting to operate under
high levels of uncertainty [66]. One example is that of Spanish retailer
Zara [68]. When trying to determine how to distribute items among
stores, they use shipment requests from managers and past historical
sales to build demand forecasts. Then, these forecasts are fed to an
optimization model along with warehouse inventory levels and as-
sortment decisions with the objective to determine shipment quantities
while maximizing global sales. Thus, agile supply chains [43] that are
closely connected to end-user trends, rely on shared information across
all supply chain partners, and are highly flexible and interconnected
have an upper hand. In this scenario, BA has the potential to harness
currently unexploited predictive value out of product and customer
information, retailer sales and manufacturing orders. This, in combi-
nation with vertical supply chain integration and fast responsiveness,
guarantees that market leaders turn a profit while securing the shortest
market lead-times.

Dynamic pricing Pricing is a complex task in which variables such as
a company’s operating costs4, the availability of supply, brand equity
and future demand forecasts have to be considered to maximize sales
and profitability [69]. A common practice, originally introduced in
industries where the short-term capacity (supply) is difficult to change
[70], such as airlines, hotels and sporting evens, is the use of dynamic
pricing where the price of an item varies in real-time to account for
fluctuations in market conditions such as demand, inventory levels,
competitor offerings and customer history [4]. The adoption of dy-
namic pricing strategies has proliferated due to an increased avail-
ability of demand data, the emergence of new technologies that facil-
itate changing prices, and the availability of software for analyzing
demand data and for dynamic pricing [69]. These new technologies
allow retailers and manufacturers to combine information about sales
with demographic data and customer preferences, and to use it to op-
timize pricing and markdowns as well as to evaluate the effect of pro-
motions. Early adopters of dynamic pricing strategies have reported
improved financial performance, fast return on investments, and no
negative impact on price image. However, transparency of pricing
practices is of outmost importance: while most customers accept dy-

(footnote continued)
more variably than it sells to customers leading to mismatches between demand
and production, and hence, to lower supply chain efficiency [46].

4 Costing is another area in which BA can increase profitability. As pointed
out by [56], the use of prescriptive cost models can support decision making by
providing ex-ante (rather than ex-post) analysis. Prescriptive cost models can
assist in visualizing and planning what is needed to produce a specific product
and ensure higher efficiency and cost effective strategies with regards to the use
of resources.
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namic pricing in response to shifting market conditions, backlash has
resulted from pricing based on price elasticity of demand5 for in-
dividual customers [71,72].

3.3. Production

Production can also benefit from BA. The integration of ubiquitous
sensors, the Internet of Things (IoT) [15–17], and the fusion of the
physical and the virtual world by means of cyber-physical systems
(CPS) give rise to real “smart factories” [8–11,19–21]. In these smart
factories, real-time monitoring of operations generate the necessary
data to maximize yield, reduce waste [73], cut operational and main-
tenance costs, optimize schedules [74] and support lean manufacturing
projects [75]. Historical data can be used to create a “digital factory”
[76,77] to determine the most efficient production systems, a space-
efficient layout for the construction of new plants, adequate step se-
quencing for a specific product, as well as enable cost reductions in
terms of tool design, construction and assembly time, and improve-
ments in delivery reliability. There are a number of successful appli-
cations of BA in the domain of production. Some examples include
resources (such as energy and water) and processes [78,79], tooling
optimization [80], asset utilization [81–84], quality [85–87], in-
ventories [88–90], labor [91–93], among others.

3.3.1. Resources
The manufacturing industry transforms raw materials into finished

goods while making use of other input resources such as energy and
water. Hence, it is only natural for the manufacturing sector to be in-
vested in the optimization of input resources to identify opportunities to
reduce raw materials, water and energy consumption, eliminate waste,
and therefore improve efficiency, yield and adherence to sustainable
practices. In the remainder of this section, the use of BA to optimize
energy consumption is explored as a motivating example. Parallels can
be drawn between this application and the optimization of other re-
sources.

How can BA optimize energy consumption? In the past, energy con-
sumption was estimated from calculations regarding the specific phy-
sical process energy requirements. However, recent studies [94,95]
have proved that the energy required for the specific task (cutting,
machining, etc.) is only a fraction of the total energy consumed by the
machine tool in charge of completing such task. With the adoption of
CPS, the energy consumed by each machine tool can be easily tracked
[78]. The knowledge extracted from this data is potentially useful not
only to reduce energy consumption as a whole by means of identifying
opportunities for optimization [96], but also can be fed into models
dealing with other production aspects [78,79]. For example, anomalous
energy consumption patterns could be negatively correlated with the
quality of the produced parts, aiding the discovery of products that do
not comply with design tolerances at an early stage of the value chain.
In turn, this would contribute to the reduction of waste, improving
adherence to lean manufacturing practices. In addition, historical
power usage profiles may be of importance to develop accurate models
capable of predicting machine tool failure, since uptakes in energy
consumption could be symptomatic of mechanical malfunctioning.
Furthermore, accurate accounting of energy usage on a per-part basis
could be used to derive the cost of energy embedded in consumer
products. Lastly, as regulations promoting sustainable and en-
vironmentally friendly practices are drafted, careful attention to man-
ufacturing carbon footprint is paid. Accurate energy consumption logs
can potentially aid decision makers not only in terms of achieving

operational excellence but also on bettering environmental perfor-
mance of manufacturing equipment.

Unfortunately, challenges abound in this area. In first place, the
traditional manufacturing industry must equip existing tools and ma-
chines with the necessary monitoring/sensoring devices to measure
energy consumption. It must also outgrow legacy IT systems that lock
data in silos and design an effective data architecture and technology
infrastructure that allows to seamlessly aggregate data regarding en-
ergy consumption with that of quality, equipment performance and
maintenance, manufacturing costs and others. To solve this specific
challenge and appropriately deal with the analytical complexity of
manufacturing processes and systems, proposed software solutions
must fulfill certain requirements. The most pressing, as listed by [78],
are simultaneous monitoring of energy use and process data, scalability
for large data volumes and the ability to support analysis at various
manufacturing scales.

3.3.2. Asset utilization
Many industries within the manufacturing sector hold high capital

investments on machinery and equipment and, for this reason, are
generally referred to as asset-heavy. For these industries, maximizing
the Return on Assets (RoA), i.e. the profits made for each dollar held on
assets, is of outmost importance to guarantee profitability [63,86]. In
order to succeed, careful job scheduling, timely maintenance and short
changeover times must be meticulously planned, in addition to en-
suring maximum machine life. Of the possibilities listed above, the
exciting prospect of harnessing BA to deliver predictive maintenance is
further discussed.

BA for predictive maintenance Traditionally, maintenance has been
regarded as a reactive measure and managed with the “run-to-failure”
method: after failure has occurred, steps are taken in order to remedy it
[97]. This is the most expensive method of maintenance management,
translating into major expenses from spare parts inventory, overtime
labor, long machine downtime and low production availability. Since
asset-heavy industries rely on optimizing equipment utilization to re-
duce losses in terms of capital expenditures and revenue, many orga-
nizations adopt a “preventive” maintenance management style where
repairs are scheduled periodically based on the equipment’s Mean Time
Between Failures (MTBF) [98]. However, this frequently leads to un-
necessary repairs (and their associated unnecessary materials and labor
costs) or catastrophic failures (and the already discussed run-to-failure
maintenance drawbacks). Thus, in order to improve upon preventive
maintenance, a more proactive approach known as “predictive” main-
tenance has gained traction. Predictive maintenance entails the “reg-
ular monitoring of the actual mechanical condition, operating effi-
ciency, and other indicators of the operating condition of machine-
trains and process systems [to] provide the data required to ensure the
maximum interval between repairs and minimize the number and cost
of unscheduled outages created by machine-train failures” [97].

Vast work has been done in terms of predictive maintenance, gen-
erally involving the use of sensors to record physical parameters such as
temperature [99], vibration [100,101], noise or acoustic emissions
[102,103], lubrication or oil physical properties [104] as well as cor-
rosion and wear [80,105]. In some cases [83], the input data is con-
stituted of not only machine sensor data but also human (mood mon-
itoring and sentiment analysis) and material data. The output produced
is a longevity estimate, a probability of failure or a financial estimate on
maintenance of a component [106]. In most modern implementations
[83], the system provides a list of appropriate countermeasures based
on historic data from former interventions or, when unseen situations
are encountered, dynamically generated countermeasures.

There are several challenges associated with predictive main-
tenance. Firstly, the optimum type of sensors and their adequate loca-
lization must be chosen. In addition, collecting data that is directly
related to machinery damage is far from trivial, and in some cases
impossible [107]. Furthermore, there is a need for real time, i.e. low

5 Price elasticity of demand is a measure used to show the responsiveness of
the quantity demanded of an item to a change in its price, all other variables
being equal. In this particular case, it refers to charging higher prices to loyal
customers as opposed to one time or irregular customers.
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latency, algorithms with the potential to scale up alongside production
while zealously protecting the privacy and security of manufacturing
data. Finally, current predictive maintenance algorithms are developed
for a specific machine or application and, unlike what [83] described as
modern implementations, are not flexible enough to handle un-
precedented events [84]. Thus, adaptive algorithms that harness data
from an entire fleet of machines performing similar tasks or sharing
service times can be used in order to widen the knowledge base con-
cerning their health condition and the appropriate corrective actions.

3.3.3. Quality
Quality is by far the most exploited aspect of production that digi-

tization has to offer to the manufacturing industry. Examples in lit-
erature include locating defect-producing steps within the production
line [86], predicting whether a manufactured item will pass the quality
check [87] and more. This is probably the result of a long standing
tradition in detailed statistical analysis associated with quality in-
itiatives such as Statistical Quality Control (SQC), Total Quality Man-
agement (TQM), Kaizen, ISO 9000 quality standards, 6σ, lean six sigma,
among others [4]. Thus, improving quality requires focus on enhancing
manufactured products and the processes they go through aiming at
reducing wasteful use of materials, equipment and labor [55] as well as
improving customer experience.

An exhaustive review of successful data mining applications to en-
sure quality within the manufacturing sector [85] identified four
quality tasks associated with product design and manufacturing (see
Fig. 2). The authors found that 42% of BA associated with quality im-
provement is invested in prediction tasks in terms of quality of pro-
ducts, their physical properties and process parameters. Classification
(25%) and optimization (23%) tasks followed with focus on modeling
to understand cause-effect relationships, and traditional business in-
telligence associated with descriptive analysis (10%) remains a
common practice. While all sectors within the manufacturing industry
show an increasing trend in the use of BA to improve quality, industries
concerned with metal, computer and electronic products were the front-
runners, while plastic, paper, glass, food processing and chemical
manufacturing laid behind.

Quality data entails several challenges in itself. In terms of volume,
the manufacturing industry is known to have from very small datasets
to very large in size. In addition, the data usually contains missing,
outlying, inconsistent and incomplete records containing input and
output variables of both discrete and continuous type. To add an extra
layer of difficulty, quality data may be comprised of not only structured
but also unstructured records. Furthermore, the data preparation step is
key, given that highly correlated variables are frequently present
making dimensionality reduction a prerequisite. Moreover, quality data
are usually imbalanced, i.e. contain a much smaller proportion of in-
stances of defective items than compliant ones [87].

In terms of deployment feasibility of quality improvement in-
itiatives within the manufacturing industry, it is clear that organiza-
tions with integrated data collection systems have a competitive ad-
vantage given that quality data is usually aggregated with production
data to obtain an appropriate dataset. In addition, the industry is faced
with limited human capital with the right training in data mining and
BA to handle quality improvement projects, to interpret results, and to
use the knowledge derived from these. In that regard, robust algorithms
and the development of affordable and user-friendly software could
help in overcoming this challenge.

3.3.4. Inventories
Inventories represent a huge capital commitment and loss of li-

quidity for the manufacturing industry. In addition, keeping safety
stocks requires physical space and thus its cost is increased as the result
of storage, additional personnel requirements and administration
[108]. Inventoried items also suffer the risk of obsolescence, and es-
sentially conceal production problems and prevent their elimination. To
counteract these costly disadvantages, the industry constantly searches
for an equilibrium that allows it to minimize safety stocks [109] but, at
the same time, ensure delivery reliability and customer satisfaction
[110]. To this aim, inventory tracking has been widely automated using
barcodes or more sophisticated Radio-Frequency Identification (RFID)
technology [111] in the form of tags attached to individual products.
The data produced can be used for inventory analytics to identify po-
tential stock shortages and to avoid incidents in customer delivery. In
addition, it can be useful to diagnose supply shortfalls, backlog accu-
mulation and inadequate inventory levels at strategic stocking points
[110,112]. Inventory analytics can also be used for ABC inventory
classification6 as well as review and update the classification in real
time for optimal item distribution. Furthermore, the use of BA on in-
ventory data aids the identification of obsolete goods as well as those at
risk of obsolescence, and helps avoiding excess stock while securing
sufficient inventory to handle demand fluctuations [88].

Example: Safety stock optimization in Procter & Gamble This real ap-
plication of BA concerns Procter & Gamble [89], where optimization
was conducted locally using spreadsheet-based models at each stage of
the supply chain followed by a multi-echelon optimization7 The model
used for the latter was trained using multiple variables. For example,
not only actual past demand was utilized but also the forecasted

Fig. 2. Quality assurance tasks associated with product design and manufacturing as described in [85].

6 ABC inventory classification is a technique used to divide inventoried items
depending on the accuracy and control of their records. In general, A items
account for the largest proportion of the value and the lowest number of items
while the opposite is true for C items.
7 Multi-echelon optimization looks at the problem of inventory holistically

across the supply chain while taking into account the impact of inventories at
any given level (or echelon) of the supply chain on other echelons.
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shipments for the previous thirteen weeks as well as those for the
coming thirteen weeks. Other variables included materials lead times,
production times, review periods, time for transportation and move-
ment, quality assurance duration and cost variability at each location.
The objective of such model was to minimize safety stocks and hence,
reduce capital investment while satisfying existing service policies re-
garding a case fill-rate8 of 99.5%. The full two-step optimization pro-
cess accomplished a reduction in total investment in safety stock of 17%
that was improved by an additional “what-if” analysis of operating
policies, while ensuring the target service levels.

There are several challenges associated with the use of BA to opti-
mize inventories. It is not possible to use a one-size-fits-all inventory
optimization strategy, and therefore the analytics used to reduce safety
stocks must be customized to satisfy the specific organization in order
to determine the most appropriate inventory levels. In addition, the
models must avoid bias towards excessive levels of safety stock, as well
as dangerously low levels that may result in customer service incidents
[89]. Furthermore, model robustness is required to accurately extra-
polate to different business units and geographical regions. Finally, the
model must appropriately handle unexpected events in line with the
risk management policy of the company.

3.3.5. Labor
The use of BA to handle all the aspects of the workforce life cycle,

from hiring to training and development, including retention, assign-
ment, compensation and benefits is known as “workforce analytics”
[91,113,114]. As Huselid put it [113], “workforce analytics refers to the
processes involved with understanding, quantifying, managing, and
improving the role of talent in the execution of strategy and the crea-
tion of value. It includes not only a focus on metrics (e.g., what do we
need to measure about our workforce?), but also analytics (e.g., how do
we manage and improve the metrics we deem to be critical for business
success?)”. An optimized workforce management does not only lead to
labor cost reductions and thus, to increased organizational profitability,
but also results in improved overall operational performance [92]. It
allows for reallocation of labor resources when and where necessary in
a flexible fashion to meet deadlines and to ensure customer satisfaction
[115]. Problem areas can be readily identified, resulting in appropriate
action being swiftly taken without compromising neither the quality of
the service provided nor its profitability. In addition, workforce ana-
lytics provides real-time labor data that can be potentially aggregated
with payroll data for accurate job costing analysis that result in more
precise pricing. Finally, labor scheduling is optimized by minimizing
non-productive time, over-scheduling and preventable overtime. The
problem can be described as one of matching available jobs profiles,
uniquely defined by variables such as job role, tasks involved, project,
requirements and others, with human resources profiles represented by
candidate ID, skills, experience and so on. The main challenge identi-
fied by [91] is assigning a single candidate to each available job and
trading off individual (pairwise) matches for an overall assignment that
fills all jobs.

A recent interview of a Shell HR Manager published by Predictive
Analytics World [93] looked into the challenges that workforce analy-
tics needs to overcome in order to be widely adopted by the industry. In
first place, as with any other value driver, the need for clean and ac-
curate data as well as personnel accustomed to using data analytics and
producing trustworthy outcomes are required. Fairness of workforce
analytics results may be an obstacle to wide adoption, since even
analytically sound models may have undesired consequences. An in-
teresting example put forward by the consulted executive was hiring

predictive models whose recommendations uphold hiring people of a
specific gender or age group. Human intervention was suggested as a
countermeasure and is supported by other authors [109], who predicate
that personnel decisions should be grounded on a combination of
analytics, instincts and personal experience. These authors claim that
assessments regarding personality and character can be swiftly and
accurately made by human beings based on simple observations. Hence,
workforce analytics should only be used as a complementary tool for
optimizing all activities related to the workforce.

Beyond the technical difficulties, organizational barriers may hinder
BA wide adoption for labor optimization. Resistance from labor unions
based on privacy laws, and a lack of senior stakeholders’ buy-in may be
the biggest limitations [93,115]. Crafting a compelling story around the
outcomes of data analytics projects [116], using visualization tools
(charts, graphs, etc.) to aid complexity and tying those outcomes back
to the business bottom line should help in getting the message through.
However, if the results contradict management thinking, executives
may mistrust them [115] and the deployment of recommended actions
may be hindered by personnel defensiveness. In turn, if managers do
not make different and better decisions as a result of workforce ana-
lytics insights, returns on investment will fail to materialize [117].

3.4. Marketing, sales and after-sales support

The fourth domain in which BA can have a transformative impact
within the manufacturing industry are the areas of marketing, sales and
after-sales support. Analytics conducted on data about interaction with
customers are not limited to co-creation and open innovation in-
itiatives, but also exploited to improve marketing and sales [40,118].
For example, social network chatter analytics can help identify pools of
new potential clients [86], as well as enhance product development.
Statistical analysis, forecasting, predictive modeling and optimization
are used for customer segmentation in order to improve the effective-
ness of marketing and sales forces [119], as well as the type, number
and quality of service offerings. In other words, BA can be used to
improve customer experience [120]. In addition, sensors on products
allow for real-time monitoring of usage patterns and customization of
after-sales services to successfully target different customer segments
[4]. Data from firm-customer-interaction is revolutionizing traditional
commercial relationships: the manufacturing industry is transforming
from a product to a service-oriented industry through the monetization
of insights derived from data by means of innovative business models
[121].

3.4.1. After-sales services
The notion of “servitization” was firstly introduced in the late 1980s

as a way to gain an edge on competitors, engage customers and increase
the level of differentiation in markets of homogeneous performance,
price and quality [122]. A more current definition describes servitiza-
tion as “the innovation of an organizations capabilities and processes to
better create mutual value through a shift from selling products to
selling product-service systems” [123,124]. In addition, servitization
has economic advantages for manufacturers and consumers: it increases
sales revenues and makes maintenance and support costs more pre-
dictable [125]. As a consequene of this process, the manufacturing
sector is steadily evolving from producing assets to delivering value to
customers through servicing those products. After-sales services are
seen as a high margin business with low associated risks that generate
revenue throughout the life span of the asset, which account for a large
percentage of corporate returns (24% of revenues and 45% of gross
profits, according to [126]). Furthermore, when effectively delivered,
they improve firm-customer relationship increasing customer loyalty
and intent of repurchase. Moreover, after-sales services help gain va-
luable knowledge about customers’ technologies, processes and plans
that can, in turn, be used as feedback to customize new offerings.

Most organizations do not perceive the profitability of after-sales

8 Case fill rate is a measure of the depth of demand that was satisfied by the
inventory on hand. For example, a customer orders 20 units of an item, but the
seller ships only the 15 units it possesses. The fill rate equals =15/20 0.75 or
75%.
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services and they fail at delivering value to customers by managing the
offerings as a mere afterthought. These inefficient after-sales services do
not generate profits. In fact, studies show that while servitized firms are
generally larger in terms of sales revenues, they are also collectively less
profitable than pure manufacturing firms [127]. This is because servi-
tized firms have higher costs per employee, as well as higher working
capital and net asset base. Successful management of after-sales services
is cumbersome and requires the timely allocation of parts, people and
equipment to the appropriate locations while minimizing costs and
optimizing fill-rates. Simultaneously, successful after-sales services
must satisfy customer needs in terms of acceptable delivery times and
price [126]. BA can be the differentiating factor to optimize after-sales
services management. Data from product failure rates, customers,
business strategies and product technologies can be harnessed to train
analytic models capable of forecasting after-sales services demand
probability distributions and therefore facilitate resource allocation. In
addition, customer segmentation can be applied to design a portfolio of
attractive service offerings considering parameters such as waiting time
and cost of service leading to premium, gold and silver service plans to
satisfy different customer segments.

Example: Rolls-Royce product oriented product-service system With the
advent of new technologies such as the IoT and big data analytics, the
development of after-sales services has been facilitated by in-
corporating sensors on products that inform the manufacturer about
performance, defects and usage patterns while in hands of the cus-
tomer. This translates into a business model shift in which the manu-
facturing company transitions from “doer” to “problem solver” [128].
An illustrating example is that of Rolls-Royce aerospace engines busi-
ness unit whose business model changed from merely selling engines to
“power-by-the-hour”. As part of this offering, customers pay an hourly
fee for the power generated by the engine and receive continuous
support and maintenance from Rolls-Royce to ensure their correct
functioning [127]. A challenge associated with these types of offerings
is that of defining appropriate data access rights and privacy since
manufacturers’ oversight of usage patterns may not be always wel-
comed by the average customer.

3.5. End-of-life or reverse logistics

Although not discussed in [22], a fifth domain can potentially profit
from the use of BA. This domain is concerned with what is known as
end-of-life or reverse logistics, i.e. “the process of planning, im-
plementing, and controlling backwards flows of raw materials, in pro-
cess inventory, packaging and finished goods, from a manufacturing,
distribution or use point, to a point of recovery or point of proper
disposal” [129]. Reverse logistics involves recycling and re-manu-
facturing as well as product returns, reuse of materials, waste disposal,
refurbishing and repairing [130]; and it developed as a response to
product-oriented policies that oblige manufacturers to guarantee and
finance product take-back and recycling given growing environmental
concerns [131,132]. In this regard, sensors on products could accu-
rately predict the end-of-life of a good based on analytics of usage
patterns, and wireless connection could be used to inform the appro-
priate stakeholders in order to coordinate efficient reverse logistics.
Research [133] suggests that forecasting the rate of return of products
and their demand will help design and construct reliable and profitable
reverse supply chains. In fact, integrating data from all the players
within the reverse supply chain can guarantee higher profitability
[134]. Furthermore, companies could use this information to target
marketing campaigns to improve re-sales and customer experience.

4. Challenges

Top and bottom performing companies differ in their use of BA. Cao
and Duan [135] conducted a study among 117 UK manufacturing
companies and found that “compared with bottom-performing

companies, top-performing companies were 2.86 times more likely to
have developed organizational structure to enable analytical activities,
3.56 times more likely to have developed process to embed analytical
activities, 3.06 times more likely to have developed strategy to guide
analytical activities, 3.60 times more likely to use statistical analysis,
12.00 times more likely to use business reporting, 7.24 times more
likely to use query and analysis, 6.53 times more likely to use spread-
sheet, 5.9 times more likely to use forecasting, 7.56 times more likely to
make data-driven decisions, and 5.31 times more likely to create new
service or product using data-based insights.” Then, it is fair to ask what
are the aspects hindering BA adoption?

Five years after their 2011 report [22], the McKinsey Global In-
stitute looked into the adoption and accomplishments of data analytics
within the manufacturing industry [136]. Results showed that, besides
digital native organizations and a few early adopters, most companies
were lagging behind in terms of exploiting the potential value of their
business data. Interviewed executives indicated that lacking senior
management involvement and the appropriate organizational structure
to aid the use of data and analytics were the major barriers that hin-
dered value creation. In addition, the inability to outgrow legacy IT
infrastructure that impede data aggregation arrested wide adoption. In
this Section, the challenges that hinder the adoption of business ana-
lytics in the manufacturing sector are explored and then summarized in
terms of the Technology-Organization-Environment (TOE) framework
[137,138], an organization-level theory that explains how these three
elements of a firm’s context influence innovation such as the adoption
of business analytics. A summary of the aspects discussed here is shown
in Fig. 3.

A considerable percentage of organizations within the traditional
manufacturing industry perceive analytics as a complex and costly
undertaking whose results outweigh potential gains. In fact, over 20%
of the more than 3000 business executives surveyed for a MIT Sloan
Management Review article perceived that costs outweighed projected
benefits [139]. In the same lines, Brinch et. al. [40] found that the need
for analytics is higher than current investments and that is the result of
analytics not being part of the industry digital strategy. And indeed, the
path to extracting profitable insights from data is arduous, since
quantitative technology investments need to be accompanied by cul-
tural change within the organization and its approach towards data
[109]. Profitable business insights are the result of enterprise (as op-
posed to business unit) approaches towards BA, in which quantitative
techniques are utilized to improve all business functions concurrently.
In addition, successful BA initiatives must be centralized, i.e. managed
under common leadership and technologies, and the extracted knowl-
edge must be seamlessly shared with all departments using consistent
formats, common definitions and standards. Making use of the TOE
framework, the organizational context with respect to a “firm’s cul-
ture”, “cross-functional communication” and “financial resources” are
relevant when determining the extent of BA adoption.

Leadership is often cited as a BA management challenge [140]. Top
management support is crucial to secure the necessary funding and
ensure that the organizational culture supports analytics [116]. Senior
executive involvement must lead the necessary organizational change
to incorporate analytics into the core strategic vision of the organiza-
tion. In fact, an effective sponsor of BA initiatives must [141]:

• define business needs to increase the likelihood of delivering value,
• be the primary beneficiary of such initiative to guarantee the ne-
cessary commitment (since more than 1 in 3 business executives cite
“lack of management bandwidth due to competing priorities” as a
challenge for analytics adoption [139]),
• prioritize data-driven decision-making over intuition or gut-feeling,
given that in practice, a large proportion of decisions are made
based on domain knowledge or past experience rather than
grounded on data [44],
• have demonstrated influence and authority to successfully align the
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necessary resources, as well as cross-functional scope to change the
organizational culture in a transformative way,
• be interested in implementing a long-term BA program as opposed
to managing a single project.

In terms of the TOE framework, this means that the organizational
context also includes “executive involvement” and, once again, points
to the importance of “cross-functional communication”.

Decision makers must be savvy enough to understand analytic
model’s underlying assumptions to make use of insights only where
applicable [142]. Thus, successful implementation requires the devel-
opment of executives and managers’ capabilities to take advantage of
such insights and integrate them into the workflow. In fact, “lack of
understanding of how to use analytics to improve the business” [139]
or as phrased by Vidgen et. al. [143], the challenge of “using analytics
for improved decision making”, is the most cited impediment faced by
organizations in the quest of becoming more data-driven. As Flath and
Stein put it [87], “the recent influx of machine learning research has
brought forward a host of capable algorithms and tools but has not
equipped operators and decision makers with the necessary work-flows
and tools. Consequently, there is an urgent need for tool-kits and
templates which assist manufacturing decision makers navigate
through a world of new opportunities”. This challenge points to the
organizational context of the TOE framework, making “business and
technical competencies” a key aspect when analyzing the likelihood of
BA adoption. In addition, it points to the necessary “characteristics” of
new technological solutions.

On the other hand, decision makers should be wary of falling into
“the illusion of explanatory depth”, i.e. the overconfident belief of
understanding complex phenomena with greater precision, coherence
and depth than they actually do [144,145]. In fact, it has been proposed
that scio me nescire, which translates to “I know that I know nothing”,
may in fact serve as a source of enhanced organizational performance
[86]. Awareness of nescience, i.e. the lack of knowledge when knowl-
edge is not there [146, p. 35], is central to an organization’s success
since it sets the direction for further inquiry and thus managers could
use nescience as the criteria to set priorities for complex problem sol-
ving. Problems whose solutions appear to reduce nescience the most
should be embarked on first [86].

Users of BA applications expect responsiveness, so the areas in
which BA projects are deployed should react rapidly to user interaction
[142]. Thus, process responsiveness needs to be improved to timely
accommodate BA recommendations. In the TOE framework presented
in Fig. 3, responsiveness can be considered part of a “firm’s culture” and

thus, it belongs to the organizational context. In addition, rigorous as-
sessment of the value delivered by BA projects is necessary to quantify
ROI [147], measure customer value impact [143] and properly redefine
project objectives. Successful BA projects understand key business ob-
jectives and have impact in meeting them [116]. Therefore, an ex-
perimentation-based approach where metrics to evaluate performance
are developed and the impact of the project on the business bottom-line
is quantified increases the chances of success. In brief, analytics must
produce results and recommendations that are actionable and driven by
business value, along with methods to quantify the effects caused by
adopting such recommendations since this is generally tied to stake-
holder buy-in [93].

An appropriate technology infrastructure is still a prerequisite
[140,143] and thus, “technology readiness” must be determined within
the technological context of the TOE framework in order to determine
the likelihood of adoption of BA. After all, data cannot be analyzed
unless it is collected first. For many organizations that translates in
substantial investments to upgrade existing systems (again pointing to
the need for “financial resources” within the organizational context of
the TOE framework). However, the main concern within the manu-
facturing industry is not investing at scale but deciding on the most
adequate system for the needs of the organization [136]. More speci-
fically, IT solutions should close the gap between the problem-specific
view of analytic tasks in an industrial setting and the method-specific
view of data analysis tools available in the market [148]. In this regard,
information technology solutions must be simple and easy to use, sui-
table to the needs of the users, contain all relevant data and make use of
standarized terminology [149,150]. In addition, the selected IT solution
must be robust and flexible to adapt to disparate manufacturing en-
terprises and should make use of open standards and clear specification
of interfaces to ensure interoperability, i.e. support the exchange of
information among different business units and across enterprises along
the supply chain while ensuring data, information and knowledge in-
tegration [151]. Finally, since IT solutions and infrastructure are a long-
term investment, they must be adequate to attend to the present re-
quirements of BA projects, while remaining flexible to evolve with the
business [142]. All these important “characteristics” that the techno-
logical solution must have should be considered within the technolo-
gical context of the TOE framework.

The successful deployment of BA is tied to access to the right ta-
lented personnel with analytical, business and relationship skills. In
TOE framework language, the organizational context must accrue the
right “business and technical competencies”. This means that typical
analytical skills must be complemented with the flexibility and sense of

Fig. 3. The technology-organization-environment framework associated with the adoption of business analytics in the manufacturing industry.
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urgency characteristic of business, in addition to outstanding commu-
nication skills to collaborate with different actors [142]. Wilder and
Ozgur [152] list three career paths associated with BA:

• The data scientist whose skill set includes a solid foundation in
math, statistics and computer science. They are capable of using
advanced statistical methodologies and construct complex models
on data.
• The business analyst, also described as data-savvy managers, who
hold positions that allow them to identify and exploit opportunities.
Thus, they need a solid foundation in business complemented with
analytical capabilities. Their analytics needs are related to the
ability to frame and interpret BA results in an effective way.
• The business user whose primary knowledge is in a business dis-
cipline complemented with basic statistics for simple descriptive
data analysis. Their technical needs focus on accessing data and
basic analysis.

Finding these profiles is challenging and thus, it leads companies to
initiate recruiting activities up to 18 months before the position is ex-
pected to be filled [109]. Furthermore, demand for these profiles in-
creases faster than the offer, resulting in skyrocketing salaries. How-
ever, there are opportunities to bridge the gap. Henke et. al. [136]
proposed the new role of “business translator” who acts as a liaison
between analytic experts and executives. In the words of a newly ap-
pointed business translator at a small manufacturer, “the disconnect
between the IT department and the end user is so huge that it can be so
greatly benefited by a translator” [153]. Business translators reconcile
the language of analytics with that of other business functions to ex-
plain findings in business terms to executives and decision makers. In
addition, companies are investing in training activities for existing
personnel to develop analytical skills, while universities are launching
new programs, boot-camps, certifications and massive open online
courses to fill the gap [152,154].

Finally, the IoT and mass collection of data are plagued with con-
cerns about data privacy, cybersecurity and liability [147,155], which
speak to the environmental context of the TOE framework. Manu-
facturers should consider these issues from the onset of the design phase
and make sure to disclose any security defects to customers, since
failure to do so exposes enterprises to liability. In fact, cyber attacks
have consequences beyond the financial value of the incident: health,
safety, operations and environmental incidents impact the business
reputation and are detrimental to the brand image [156]. Security
breaches that compromise customers data may have major ramifica-
tions, not only from a legal perspective but also with respect to their
relationship and trust on the company. Furthermore, breaches related
to enterprises proprietary data put intellectual property and manu-
facturing secrets at risk of getting in the hands of competitors resulting
in long-lasting economic losses [157].

5. Completing the definition of BA in manufacturing

In Section 2, a general definition of BA proposed by Holsapple et. al.
was presented as starting point for this work. That definition indicated
that business analytics is “concerned with evidence-based problem re-
cognition and solving that happen within the context of business si-
tuations” [24]. While this remains true for the manufacturing sector, it
is important to complete this definition by identifying the building
blocks and actors that differentiate manufacturing from other sectors.

5.1. Building blocks of BA in manufacturing

While there is some research into the constituent elements of the
information infrastructure of a digital enterprise [158], the literature
fails to list the building blocks that enable the BA ecosystem. Given the
definition of business analytics introduced in Section 2 and the

challenges listed in Section 4, it is posed that BA endeavors are com-
posed of a dynamic set of building blocks:

• Culture: an entity’s culture and philosophy ingrained with a mindset
of evidence-based problem recognition and solving is necessary to
out-grow intuition, secure management buy-in and guarantee re-
sponsiveness to BA insights.
• Practices and technologies: this building block focuses on the way in
which analytic tasks are performed. It recognizes technology-based
and practice-based analytic techniques, as well as, qualitative,
quantitative and hybrid techniques. Thus, this building block goes
beyond commonly understood technology infrastructure (normally
thought of being composed of hardware and software) to include
mathematical tools such as statistical analysis, data mining, machine
learning, etc.
• Capabilities: A set of competencies held by different actors within
the evidence-based problem recognition and solving culture. This
refers to the appropriate combination of analytical, business and
relationship skills held by each person involved in the BA project
which is inherently different for different roles within the organi-
zation.
• Data: this building block contains all structured, semi-structured and
unstructured data produced within the organization and by the or-
ganization’s interaction with external entities such as suppliers and
customers. It also includes the process of data acquisition, cleaning
and storage.

5.2. Actors of BA in manufacturing

The actors of BA are debated in literature with diverging views.
While Lee and Chen [159] model of the analytical process identified the
actor (who initiates the analytical process) and the actant (who takes
actions accordingly) as participants, Pappas et. al. [160] analysis of big
data and business analytics ecosystems determined that data actors are
those who generate and use data. In this sense, they listed academia,
industry/private organizations, government/public organizations, civil
society, and individuals/entrepreneurs as BA actors whose capabilities
(analytical competencies) are developed in their respective contexts
leading to value creation, business and societal change. Furthermore, as
discussed in Section 4, Wilder and Ozgur [152] analyze three career
paths (the data scientist, the business analyst and the business user) and
their skill set with respect to BA. Yet, while studying the adoption of BA
for a telecom service provider, Gangotra and Shankar [161] considered
as actors those that specifically interact with or can affect the product
or service provided. According to their work, the BA actors and their
roles are:

• Top management: sponsor the BA adoption program and monitor
the business value created.
• IT project team: implement and maintain systems and tools.
• System integrators and consultancy firms: architect flexible IT sys-
tems and processes capable of adapting to changing internal and
external business scenarios.
• Competency center managers: ensure agile processes and the
availability of experts to use the tools to respond to market needs
and regulatory demands.
• Competition: keep track of market movements and product offerings
and counter propose.
• Business managers: use the insights and key performance indicators
(KPIs) for fact-based decision-making in daily operational processes.
• External technology suppliers: produce user friendly tools for (big)
data analytics.
• Consumers: evaluate and choose products to purchase.
While there is no clear consensus on who the actors of BA endeavors

are and thus, more research on the matter is required, the work of
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Grangotra and Shankar [161] is in line with the actors evidenced in this
work and summarized in Fig. 4. Business units executives must re-
cognize and solve problems based on evidence. This evidence is iden-
tified by personnel with analytical skills that apply statistical models to
data. To bridge the work of analytical personnel and that of executives
and managers, this study identified the figure of the “business trans-
lator”. However, as discussed in Section 4, top management sponsor-
ship and buy-in is necessary to guarantee success. Finally, an IT team
and external technology suppliers are necessary to provide the tools and
processes needed to create an ecosystem where BA can flourish leading
the aforementioned actors to generate value and deliver it to customers.

6. Pathway to market leadership

Most companies looking into creating and capturing value from BA
are probably already generating considerable volumes of data. In fact,
only 20% to 25% of companies see data availability, ownership and
governance as a barrier towards becoming more data-driven [139].
However, it is likely that proprietary data is segregated or “siloed” in
outdated IT systems. Consequently, a technological barrier associated
with upgrading such systems to guarantee centralized data collection,
aggregation and storage must be overcome. Data must be collected
from all business units and departments and aggregated using con-
sistent terminology, open standards and clearly specified interfaces
[151], and data storage must be centralized in order to improve ac-
cessibility and facilitate its analysis. This first barrier, hereafter referred
to as “standardization”, goes beyond a technological issue to include
one of meaning. For data to be useful, it is crucial to ensure a shared
understanding of terminology, interpretation and action [162]. This
aspect of the standardization barrier is clear to business executives:
“managing data quality” has been cited as a top concern [143].

Centralized, standarized data must be accessible to all stakeholders

if they are to extract value from it. In different terms, comprehensive
interoperability driven by an enterprise cultural change that promotes
information sharing represents the next barrier. Developing a culture
that values evidence-based decisions and actions, encouraging data
collection and analysis as well as information sharing is one of the
hardest challenges faced by companies [109,140,143,149]. Indeed,
interviewed company representatives claim that a culture of depart-
mental silo-thinking, lack of communication and failure to share in-
formation are impediments to the sucess of BA projects [139]. There-
fore, it can be inferred that in order to leverage BA to the extent
described in literature [22,55] and in Section 3, technological invest-
ments must be accompanied by cultural change. Traditional silo-
thinking within companies must evolve to a networked organizational
culture that prizes information sharing across departmental and orga-
nizational boundaries. As discussed in Section 4, securing senior ex-
ecutive involvement to guide the necessary cultural change within the
organization [141], and procuring the essential analytical talent
[109,142] are imperative for success.

In Fig. 5, the first two barriers are represented as “standardization”,
giving rise to a transition from siloed to integrated data, and “organi-
zational culture evolution”, resulting in the appropriate evidence-based
ecosystem for BA in a networked organization. At this stage, the ubi-
quitous use of BA should produce actionable results and re-
commendations to business questions and, as a result, guide decision-
making and actions to improve operational and business performance.
To unleash BA full potential, however, a third barrier concerning the
development of new business models (BMs) must be overcome. After
all, today’s BA must be understood as the “era of data-enriched offer-
ings” [3,116]. BMs need to evolve to harness the creation, delivery and
capture of currently unexploited forms of value. According to [121],
BMs in the era of Industry 4.0 must “be designed around customer
centricity, value creation networks and [...] the data that is generated”.

Fig. 4. Actors in the manufacturing business analytics ecosystem.
Business units executives must recognize and solve problems based on
evidence. This evidence is identified by personnel with analytical
skills that apply statistical models to data. To bridge the work of
analytical personnel and that of executives and managers, there is the
figure of the “business translator”. Top management sponsorship and
buy-in is necessary to guarantee success. Finally, an IT team and ex-
ternal technology suppliers are necessary to provide the tools and
processes needed for the aforementioned actors to generate value and
deliver it to customers.

Fig. 5. Pathway for the successful exploitation of business analytics.
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It must be noted though, that adding technological features to
manufactured products in the form of software, connectivity and data,
generally marketed as “having an app” that allows the customer to
track usage patterns, does not represent an innovative business model
and does not affect the product market [163]. The value delivered to
the customer is mostly unchanged and revenues are still the result of
one-time sales. Another popular but weak approach is to open the
product to developers that create innovative applications that generate
brand engagement and are difficult to replicate by competitors. But
again, value capture continues to be the result of one-time product sales
and therefore, the BM is hardly changed. A new BM must create value
to customers beyond the product itself and generate profits throughout
its life-cycle. An example of successful business model innovation is
presented in [163] which describes a company called Beam. Beam
produces and sells smart toothbrushes but generates revenue through
comprehensive dental health care by providing dental insurance and
continuous supply of toothbrush heads and toothpaste to customers at a
monthly fee. In this example, product sales (the smart toothbrush) re-
present a customer acquisition cost rather than a source of profits, and
revenues are the result of consumable sales or service offerings acces-
sory to the one-time-sales product (like dental insurance, toothbrush
heads and toothpaste). Consequently, the market and the competitors of
the company change (from the toothbrush to the insurance market, in
the example above). In addition, advantageous customer data obtained
through the product connectivity features can be exploited to tailor
offering prices (e.g. insurance premiums) and marketing campaigns to
satisfy various customer segments.

7. Conclusions

This work furthers the understanding of BA in manufacturing by
upholding a general definition of BA and extending it to account for the
unique building blocks and actors within the manufacturing sector. In
addition, multiple manufacturing domains in which BA has the poten-
tial of being a differentiating factor were discussed highlighting suc-
cessful examples when available. It was evidenced that its adoption is
sporadic and concentrated on departmental efforts, instead of an en-
terprise endeavor. This shortcoming was associated with challenges
such as data isolated in incompatible, legacy IT systems, poor inter-
departmental communication and lack of senior executive involvement,
which are key to lead a transition to evidence-based decision-making
and actions. It is concluded that the pathway to market leadership
through the effective use of BA is the result of overcoming three bar-
riers. The first is a technological barrier, associated with the standar-
dization of data collection, aggregation and storage to outgrow legacy
IT systems and siloed data. The second barrier tackles enterprise culture
regarding evidence-based decision making and actions, and information
sharing. It also aims to procure seamless interoperability within and
across organizational boundaries. This creates the perfect ecosystem to
answer business questions through BA that deliver actionable results
and recommendations. The third barrier is concerned with monetizing
data and BA through business model innovation to create value and
capture shares on a previously unexploited market. This enables dif-
ferentiation in otherwise equivalent offerings and secure market lea-
dership.
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