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A B S T R A C T

The recovery of physically damaged infrastructure after disasters is critical to efficiently deliver disaster relief
supplies and emergency services. The physical damage to road infrastructure from disasters can result in de-
creased road link capacities and an inability to meet the community’s emergency demand. This paper provides
an infrastructure restoration plan for delivering critical services after disasters. We present a maximal multiple
coverage and network recovery problem for the recovery and restoration of infrastructure systems after disasters.
In the model, recovery crews make damaged arcs available by repairing components over a time horizon in a
disrupted network. The model relocates emergency responders using the available arcs in the network to
maximize multiple coverage of emergency service demand over the time horizon. We present two heuristics for
the model. The first uses the Lagrangian and the linear programming relaxation solutions of the problem, and the
second uses an integer rounding procedure applied to the linear programming relaxation solution. We test the
model using a real-world example representing the road infrastructure and emergency services of the Bronx
Borough in New York, NY during Hurricane Sandy. The results demonstrate that the integer rounding heuristic is
effective in identifying near-optimal solutions. Our computational study suggests that our model can aid
emergency managers in achieving their goals by scheduling effective restoration activities for real-time disaster
recovery and long-term recovery planning.

1. Introduction

After disasters, road infrastructure becomes vital for providing aid
and saving disaster victims’ lives, as it provides a critical link to
emergency services, relief, and evacuation routes. Disaster–related
disruptions on the road infrastructure system make it hard to serve
emergency calls and provide emergency aid. For example, during
Hurricane Sandy, more than half of the road infrastructure system was
unavailable [1]. Following Hurricane Sandy, the Department of
Transportation authorized $12.4 billion to repair and reopen roads and
rebuild transit assets [1]. During Hurricane Harvey in 2017, many
roadways suffered catastrophic flooding, which resulted in debris on
roads, even major highways such as I-10, I-45 and US-59 [2]. The Texas
Department of Transportation crews cleared roadways by removing
more than 10 million cubic feet of debris in the areas most impacted by
the hurricane [3]. Days before a hurricane reaches a coast, government
agencies pre-locate emergency response resources [4,5]. During dis-
aster response operations, the planning staff decides the priority of
roads and streets to allocate local resources [6]. Given the large repair

cost and extended damage to road infrastructure, prioritizing the re-
covery of roadways based upon their importance to emergency services
is crucial. The prioritization decisions need more advanced analytical
methods to improve the recovery efforts.

During normal operations, emergency responders (e.g., firefighters,
police, emergency medical service (EMS) providers) have a certain
service region based on travel time to respond to emergency calls [7].
However, during and immediately after disasters, emergency re-
sponders located in regions with many disrupted roads cannot respond
to demand in their service areas as quickly as during normal operations.
Therefore, the locations of emergency responders and the condition of
the surrounding the road infrastructure system around their locations
have a critical impact on the number of people that can be reached in a
timely manner after disasters. The damage to road infrastructure (e.g.,
from debris or flooding) and the geographic features of the region may
limit the movement of emergency responders. Further, first responders
and other resources that are staged prior to the disaster may only be
able to access certain points of the affected region after the disaster
occurs [4]. As a result, not all the facility locations may be available at
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the beginning of the disaster recovery operations, and they may become
available as road infrastructure is dynamically restored.

We study how to optimally coordinate both road infrastructure re-
storation (e.g., clearing debris from roads) and emergency response
efforts after disasters. The goal of the model is to maximize the multiple
coverage of emergency service demand over a time horizon. Due to
high volume of emergency service requests after disasters, unavail-
ability of emergency service responders is more likely. We capture this
issue by covering emergency service demands multiple times to in-
corporate backup coverage. In our model, we consider the road infra-
structure system as a network and repair physical components of road
infrastructure to restore the network. The model seeks to schedule the
restoration of the road infrastructure system over a time horizon and
locates emergency responders at facilities. After restoration is com-
pleted, the disrupted arcs become available in the network. Emergency
responders deliver emergency relief and services more effectively by
changing locations as more arcs in the network become available
during the recovery process. The model considers limited entry points
to the affected region after the disaster as well as restrictions on the
movement of the emergency responders during the recovery process
that reflect road damage or geographic limitations, two important
considerations of emergency response operations. The model consists of
three parts. The recovery part models component installations by
identical recovery crews over a finite time horizon. The relocation part
models the movement of the emergency responders using arcs that are
initially available or that become available following restoration. The
coverage part captures covering demand points if there are available
arcs in the network to do so.

In this study, we make the following contributions:

• We present a maximal multiple coverage and network recovery
problem that considers the interdependency between disaster re-
covery performance of the network recovery crews and emergency
service responders. This model studies how to effectively cover
emergency demands with backup coverage by locating and re-
locating emergency responders on a network, subject to relocation
restrictions, while recovering a network over a finite time horizon.

• We introduce two heuristics, each of which provides a feasible so-
lution for the problem as well as a lower bound to the optimal ob-
jective function value. The first heuristic is based on the Lagrangian
relaxation solution procedure and the second heuristic is based on
an integer rounding procedure for the linear programming relaxa-
tion.

• We present a detailed case study using real world data from Bronx
Borough during Hurricane Sandy. We include computational studies
to demonstrate the effectiveness of the heuristics. The solution sheds
light on the prioritization of the network restoration and relocation
activities of emergency responders after disasters to achieve better
emergency demand coverage.

The remaining sections are organized as follows. Section 2 presents
a literature review. Section 3 provides the mathematical formulation of
our model and introduces the two heuristics, namely, the Lagrangian
and linear relaxation heuristic and the linear relaxation rounding
heuristic. Section 4 reports computational results obtained by using the
heuristics to identify feasible solutions for our model on a realistic case
study and discusses the key insights from the analysis. The model so-
lutions identify network recovery plans and the movement of emer-
gency responders on available arcs. In addition, the results give insights
into how to relocate emergency responders subject to relocation re-
strictions to maximize multiple coverage of emergency service demand
over the time horizon. Section 5 provides concluding remarks.

2. Literature review

We present a coverage problem that maximizes the multiple

coverage of emergency service demand by locating emergency re-
sponders at facilities. Coverage problems are one of the main classes of
location problems that consider coverage of service areas based on
spatial proximity. Coverage models have been studied extensively by
using a wide range of methodological and theoretical developments in
the literature and have been applied to public service problems [8].

Toregas et al. [9] present the first deterministic model, the location
set covering problem (LSCP), with an objective to minimize the number
of facilities to cover all demand points. Given the limited number of
resources, covering all demand points could be hard to achieve. Church
and ReVelle [10] present the maximal covering location problem
(MCLP), with the aim of maximizing coverage by locating a fixed
number of facilities. However, the LSCP and the MCLP ignore facility
unavailability that occurs when an emergency responder cannot cover
demand points when the emergency responder is dispatched to a de-
mand point. Several deterministic models consider the multiple cov-
erage of demand points to capture backup coverage. Hogan and ReVelle
[11] introduce a model that considers the secondary coverage of a
demand node. Gendreau et al. [12] present a double coverage location
model with two different coverage standards. The model requires all
the demand points to be covered by an emergency responder located
within r2 time units. In addition, a proportion α of the demand must be
within r1 time units of an emergency responder with r1 ≤ r2.

In addition to deterministic models, probabilistic models have been
developed to capture facility unavailability by explicitly considering
busy probabilities and reliabilities of facilities. Daskin [13] presents the
maximal expected covering location problem (MEXCLP), an extension
of MCLP. MEXCLP takes into account the probability that a facility is
not able to cover the demand. We consider backup coverage to capture
facility unavailability by considering multiple coverage instead of
considering facility unavailability probabilities, which are typically
hard to estimate in disaster settings.

Another stream of papers consider dynamic models that relocate
facilities [14]. Our model considers relocations of emergency re-
sponders between facility locations to capture dynamic changes in the
network due to arc installation over the time horizon. Gendreau et al.
[15] present a dynamic relocation model with the objective to max-
imize backup coverage while minimizing relocation costs. Rajagopalan
et al. [16] present another dynamic relocation model that incorporates
location–specific busy probabilities as an extension to the queuing
probabilistic location set covering problem [17] with multiple periods.
The aim of the dynamic set covering location model in [16] is to
minimize the number of emergency responders required while meeting
predetermined emergency responder availability requirements for dy-
namic demand environments. Another dynamic model is the time–-
dependent emergency responder allocation model, which captures
travel time and demand site variations due to time of day [18].

Relocation is practical for firefighters and emergency responders.
Therefore, most relocation models consider emergency service re-
sponders. However, a large number of relocations creates a poor work
environment for personnel. Hence, the issue of controlling the number
of relocations has arisen in the dynamic coverage model literature by
considering relocation cost or an upper limit on the number of location
changes [19]. For example, the model presented by Gendreau et al. [15]
penalizes repeated relocation of the same vehicle to limit the number of
relocations. Van Buuren et al. [20] present a dynamic ambulance re-
location model that only allows relocation of idle emergency re-
sponders to limit the number of relocations. We consider relocations
over a time horizon during a disaster recovery to capture the dynamic
change in the network due to recovery. Our model installs network
components to enable emergency responders to move between emer-
gency responder locations. Since we consider the recovery efforts over a
finite time horizon, decisions regarding how to invest this limited time
to install components can be considered a cost of relocating.

The coverage models in all three categories have represented im-
portant contributions to location analysis and modeling in a range of
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problem contexts. In addition, the existing models employ a wide range
of methodological and theoretical improvements to develop better so-
lution techniques. Church and ReVelle [10] present two different
heuristics, namely the greedy adding and the greedy adding with sub-
stitution algorithms to construct feasible solutions for MCLP. Later,
Galvão and ReVelle [21] solve the Lagrangian relaxation dual of MCLP
using a subgradient algorithm by improving upper and lower bounds
obtained from the algorithm at each iteration. We present a Lagrangian
and linear relaxation heuristic and a linear relaxation rounding heur-
istic to construct feasible solutions for the problem. In these heuristics,
we compare feasible solutions obtained using different types of neigh-
borhood search algorithms. Vatsa and Jayaswal [22] present a for-
mulation for a multi-period MCLP with server uncertainty. This model
is efficiently solved using Benders decomposition, while a tabu search
heuristic is used to identify near-optimal solutions to the models pre-
sented in [12,15]. Recently, Cordeau et al. [23] propose solving large
scale maximal covering problems using branch-and-Benders-cut algo-
rithms.

Sharkey et al. [24] present interdependency relationships between
infrastructure systems to study the necessary level of coordination for
effective restoration efforts across all systems after disasters. We study
the interdependency between disaster recovery performance of the
network recovery crews and emergency service responders. There are
few papers in the literature that study interdependencies of infra-
structure systems and network recovery while measuring the perfor-
mance of the system over a planning horizon. Lee et al. [25] introduce
the interdependent layer network (ILN) model to explicitly model in-
frastructure interdependencies as a network-flow based model, where
interdependent infrastructure systems are networks, and corresponding
services are flows. Nurre et al. [26] introduce the integrated network
design and scheduling (INDS) problem to model the restoration services
of interdependent infrastructure systems after disruptive events. The
INDS problem allows recovery crews to install new arcs and nodes into
the network with the objective to maximize the cumulative weighted
flow through the network over a time horizon. The recovery part of our
model has similar constraints as the model proposed in [26]. Cavdar-
oglu et al. [27] extend the INDS problem to multiple interdependent
networks with the objective to minimize cost, which includes flow cost,
unsatisfied demand cost, and arc installation and assignment costs over
the planning horizon of the restoration. Almoghathawi et al. [28]
present a restoration problem for interdependent infrastructure net-
works with the aim of maximizing the resilience of the networks while
minimizing the total restoration cost. Maya Duque et al. [29] propose a
network repair crew scheduling and routing problem to optimize ac-
cessibility to humanitarian relief demand areas, and the model is solved
using dynamic programming. Instead of scheduling one repair crew and
including precedence relationships between damaged nodes as in [29],
our study considers multiple repair crews, and models the dependency
between damaged components by letting several network components
benefit from each installation. Recently, Morshedlou et al. [30] present
an integrated vehicle routing problem and infrastructure network re-
storation crew scheduling problem with the objective to maximize the
resiliency of the infrastructure network over a restoration time horizon.
Baycik and Sharkey [31] propose interdiction-based approaches to
identify damage in disrupted critical infrastructures by accounting their
dependencies to develop inspection plans.

Our paper is a companion paper to [32], who formulate a compo-
nent-based integrated restoration and location problem (c-IRLP) [32],
an extension to the P-median problem that models the interdependency
between infrastructure systems and service providers as a network. An
essential distinction of our model is that we restrict initial emergency
responder locations as well as relocations, whereas c-IRLP allows
emergency responders to relocate anywhere on the network without
restriction. In this way, the model proposed in this paper generalizes c-
IRLP by lifting the assumption that all emergency responders can be
located anywhere on the network at any time without restriction.

Furthermore, our model considers multiple coverage of emergency
service demand to provide backup emergency service during large vo-
lume of emergency service requests after disasters, whereas c-IRLP as-
signs the closest emergency responder to each demand location and
does not take backup coverage into account.

3. The maximal multiple coverage and network recovery problem

In this section, we introduce the maximal multiple coverage and
network recovery (MMCaNR) problem for recovering disrupted com-
ponents in a network while relocating emergency service providers and
covering demands, which we formulate as an integer programming
model. In the model, we consider a network as a topological structure
that consists of nodes and arcs. Nodes in the network represent emer-
gency service demand points and emergency facility locations. Arcs
represent the paths between facility locations and demand points and
between facility locations. Since we consider the disrupted network
after a disaster, there are impassable arcs due to debris or other types of
disaster damage. Therefore, the network has disrupted arcs as well as
initially available arcs.

The goal of the model is to cover emergency demands with backup
coverage by coordinating the recovery activities of two types of service
providers: emergency responders and road infrastructure recovery
crews. This is accomplished by locating emergency responders at fa-
cilities and scheduling crews to repair components in the network over
a finite time horizon. We assume disrupted arcs are comprised of one or
more components (streets), any of which could be disrupted, rendering
the arcs unavailable. A single component can be present on multiple
paths, and therefore, repairing a component enables multiple disrupted
arcs that share the component. Each recovery crew is scheduled to in-
stall at most one component into the network at each time period. Not
all the facility locations are open at the beginning of the disaster re-
covery operation horizon due to the conditions of the surrounding road
infrastructure, and they become available as the network is dynamically
restored. To capture this dynamic change, we restrict emergency re-
sponder relocations. Therefore, emergency responders are located at
initially available facilities at the beginning of the time horizon. They
are relocated in the later time periods using available arcs, including
the arcs that become available after a component installation that re-
present allowable paths for relocation. The objective is to maximize the
cumulative multiple coverage over the time horizon.

Table 1 lists all the input sets and parameters. We initially start with
a network = ∪G I A E( , ), where the nodes in G are the union of de-
mand nodes D and facility locations J (i.e., = ∪I D J ) and A ∪ E is the
union of initially available arcs between demand nodes and facility
locations A, and initially available arcs between facility locations E. At
the beginning of the time horizon T, we let set J0⊆J represent initially
available emergency responder locations. We have four different types
of arcs in the network, and each one is represented with a different set:
initially available arcs A⊆D × J and disrupted arcs A′⊆D × J between
demand nodes and facility locations, and initially available arcs
E⊆J × J and disrupted arcs E′⊆J × J between facility locations that
capture the paths for relocation.

The model considers component installations to make disrupted arcs
in A′ and E′ available in the network. We do not install disrupted arcs
directly, since they represent paths. A component represents a sub-path
or a combination of sub-paths that is disrupted, and hence, installation
of the component can enable multiple arcs that use the component. We
define the set C′ as a set of installable components into the network.
Since installing a single component can enable arcs in A′ and E′ such
that were disabled due to the disruption of that component, we define a
set of components for each disrupted arc in A′ and E′. We define a set of
components AC(i, j) for each (i, j) ∈ A′ such that installation of any
component c ∈ AC(i, j) enables arc (i, j) and allows us to cover demand
point i by facility location j. Likewise, we define a set of components
EC(j, j′) for each (j, j′) ∈ E′ such that installation of any c ∈ EC(j, j′)
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allows emergency responders to move between facilities j and j′ in ei-
ther direction. Components are installed by one of the K identical
network recovery crews over a finite time horizon T. We represent the
component installation times with integral parameter pc for each c ∈ C′.
After the installation of component c ∈ C′ is completed: (1) if c ∈ AC(i,
j), the demand point i ∈ D can be covered by facility location j, (2) if
c ∈ EC(j, j′), the arc (j, j′) ∈ E′ between facility location j and j′ becomes
available for emergency responder relocations. Note that a component
c ∈ C′ can enable multiple disrupted arcs in A′ and E′.

Fig. 1 illustrates the relationship between components and arcs with
facility location 0 and demand points 1 and 2. The solid lines represent
the initially available arcs that do not cover the demand points while
dashed lines represent the disrupted components. In Fig. 1, c1 and c2
represent installable components, with component c1 representing a
short segment of the path and c2 representing a longer segment of the
path that also includes c1. When component c1 is repaired, a disrupted
arc between facility location 0 and the demand points 1 and 2 becomes

available that could allow facility location 0 to cover demand 1. When
component c2 is repaired, the disrupted arcs between facility location 0
and demand 1 and 2 become available that could allow facility location
0 to cover demands 1 and 2.

The model relocates emergency responders over a time horizon to
achieve better coverage using the available arcs. If an emergency re-
sponder is located at a facility, we call that facility an “open facility.”
After disasters, not all facilities are open. We model emergency re-
sponder relocations over the time as network flows. To do so, we in-
troduce a dummy source node u, which is connected by arcs to the
initially open locations in J0, and a dummy sink node v, which is con-
nected by arcs to the locations in J. The P emergency responders are
located at facilities in J0 by moving from the dummy source node u at
the beginning of the time horizon. Then emergency responders are re-
located in the network at each time period using the available arcs at
the time. While there is no cost for relocating emergency responders,
the relocation restrictions ensure that relocation times are short.
Emergency responders can move to adjacent facility locations using
only available arcs. If the arcs for relocating emergency responders are
defined as those whose travel times are within a certain time threshold
parameter, the relocation times between any pair of facility locations
are approximately the same. At the end of the time horizon, emergency
responders move to the dummy sink node v.

We consider multiple coverage to respond to the large demand
volume after disasters in the presence of emergency responder un-
availabilities. The model considers L levels of coverage, and a demand
point is fully covered if it is covered by L facilities. The objective is to
maximize cumulative multiple coverage with weights wit and θℓ, where
wit represents the demand at node i at time t and θℓ represents the
marginal increase in coverage if covered ℓ times, = … Lℓ 1, , . The
parameter θℓ is positive and non-decreasing with ∑ == θ 1L

ℓ 1 ℓ . The full
set of input sets and parameters is listed in Table 1.

The model has three parts. The recovery part schedules the in-
stallation of the components. The relocation part relocates the emer-
gency responders at the facility locations. The coverage part captures
the multiple coverage of the emergency service demand. We have three
types of binary decision variables, where each corresponds to a dif-
ferent part in the model.

The relocation decision variables are:

• =′y 1j j t, , if an emergency responder located at j at time −t 1 moves
to emergency responder location j′, where (j, j′) ∈ E ∪ E′ at time

= …t T1, , , and 0 otherwise.

• =′y 1u j, ,0 if an emergency responder moves from dummy source
node u to emergency responder location j′ ∈ J0 at time =t 0, and 0
otherwise.

• =+y 1j v T, , 1 if an emergency responder located at j ∈ J at time T
moves to dummy sink node v at time = +t T 1, and 0 otherwise.

The coverage decision variables are:

• =z 1i tℓ if demand at i ∈ D is covered by at least ℓ levels at time
= …t T1, , for = … Lℓ 1, , , and 0 otherwise.

• =δ 1ijt if demand i ∈ D is covered by emergency responder facility
j ∈ J using disrupted arc (i, j) ∈ A′ that becomes available after a
component installation at time = …t T1, , , and 0 otherwise.

The recovery decision variables are:

• =β 1ct if component c ∈ C′ is operational at time = …t T1, , , and 0
otherwise.

• =α 1kct if network recovery crew = …k K1, , completes the in-
stallation of component c ∈ C′ at time = …t T1, , , and 0 otherwise.

Next, we formulate the model as an integer programming model.

Table 1
Input sets and parameters.

Sets
I set of nodes, with = ∪I D J
D set of demand points, with D⊆I
J set of facility locations, where J⊆I
J0 set of facility locations that are initially open, with J0⊆J
A set of arcs between demand points and facility locations that are

initially available, with
A⊆D × J

A′ set of disrupted arcs between demand points and facility locations, with
A′⊆D × J

E set of arcs between facility locations that are initially available, with
E⊆J × J

E′ set of disrupted arcs between facility locations, with E′⊆J × J
C′ set of components that can be installed to the network
AC(i, j) subset of installable components c ∈ C′ such that location j can cover

the demand i
after installation of component c, for every (i, j) ∈ A′, where AC(i, j)⊆C′

EC(j, j′) subset of installable components c ∈ C′ such that after installation of
component
c ∈ C is completed emergency responders can move between j and j′ in
both directions
for every (j, j′) ∈ E′, where EC(i, j)⊆C′

u source node
v sink node
Parameters
T number of time periods
K number of network recovery crews
pc processing time to install component c ∈ C′
wit demand at node i ∈ D at time = …t T1, ,
P number of emergency responder crews to locate at facility locations
L levels of coverage
θℓ marginal increase in coverage when covered ℓ times for = … Lℓ 1, ,
Ni

A subset of facility locations j ∈ J such that location j cover the demand i
using
an initially available arc (i, j) ∈ A

Fig. 1. The network shows components and arcs relationships with facility lo-
cation 0 and two demand nodes represented with 1 and 2. The solid lines re-
present initially available arcs. The dashed lines represent the installable net-
work components.
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kcs

min{ , 1}c

(3.13)

∑ ∑− ≤ ∈ ′ = ⋯
= =
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1 1 (3.14)
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=
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(3.15)

∑ ∑ = ∈ ′
= =

α c C0 for
k

K

t

p

kct
1 1

c

(3.16)

∈ ∈ ∈ ′ = ⋯ = ⋯α β c C k K t T{0, 1}, {0, 1} for , 1, , , 1, ,kct ct (3.17)

The objective (3.1) is to maximize the cumulative multiple coverage
of emergency demand over the time horizon. The relocation part con-
sists of constraint sets (3.2)–(3.7), the coverage part consists of con-
straint sets (3.8)–(3.12), and the recovery part consists of constraint sets
(3.13)–(3.17). Constraint set (3.6) links the relocation and recovery
parts, and constraint set (3.10) links the coverage and recovery parts.
Emergency responder relocations are modeled as network flow con-
straints in constraint sets (3.2)–(3.5) over the available arcs in the
network at time period t. Constraint set (3.2) ensures that P emergency
responders are located at initially available facilities in J0 by moving
from dummy source node u at time period =t 0, which reflects limited
access points after a disaster. Constraint set (3.3) captures relocation
restrictions, and it ensures flow-balance to model facility relocations
between every consecutive time periods starting from time period 0 to
T. Note that for every j ∈ J, (j, j) ∈ E, therefore emergency responders
can stay at the same location between consecutive time periods. Con-
straint set (3.4) requires that P emergency responders move from open
facilities to dummy sink node v at time period +T 1. Constraint set
(3.5) ensures at most one emergency responder is located at each fa-
cility at each time period t. At each time period t, where = …t T1, , , the

locations of the P emergency responders are given by the set
′ ∈ = ′ ∈ ∪ ′′j J y j j E E{ : 1, ( , ) }j j t, , . Constraint set (3.6) requires at least

one component in EC(j, j′) to be installed for an emergency responder to
move from location j to j′ if there is no initially an available arc from j to
j′ in E. Constraint set (3.7) requires the relocation decision variables to
be binary. Note that we can reformulate MMCaNR in a straightforward
manner as a static emergency responder coverage location problem by
simply replacing ′yj j t, , with yj for all j ∈ J for the case when the re-
location of emergency responders is not reasonable.

Constraint set (3.8) sets the coverage level for each demand point at
each time period t and ensures that for each demand i ∈ D, the total
level of coverage is less then the total number of open emergency re-
sponder locations. Note that we assume θℓ is non-decreasing over ℓ,
with ∑ == θ 1L

ℓ 1 ℓ . This assumption ensures that ≥ ≥ …≥z z zi t i t i t1 2 ℓ for
i ∈ D and = …t T1, , . If θℓ is not non-decreasing over ℓ, we must add

≥ ≥ …≥z z zi t i t i t1 2 ℓ for i ∈ D and = …t T1, , as constraints to the model.
To cover demand i by a facility using an initially available arc in A, the
facility must have an emergency responder located at it. To cover de-
mand i by a facility using an initially disrupted arc (i, j) ∈ A′, the arc
must be available in the network by installing any component c ∈ AC(i,
j) by that time (captured by constraint set (3.10)) and the facility j must
have an emergency responder located at it (captured by constraint set
(3.9)), which means constraint sets (3.9) and (3.10) both need to be
satisfied. Constraint sets (3.11) and (3.12) require the coverage decision
variables to be binary.

Constraint set (3.13) ensures that at most one component is installed
by each recovery crew in each time period, where =α 1kct means re-
covery crew k starts installation of component c ∈ C′ at time − +t p 1c
and finishes installation at time t. Starting from time t, this component
can be used by arcs that benefit from the component. Constraint set
(3.14) requires component c to be operational (i.e., =β 1ct ) after in-
stallation of component c is complete. Constraint sets (3.15) and (3.16)
ensure that βct and αkct cannot be set to one before the processing time
pc of component c. Constraint set (3.17) requires the recovery decision
variables to be binary.

MMCaNR can be trivially extended to a P-median model extension
with backup coverage. The P-median variation considers relocating P
emergency responders into facilities as network flows while repairing
disrupted components in the network over the time horizon. The ob-
jective is to minimize the total weighted distance between demand
points and the L closest open facilities over the time horizon. This ex-
tends c-IRLP presented in [32] that allows for emergency responder
relocations restrictions and requires multiple emergency responder as-
signments for each demand node.

3.1. Lagrangian and linear relaxation heuristic

We present a heuristic using Lagrangian and linear programming
relaxation of MMCaNR to construct a feasible solution to MMCaNR.
Lagrangian relaxation is a common method to solve combinatorial
optimization problems by dualizing the constraints that make the pro-
blem “hard” to solve [33]. However, the Lagrangian relaxation solution
does not satisfy the dualized constraints. We use the linear program-
ming relaxation solution to enhance Lagrangian relaxation solution so
that the resulting solution is feasible for MMCaNR.

To construct the feasible solution, we first present the Lagrangian
relaxation dual problem and optimize it using a subgradient algorithm.
Then we describe a procedure for constructing a feasible solution for
MMCaNR using the Lagrangian relaxation dual problem solution and
the linear programming relaxation solution.

We first need to choose the constraint set to dualize to generate the
Lagrangian relaxation dual of MMCaNR. We apply Lagrangian relaxa-
tion to constraint set (3.10), which links the coverage part with the
restoration part. The objective function in (3.1) is then equivalent to:
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under constraint sets (3.2)–(3.9) and (3.11)–(3.17), and we present the
Lagrangian relaxation dual problem using objective Z̄ . Let uijt be the
Lagrangian multiplier for ∈ ′ = …i j A t T( , ) , 1, , , then we define the
Lagrangian relaxation problem as following:
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The Lagrangian relaxation dual is:

≥
L umax ( )

u 0

We optimize the Lagrangian relaxation dual problem by iteratively
solving the dual problem using the subgradient algorithm in [32] with
the necessary changes for our model.

We now can construct a feasible solution to MMCaNR by using the
similar approach in [32] by combining the Lagrangian and linear pro-
gramming relaxation solutions. Let ȳ denote values of the decision
variables of the relocation part for the Lagrangian relaxation problem
solution, and let ȳ̄ denote values of the decision variables of relocation
part for the linear programming relaxation problem solution. Then we
define a set = ′ =′ ′S j j t y y{( , , ): ¯ ¯̄ }jj t jj t that consists of the indices where
the y variables have the same values in the Lagrangian and linear
programming relaxation solutions. We note that the variable y values
whose indices belong to set S are integer. Then, we fix the values of the
y variable for the indices in the set S in MMCaNR and solve MMCaNR
with these fixed values. The solution yields a feasible solution for the
constraint sets (3.1)–(3.17) and provides a lower bound for the optimal
objective function value.

MMCaNR is NP-complete since a maximal expected coverage model
variation is embedded in it. Fixing the relocation decision variables
using the heuristic algorithm results in an efficient lower bound for
MMCaNR. For example, in our experiments in the following section,
80–90 percent of y variables have the same values in the Lagrangian
and linear programming relaxation solutions and so by fixing these
values in the heuristic yields computationally efficient feasible solu-
tions. Next, we present another heuristic algorithm using an integer
rounding procedure for the linear programming relaxation of MMCaNR.

3.2. Linear relaxation rounding heuristic

Many mixed integer programming problems are successfully solved
using the idea of fixing a subset of the variables in order to obtain
subproblems that are easier to solve [34]. Our model includes a large
number of relocation decision variables, which presents a computa-
tional challenge when solving MMCaNR. However, only a few of the
relocation variables are active in the optimal solutions. To address this
issue, we fix the subset of relocation decision variables to their linear
relaxation solution values and form a sub–MMCaNR problem that is
smaller and easier to solve than MMCaNR. Berthold [34] introduces an
approach based on a relaxation enforced neighborhood search (RENS)
for mixed integer nonlinear programs (MINLPs) by rounding linear and
nonlinear programming relaxation solutions to construct sub–MINLPs.
We use a similar approach to construct and solve sub–MMCaNR pro-
blem as in the approach by Berthold [34].

We first solve the purely continuous linear programming relaxation
of MMCaNR and let y⋆ denote the linear programming relaxation so-
lution values of the relocation decision variables y. We construct the
sub–MMCaNR problem by setting the binary relocation decision vari-
ables ′y ,j j t, , to 0 if no emergency responder is located at j at time t in the
linear programming relaxation of MMCaNR

⎜ ⎟
⎛
⎝

∑ = ⎞
⎠

′ ′ ∈ ∪ ′ ′
★i e y. . , 0j j j E E j j t:( , ) , , as in [34]. Therefore, a neighborhood is

defined by fixing the subset of relocation decision variables y values to
zero. Then, we search for a feasible solution in the neighborhood by
solving the sub–MMCaNR problem. The solution is feasible for
MMCaNR, since the values of the fixed relocation variables in the
sub–MMCaNR problem are integer in the linear programming relaxa-
tion solution and these relocation variables satisfy all of the constraints
set of MMCaNR. Therefore, the resulting solution yields a lower bound
on the optimal objective value to MMCaNR.

4. Computational results

In this section, we provide a case study where we apply MMCaNR
and analyze computational results obtained using real data re-
presenting road infrastructure and emergency service demands for the
Bronx Borough, New York, United States. We performed computations
for MMCaNR and the heuristics on a computer with a 1.4 GHz Intel
Core 5 Duo Processor with 4 GB of RAM. We used GUROBI 6.5.2. to
solve the mixed integer programming model that was coded in Python
2.7.

We first describe the data generation process using the real world
data obtained during Hurricane Sandy in the Bronx Borough. As shown
in Fig. 2, the Bronx Borough data is split into =D| | 276 demand nodes,
each of which corresponds to the center of each census tract. The data
includes =J| | 38 total facility location nodes; 32 fire and rescue stations
[35] and six hurricane evacuation centers [36]. We use exact co-
ordinates of facility location and demand nodes. The weight wit asso-
ciated with each demand node i ∈ D for = …t T1, , reflects 311 service
damage tree complaints associated with the demand node to capture
the areas affected by Hurricane Sandy (October 29, 2012–November 5,
2012) multiplied by the proportional population for the associated
demand node’s census tract to capture the number of possible service
requests. Note that we assume the weight wit is fixed over the time
horizon T for each demand node i ∈ D.

More than 500 miles of roadways were affected by Hurricane Sandy
in New York City due to downed trees and debris on roads [37]. Hence,
to approximately create the disrupted arc set, we filter only damaged
tree complaints from the 311 service requests during Hurricane Sandy.
The number of damaged tree complaints in the 311 service requests
data vary from 1 to 29. When there are more damaged tree complaints
in the same area, we are more certain that a fallen tree has disrupted an

Fig. 2. Map of our case study showing initially open facility locations (in red
J0), and unavailable facility locations (in black J\J0). Population density is
shown for each census tract of the Bronx Borough. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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arc. Therefore, if both end nodes of a component receive more than five
complaints, we assume the arc, which is comprised of the component, is
disrupted. Then, we filter the disrupted arcs between demand points
and facility locations to the ones that only affect the coverage. To do so,
we use real road distances, in miles, to decide a demand node coverage
by a facility location using GeoPy package in Python. We set the cov-
erage distance to 0.7 miles to create set A′. A coverage distance of 0.7
miles (in Manhattan distance) approximately represents three avenue
blocks, which represents a walkable distance to emergency service lo-
cations in a dense urban region. According to this procedure, we gen-
erate ′ =A| | 1573 disrupted arcs between demand and facility location
nodes within the coverage distance. We assume that demand–facility
arcs (i, j) with fewer than five damaged tree complaints with at most
one edge belong to A. Then, we generate initial coverage set Ni

A for
each i ∈ D if demand point i is within the 0.7 miles coverage distance
from facility location j and (i, j) ∈ A.

We allow emergency responders relocate between facility locations
if the distance between locations is less than two miles, since this re-
presents a relocation that can be done in a short amount of time in
between consecutive time periods. We generate ′ =E| | 466 disrupted
arcs between facility locations with distance less than two miles. Also,
we allow 10 facility locations in the coverage area (i.e., within 0.7
miles) with the least damaged tree complaints to be initially open in set
J0, since these locations represent entry points that are initially acces-
sible to emergency responders. If each pair of facility locations j and j′
are initially open, we assume there is an initially available arc (j, j′) in
set E. Note that for every j ∈ J, (j, j) ∈ E.

Next, we analyze the road infrastructure component-wise for dis-
rupted arcs and create the installable component set ′ =C| | 1029. To
generate sets AC(i, j) and EC(j, j′), we first calculate up to ten shortest
paths between each (i, j) ∈ A′ with distance less than or equal to 0.7
miles and (j, j′) ∈ E′ with distance less than or equal to 2 miles. Then, a
component belongs to set AC(i, j) (or EC(j, j′)) if at least one of the 10
shortest paths between (i, j) ∈ A′ (or (j, j′) ∈ E′) becomes available
following component installation. A processing time pc for each in-
stallable component c ∈ C′ is generated by combining the real distance
and damage severity that reflects the number of complaints, resulting in
1 ≤ pc ≤ 10. We allow =P 10 out of =J| | 38 facilities to be open by
locating emergency responders in each time period. We set =L 2 to
allow for primary coverage and one level of backup coverage, with

=θ 0.71 and =θ 0.32 . This allows for most of the benefit to come from
primary coverage. Since our model considers short-term recovery of the
road network components after disasters, we consider the time horizon
as a day. We vary the number of time periods =T 8, 12, 18 to reflect the
different work hours per day and the number of recovery crews

=K 1, 2, 3, 4, 5.
We now present the results and insights obtained from solving

MMCaNR. Table 2 summarizes the objective values and running times
for the Bronx Borough data set for applying the heuristic algorithms and
solving MMCaNR using GUROBI. The |A′| and |E′| columns report the
number of unavailable arcs between demand–facility nodes and be-
tween facility–facility nodes, respectively. The column |C′| reports the
number of installable components, while column |D| and |J| report the
number of demand nodes and facility location nodes. Column T and K
report length of the time horizon and number of recovery crews. The
“Linear Relaxation Rounding Heuristic Solution Value” column reports
the feasible solution obtained using the integer rounding procedure and
the running time in seconds in parentheses. The “Lagrangian & Linear
Relaxation Heuristic Solution Value” column reports the feasible solu-
tion constructed using the Lagrangian relaxation solution and enhanced
with the linear programming relaxation solution and the running time
in seconds in parentheses. The “Optimal Solution Value” column re-
ports the optimal solution and the running time in seconds in par-
entheses if the instance is solved optimally within an hour or the best
solution values and the gap found using GUROBI within a one hour time
limit. Note that reported gaps in Table 2 are the relative MIP optimality

gaps found by GUROBI within an hour.
The computation time in Table 2 in the column “Linear Relaxation

Rounding Heuristic Solution” includes the time to solve the linear
programming relaxation. The computation time in the column “La-
grangian & Linear Relaxation Heuristic Solution” includes the time to
solve the linear programming relaxation and the Lagrangian relaxation
using the subgradient algorithm. Thus, the total computational times
for each heuristic are comparable. We observe that the feasible solu-
tions obtained using the linear relaxation rounding heuristic are as good
as or better than the feasible solutions obtained using Lagrangian and
linear relaxation heuristic in all of the instances in Table 2.

We examine the optimal solutions produced by MMCaNR by ex-
amining the performance of the model at each time period. To do so, we
represent the optimal objective function value Z as a sum of the mul-
tiple coverage of emergency service demand recorded in each time
period, = …Z t T, 1, , ,t with:

∑ ∑= = …
= ∈

Z w θ z t T, for 1, ,t

L

i D
it i t

ℓ 1
ℓ ℓ

and = ∑ =Z Z .t
T

t1
Fig. 3 reports = …Z t T, 1, ,t for MMCaNR instances with

=K 1, 2, 3, 4, 5 and =T 8. Fig. 3 also reports the coverage values as-
sociated with a fully functional network G⋆, we use network

= ∪ ′ ∪ ∪ ′★G I A A E E( , ), with all arcs initially available. In G⋆, the P
emergency responders are initially located in the initially available
facilities J0 at time =t 0 and are relocated over the time horizon using
arcs in E ∪ E′. The solution found using the fully functional network G⋆

provides an upper bound for the optimal objective function.
We report the locations of open facilities in Table 3 for = …t 0, ,8

and =K 5 using the Bronx Borough data set. This allows us to compare
the optimal emergency responder locations at = …t 0, ,8 to those in the
fully functional network G⋆.

In Fig. 3, the multiple coverage recorded using only initially avail-
able arcs at =t 0 is =Z 23.890 and increases over the time horizon as
the network crews install new components from C′. We observe that the
model solution suggests first repairing components that enable emer-
gency responders to move between facility locations in the network
using arcs in E′. Therefore, at the earlier periods of the time horizon,
coverage improvement of the system is slower and also Zt sometimes
achieves the same value for the different number of recovery crews. The
difference between Zt for =K 1 and =K 2 is significant compared to the
coverage differences between other consecutive number of recovery
crews. This occurs, since one recovery crew can repair one component
at a time, and the first components installed tend to be in E′ to enable
facility locations relocations. The best possible emergency service de-
mand coverage value occurs with the fully functional network G⋆. Even
though the emergency responders are located at initially available fa-
cilities in J0 at the beginning of time horizon in the network G⋆, re-
locations can occur using all arcs in E ∪ E′, since all arcs in A′ and E′ are
initially available. Thus the system reaches its maximal achievable Zt
value at time =t 2.

Fig. 4 illustrates the ratio of the multiple coverage in the optimal
MMCaNR solutions (Zt) to the corresponding multiple coverage in the
same time period in the fully functional network G⋆, which we denote
the coverage ratios. Fig. 4 illustrates the coverage ratios for = …t 1, ,8
and =K 1, 2, 3, 4, 5 repair crews. The coverage ratio is 0.25 at the
beginning of the time horizon at =t 0. When =t 0, all emergency re-
sponders are located at the same set of locations in J0 in all solutions.
However, the solution using the fully functional network G⋆ can cover
significantly more demand due to all arcs in A′ and E′ being initially
available. The coverage ratios increase between =t 1 and =t 8 as
network components are repaired. Emergency managers can use this
analysis to decide the number of repair crews to achieve certain ratios
of coverage.

Fig. 5 provides a visual representation of the solutions for the
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instance with =T 8 and =K 5 including the open facilities and their
coverage areas for time periods 0, 4, and 8 as well as the solution to the
instance using the fully functional network G⋆ at =t 8. Fig. 5(a) shows
the initial coverage of emergency service demand and initial locations
of emergency responders in the network for the optimal solution at time

=t 0. Fig. 5(b) and (c) show the solution at time periods 4 and 8, re-
spectively. The circles in these sub-figures illustrate the emergency
responders’ coverage areas. Fig. 5(d) shows the solution with the fully
functional network G⋆.

We highlight the value of modeling relocation restrictions by com-
paring the optimal solutions to MMCaNR to the corresponding
MMCaNR model without relocation restrictions. To do so, the set of
initially available arcs between facility location is set to = ×E J J , and
the set of disrupted arcs between emergency responder locations is set
to ′ = ∅E . Table 4 reports the open facility locations over the time
horizon for the instances of MMCaNR without relocation restrictions
with =T 8 and =K 5. These locations can be compared to those in
Table 3. In Table 4, the open facility locations at the beginning of the
time horizon are shown in the first column represented by =t 0. The

last column shows the open facility locations in the fully functional
network G⋆ at =t 8. In Table 4 and in the original MMCaNR instance
(see Table 3), each emergency responder is relocated at most two times
for a total of 10 relocations across the time horizon. In addition, Table 3
indicates that when there are relocation restrictions, there are inter-
mediate facility locations (e.g., facility location 22) used to relocate
emergency responders from one location to another if there is no direct
arc to do so. There is no need for such intermediate facilities when the
movement of emergency responders is unrestricted, as shown in
Table 4.

We can compare the facility locations reported in Tables 3 and 4 to
evaluate the relocations at each time period in the disrupted network G
with relocation restrictions (Table 3) and without relocation restrictions
(Table 4) as well as locations of emergency responders in the fully
functional network G⋆. We call emergency responder locations in the

Table 2
Feasible and optimal solutions for the Bronx Borough data. Computational time, in seconds, is shown in the parentheses. “Linear Relaxation Rounding Heuristic
Solution” reports the feasible solution value obtained using the heuristic and the computation time using GUROBI. “Lagrangian & Linear Relaxation Heuristic
Solution” reports the feasible solution value obtained using the heuristic and the computation time using GUROBI and “Optimal Solution Value” reports the optimal
solution if the instance is solved optimally within an hour or the best objective function value found in one hour and the computation time to solve MMCaNR using
GUROBI.

|A′| |E′| |C′| |D| |J| P T K Linear relaxation rounding heuristic solution
value (time(s)/gap)

Lagrangian & linear relaxation heuristic
solution value (time(s)/gap)

Optimal solution value (time(s)/
gap)

1573 466 1029 276 38 10 8 1 997.16(29 s) 909.83(15 s) 997.17(189 s)
1573 466 1029 276 38 10 8 2 1308.65(38 s) 1198.62(47 s) 1309.40(649 s)
1573 466 1029 276 38 10 8 3 1506.34(183 s) 1404.78 (182 s) 1506.34(913 s)
1573 466 1029 276 38 10 8 4 1643.72(48 s) 1539.47(188 s) 1646.10(533 s)
1573 466 1029 276 38 10 8 5 1744.98(43 s) 1647.35(105 s) 1744.99(1308 s)
1573 466 1029 276 38 10 12 1 1757.11(47 s) 1757.09(81 s) 1757.25(359 s)
1573 466 1029 276 38 10 12 2 2251.50(80 s) 2236.59(428 s) 2251.50(3405 s)
1573 466 1029 276 38 10 12 3 2547.83(46 s) 2445.53(187 s) 2548.84(870 s)
1573 466 1029 276 38 10 12 4 2723.87(51 s) 2723.36(135 s) 2725.73(1905.14)
1573 466 1029 276 38 10 12 5 2839.05(94 s) 2839.05(109 s) 2839.06(2177.62)
1573 466 1029 276 38 10 18 1 3046.62(424 s) 3046.70(750 s) 3046.77(3600 s/0.50%)
1573 466 1029 276 38 10 18 2 3812.17(155 s) 3811.90(624 s) 3812.17(3600 s/0.08%)
1573 466 1029 276 38 10 18 3 4179.80(518 s) 4179.80(289 s) 4180.80(3600 s/0.17%)
1573 466 1029 276 38 10 18 4 4397.01(138 s) 4396.50(310 s) 4398.87(3600 s/0.08%)
1573 466 1029 276 38 10 18 5 4538.94(197 s) 4536.63(275 s) 4538.40(3600 s/0.13%)

Fig. 3. Optimal multiple coverage of emergency service demand values for
MMCaNR accrued in each time period for =K 1, 2, 3, 4, 5, and =T 8 for the
Bronx Borough data set, where =t 0 represents the objective value without any
repair. G⋆ represents the objective value when the network is fully functional
and emergency responders are first located in the initially available facilities
then relocated over the time horizon =T 8.

Table 3
Open facility locations in the optimal solutions to MMCaNR for the Bronx
Borough data set in each time period for =T 8 and =K 5. The second column

=t 0 shows open facility locations in J0 at the beginning of time horizon. The
last column G⋆ shows “ideal” facility locations, which are the optimal facility
locations for the fully functional network.

Time periods t

Facilities t = 0 1 2 3 4 5 6 7 8 G⋆

1 × × × × × × × ×
5 × × × × × × ×
6 ×
11 × × × × × × ×
16 × × × ×
18 × × × × × ×
19 × × × × × × ×
22 × × × × × × ×
23 × × × × ×
25 × × × × ×
26 × × × × × × × ×
28 × × × × × × × × ×
29 × × × × × × × × ×
30 ×
31 × × ×
34 × × ×
35 ×
36 × × × × ×
37 ×
38 × × ×
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final column of tables as the “ideal” emergency responder locations of
the network G⋆, since they are the optimal facility locations in the fully
functional network G⋆. At time =t 8, in Table 3, seven of the 10
emergency responder locations are the same as the “ideal” emergency
responder locations in G⋆, and in Table 4, six of the 10 emergency re-
sponder locations are the same as the “ideal” emergency responder
locations in G⋆. The computational results of the original MMCaNR
model suggest that it is best to install components that enable disrupted
arcs in E′ between facility locations earlier in the time horizon and then
install components that enable the disrupted arcs in A′ between demand
points and the open facility locations to increase the emergency service
demand coverage.

Table 5 summarizes the total number of emergency responder re-
locations and the total distances associated with these relocations (in
miles) for the instances with =T 8 and =K 1, 2, 3, 4, 5 in the original
MMCaNR and the MMCaNR without relocation restrictions. We calcu-
late the total distance of emergency responder relocations by summing
the Manhattan distances between facility locations for all emergency
responders over the time horizon. Note that in the original MMCaNR
instances, we allow emergency responders to relocate between

Fig. 4. Ratio of optimal multiple coverage of emergency service demand values
for MMCaNR accrued in each time period for =K 1, 2, 3, 4, 5, and =T 8
compared to the optimal multiple coverage of emergency service demand va-
lues for the fully functional network G⋆ for the Bronx Borough data set.

Fig. 5. MMCaNR emergency responder locations for the Bronx Borough data set with =K 5 and over the time horizon =T 8. (a) shows the model solution using
initial arcs. The triangles represent the open facilities and the circles around them represent the coverage area of given triangles at time periods 4 and 8 in (b)–(d)
shows the optimal model solution when the network is fully functional.
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locations if there is an available arc with a distance less than or equal to
two miles. Even though when we remove the relocation restrictions in
the MMCaNR without relocation restrictions, the total number of re-
locations is similar to those of the original MMCaNR. When we remove

the relocation restrictions, we observe that emergency responders
travel up to six miles between consecutive time periods. Furthermore,
the total distances of the relocations are more than double those of the
corresponding original MMCaNR instances in three out of five in-
stances. We further study the impact of relocation restrictions in Fig. 6,
which compares the multiple coverage of emergency responders at each
time period of the original MMCaNR to the MMCaNR without reloca-
tion restrictions for =K 1, 2, 5. We observe that there are large dif-
ferences in the multiple coverage of emergency responders between the
two models and that these differences are most accentuated at the be-
ginning of the time horizon.

We perform a sensitivity analysis on various parameters of the
Bronx Borough data set to understand how the original MMCaNR model
solutions change under different inputs and to obtain policy insights. To
do so, we create seven model instances based on the Bronx Borough
data set that each change one type of input, and we solve MMCaNR
with these seven additional data sets with =T 8 and =K 1, 2, 3, 4, 5.
We describe these model instances as follows.

1. We consider having a different set of initially available locations J0.
Here, J0 contains the “ideal” locations associated with the fully
functional network G⋆, as reported last column in Table 3.

2. We consider having a different set of initially available locations J0.
Here, J0 contains the |P| most damaged facility locations, where
damage is computed as the total number of 311 complaints in the
location’s coverage area.

3. We consider a component to be disrupted, and hence, installable if
both ends of the component receive three or more complaints in the
311 data (as opposed to five complaints in the original problem
instance). This results in a new installable component set C′ as well
as its corresponding disrupted arc set A′.

4. We set the relocation distance to one mile (two miles in the initial
data set). Shortening the relocation distance changes the set of in-
itially available arcs between facilities E and the set of disrupted arcs
between facility locations E′.

5. We consider =L 3 levels of coverage with = =θ θ0.5, 0.31 2 and
=θ 0.23 .

6. We consider a coverage distance of 1.0 mile when determining the
subset of facility locations that cover demand at i ∈ I, captured by

∈N i I,i
A .

7. We consider locating =P 8 emergency responders.

We report the optimal multiple coverage of emergency service ac-
crued in each time period for each case. The results are displayed in
Table 6, Figs. 7 and 8.

Table 6 reports the objective values and running times for seven

Table 4
Open facility locations in the optimal solutions to MMCaNR without relocation
restrictions for the Bronx Borough data set in each time period for =T 8 and

=K 5. The second column =t 0 shows open facility locations in J0 at the be-
ginning of time horizon. The last column G⋆ shows “ideal” facility locations,
which are the optimal facility locations for the fully functional network.

Facilities t = 0 1 2 3 4 5 6 7 8 G⋆

1 × × × × × × × × ×
5 × × × × × × ×
6 ×
11 × × × × × × × × ×
13 × × × × × × × ×
16 × × ×
18 × × × × × ×
19 × × × × × × × ×
22 × × × × × × ×
23 ×
25 × × × ×
26 × × × × × × × × ×
28 × × × × × × × × ×
29 × × × × × × × × ×
30 ×
31 × ×
34 × ×
35 ×
36 × ×
37 ×
38 ×

Table 5
Comparison of the total number of relocations and the total distance of re-
locations (in miles) in the original MMCaNR and the MMCaNR without re-
location restrictions.

Total number of relocations Total distance of relocations (miles)

K Original
MMCaNR

MMCaNR with no
relocation
restrictions

Original
MMCaNR

MMCaNR with no
relocation
restrictions

1 10 10 13.03 21.46
2 12 12 12.86 30.74
3 11 11 15.28 32.09
4 11 11 16.36 35.68
5 10 10 17.67 32.83

Fig. 6. Comparison of optimal multiple coverage of emergency service demand values for MMCaNR and MMCaNR without relocation restrictions accrued in each
time period for =K 1, 2, 5, and =T 8 for the Bronx Borough data set, where =t 0 represents the objective value without any repair. G⋆ represents the objective value
when the network is fully functional and emergency responders are first located in the initially available facilities then relocated over the time horizon =T 8.
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additional Bronx Borough data set instances, including the optimal
solutions identified using GUROBI and feasible solutions identified
using the two heuristic algorithms. The column labeled “New Instance
Name (representing Figure)” reports the name of the new data instance
with the name of the associated figure showing the multiple coverage
values in each time period Zt in parentheses. Columns T and K represent
the number of time periods and number of worker crews, respectively.
The last three columns report the solution value and computation times
as in Table 2. We observe that in all of the experiments in Table 6, the
linear relaxation rounding heuristic identifies feasible solutions that are
at least as good as the Lagrangian & linear relaxation heuristic solution
for all instances. This matches the observations from Table 2.

We illustrate the multiple coverage in each time period for the first
four sets of model instances in Fig. 7 and for the last three sets of model
instances in Fig. 8. We also compare each instance to the multiple
coverage associated with its corresponding fully functional network G*.
Note that the first four sets of model instances in Fig. 7 have the same
multiple coverage values associated with the fully functional network
G* at time =t 8 as in the original problem instance, whereas the last
three sets of instances in Fig. 8 have different multiple coverage values
associated with the fully functional network G* as in the original pro-
blem instance (as shown in Fig. 3).

Fig. 7 illustrates the multiple coverage in each time period for in-
stance sets 1–4. Fig. 7a and b illustrate the results when we change the
set of initially available facility locations, J0. Fig. 7a illustrates the case
when the “ideal” locations are initially available (i.e.,

=J {1, 6, 11, 18, 22, 23, 26, 30, 31, 34}0 ). In this case, the total number
of relocations decreases to six with =K 5 recovery crews and time
horizon =T 8, since the facilities are already located in “ideal” loca-
tions. Nine of the ten open facility locations at =t 8 are same as those in
the second last column in Table 3. Fig. 7b illustrates the case when the
10 initial facility locations are those with the most damage complaints
(i.e., =J {3, 6, 9, 10, 11, 13, 14, 20, 21, 23}0 ). We observe that the mul-
tiple coverage is higher in Fig. 7b than in Fig. 3 across all time periods.
This occurs, since there is a high weight at the demand points near these
initially available facility locations (i.e., wit values), which allows more
demand to be covered without having to relocate facilities. The change
in the initially open facility location set results in 10 relocations over
the time horizon =T 8 with =K 5 recovery crews. When we compare
the open facility locations at the end of time horizon, we observe that
three are different than those in Table 3. When we compare Fig. 7a and
b, we observe higher coverage in Fig. 7a for each number of repair
crews K. For example, in Fig. 7a when =K 5, 129 demand points are
covered with a primary facility and 41 demand points are covered with
a backup facility, with an optimal objective function value of 1804.01
(see Table 6), while in Fig. 7b, 124 demand points are covered with a
primary facility and 58 demand points are covered with a backup fa-
cility, with an optimal objective function value of 1735.79. These so-
lutions can be compared to that of the original problem instance, which
has an optimal objective function value of 1744.99 (see Table 2).

Fig. 7 c shows the multiple coverage in each time period, when we
redefine the installable set of components. In this case, we have more

Table 6
Feasible and optimal solutions for the Bronx Borough data for new instances. Computational time, in seconds, is shown in the parentheses. “Linear Relaxation
Rounding Heuristic Solution” reports the feasible solution value obtained using the heuristic and the computation time using GUROBI. “Lagrangian & Linear
Relaxation Heuristic Solution” reports the feasible solution value obtained using the heuristic and the computation time using GUROBI and “Optimal Solution Value”
reports the optimal solution if the instance is solved optimally within an hour or the best objective function value found in one hour and the computation time to
solve MMCaNR using GUROBI.

New instance name (representing figure) T K Linear relaxation rounding heuristic
solution value (time(s)/gap)

Lagrangian & linear relaxation heuristic
solution value (time(s)/gap)

Optimal solution value
(time(s)/gap)

“Ideal” locations are initially available (Fig. 7a) 8 1 1048.45 (2 s) 1038.21 (22 s) 1048.45 (19 s)
8 2 1357.70 (15 s) 1349.11 (89 s) 1360.09 (73 s)
8 3 1558.25 (13 s) 1557.65 (73 s) 1558.25 (210 s)
8 4 1703.80 (9 s) 1703.80 (34 s) 1703.80 (65 s)
8 5 1804.02 (9 s) 1804.01 (37 s) 1804.01 (63 s)

Most damaged 10 facility locations initially
available (Fig. 7b)

8 1 938.80 (72 s) 930.42 (50 s) 940.60 (489 s)

8 2 1261.58 (156 s) 1255.78 (216 s) 1261.59 (863 s)
8 3 1471.66 (318 s) 1468.72 (580 s) 1473.70 (1880 s)
8 4 1623.94 (351 s) 1622.18 (201 s) 1623.93 (2705 s)
8 5 1735.80 (99 s) 1735.79 (70 s) 1735.79 (790 s)

Additional installable components(Fig. 7c) 8 1 970.52 (49 s) 970.52 (32 s) 972.57 (229 s)
8 2 1290.85 (59 s) 1288.95 (214 s) 1292.56 (476 s)
8 3 1492.21 (150 s) 1491.96 (74 s) 1492.21 (577 s)
8 4 1633.38 (88 s) 1631.97 (50 s) 1633.94 (497 s)
8 5 1733.92 (46 s) 1731.84 (48 s) 1733.92 (1038)

Relocation restriction 1 mile(Fig. 7d) 8 1 920.00 (100 s) 920.00 (40 s) 927.10 (410 s)
8 2 1233.90 (717 s) 1232.20 (359 s) 1236.68 (2462 s)
8 3 1441.92 (3224 s) 1439.13 (564 s) 1440.97 (3600 s/0.43%)
8 4 1591.11 (224 s) 1591.11 (133 s) 1591.11 (1427 s)
8 5 1691.68 (124 s) 1691.68 (70 s) 1691.68 (995 s)

Three levels of coverage(Fig. 8a) 8 1 724.63 (18 s) 718.23 (23 s) 727.15 (165 s)
8 2 971.51 (18 s) 967.24 (69 s) 971.51 (267 s)
8 3 1129.91 (142 s) 1129.69 (99 s) 1129.97 (689 s)
8 4 1253.28 (85 s) 1252.19 (94 s) 1253.28 (281 s)
8 5 1345.40 (62 s) 1344.59 (62 s) 1346.34 (404 s)

Coverage distance 1 mile (Fig. 8b) 8 1 2412.14 (270 s) 2401.93 (295 s) 2420.17 (1645 s)
8 2 2588.38 (1804 s) 2583.85 (717 s) 2586.11 (3600 s/0.34%)
8 3 2685.21 (1994 s) 2676.05 (2807 s) 2680.12 (3600 s/0.82%)
8 4 2753.47 (1668 s) 2748.60 (3203 s) 2741.28 (3600 s/0.95%)
8 5 2802.48 (2397 s) 2801.96 (1599 s) 2789.41 (3600 s/0.74%)

P = 8(Fig. 8c) 8 1 956.90 (32 s) 956.58 (30 s) 964.49 (95 s)
8 2 1252.21 (24 s) 1250.80 (26 s) 1252.75 (230 s)
8 3 1429.51 (36 s) 1428.41 (47 s) 1429.51 (178 s)
8 4 1540.43 (35 s) 1536.58 (47 s) 1540.64 (595 s)
8 5 1623.73 (118 s) 1617.75 (69 s) 1625.70 (554 s)
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installable components than in the original problem instance, reflecting
more damage in the network. As a result, we observe that the multiple
coverage in each time period for the given number of recovery crews is
lower in some time periods than in Fig. 3. Overall, the optimal objective
function values decrease by 11.07–24.6 as compared to those in the
original instances (see Tables 2 and 6). At the end of time horizon =T 8
for =K 5, in Figs. 7c and 3, there are 129 demand covered with primary
coverage and 42 demand with backup coverage. Fig. 7d reports the
multiple coverage in each time period when we reduce the relocation
distance for emergency responders to one mile (as compared to two
miles in the initial data set). Reducing the relocation restriction to one
mile restricts the movement of the emergency responders. As a result,
the optimal objective function values decrease by 53.31–72.72 as
compared to those of the original instances (see Tables 2 and 6).

Fig. 8 illustrates the multiple coverage in each time period for new
instances 4–7. Fig. 8a shows the multiple coverage in each time period
when we set the coverage level to =L 3, with primary coverage and
two levels of backup coverage (as compared to two total levels of
coverage in the initial data set). We set the weights to = =θ θ0.5, 0.31 2

and =θ 0.23 . We observe that nine of the ten open facilities at the end of
time horizon =t 8 are the same as in the original data reported in
Table 3. Additionally, the overall multiple coverage is lower in all time
periods, since two levels of backup coverage are desired instead of one.
For example, in the new instance with 3 levels of coverage and =K 5,
there are 113 demand covered with a primary facility, 60 demand
covered with a backup facility and 10 demand covered with a second
backup facility. This can be compared to 129 and 42 data points

covered by primary and backup facilities, respectively, in the initial
problem instance. Fig. 8b shows the multiple coverage in each time
period when we set the coverage distance to one mile (as compared to
0.7 miles in the initial data set). Since an open emergency responder
location can cover larger area, we observe higher overall multiple
coverage levels as compared to the initial data set as reported in Fig. 3.
For example, with one mile coverage and =K 5, there are 202 demand
points covered with a primary facility and 105 demand points covered
with a backup facility. We observe that when we consider three levels
of coverage, eight of 10 open facility locations at the end of time hor-
izon =T 8 are same as the open facility locations reported in Table 3.
Fig. 8c shows the multiple coverage in each time period with =P 8
open facility locations (as compared to =P 10 in the original data set).
As expected, decreasing the number of open facility locations results in
lower multiple coverage compared to that of the original data set as
reported in Fig. 3. For example, when =T 8 and =K 5, 105 and 39
demand points are covered by a primary and backup facility, respec-
tively. We observe that six out of eight open facility locations are same
as the open facility locations reported in Table 3 at =t 8.

The number of recovery crews, the time horizon, and processing
times of the installed components affect the number of installed com-
ponents. The number of installed components affects the total number
of covered demand nodes in all levels and levels of the coverage. Our
computational experiments suggest that the best recovery strategy is to
install components that are connected to the most critical open facility
locations. Therefore, the recovery crews are relocated with the emer-
gency responders using the available arcs in the network. Our model

Fig. 7. Optimal multiple coverage of emergency service demand values for MMCaNR with the different initial parameters accrued in each time period for
=K 1, 2, 3, 4, 5, and =T 8 for the Bronx Borough data set, where =t 0 represents the objective value without any repair. G⋆ represents the objective value when the

network is fully functional and emergency responders are first located in the initially available facilities then relocated over the time horizon =T 8.
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solutions assist decision–makers to decide the relocations of emergency
responders and the schedule of recovery crews to improve the emer-
gency service demand coverage during disaster recovery process. As a
result, the solutions provide guidance to prioritize the installation of
network components to deliver time–sensitive services more effectively
during the disaster recovery phase.

5. Conclusions

Disruptions in road infrastructure can delay the delivery of emer-
gency service and relief demand. In this paper, we introduce a maximal
multiple coverage and network restoration problem (MMCaNR) for
recovery and restoration of infrastructure systems after disasters with
the goal of maximizing cumulative multiple coverage of emergency
service demand over the time horizon. MMCaNR considers the inter-
dependency between road infrastructure and emergency services. While
solutions to the problem provide a plan for restoring the most critical
network components, the problem also relocates emergency responders
using available arcs to improve the cumulative multiple coverage of
emergency service demand. Further, MMCaNR solutions can be used to
measure the emergency service demand coverage after disasters.

We develop an integer programming formulation for our model. We
introduce a Lagrangian and linear relaxation heuristic and a linear re-
laxation rounding heuristic. Each heuristic identifies a feasible solution

to MMCaNR. We examine the quality of heuristics using real world data
set belongs to the Bronx Borough during Hurricane Sandy. In our
computational experiments, we observe that the feasible solutions ob-
tained using the linear relaxation rounding heuristic yields better fea-
sible solutions. These observations suggest that the model and heur-
istics can contribute effective emergency service demand coverage and
network recovery after a disaster.
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