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A B S T R A C T

One of the main mechanisms of an optimization problem is the effectiveness and relevance of the objective function. In the context of an optimization problem in the
subsurface domain, called seismic history matching, this study proposes to investigate further aspects of assimilating data. We focus on two main characteristics of
the objective function: the influence and the sensitivity to the amount of data used in the seismic history matching. We select four metrics to analyse the similarity/
dissimilarity measurement used in the matching. The optimization method used to perform the seismic history matching is an auto-adaptive differential evolution
algorithm. This study has been carried out on three real datasets. Based on the results and analysis of the seismic history matching experiments, we are able to draw
some practical suggestions on what kind of objective function should be established. Despite its simplicity, the Least Square metric performs as well as any other
metric. Using all the possible data is safer but it is not compulsory to obtain good history matching results, in some cases using less data leads to the same answer.
Using different metrics or more data does not change the computing time.

1. Introduction

In the subsurface community, a key problem is how to generate
simulation models that can predict the behavior of the fluids flow
within the reservoir, using data collected from the field [1–3]. In this
context, History Matching (HM) is one key component of the subsurface
management. HM consists of updating the reservoir model based on an
optimization process that matches the simulated outputs with available
observed data [4].

To update the reservoir model, the Geoscience Community gen-
erally uses all the available field data [5]. Namely, the production well
data, which is very spatially localized type of data, and the seismic
survey data, which is a more spatially global data. The integration of
data from production wells into HM is a well-known process [6,7]. On
the other hand, the assimilation of seismic data is not yet well estab-
lished and still under very active study [8–14].

In this paper, we focus on the integration of four-dimensional (4D)
inverted seismic data into the HM, also called Seismic History Matching
(SHM). 4D seismic data consists of multiple three dimensional (area and
depth) seismic surveys at different times. Such seismic data constitute
an invaluable source of information on fluid displacement and geology
over extensive areas of the reservoir [15]. It is believed that the large
quantities of data available in the seismic surveys could be used to
generate a much more robust prediction as compared to using only well
production data. However, incorporating 4D seismic data into the

reservoir model through an optimization procedure is a challenging
task [16–18], and no complete evidence of its benefits to HM has been
seen in the literature so far.

This leads us to believe that something is still to be understood
concerning the crucial step of integrating the seismic data into the
history matching workflow. Therefore in this study we explore in more
detail the main characteristics of SHM. Specifically, we focus our ana-
lysis on the choice of the objective function and how it affects the
performance of the SHM. To simplify the SHM workflow we will con-
sider the seismic data to be already inverted into pressure and satura-
tion and focus on the data assimilation questions, or how we should
formulate the objective functon of this problem.

Classical formulations of the objective function are maybe not well
adapted to inverting seismic data [19]. For example, the traditional
least square based mismatch may not be the best representation of the
visual difference between two seismic images, as it does not directly
takes into account the relationship between values in different pixels of
the seismic map image.

Furthermore, traditionally it is believed that a maximum number of
different seismic attributes should be used and will guarantee the best
assimilation into the history matching process (the more data the
better). However, there is no study up until now that verifies this
statement. This crucial point is about the amount of data used in the
optimization process versus its relevance in the reduction of un-
certainty. It raises the question: is it economically relevant, in terms of
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computing time, to incorporate as much data as we can?
To better understand these issues, we perform extensive compara-

tive experiments with the goal to better assess the mechanisms trig-
gered by the design of the objective function in the seismic history
matching procedure. In these experiments, we use a framework based
on Auto-adaptive Evolutionary Computation [20] on three different
real data sets to explore the following questions: (1) How different
image analysis methods compare to each other, (2) How the amount of
data used affects the update of the model and (3) the influence of the
complexity of the dataset itself. To guarantee the relevance of these
tests, we perform these experiments within a SHM loop with large real
world data sets, making the whole exercise very costly in terms of
computational time.

2. Set up and background

In this work, we investigate different similarity and dissimilarity
metrics and different attribute combinations as objective functions for
the SHM problem. These objective functions are applied on a self-
adaptive Differential Evolution algorithm in a Seismic History Matching
framework. In this section we describe the details of each procedure
and the algorithm used.

2.1. The seismic history matching challenge

The problem of Seismic History Matching (SHM) consists of using
data from production wells’ history and from seismic volumes or maps
to update the parameters of a simulation model describing the sub-
surface fluids flow. A successful optimization will make the model more
reliable for future forecasting, allowing it to be used for decision-
making.

The seismic data is obtained from surveys, and is subject to various
processing and interpretation steps [21–23]. This results in a map that
will be used in the objective function, where it is compared to an
equivalent map generated by the simulation model, and both are em-
ployed to update the model [24].

In this work, we made the choice of using a simplified history
matching workflow and setting in order to study strictly the impact of
multiple data (attributes) and the influence the similarity metric on the
history matching result. This avoids the results of the experiments to be
unnecessary biased by data processing, physical modeling and ex-
pensive procedures to achieve them. Indeed, to history match we need
to transform seismic attributes into the simulation domain or the other
way around. For instance, the SHM can be set up in different domains of
the above process: Observed Seismic, Impedance, or Simulation domain
(pressure and saturation of fluids). The choice of the comparison do-
main should depend on the smallest encompassed uncertainty of the
data, but this is still an open problem [25] and a matter of debate
among geoscientists.

Our workflow uses synthetic seismic maps, which are created di-
rectly from a simulation model of real cases (existing fields). We extract
pressure and saturation infomation directly from the cell’s attributes in
the model, forming a 3D synthetic seismic map. These maps are aver-
aged over the depth axis, we apply a min/max linear scaling to the [0,1]
range. The optimization procedure operates on an initial random en-
semble, and performs the history matching using only the synthetic
seismic model from the reference model. Finally, to compare the dif-
ferent formulations of the objective functions, the final ensemble ob-
tained from SHM using different attributes and metrics are evaluated by
comparing the wells’ production data (Fig. 2). A summary of this
workflow is shown in Fig. 1.

In this workflow, a critical question is how much seismic data to use
in the optimization procedure to reach a satisfactory update of the
model. A common belief is that “the more data the better”. However,
some of the data might be not reliable or redundant, and simply slow
down the convergence of the optimization. Therefore in this study we

want to question this statement, and analyze the influence of the
amount of data used in the process of SHM. Following the choice that
we made for performing SHM in the simulation domain, we have direct
access to three attributes, namely Pressure (P), water saturation (W) and
gas saturation (G) (three phase flow), as well as their different combi-
nations. By changing the number of attributes available to the opti-
mizer, we vary the amount of data inserted into the SHM procedure,
and observe how this change influences the update of the models.

Another critical question for the SHM is how to assemble the ob-
jective function used for evaluation of the similarities/dissimilarities
between seismic maps. The standard formulation for the SHM used in
the industry is to use Least Squares (LS) [26], which relies on a point-
by-point analysis between the reference and model-generated maps, as
the similarity metric, but other formulations are also possible [27]. A
correct evaluation of how similar two maps are is a very important
point to drive the optimization algorithm towards a minimum misfit
and consequently to obtain the best updated models. Therefore, in this
study we compare four different formulations of this objective function
(including the LS), which are described in Section 2.3.

2.2. Differential evolution for history matching

In order to examine the effects of different attributes and similarity
measures on the SHM, we use the Success History Adaptive Differential
Evolution (SHADE [28]) as the optimization method. SHADE is a state-
of-art variant of Differential Evolution (DE) [29]. Recently, we have
shown that SHADE is effective at updating models in traditional
HM [20,30].

In SHADE, we define the initial model ensemble as the Solution Set
= …X x x x{ , , , },N1 2 where N is the size of the ensemble. Each xi ∈ X is a

real valued vector = …x x x x{ , , , },i i i iD1 2 where D is the number of model
parameters, and xij is a value between 0 and 1.

At each iteration t of the optimization, new solutions are generated
according to the following rules: a mutant vector vi, t is generated from
an existing solution xi,t by applying Eq. (1):

= + −( )v x F x x· .i t r t r t r t, , , ,1 2 3 (1)

The indices r1, r2, r3 are randomly selected from [1, N] such that they
differ from each other as well as i. The parameter F ∈ [0, 1] controls the
magnitude of change in the mutant vector. After generating vi, t, it is
crossed with the original solution xi,t in order to generate a trial vector
ui,t using the “Binomial Crossover” strategy, described in Eq. (2):

= ⎧
⎨⎩

≤ =
u

v CR j j
x

if rand[0, 1) or ,
otherwise.j i G

j i G rand

j i G
, ,

, ,

, , (2)

Where rand[0, 1) denotes a uniformly selected random number and jrand
is a decision variable index uniformly selected from [1, D]. CR ∈ [0, 1]
is the crossover rate. After all of the trial vectors have been generated, a
model is generated and simulated for each trial vector. The result of the
simulation generated by the trial vector ui,t is compared with the model
generated by the corresponding original vector xi,t, using the objective
function described in Section 2.3. Then the best model is kept in the
solution set X.

The values for the CR and F parameters are adjusted in an adaptive
manner by SHADE’s scheme of storing former parameter values in a
historical memory, and sampling new values near the historically suc-
cessful ones.

The hyper-parameters of SHADE used in this work were selected
using the Sequential Model-based Algorithm Configuration method
(SMAC [31]). A suite of 30 optimization benchmark functions from the
CEC2014 benchmark set was used in this process. The hyper-para-
meters used are: Population Size 8, Initial DE mutation F: 0.856, Initial
DE crossover CR: 0.244, selection strategy: current-to-pbest/1, p: 0.017,
archive rate: 0.996, memory size: 9. More details about the choice of
hyper-parameters, including a discussion of the sensitivity of these
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parameters on the history matching problem can be found in Aranha
et al. [20]

2.3. Objective functions, metrics and attributes

Within seismic history matching, an objective function is defined
through the number of attributes used and the metric utilized to mea-
sure similarity/ dissimilarity of the seismic maps. The optimization
algorithm generates sets of model parameter vectors xi, which are
compared with the reference model parameter vector ref following the
objective function F(xi) described in Eq. (3).

∑ ∑= ⎛

⎝
⎜

⎞

⎠
⎟F x similarity map x map ref( ) ( ), ( ) .i

attribs

i

attribs

(3)

In this equation, map(param) is a function that generates the seismic
map of a certain attribute for a given set of model parameters param. So
the optimization process compares the seismic map generated by the
individual solution xi, with the seismic map generated by the reference
parameter (ref).

Attribs is the subset of attributes chosen from (P, W, G, PW, PG, WG,
PWG), as described in Section 2.1. The seismic map for each attribute is
scaled to a [0,1] range and added together, so that the attributes have
the same weight.

Finally, similarity is the similarity function used to compare the
seismic maps. The choice of similarity function is another question that

we explore in this study. We choose four well established image simi-
larity metrics [32] described in the formulations below. For each for-
mulation, = …P p p p{ , , , }N1 2 is a seismic map obtained from the simu-
lation of a solution xi, and = …R r r r{ , , , }N1 2 is the seismic map obtained
by using the reference model, ref.

Least Squares (LS): This metric is the way traditionally used to
calculate the misfit in both the production well and seismic cases.
The misfit between two maps is calculated as

∑= −
=

LS P R M p r( , ) 1/ ( ) .
y

M

y y
0

2

(4)

where M is the total number of pixels.
Pearson Correlation (PC): This metric takes into account not only
the difference between individual cells in the seismic map, but also
their relative distance from the total distribution of values. The
misfit is calculated as

∑= − − −
=

PC P R p μ σ r μ σ R( , ) 1 (( )/ )*(( )/ ( )),
y

M

y P P y R
0 (5)

where μ(k) and σ(k) are the mean and standard deviation of a
seismic map, respectively.
Kendall Tau (KT): This metric uses the number of concordant and
discordant cells in the two maps. Let i, j, i ≠ j be two indexes of a

Fig. 1. Workflow of the seismic history matching method presented and used in this work.

Fig. 2. Traditional HM performance evaluation is using well production data. Left and right figures are two examples of production well outputs for field A. The
initial and final (optimized) set of models are represented by the red and green lines, respectively, while the reference data is represented by the black line. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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seismic map with size M. i and j are a concordant pair if
− = −sign p p sign r r( ) ( ),i j i j and a discordant pair otherwise. Nc is

the number of concordant pairs, and Nd is the number of discordant
pairs ( + = −N N M M*( 1)/2c d ) The Kendall Tau similarity is then
given by:

= − − −KT P R Nc Nd M M( , ) 1 |( )/( *( 1)/2)| (6)

Minimum Ratio (MR): This metrics focuses on the ratio between
each pair of cells in both maps. It is similar to the LS in that the
value of the ratio at each cell is independent from the values in the
rest of the seismic image. It is given by

∑= −
=

MR P R
M

min p r r p( , ) 1 1 ( / , / ).
y

M

y y y y
0 (7)

In the equation above, if either py or ry is 0, then the result of the
minimum function is 0. If both are 0, then the result of the minimum
function is 1.

It is worth noting the comparative characteristics of the metrics
above. MR and LS are local, so results from a cell are independent of the
value of others cells, while PC and KT are global, meaning that the
result of a cell depends on quantities from the entire map. Also, LS and
PC depend on the raw difference of values between the maps, while KT
and MR are based on more indirect comparisons.

3. Experiments and results

3.1. Experiment design and methodology

In this study the effects of the choice of seismic attributes and com-
parison metrics within the SHM loop are analyzed. Following the
methodology described in Fig. 1, the SHM process for different com-
binations of attributes and metrics is performed, and the final ensemble
of models is compared against the original reference model. We use the
SHADE optimization agorithm and its hyperparameters, described in
more details in Section 2.2. The stopping criteria is 2000 evaluations for
the Teal South and Field A, and 1000 evaluations for field B. The low
number of evaluations reflects the complexity of the simulations and
the number of repetitions required by the analysis, described below.

In these experiments, we use three real world datasets, namely, Teal
South [33], Field A and Field B. Field A consists of stacked reservoirs
made up of the tertiary age turbidites, with respect to an optimisation
complexity one can have a look at Fursov [34], which is a very similar
simulation model. Field B is a complex reservoir comprising heavily
compartimentalised with faults cross-cutting the turbidite sand de-
positional axes, a very similar field (in terms of complexity) is described
in Obdegwu [8]. The number of adjustable parameters for the HM
process in each field is, respectively, 13, 52 and 8. These parameters
have been selected after a sensitivity analysis, which used the same
approach as in [8] (Latin hypercube and tornado plots based on well
production attributes). The model parameters for Teal South are Por-
osity multiplier, Water Oil Contact position, Rock Compressibility,
Permeability values in the X direction (5 layers) and Permeability va-
lues in the Z direction (5 layers) for Teal South. The parameters for
Field A are Permeability Multiplier per layer (35 layers), Permeability
values in the Z direction, Pore volume Multiplier per layer (8 layers)
and Transmissibility Multiplier per layer (8 layers). The parameters for
Field B are Net to Gross Value, permeability in the X, Y and Z directions,
transmissibility in the X, Y and Z directions, and Porosity Multiplier
(showed later in Figs. 7–10).

By their very essence, these datasets (models and well production
data) are highly difficult to work with. Some of these difficulties include
the representation of the fluid flow interacting with the rocks and the
necessary mathematical framework needed to solve the flow equations

based on mass balance and Darcy’s law. Moreover, the level of grid
details necessary to describe the complex geology can become quite
high. For this reason, we upscaled (rebuilding the grid structure to a
coarser mesh and flow based upscaling) all models [35] in order to save
some computational time and make our study not too expensive, we
applied the same procedure as in [8]. Nevertheless, one run of the
simulation model takes from three minutes on average for the Teal
South dataset to one hour on average for the Field A dataset. This means
that one complete optimization exercise can take from one to six weeks.
Additionally these three datasets are not equally complex in regards to
the physical processes encompassed (geology, rock mechanisms, mul-
tiphase flow), Teal south is simpler as compared to Field A and Field B.

Overall we performed a total of 84 complete optimization exercises,
including three data sets, seven different attributes, four selected me-
trics and 20 repetitions per combination for the statistical analysis. This
took us several months of calculation and analysis of the produced data.
To reduce this computational burden, a pre-analysis of the results
concerning only the Teal South field was conducted, where we observed
that the performance of the metrics KT and MR was much lower com-
pared to LS and PC (see Section 3.2). Accordingly, in the more costly
Field A and Field B we do not perform the complete analysis of these
less promising metrics, and focus only on the higher performing ones.

From the optimization exercises, we extract the following data: Both
the mean seismic misfit of the final ensemble model, and the well
production misfit; the proportion of model parameter values found on
the final ensemble and the differential seismic maps between a model
ensemble and the reference seismic data. In the following subsections,
we describe and discuss the implications of each set of results.

3.2. Comparison of metrics

A well performing metric will be able to efficiently measure dif-
ferences and then drive better the optimization process towards better
candidates, as compared to other metrics less performing. Therefore, a
good convergence reflects the ability of a metric to perform well, to
better estimate similarity/dissimilarity between patterns. Overall
smallest misfit means better metric. In the case of Teal South, according
to Table 1 the lowest final mean misfit is achieved using the Least
Squares (LS) and Pearson Correlation (PC) metrics. In both metrics we
obtained a final mean misfit of 1.41. Even across different attributes
these two metrics are very comparable in terms of final mean misfit
value and standard deviation (See Figs. 3 and 4). Minimum Ratio (MR)
is slightly under performing as compared to LS and PC but still within
the same range of amplitude. On the other hand, Kendall Tau (KT) is
definitely not performing well, for many attributes the final mean misfit
is one order of magnitude above the other metrics.

In the case of Field A, according to Table 2 the lowest final mean
misfit is achieved using the Pearson Correlation (PC), but overall LS
seems to narrow down the uncertainty of the final realizations as
compared to PC. As noted in the case of Teal South, here too LS and PC
deliver rather comparable results, in the same order of magnitude (see

Table 1
Final mean and deviation of misfits for the Teal South field, for the different
methods and attributes under consideration. Blue and Red highlights the
highest and lowest value of the misfit, respectively.

Method P W G PG PW WG PWG

LS 27.41 3.57 9.94 7.23 3.57 1.41 1.55
(StDev) 10.42 4.88 11.02 8.32 3.15 3.17 1.95
PC 7.35 3.22 8.15 8.02 2.96 1.41 1.85
(StDev) 4.91 2.07 9.91 11.76 2.52 1.59 2.29
KT 37.76 17.04 31.97 37.95 48.74 21.49 27.65
(StDev) 19.44 11.17 14.56 19.14 30.76 12.82 12.12
MR 32.41 1.89 43.39 9.34 1.98 3.92 3.49
(StDev) 11.16 1.75 25.47 7.18 2.02 4.92 5.17
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Fig. 4).
In the case of field B, according to Table 3 the lowest final mean

misfit is obtained with Pearson Correlation. In that case the results are
not comparable across these two metrics, but not drastically different
either; as the uncertainty in the final ensemble of realizations seems to
be larger with LS than PC, larger mean and standard deviation.

Among these experiments the LS metric, despite its simplicity,
seems to deliver satisfactory results overall as compared to more so-
phisticated metrics. Taking into account its simplicity to implement, it

could be considered a fair and reliable choice in a context of simple
patterns (see Figs. 11–13) to identify.

3.3. Comparison of attributes

Taking a first look at the results while going across the experiments
(metrics and attributes, see Tables 1–3) we note that the best realiza-
tion, the one with the lowest misfit, is systematically the one con-
sidering three attributes (except with the KT metric where the attribute

Fig. 3. Misfit values after seismic history matching for the Teal South field, using the four chosen metrics (PC, LS, MR, KT).

Fig. 4. Misfit values after seismic history matching for field A (left) and field B (right), using two metrics, PC and LS.
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W gives the lowest misfit. We will come back to this point in the rest of
the study). As we are dealing with stochastic methods and consequently
multiple realizations, a more comprehensive comparison should look at
combination of the mean of the misfits given the corresponding stan-
dard deviation. The mean misfits and their standard deviations for
different attributes across different metrics are shown in Table 1 (For
Teal South), Table 2 (For Field A) and Table 3 (For Field B).

The comparison of the lowest and highest mean misfit for each case
leads the reader to notice that using more data (all three attributes at
once, PWG) does not imply a better misfit, on average.

To investigate the validity of this observation, we perform the fol-
lowing statistical analysis: first we conduct an Analysis of Variance
(ANOVA), grouped by metric, to test whether the attribute selection has
a statistically significant influence on the mean misfit. After this, we
prepare a 95% confidence interval of the difference between the misfit
using all attributes (PWG) and every other combination of attributes,
using Tukey’s HSD correction for multiple comparisons [36]. This
second test indicates, what sets of attributes (if any) show statistically
significant different mean misfits from using all data.

The ANOVA test showed that, in all cases, some selection of attri-
butes had a clear influence in the mean misfit (F statistic over 1000 in
each case). An examination of the confidence intervals let us know
which attributes are responsible for this difference. In the case of a
simple dataset like Teal South (described in Section 3.1), the Fig. 5
indicates that on average, lowest misfits can be reached while using
only one or two attributes. When it comes to analyze the results with
more challenging real datasets (Fig. 6), the results are even clearer in
this regard: Field A can achieve similar results to PWG with only two
attributes, and in Field B even one attribute can be enough.

3.4. Model parameter distribution

As an inverse problem, the goal of the HM procedure is to update
the input parameters of the initial set of models, proposing at the end of
the run a new range of variation for the selected input parameters. In
this part these three figures: Figs. 7–10 will be used to support this
study. Also, it is to be noted that we draw a black line on each of these
plots to place the ”true” synthetic answer, which helps identify the
correctness of the history matching result.

Fig. 7 shows the initial (red) and final (blue) distributions for a
model parameter (poro) for different combinations of similarity metric
(rows) and seismic attributes used (columns). Whatever the attributes
used, there is a clear convergence of the final range towards the value
0.31. This convergence is especially strong for the LS, PC and MR

metrics. Nevertheless, when using only attribute P (leftmost column of
Fig. 7), the result is a somewhat wider spread of values between 0.29
and 0.33. This means that the convergence was not yet completed,
when compared to the results obtained with other seismic attribute
combinations, for which the range of values are more narrow. To some
extent, we also see this lack of convergence in the case of using the
seismic parameter G in isolation (third column from the left in the same
Figure).

A similar trend can be observed for the parameter P5, shown in
Fig. 8. In this case, a better convergence is also observed when more
seismic attributes are used. Still, while using only one attribute contains
indeed more uncertainty, it also can lead to a reasonable updated range
for the input parameter, in the case of attribute W (second column from
the left in Fig. 8). It is clear that the seismic attributes have to be se-
lected wisely, otherwise convergence is not possible, for example
compare columns 1 and 3 from the left in Fig. 8, which correspond to
attributes P and G.

These two figures also give a very clear image of the comparative
performance among the similarity metrics. The KT metric, represented
in the bottomost row in both Figs. 7 and 8 produced mixed results
compared to LS for the first Figure, and in the second Figure is not able
to decide for a final range of the parameter at all, whatever the number
of attributes used. This could be explained by the fact that KT does not
use absolute values only whether the value changes or not. For problem
where values do not matter it is not an issue, but for this study, where it
matters, it is preferable to use absolute value, like LS does. As for the
MR metric, in Fig. 7 it obtains similar results as LS, except that it fails to
reduce the uncertainty significantly when using only the P and G at-
tributes, succeeding only with W. For the P5 parameter (Fig. 8), MR is
not providing a robust convergence for most attribute combinations.

For the PC metric (second row in both figures), the final ranges of
the two input parameters are very comparable with the results obtained
by LS. Overall, the LS and PC metrics seem to produce the most reliable
results, by reducing the initial uncertainty of the input parameters to a
satisfactory new range. Despite using only one attribute, both metrics
appear to converge properly as compared to the other metrics. This
point will be discussed further in the Discussion section.

Extending the same analysis to the cases of Field A and Field B
(Figs. 9 and 10), a first general comment would be that because of the
added complexity of these fields, we do not see such a drastic reduction
of the uncertainty in the final range of the selected input parameters as
compared with the Teal South case. The parameters selected for in-
clusion in these figures associated with the PC and LS metrics for fields
A and B offer a fair illustration of what it looks like to deal with more
physical complexity, and how difficult the optimization problem be-
comes.

Fig. 9 shows a comprehensive illustration of the results of using
additional information in a HM process. Rows a) and b) show the dis-
tribution of values for parameter M21, using LS and PC as similarity
measures. Rows c) and d) shows the same information, for the model
parameter M37.

In the bottom two rows (Parameter M37) we see that even only one
seismic attribute, if chosen correctly, will deliver a satisfactory redution
of the initial uncertainty. In this case, attribute G (third column) shows
this property. For two attributes, the best result is obtained in the case
where G is associated, namely WG and PG (columns five and six, re-
spectively). Finally, using all three attributes (PWG) did not show any
significant enhancement compared with the two-attribute cases.

In the top two rows (Parameter M21) shows an inconclusive result
for both PC and LS. Usually when the values are widely spread in the
final model ensemble, it indicates that the considered input parameter
is not sensitive. Indeed, using one or two seismic attributes does not
change the final spread of the value distribution. Nevertheless, LS seems
to narrow down the suggested range very slightly in comparison with
PC when using all three seismic attributes.

We observe similar patterns when looking at the model parameters

Table 2
Final mean and deviation of misfits for Field A, for the different methods and
attributes under consideration. Blue and Red highlights the highest and lowest
value of the misfit, respectively.

Method P W G PG PW WG PWG

LS 1394.09 1040.61 1004.26 993.30 773.31 823.41 788.30
(StDev) 386.46 340.55 330.92 438.93 272.99 284.92 425.28
PC 1430.13 993.06 1112.45 891.63 836.79 795.18 744.87
(StDev) 432.59 276.98 386.56 532.99 290.91 390.57 439.65

Table 3
Final mean and deviation of misfits for Field B, for the different methods and
attributes under consideration. Blue and Red highlights the highest and lowest
value of the misfit, respectively.

Method P W G PG PW WG PWG

LC 1110.16 399.84 439.65 530.46 255.27 142.27 258.39
(StDev) 635.53 469.58 678.04 755.08 393.11 299.62 408.15
PC 831.69 342.32 104.42 163.16 156.89 58.22 258.39
(StDev) 667.72 448.59 169.21 313.18 287.32 41.79 385.95
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for Field B (Fig. 10). For the parameter Y in rows a) and b), different
seismic attributes deliver a similar updates model parameter range, at
around 0 and 3.2. From these results, we see that using only one seismic
attribute is an option to envisage. Looking at the second input para-
meter for the same field (poro, rows c) and d)), we can formulate
roughly the same observations. The PC metric leads to a wrong con-
vergence when using attributes WG as compared to the LS (column 6),
which converges to the correct final range when compared to the range
reached by other attribute cases (between 0.35 and 3.14). In the other
attributes, LS and PC are generally comparable metrics in the case of
Field B.

In terms of computing time there is no sharp differences in using one
metric or another. Moreover, counter intuitively there is no difference
in the optimization procedure time involving one or more attributes.
However, the time to pre-process the data for each attribute before the
optimization has a non-negligible cost, including experienced en-
gineering interpretation and processing. Therefore, there is an interest
in using as few seismic attributes as possible.

3.5. Qualitative analysis of the misfit

Previously a quantitative analysis of the performance of SHM have
been investigated on the three datasets, a final look at this problem
could be from the pattern perspective as the objective function is
evaluating patterns see Figs. 11–13. This section can be seen as a global
qualitative comparison of the fields, although we cannot strictly
speaking compare the results across fields. By comparing the differ-
ences of two maps (in LS and PWG case) at different time, before and
after SHM, two main kinds of results emerge. In the case of Teal South

and field B the remaining patterns after the SHM process are very little
whereas in the case of the Field A they are significant for pressure and
water. Teal South is physically simple (geology and fluid flow), but
Field A and B are much more complex, then, apparently the com-
plexity/non linearity of a model is not a limit to how good a history
matching can be achieved in a reasonable time. One explanation for the
field A results could be that the optimization procedure has been ter-
minated before convergence, but it is not the case here as we checked
that aspect. The most probable explanation comes from the setting of
the problem; the choice of the inputs parameters, the range of variation
of each, could not allow the optimizer to converge with all the attri-
butes. Also it is interesting to note that SHM on Field A is performed in a
higher dimension space (number of input parameters) than for Field B.
This leads to another argument in favor of a well-thought and well-
parameterized SHM should be carefully prepared as compared to the
use of all possible data we have access to.

4. Discussion

It has been noticed that using pressure only does not end up with
good history matching results, for the three tested fields. A physical
explanation could be that because pressure rapidly stabilizes every-
where it makes the different fits hard to conceal, whereas for the other
attributes the changes are more local and thus less challenging. On the
other hand, using more than one attribute does not guarantee the
correct uncertainty reduction, see for instance WG as compared to PWG
(Fig. 9-b) and this is apparently not dependent on the metric. The use of
only one attribute has been shown to be useful as it obtains comparable
– sometimes strictly as good as – results as using the three attributes.

Fig. 5. Mean Misfit Difference (MMD) between using PWG as the seismic attribute set, and every other combination of attribute (Teal South Field). The Y axis is the
MMD, and the X axis is each attribute combination. The bars are 95% confidence interval of the MMD with a Tukey’s HSD correction for multiple comparisons.
Attribute sets whose bars are above the horizontal line are worse than PWG, sets below the line are better, and sets that touch the line are inconclusive.
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Within the workflow the use of only one attribute could play the role of
a proxy or a quick look for different scenario of parameters to optimize
before using many attributes. By then we could save time in the pro-
cessing of the data and in the setting up of the seismic history-matching
problem [37].

Another point to make is by using an attribute that did not con-
verge, will not affect the overall convergence if other converging at-
tributes are incorporated. In such way that, adding more data is no
harm to the global convergence, if at least one other useful attribute is
integrated into the objective function. This leads us to the question of
the choice of useful attributes and data, how to determine the con-
vergence is something that could be achieved while looking at the
physical meaning of the data. Being able to establish a clear link be-
tween the input parameters to be optimized and the attribute to use
could deliver faster and more efficient SHM. Finding such a relation is
out of the scope of this study as the setting of the experiments would
have to be different and a new analysis to be designed.

One aspect of this study is that it has been carried out in the si-
mulation domain, as we wanted to simplify the framework of the study
and focus only on the mechanisms involved in the Objective function.
While the use of real observed seismic rises many processing questions,
two of them are rather interesting to point out here. The use of the least
square metric, which is a point-to-point metric is overall performing
very well in all the cases we considered. Nonetheless we looked at
seismic maps, which are an average in depth, a point-to-point metric
could be less adapted while using vertical section of the seismic
data [38]. Low seismic resolution being one of the characteristics of the
vertical direction, a spatial pattern correlation could be more suited. In
other words if the use of the full three dimensions of the seismic data is

thought, then further experiments regarding the metrics accuracy
should be carried out. The second point to make is about noise, indeed
these extensive experiments have been carried out under the noise free
assumption. Whereas in practice the seismic data cannot be free of
noise. Nevertheless adding relevant noise to the synthetic seismic would
have been itself a non trivial question among the community of geo-
physicists [39,40]. However, the DE family of optimization methods
used in this study has been shown to be quite robust to noise [41],
which leaves us with the interesting problem of the effect of noise on
the metrics (LS, PC, KS and MR) as a future direction of this work.

Also to be noted is that given one metric the number of attributes
used is not affecting in any manner the global computing time. In every
considered case the convergence is reached in the same amount of
iterations, for the three different fields and the seven different attri-
butes.

5. Conclusion

In the energy industry no study has been conducted about the
comparative efficiency of the objective function (attributes and metrics
used) during the Sesimic History Matching process. Yet it is one of the
key drivers to achieve a good update of the model.

Regarding the metric used to compare two seismic images, our
study shows that when it comes to choosing a similarity metric for
seismic history matching, “the simpler the better”. The traditional Least
Squares metric gave enough information to perform a good history
matching, compared to other, more elaborate metrics (Kendall Tau,
Minimum Ratio, Pearson Correlation), which gave no significant add-
values on the overall SHM performance, in the context of this study.

Fig. 6. Mean Misfit Difference (MMD) between using PWG as the seismic attribute set, and every other combination of attribute (Fields A and B). The Y axis is the
MMD, and the X axis is each attribute combination. The bars are 95% confidence interval of the MMD with a Tukey’s HSD correction for multiple comparisons.
Attribute sets whose bars are above the horizontal line are worse than PWG, sets below the line are better, and sets that touch the line are inconclusive.
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That said, although each metric has different characteristics (such as
calculating individual differences, overall ratios, sensitivity to scaling,
etc), they do not explicitely consider the spatial structure of the seismic
image, treating it as a numerical vector. With this in mind, it would be

interesting to explore metrics that explicitely focus on the spatial
structure of the image [42], its spectral qualities [43] or its graph
qualities [44].

The addition of more data to the optimization process does not

Fig. 7. Different Parameter distributions before (in red) and after (in blue) optimization, for the seven attributes applied to the Teal South field using the same
parameter, poro, for the seven attributes and the four chosen metrics in a), b), c) and d) respectively. The dotted line indicates the true value of the parameter. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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mean necessarily a better result but will guarantee a safer reduction of
the uncertainty. We can consider that the addition of more data is in a
way counter balancing a bad convergence from other attributes. The
results also showed that in some cases only one attribute can lead to a

proper update the model. This aspect could put forward the redundancy
in the data, which is also a data integration question and opening an-
other area of processing this redundancy prior to history match. For
that reason, a careful selection of only a few attributes/information

Fig. 8. Different parameter distributions before (in red) and after (in blue) optimization, for the seven attributes applied to the Teal South field using the same
parameter, P5 for the seven attributes and the four chosen metrics in a), b), c) and d) respectively. The dotted line indicates the true value of the parameter. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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could be enough, and it could save time in the processing of the data
and the whole workflow. How to identify what data is really useful is
still to be investigated, and how to characterize seismic data usefulness
would be an interesting continuation of the present study. On that note,

it has to be said also that more input parameters (issued by a sensitivity
analysis) does not guarantee a successful HM, it is appearing to be
better to select few meaningful model parameters.

We also found that adding more data does not change the

Fig. 9. Different Parameter distributions for parameter M21 and M37, before and after optimization, across metrics and seismic attributes. Parameter values before
optimization are in red, and after optimization are in blue and green for Layer 21 and Layer 37 attributes respectively. The dotted line indicates the true value of the
parameter. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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computing time given our current setting and optimization algorithm
used.

In a larger context of data assimilation and black-box optimization
problem, one important opening message from this study could be

about the relevance of the data to assimilate, instead of assimilating all
possible data; a prior step of selection should be incorporated before to
run an optimization. Such a physics-based selection in a prior step is a
new research by itself, but it should lead to more specific and efficient

Fig. 10. Different Parameter distributions for parameter Y and poro before and after optimization, across metrics and seismic attributes. Parameter values before
optimization are in red, and after optimization are in blue and green for Y and poro attributes respectively. The dotted line indicates the true value of the parameter.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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data assimilation workflow, for interest of time and computing cost.
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Fig. 11. Initial and Final seismic images for the Teal South field. Darker colors signify a larger difference from the reference model.

Fig. 12. Initial and Final seismic images for the Field A. Darker colors signify a larger difference from the reference model.
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