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A B S T R A C T

A large reservoir of frozen human embryos is a negative outcome of their cryostorage for in vitro fertilization
treatments. The existence of unused stored embryos, referred to herein as “remaining embryos”, places the
service provider (usually a hospital) in a fragile situation. This is especially the case when the issue of discarding
unused embryos arises or when unexpected failures associated with preserving the inventory occur. Moreover,
the absence of intrinsic incentives for couples to donate embryos to the secondary market, as well as the in-
creased operational costs for maintaining a viable storage service over time, further challenge this unique ser-
vice. The present paper develops an optimization model that determines a charging scheme for the couples using
the storage service and a payment scheme for couples who agree to provide their remaining embryos as a source
for the secondary market. Couples who do not agree to receive payment for their remaining embryos are charged
for discarding them (referred to herein as the “discarding payment”). While this model includes rewards and
motivates couples to provide embryos for the secondary market, it also reduces the remaining inventory, thereby
responding to the two key problems of embryo storage. The analytically developed model is used to derive
optimal solution algorithms. A numerical example and a sensitivity analysis of the key parameters are presented.

1. Introduction

1.1. IVF process and human embryo storage

IVF (in vitro fertilization) is a treatment for infertility involving
several phases, which enables external fertilization of an egg. Since the
1980s, cryostorage of human embryos has been a common procedure in
IVF treatments [24]. The role played by this procedure is that excess
embryos produced within a given treatment cycle can be transferred to
a woman's uterus within a future cycle. Since the embryos are stored in
deep freeze, the present paper categorizes them together with the cold
storage literature. Cold storage is part of the cold chain [21, 33], which
includes products such as food and blood. Storage technology for these
products differs from that for embryos. The shelf life of blood and food
is generally limited to days or weeks, whereas embryos have practically
no expiration date and can be stored for many years (see, for example,
[29]). Another distinction between embryos and other cold-chain pro-
ducts is the potential for unlimited storage capacity. Embryos are stored
in liquid nitrogen tanks using test tubes. Each tank can store a large
number of embryos owned by many different patients. Sufficient details
are stamped on each tube in order to uniquely identify to whom the

embryos originally belonged.

1.2. Motivation

The entire process of IVF and human embryo storage is carried out
by a clinic or hospital, which is the storage service provider. Currently,
operational costs as well as ethical and legal issues mean that hospitals
have no incentive to maintain an embryo storage service [5, 8].
Moreover, the donation of excess embryos to the secondary market is
primarily voluntary and very infrequent [15, 23, 28] due to regulatory
obstacles, ethical difficulties, and low willingness to donate. Couples
who require embryo donation face a lack of available inventory [13].
This creates incentives for them to seek embryo donations outside their
country of residence, potentially engaging in risky, expensive or illegal
purchases to achieve pregnancy [13]. McMahon et al. [23] examine the
concerns of couples with regard to donating their surplus embryos for
medical research. Provoost et al. [28] examine how a couple's percep-
tion of their surplus embryos affects their decision as to whether to
discard them or donate them to other couples.

Storage of frozen embryos as the byproduct of IVF treatments raises
several economic, ethical and legal issues [16]. The growing number of
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embryos remaining in cryostorage is a distressing matter. It is estimated
that there are more than 400,000 stored frozen embryos in the U.S.A
[25]. Yet discarding excess inventory in an embryo bank may conflict
with regulatory requirements and result in legal action against the
provider [12].

In summary, the storage providers face increasing holding and op-
erating costs while the embryo storage service is provided either for
free or for a very limited payment. When unexpected technical failures
of the storage facility occur, the providers are exposed to lawsuits and
monetary penalties.

Thus, service providers do not currently have any economic in-
centive to maintain an ongoing service. The question of what should be
done with the embryos after the original owners (the couples) have no
further anticipated need to utilize them is barely addressed in the lit-
erature.

1.3. Literature survey

Since specific literature with respect to embryo storage services is
scarce, the present paper mainly draws upon the literature regarding
other types of service that share similar characteristics.

1.3.1. Limiting the storage period
A common practice in addressing some of the issues referred to

above is to limit the length of time for which couples may store their
embryos. According to Burton and Sanders [4], in Victoria, Australia,
an embryo may only remain in storage for up to 5 years, although there
are some provisions for an extension. In South Australia and the
Northern Territory, embryo storage is limited to up to 10 years with no
extensions. In 2001, Switzerland revised a law that prohibited the
creation of embryos that will not be used for an immediate attempt at
pregnancy. The revised law required all existing surplus of stored em-
bryos to be discarded by the end of 2003. Later on, the law adopted a
new deadline, the end of 2005, and allowed for creating a maximum of
three embryos in each IVF cycle. Although a priori limiting of the sto-
rage period may be helpful, legal and ethical issues can still arise if
some couples refuse to discard their embryos. In addition, the limited
amount of donations and the lack of economic incentive remain.

1.3.2. Revenue management for similar storage services
During the last decade, IVF pricing policies have become an im-

portant focus of attention for researchers. With respect to the marketing
aspect of IVF promotion, offering a money-back guarantee has become
an increasingly common practice. Another pricing policy is discussed by
Connolly et al. [8]. They consider the impact of introducing patient co-
payments for IVF treatment in Germany on patient demand. Cooke [9]
discusses the costs of IVF treatments in the context of public health
provision by governments. Our work is highly relevant to the IVF pri-
cing discussion.

This paper addresses the aforementioned problems associated with
embryo storage by suggesting an operational-research and revenue-
management approach, which, to the best of our knowledge, has not yet
been undertaken in the literature. Pricing schemes are a common tool
for revenue management [2, 22], as they impact consumer purchasing
decisions. In special cases, pricing schemes may assist in controlling
congestion or in shifting the purchasing incentive from one product to
another. In the context of the present problem, increased prices could
diminish the willingness of couples to keep unused embryos in storage.

The most closely related work in the existing literature consists of
models for data storage services (e.g., [30, 34]), in which the goal is to
devise a pricing model that maximizes profits. Other related studies
include models that propose a dynamic pricing scheme to maximize the
profit of service providers of wireless data, internet access, and com-
munications services (e.g., [1, 20, 26]). Lee [17] considers an ex-post
payment scheme where the service provider charges a price that is
proportional to the length of time a customer spends in the system.

Although they differ, some similarities are also found in models of
parking-lot services [14, 32] in which the goal is to maximize the
parking operator's profits or minimize operational costs.

1.4. The current paper

The present paper follows the work mentioned above in the sense
that it focuses on the objective of profit maximization. We suggest a
revenue management approach to the surplus embryo market. The
objective is to maximize the profits of the storage service provider,
which is the hospital, over a finite period of time, T. The couples who
request the embryo storage service enter into a contract with the hos-
pital in which they are allowed to store one or more embryos for a
defined period of time. The suggested model includes several compo-
nents designed to address the difficulties presented above:

(a) Allowing a secondary market for embryos: Consumers in the pri-
mary market may sell their remaining embryos to the service pro-
vider at a predetermined price and the service provider then sells
some or all of these embryos to couples in the secondary market.
The regulator may consider subsidizing the payment made by the
secondary market.

(b) Creating a pricing incentive for the service provider (i.e., hospital)
by implementing charging schemes for both markets.

(c) Creating a pricing incentive for the primary market (i.e., couples
requesting a storage service for their embryos) through a payment
scheme offered by the service provider in exchange for surplus
embryos.

(d) Decreasing the amount of remaining embryos: The present model
incorporates a discarding payment for couples who do not utilize all
of their stored embryos within the contract period and who refuse
to sell their remaining embryos to the service provider at a pre-
determined price.

In summary, the present paper develops and analyzes a pricing
optimization model that motivates couples in the primary market to
elect for their remaining embryos to be a source of frozen human em-
bryos for the secondary market. The hospital's additional purpose is to
minimize the amount of frozen embryos remaining in storage.

The remainder of this paper is organized as follows. Section 2 pre-
sents the general model and its assumptions. Section 3 analyzes the
model for both the special case where couples from the primary market
must discard all remaining unused embryos, and for the general case
that allows a secondary market. Section 4 presents illustrative numer-
ical examples, a sensitivity analysis of the key parameters, and a
comparison between the proposed model and two other modes of
providing the embryo cryostorage service. Section 5 summarizes and
concludes the paper.

2. Model formulation and assumptions

2.1. System description

Consider a primary market where each couple signs a contract with
a hospital for a certain finite time, T. The hospital provides a storage
service for one or more embryos in its facility and the couple accord-
ingly agrees to pay for the service. Specifically, for each embryo, the
couple pays a one-time lump sum plus an additional annual fee that
increases (or decreases) over time to reflect changing insurance ex-
penses. For example, the annual fee may increase due to a greater risk
of a storage failure over time. The contract period represents the
maximum duration for which the couples in the primary market may
use their stored embryos for themselves. Once the initial contract has
expired, a second phase begins that requires a decision to be made by
each couple. The decision concerns whether to discard the remaining
embryos for an additional payment or to sell them at a predetermined
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price to the storage service provider, with the final intention that the
embryos be a source for the secondary market. Thus, at time T, the only
options are either to sell the surplus embryos to the hospital or to dis-
card them. The goal of the suggested model is to maximize the profits of
the storage service provider (the hospital) while reducing the number of
remaining unused embryos. This goal is achieved firstly by giving the
service provider economic incentives for providing the service. In ad-
dition, economic incentives are provided to the couples in the primary
market in order to create a supply for the secondary market and thus
decrease the remaining inventory. Fig. 1, below, presents the two stages
of the entire decision process.

The notations of the model are provided below.
Indices:

t - The time elapsed from the beginning of the contact period

Parameters:

T - The time period in the contract signed by the couple and the
hospital
θc- The estimated proportion of embryos used by the couple within
the first phase (i.e., in period T)
θd- The estimated proportion of embryos discarded by the end of
period T
θb- The estimated proportion of embryos needed to supply the sec-
ondary market at the end of period T
cd - The discarding payment per embryo
pb- The price at which couples can sell each surplus embryo to the
provider.

- The annual increase in the holding cost over time
- The holding cost for each embryo for a unit of time (at t = 0)
Decision variables:

K - The fixed and one-time payment fee for the entire period, T, for
each embryo that is stored
p0 - The initial annual fee that is paid for storing each embryo
α - The change over time in the annual fee for each embryo

ps- The selling price for each embryo when offering it to the sec-
ondary market.

Variables:

p(t)- The storage price per unit (embryo) for a unit of time at time t
h(t)- The holding cost per unit (embryo) for a unit of time at time t
d(K, p0, α)- The annual demand for the storage service over the
contract period
ds(ps)- The demand for the remaining embryos in the secondary
market at the end of the planning horizon

Thus, the pricing policy is specified by the four decision variables
defined above. The model is simplified by assuming that:

A1. The contract time period, T, is fixed and is identical for all
consumers.
A2. After the contract period ends, the couples do not enter another
period of storage service.
A3. The demand function in the first phase is linear and decreasing
with respect to each decision variable [18, 35].
A4. The ratios θc and θd are not affected by the pricing policy.
A5. The only options available to the couples in the primary market
at time T are discarding or selling their surplus embryos.

2.2. Problem formulation

The storage price per unit at time t for a unit of time (i.e., the service
price) is given by

= +p t p αt( ) 0 (1)

where is the rate at which the annual fee increases (or decreases) over
time. The holding cost per unit (embryo) for a unit of time at time t is
modeled by

= +h t h δ t( ) ·0 (2)

where represents the holding cost for each embryo for a unit of time (at
t = 0), and is a constant coefficient representing the annual increase in

Fig. 1. The phases of the storage service.
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the holding cost over time. This factor takes into consideration the in-
creasing insurance costs over time due to increasing risk of failure. It is
assumed that the annual demand for the storage service over the entire
planning horizon (the contract period) is given by

= − − −d K p α n β K β p β α( , , ) ,0 0 1 2 0 3 (3)

where

n0- Represents the maximal annual quantity (demand) for the sto-
rage service when all kinds of charges are eliminated
β1- The one-time lump sum payment factor (β1 > 0)
β2- The annual fee factor (β2 > 0)
β3- The time coefficient factor (β3> 0).

It is assumed that these last three factors are positive, i.e., the de-
mand decreases with each of the three decision variables. Note that in
the case where the model allows a secondary market, < −θ θ1d c and

+ + =θ θ θ 1c d b . Otherwise, =θ 0b and + =θ θ 1c d .
Time-dependent demand functions that represent the short life-

cycle pattern along all phases of a product's life-cycle, and that are
linear in price, are assumed by Gan et al. [11]. In order to simplify the
model, we assume that the ratios θb and θd are both determined by the
service provider. Practically, their values can be estimated with the aid
of historical data about the maximal secondary market size and the
proportion of consumers who rejected any other use of the remaining
embryos. The current model opens up the possibility of supplying an
existing need from the secondary market. Although this route has al-
ways been theoretically possible, it is rarely available to couples in real
life [19] due to the fact that it currently relies on donations. In contrast,
in the present model, just before the storage contract ends, couples can
either sell each surplus embryo to the provider at a price or discard each
of the surplus embryos with an additional payment of cd. The subscript
"b" in pb denotes the "buying" price. The disadvantage of the general
model in comparison with the special case where =θ 0b (i.e., the model
is “discarding only”) is that unused embryos that are neither sold to the
secondary market nor discarded might remain in storage. To enable the
possibility of supplying the secondary market, the service provider must
determine the selling price, ps, of each embryo when offering it to this
market. The subscript "s" in psdenotes the "selling" price. Similar to the
vast literature on revenue management, we assume that the selling
price in the secondary market is one of the key factors influencing the
demand. The demand for the remaining embryos in the secondary
market at the end of the planning horizon, ds(ps), is assumed to be a
known function of the form:

= −d p β e( )s s
β p

5 s6 (4)

where

β5- The quantity demanded by the secondary market in the case
where the embryos are donated by the hospital (i.e., the price is )
(β5 > 0)
β6- The sensitivity to the price, ps (β6 > 0).

A negative exponentially-decaying demand function [6, 7] is as-
sumed in order to express a strong sensitivity to the price. Increasing
the price increases the direct revenue for each embryo sold. However,
at the same time, it decreases the demand. Therefore, the model should
find the best price that maximizes profits.

The profit per contract period, = −TR TCΠ , includes two com-
ponents: the total revenue, TR, and the total costs, TC. The objective
function of the hospital is based on the profit per unit time over the
contract period, =π T

Π , which is represented by π(K, p0, α).

∫+ +K p αt dt( )
T

0
0 represents the revenue for the entire period due to

charging fees, and ∫ +h δ t dt( · )
T

0
0 represents the holding cost for the

entire period. There are two additional components in the objective
function. The first component is cost per unit time due to acquiring
surplus embryos from couples who decide to sell them to the service
provider by the end of period T. Some or all of these embryos are later
sold to the secondary market. Multiplying the demand for the entire
period, d(K, p0, α), by the entire expression within the inner parentheses
in Eq. (5) results in the net profit over the entire period from the pri-
mary market. This net profit includes the stage of both revenues due to
discarding and costs due to buying the remaining embryos from the
couples. The second component which is associated with the secondary
market is the additional revenue per unit time p d p( )T s s s

1 from selling the
embryos to consumers in the secondary market at the end of period T.
The problem formulation is:

∫

⎜

⎟

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎛
⎝

− + +

+ − + ⎞
⎠

+

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

− − − ≥
≤ − − −

≥

Maxπ

d K p α θ c T θ p T K

p αt h δ t dt

p d p
s t

n β K β p β α
d p θ T n β K β p β α
p

( , , )

(( ) ( · ))

( )
.

(5.1) 0
(5.2) ( ) ( )
(5.3) 0

K p α p T

d d b b

T

s s s

s s b

s

, , ,

1

0

0
0 0

0 1 2 0 3

0 1 2 0 3

s0

(5)

Constraint (5.1) ensures a non-negative demand rate for any chosen
pricing scheme. Constraint (5.2) prevents the size of the secondary
market from exceeding the remaining available inventory that is in-
tended for sale to the secondary market. Constraint (5.3) ensures that
the selling price, ps, does not take on a negative value.

Note that the optimization model proposed in this study is de-
terministic. We justify this choice in a similar way to Bitran and
Caldertey [3], who argue as follows: "First of all, deterministic models
are easy to analyze, and they provide a good approximation for the
more realistic yet complicated stochastic models… The second reason is
that deterministic models are commonly used in practice." Furthermore,
as noted by Sattenspiel [31], the implementation of simulations that are
based on deterministic models, through adjustment of the input vari-
ables and other parameters, can provide important insights into the
quantitative and qualitative features of the phenomenon under in-
vestigation.

3. Mathematical analysis of the model

3.1. The discarding model

The analysis begins by considering a special case. At the end of
period T, the hospital charges all couples a fee for discarding each
unused embryo, cd. Thus, the model assumes that =θ 0b and assump-
tion A5 implies that the only option available to couples in the primary
market is to discard. In this scenario, neither donations nor sales to the
secondary market are admissible. According to assumption A5,

+ =θ θ 1c d .
Thus, the problem formulation in this case is:

∫⎜ ⎟= ⎡

⎣
⎢

⎛
⎝

+ + + − + ⎞
⎠

⎤

⎦
⎥

− − − ≥

Maxπ d K p α θ c T K p αt h δ t dt

s t
n β K β p β α

( , , ) (( ) ( · ))

.
(6.1) 0

K p α T d d

T

, ,

1
0

0
0 0

0 1 2 0 3

0

(6)

The advantage of this policy over the general model (in which sales
to the secondary market are allowed) is that it ensures that there are no
embryos remaining at the end of the storage service horizon. In this
subsection, we analyze this specific problem and provide an optimal
solution. The objective is explicitly represented by:
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= ⎡
⎣

− − − ⎛
⎝

+ − + − +

⎞
⎠

⎤
⎦

π K p α

T
n β K β p β α K p T h T α δ T θ c

T

( , , )
1 ( ) 1

2
( )

.

d d

0

0 1 2 0 3 0 0
2

(7)

To simplify the analysis, we first address a reduced version of pro-
blem (6) that does not consider the non-negativity of the demand (i.e.,
constraint (6.1) is omitted). The other alternative implies an active
constraint, that is, =d K p α( , , ) 00 , and accordingly, =π K p α( , , ) 00 .
Appendix A details the solution method, the proof of which is provided
in Appendix B.

We summarize below the solution algorithm for solving the original
problem (6):

Step 0 (Initialization). Given θc, set the coefficients
= −n β β β h δ θ θ, , , , , , 1d c0 1 2 3 0 .

Step 1 Obtain the solution for the reduced problem (6),
K p α( , , )red red red

0 by (A.2), where we use superscript red to reflect the
solution for the reduced problem (6).
Step 2 If condition (A.3) does not hold, then K p α( , , )red red red

0 is not
feasible. Go to Step 4.
Step 3 The optimal solution is =π π K p α* ( , , )red red red

0 where π is
computed in (6). Stop.
Step 4 Obtain an active solution K p α( , , )act act act

0 by finding a root of
the constraint (6.1) as an equality, − − − =n β K β p β α 00 1 2 0 3 . We
use superscript act to reflect the active solution for problem (6). For
example, =K p α( , , ) ( , 0, 0)act act act n

β0
0

1
.

Step 5 The optimal solution is =π π K p α* ( , , )act act act
0 where π is

computed in (6).
Step 6 End

We summarize this case in the following theorem, which is im-
plemented using the above algorithm:
Theorem 1. Denote conditions (B.1)-(B.3) in Appendix B as the technical
conditions. Denote also the solution (A.2) by K p α( , , )red red red

0 and denote by
K p α( , , )act act act

0 any solution that makes constraint (6.1) active, which
would imply that it is a root of the equation − − − =n β K β p β α 00 1 2 0 3 . If
K p α( , , )red red red

0 is valid under condition (A.3), and if −A| |1 exists,

(a) then solution K p α( , , )red red red
0 is an optimal solution (not ne-

cessarily global) of problem (6); otherwise K p α( , , )act act act
0 is an op-

timal solution (not necessarily global) of problem (6).
(b) and if technical conditions (B.1)–(B.3) hold, then solution
K p α( , , )red red red

0 is a global maximum solution of problem (6);
otherwise K p α( , , )act act act

0 is a global maximum solution of problem
(6).

Proof. The proof is introduced in Appendix B.

The advantage of this model is that all remaining embryos are dis-
carded. The disadvantages of this model are that couples do not have
the privilege of refusing to discard their remaining embryos and that
there is no secondary market. An alternative possibility would be to
offer couples in the primary market two options: either to discard their
remaining embryos or sell them to the provider for utilization by the
secondary market. This model is discussed in the following section.

3.2. The extended model: allowing a secondary market

Let us define a Lagrange multiplier, λ2, for constraint (5.2), which is
the FOC

− − − − =λ d p θ T n β K β p β α[ ( ) ( )] 0s s b2 0 1 2 0 3 (8)

We first analyze a reduced version of problem (5) that only con-
siders the second the second constraint.

(a) In this case, the reduced problem can be decomposed into two
simpler independent maximization sub-problems, i.e.,

= +Maxπ K p α p Maxπ K p α Maxπ p( , , , ) ( , , ) ( ),s s0 1 0 2 (9)

where the two optimization problems are:

∫⎜ ⎟= ⎡

⎣
⎢

⎛
⎝

− + + + − + ⎞
⎠

⎤

⎦
⎥

− − − ≥

Maxπ

d K p α θ c T θ p T K p αt h δ t dt

s t
n β K β p β α

( , , ) (( ) ( · ))

.
(10.1) 0

K p α

T d d b b

T

1
, ,

1
0

0
0 0

0 1 2 0 3

0

(10)

and

=

≥

Maxπ p d p

s t
p

[ ( )]

.
(11.1) 0

p T s s s

s

2
1

s

(11)

The optimal solution to problem (10) is presented in (A.2) and is
considered in the case where it is feasible under (A.3), with the only

modification being the replacement of vector
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

b
b
b

1

2

3
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⎡

⎣

⎢
⎢

′
′
′

⎤

⎦

⎥
⎥

b
b
b

1

2

3
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⎡

⎣

⎢
⎢

′
′
′

⎤

⎦

⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
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b
b
b
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β θ c θ p T h T δ T n T
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.
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d d b b

d d b b

1

2

3

3 0
1
2

2 1
2

2
0

1 0
1
2

2
0

2 0
1
2

2
0 (12)

After substituting demand function (4) into the objective of sub-
problem (11), one obtains

=

≥

−Maxπ p e

s t
p

( )

.
(13.1) 0

p

β
T s

β p

s

s

s5 6

(13)

The FOC for the objective of (13), i.e., ∂ ∂ =π p/ 0s , results in

=p
β
1

s
6 (14)

Lemma 1. =ps β
1

6
is the global unique maximum of sub-problem (11).

Proof. The proof is introduced in Appendix C.

(b) Following (8), we can calculate from

= − − −−β e θ T n β K β p β α( )β p
b5 0 1 2 0 3s6

⎜ ⎟= − ⎛
⎝

− − − ⎞
⎠

p
β

θ T n β K β p β α
β

1 ln
( )

s
b

6

0 1 2 0 3

5 (15)

In order that solution (15) is feasible under ps ≥ 0, the following
condition is required:

− − − ≤θ T n β K β p β α β( )b 0 1 2 0 3 5 (16)

By substitution of (15), problem (5) reduces to
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∫
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⎝
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−

⎤
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.
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T
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b

, ,

1

0

0
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b b

0

0 1 2 0 3

6
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5

(17)

Constraints (17.1) and (17.2) can shortly be re-written as

≤ − − − ≤n β K β p β α
β

Tθ
0

b
0 1 2 0 3

5

(18)

Violation of (18) means that too many embryos are available in the
secondary market, and as a result, there will be embryos remaining that
are neither purchased nor discarded. The optimal solution of problem
(17) is obtained numerically. After solving this problem, decision
variables p0, α and K are substituted into (15) to obtain.

We summarize below the solution algorithm for solving the original
problem (5):

Step 0 (Initialization). Given θc, set the coefficients.
< − = − −n β β β β β h δ p θ θ θ θ θ, , , , , , , , , 1 , 1b b c d c b0 1 2 3 5 6 0 .

Step 1 Assign
⎡

⎣

⎢
⎢

′
′
′

⎤

⎦

⎥
⎥

b
b
b

1

2

3

according to (12). Obtain K p α( , , )red red red
0 by

(A.2). Set =ps
red

β
1

6
.

Step 2 If condition (A.3) does not hold, then (Kred, p0red, αred, psred) is
not feasible. Go to Step 4.
Step 3 If (5.2) holds, then the optimal solution is

=π π K p α p* ( , , , )red red red
s
red

0 where π is computed in (5). Stop.
Step 4 Obtain K p α( , , )act act act

0 by numerically solving problem (17).

⎜ ⎟= − ⎛
⎝

− − − ⎞
⎠

p
β

θ n β K β p β α T
β

Set 1 ln
( )

.s
act b

act act act

6

0 1 2 0 3

5

Step 5 The optimal solution is =π π K p α p* ( , , , )act act act
s
act

0 where π
is computed in (5).
Step 6 End

Note that the algorithm presented in Section 3.1 to solve problem
(6) is not a special case of the algorithm presented above for solving
problem (5).
Theorem 2. Denote conditions (B.1)–(B.3) in Appendix B as the technical
conditions. Denote also by K p α p( , , , )red red red

s
red

0 the solution (A.2) where

vector
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

b
b
b

1

2

3

is replaced with
⎡

⎣

⎢
⎢

′
′
′

⎤

⎦

⎥
⎥

b
b
b

1

2

3

and where =ps
red

β
1

6
. If

K p α p( , , , )red red red
s
red

0 is feasible,

(a) then solution K p α p( , , , )red red red
s
red

0 is an optimal solution (not ne-
cessarily global) of problem (5). Otherwise, denote by
K p α( , , )act act act

0 any solution of (17) and let

= − − − −p ln( )s
act

β
θ n β K β p β α T

β
1 ( )b act act act

6

0 1 2 0 3

5
; then solution

K p α p( , , , )act act act
s
act

0 is an optimal solution (not necessarily global)
of problem (5).

(b) If technical conditions (B.1)-(B.3) hold, then solution
K p α p( , , , )red red red

s
red

0 is a global maximum solution of problem (6);
otherwise K p α p( , , , )act act act

s
act

0 is a global maximum solution of
problem (6).

Proof. Since the subtraction of the constant θbpbT within the inner
parentheses of (10) does not alter the Hessian matrix, the proof directly
follows from the optimal search algorithm above and is similar to the
proof of Theorem 1. □

4. Numerical example and sensitivity analysis

In this section we demonstrate the significance of the models and
the applicability of the method suggested for solving them. We present
the optimal solution for a given set of parameters, as well as a sensi-
tivity analysis of the optimal solution when changing key parameters,
to show the robustness of the results. Table 1 presents the data used for
the example.

Consider couples in the primary market who sign a five-year con-
tract. When it expires, they must (according to the discarding model)
pay 1000 NIS to discard each remaining embryo. However, according to
the extended model, they must decide whether to pay 1000 NIS for
discarding each remaining embryo or alternatively, to sell each embryo
to the service provider for 1000 NIS. Such a sale also enables the pro-
vision of a source of embryos for the secondary market. For the pur-
poses of this example, it is estimated that 60% of the entire demand
consists of embryos used by couples in the primary market within the
first phase of period T (i.e., =θ 0.6c ). Further, as shown by the values in
Table 1, the service provider estimates that 50% of the remaining
embryos (i.e., 20% of the entire demand) should be allocated to supply
the secondary market at the end of period T.

4.1. Optimal pricing policy

We utilized the optimal searching algorithms presented above to
obtain the solutions. Table 2 presents the optimal policy and the

Table 1
List of parameters.

Parameters n0 β1 β2 β3 β5 β6 h0 δ θd θb pb cd T

Values
(discarding model)

20,000 1 5 20 N/A N/A 1000 500 0.4 0 N/A 1000 5

Values
(secondary market model)

20,000 1 5 20 5000 0.0001 1000 500 0.2 0.2 1000 1000 5

Table 2
Optimal solutions.

K* p *0 α* p*s π* Available reservoir for the secondary market MS Remaining embryosIT

Optimal solution for the discarding model 0 2960 0 N/A 5.772 · 106 0 0
Optimal solution for the secondary-market model 0 3120 0 10,000 7.507 · 106 4400 2560
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associated optimal profit for the above two models. Given the para-
meters presented in Table 1 for the discarding model, the optimal pri-
cing policy for the service provider that maximizes its profits includes a
fixed annual payment for storing each embryo for the entire period of
2960 NIS and annual profits of 5.772 · 106NIS. Allowing the possibility
of a secondary market (i.e., θb > 0, the second set of values in Table 1)
alters the optimal pricing policy. In this case, the service provider
charges a fixed annual payment for storing each embryo for the entire
period of 3120 NIS and sells each embryo to couples who belong to the
secondary market for 10,000 NIS, where the annual profits are
7.507 · 106NIS. The results indicate that in the case where there is the
potential for a secondary market, the service provider to some extent
exploits its power in determining the prices by increasing the service
price for couples in the primary market.

On the other hand, in the secondary-market model, the service
provider is left with unsold embryos. Specifically, for the given para-
meters, out of the 4400 embryos available for the secondary market,
MS, only 1840 are eventually sold, thus leaving 2560 remaining em-
bryos. It is interesting to note that for these two examples, although the
pricing model allows three degrees of freedom in setting the optimal
price, only the fixed annual payment p*0 is positive.

4.2. Sensitivity analysis of the parameters

Table 3 presents the effect of the parameters' values given in Table 2
on several key performance measures, where these changes are ex-
pressed in percentage terms. The performance measures in question are
the optimal profit π*, the available reservoir for the secondary market

MS, and the remaining embryos IT. In the case where =n 15, 0000 (i.e.,
25% smaller than the initial value), the optimal policy changes into a
two-part tariff (for the primary market) with =K * 10, 100, =p * 6200
(and =α* 0, =p * 10, 216s ). In this case, the demand in the secondary
market exceeds the available reservoir, and thus the optimal solution
does not leave any unused embryos (i.e., =I 0T and the percentage
change in IT is −100).

The results presented in Table 3 indicate that the optimal profit per
unit time π* increases with the parameters β5, cd and θd, while it de-
creases with the following parameters: β1(until a specified threshold),
β2(until a specified threshold), β3(until a specified threshold), β6, δ, T,
pb and h0. Interestingly, the optimal profit per unit time π* also shows a
general increasing trend with parameter n0, although this curve in-
cludes a single local minimum. The results further indicate that the
available reservoir for the secondary market MS increases with para-
meter n0 and decreases with parameters β1 (until a specified threshold),
β2(until a specified threshold), β3 (until a specified threshold), δ, θd and
h0. Finally, the results indicate that the number of remaining embryos,
IT, increases with parameter n0 and decreases with the parameters β1
(until a specified threshold), β2 (until a specified threshold), β3 (until a
specified threshold), β5, δ, θd and h0.

Each of the three performance measures is insensitive to changes in
the parameters β1, β2 and β3, as long as these changes are positive.
Interestingly, MS and IT show an unusual trend with the contract period
T; namely, there is more than a single local maximum. The service
provider's profit is strongly affected by the price sensitivity parameters
in both the primary and secondary markets. The results shown in
Table 3 strongly motivate the service provider to offer shorter contract

Table 3
The effect of the deviation from the original parameter value (in%) on three optimal variables, expressed in terms of the percentage change.

Change in parameter value (%) −50 −25 −10 +10 +25 +50 Optimal variable
Parameter

n0 −15.52 7.39 −20.69 25.95 74.88 183.02 π*
−70.45 −59.09 −26.36 20.0 59.09 118.18 MS

−100.0 −100.0 −45.30 34.36 101.53 203.07 IT
β1 224.25 67.61 21.11 0 0 0 π*

63.63 27.27 9.09 0 0 0 MS

109.35 46.86 15.62 0 0 0 IT
β2 224.25 67.61 21.11 0 0 0 π*

63.63 27.27 9.09 0 0 0 MS

109.35 46.86 15.62 0 0 0 IT
β3 49.71 0 0 0 0 0 π*

27.27 0 0 0 0 0 MS

46.86 0 0 0 0 0 IT
β5 −24.50 −12.25 −4.90 4.90 12.25 24.50 π*

0 0 0 0 0 0 MS

35.92 17.95 7.18 −7.18 −17.95 −35.92 IT
β6 49.00 16.33 5.44 −4.45 −9.80 −16.34 π*

0 0 0 0 0 0 MS

0 0 0 0 0 0 IT
δ 42.91 19.83 7.51 −7.36 −16.58 −29.92 π*

36.36 18.18 9.09 −9.09 −18.18 −36.36 MS

62.48 31.24 15.62 −15.62 −31.24 −62.48 IT
T 336.36 109.34 35.07 −11.49 −26.39 −46.25 π*

−9.09 9.09 6.36 0 2.27 −4.54 MS

−15.62 15.62 10.93 0 3.90 −7.81 IT

pb 5.91 2.93 1.17 −1.17 −2.93 −5.70 π*
9.09 0 0 0 0 −9.09 MS

15.62 0 0 0 0 −15.62 IT
θd −11.03 −5.70 −2.34 2.34 5.91 12.30 π*

36.36 13.63 10.0 −10.0 −18.18 −45.45 MS

62.48 23.43 17.18 −17.18 −31.24 −78.10 IT
cd −5.70 −2.93 −1.17 1.16 2.93 5.91 π*

−9.09 0 0 0 0 9.09 MS

−15.62 0 0 0 0 15.62 IT
h0 33.30 15.50 5.91 −5.70 −13.59 −24.99 π*

27.27 18.18 9.09 −9.09 −18.18 −27.27 MS

46.86 31.24 15.62 −15.62 −31.24 −46.86 IT
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periods, as this would have a significant positive effect on profit.
It is interesting to consider the effect of changes in θd, the estimated

proportion of embryos discarded by the end of period T. The profits
presented in Tables 2 and 3 show, at first sight, some contradictory
results. In Table 2, opening up the possibility of a secondary market
(second set of values) increases annual profits by approximately 30% in
comparison to those obtained in the model where the only option is to
discard unused embryos (first set of values). In Table 3, however, it can
be seen that further decreasing θdincreases the available reservoir for
the secondary market and decreases annual profits. Since this para-
meter is controlled by the service provider, it is worth examining its
influence in greater detail. Fig. 2 shows the change in the optimal profit
per unit time as a function of θd, where the baseline profit (i.e., value of
1) is the result obtained in Table 2 for the model in which there is no
secondary market (where =θ 0.4d ).

Fig. 2 implies a quasi-concave profit function with the proportion of
embryos allocated by the service provider to supply the secondary
market, θb (since = − −θ θ θ1b c d) . The service provider obtains the
highest profits when =θ 0.34d (i.e., when =θ 0.06b ), meaning that only
6% of the total market demand is allocated to the secondary market. In
mathematical terms, the "jump" seen near =θ 0.33d is associated with
the fact that constraint (5.2) becomes active. Since the regulator might
disagree with an allocation for the secondary market that is as low as

=θ 0.06b , in practice, regulations that restrict the minimal θb or that
increase monetary incentives for the service provider and for the cou-
ples in the primary market to sell their surplus embryos could be in-
troduced.

4.3. Comparing strategies

This sub-section presents a comparison between the common modes
of providing embryo cryostorage services (for free or with an annual fee
for storing each embryo) with the suggestion in the present paper
(according to the extended model) of allowing a secondary market. For
the comparison, we utilize the second set of values presented in Table 1.
The following expressions define several performance measures for
evaluating the pricing strategies:

(a) Profit of the service provider, π

∫⎜

⎟

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
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⎠
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⎥
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⎥
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d K p α θ c T θ p T K p αt h δ t

dt

p d p

1

( , , ) (( ) ( · ))
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d d b b

T

s s s

0
0

0 0

(b) Available reservoir for the secondary market MS

= − − −M θ n β K β p β α T( )S
b 0 1 2 0 3

(c) Number of remaining embryos IT

= − − − − −{ }
I

θ n β K β p β α T β emax 0, ( )

forthesuggestedstrategy.

T

b
β p

0 1 2 0 3 5 s6

= − − − +
− − − − −

I θ n β K β p β α T
θ n β K β p β α T β e

( )
max{0, ( ) } forallotherstrategies.
T c

b
β p

0 1 2 0 3

0 1 2 0 3 5 s6

(d) Primary market size

= − − − − −I θ θ n β K β p β α T(1 )( )P
d b 0 1 2 0 3

(e) Secondary market size IS

= − − − −{ }I θ n β K β p β α T β emin ( ) ,S
b

β p
0 1 2 0 3 5 s6

(f) Cost that the primary market pays CP

∫= − − − ⎛

⎝
⎜ + + + − ⎞

⎠
⎟C n β K β p β α K p αt dt θ c T θ p T( ) ( )P

T

d d b b0 1 2 0 3
0

0

(g) Cost that the secondary market pays CS

= − − − −{ }C p θ n β K β p β α T p β emin ( ) ,S
s b s

β p
0 1 2 0 3 5 s6

In computing the performance measures for the different strategies
(see Table 4), it is assumed that in all strategies other than the sug-
gested model, the service provider does not charge the couples for
discarding unused embryos and does not offer them any payment for
purchasing their remaining embryos after utilizing the service. It is
further assumed that in all strategies other than the suggested model,
the remaining embryos are not discarded and become a source for the
secondary market.

All comparative strategies result in significant losses to the service
provider, and thus highlight the lack of intrinsic incentives it has to
offer the storage service at all or to supply the secondary market. The

Fig. 2. Profit per unit time (relative to the profit in the case of no secondary market) as a function of the estimated proportion of embryos discarded, θd.
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suggested model achieves the lowest level of remaining embryos in
inventory (i.e., 2560), far less than the competing strategies. This result
illustrates one of the key motivations for developing the model, as this
relatively low inventory level is likely to reduce the likelihood of con-
flicts between couples, the service provider, and the regulator.
According to the first strategy, which is commonly implemented in
current practice, couples are not charged at all either in the primary or
the secondary market. This strategy results in the highest remaining
inventory as well as a significant loss for the service provider. The
charging scheme in the suggested model also reduces the size of the
primary market. This is important since the primary market is the
source of remaining embryos and the source of the losses suffered by
most of the service providers. The fifth line in Table 4 shows that the
suggested pricing scheme results in a moderate secondary market of
1840 embryos. However, while the other three strategies result in a
larger secondary market, they are not profitable. Thus, such strategies
may lead the hospital to withdraw from offering the service at all.
Moreover, the first two strategies, which achieve the largest secondary
market of 5000 embryos, assume that the primary market does not
receive any payment for its donations (i.e., =C 0S ). This assumption
does not reflect real-life scenarios which are commonly associated with
low willingness to donate to the secondary market.

5. Discussion and conclusions

This study analyzes a unique problem of the storage of frozen em-
bryos following IVF treatments – a problem that has economic, ethical
and social aspects. The present model contributes to the existing lit-
erature by developing and solving an optimization model. The model
combines the interests of (a) couples in the primary market who utilize
the storage service; (b) couples who, for many reasons, wish to pursue
embryo donation through the secondary market; (c) the service pro-
vider, which would like to maximize its profit; and (d) the social
planner, which would like to decrease the quantity of unused embryos
while maintaining the option of embryo donation either for the sec-
ondary market or for research purposes. Through a numerical example
and sensitivity analysis, the present paper examines the applicability of
the suggested model and the significance of each of the influencing
parameters on the optimal solution and other performance measures.

An optimization model is developed for maximizing the profit of the
storage service provider. In the extended version of this model, couples
in the primary market have the options of either discarding surplus
inventory at the end of a particular time period or selling it to the
provider, thus opening up a secondary market. Optimal solutions with
accordingly optimal searching algorithms are analytically obtained for
the extended model. It is shown that utilizing the suggested pricing
policy may lead to benefits not only for the service provider, in terms of
maximizing its profit, but also for the other players. In particular, the
model significantly reduces the amount of remaining inventory relative
to the alternative schemes. This is because the model encourages the

service provider, through appropriate selection of parameters pb and θb,
to increase the supply of embryos for the secondary market from em-
bryos remaining in cryostorage, while decreasing the overall unused
inventory. The results show that the service provider is strongly moti-
vated to offer shorter contract periods, as this has a significant, positive
effect on its profit. Reducing the contract period decreases the risk of
preserving inventory for long durations and encourages couples to
lower their primary demand. Accordingly, it also lowers the unused
inventory.

The suggested model also has numerous managerial implications,
including the following:

(a) By utilizing the suggested model, the hospital responds to consumer
demand with economic incentives. In particular, couples who own
embryos that they no longer need act as suppliers of their remaining
inventory, while couples in the secondary market who are waiting
for embryo donations represent the demand side. Certainly, ad-
dressing this demand with minimal or no payment from that market
requires an agreement between the service provider and the social
planner.

(b) The numerical example shows that the service provider has strong
monetary incentives to shorten the contract period as well as to
estimate a relatively small secondary market. The regulator should
be aware of this and should establish restrictions with which the
service provider must comply. For example, the regulator may de-
termine a minimal payment, pb, to the couple supplying the embryo
or a maximal discarding proportion θd.

(c) Numerical analysis shows very low sensitivity of the optimal solu-
tion to positive changes in the pricing factors β1, β2, and β3. This
observation is important since the demand function is only esti-
mated. This implies that even if, in real-life applications, the de-
mand function is inaccurately estimated, the optimal results remain
similar.

(d) The optimal pricing scheme in all of our experiments included no
more than a two-part tariff for the primary market. This not only
simplifies the pricing scheme, but it also increases the likelihood
that the scheme will be accepted by the market.

(e) Deterministic models, such as that proposed in this paper, cannot
accurately capture all real-life scenarios. One of the key parameters
in revenue management, the annual demand, is assumed to be
known. Unlike other, much more widely researched problems in the
revenue-management literature that address storage capacity (e.g.,
inventory and production planning problems or capacity resource
planning problems), the storage capacity for embryos is ample. This
means that even in a special case where the demand for the storage
service is suddenly doubled, the hospital would not need additional
"storage resources" to cope with such an unexpected scenario. This,
of course, is not true for classical inventory and capacity problems;
thus the use of the deterministic approach is better justified in the
present case.

Table 4
Performance measures of several charging strategies.

Mode Neither market is
charged

The primary market is charged and donates its surplus

embryos*
= =

= =
α K
p p

0
1460, 0s0

Only the primary market exists
=
=

θ
θ

0,
0.4

b

d

= =
= =

α K
p p

0
1460, 0s0

Both markets are charged

= =
=
=

α K
p
p

0
1460
5000s

0

Proposed policy

π − 45·106 − 10.03·106 − 10.03·106 − 7·106 7.507 · 106

MS 20,000 12,700 0 12,700 4400
IT 35,000 20,400 25,400 22,367 2560
IP 60,000 38,100 38,100 38,100 13,200
IS 5000 5000 0 3033 1840
CP 0 92.71 · 106 92.71 · 106 92.71 · 106 66.44 · 106

CS 0 0 0 15.16 · 106 18.4 · 106

⁎ as published by The Concept Fertility Clinic in London, UK.
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The novel strategy suggested in this model decreases the remaining
reservoir of embryos both by discarding them and by supplying the
secondary market. Yet, at the same time, the model assumes that the
pricing policy of the hospital has no direct influence on the proportion
of embryos discarded or the proportion sold at the end of the contract
period, T. Thus, the social planner, who is assumed to be interested in
social welfare and in avoiding ethical problems, may monitor both the
intensity of the secondary market and the amount of unused embryos,
and then may intervene as necessary. Specifically, the social planner
can offer monetary assistance to the couples, and can provide subsidies
or impose taxes and other restrictions on the service provider.
Numerical evidence in support of the fact that a regulatory subsidy
offered to a manufacturer can lead to higher social welfare is described
in Qu et al. [27]. Such extensions to the model are suggested for further
research.

We assume that the annual increase in the holding cost over time, is
a constant coefficient. Yet this parameter, which is not easy to predict,
may be subject to random variations in real-life scenarios, thus affecting
the expected profit, the available reservoir for the secondary market,
and the number of remaining embryos. Generalization of the proposed
model to consider a random annual increase in the holding cost is

suggested as a future research avenue. Other potential areas of future
research could include: determining the optimal purchasing price that
the service provider should offer couples in the primary market; ex-
tending the model to allow for negotiations concerning the contract
period; and an empirical study to validate the model in a real-life si-
tuation.
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Appendix A. Solution method for the discarding model

The first-order condition (FOC) for local maximization is given by the solution of the following system of linear algebraic equations with three
independent variables:
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−β T β α β K β T β p β θ c T h T δ T n1
2

(2 ) ( ) 1
2

·d d1
2

3 1 1 2 0 1 0
2

0

− ⎛
⎝

+ ⎞
⎠

− + − = ⎛
⎝

− − ⎞
⎠

−β T β T α β β T K β T p β θ c T h T δ T n T1
2

( ) (2 ) 1
2

·d d2
2

3 2 1 2 0 2 0
2

0

To simplify tracking, we replace the above system with the following matrix representation:

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

a a a
a a a
a a a

α
K
p

b
b
b

,
11 12 13
21 22 23
31 32 33 0

1

2

3 (A.1)

where

= − = −⎛
⎝

+ ⎞
⎠

= −⎛
⎝

+ ⎞
⎠

= ⎛
⎝

− − ⎞
⎠

−a β T a β β T a β T T β b β θ c T h T δ T T n, 1
2

, 1
2

, 1
2

· 1
2d d11 3

2
12 3 1

2
13 3

2
2 1 3 0

2 2
0

= −⎛
⎝

+ ⎞
⎠

= − = − + = ⎛
⎝

− − ⎞
⎠

−a β β T a β a β T β b β θ c T h T δ T n1
2

, (2 ), ( ), 1
2

·d d21 3 1
2

22 1 23 1 2 2 1 0
2

0

= −⎛
⎝

+ ⎞
⎠

= − + = − = ⎛
⎝

− − ⎞
⎠

−a β T β T a β T β a β T b β θ c T h T δ T n T1
2

, ( ), (2 ), 1
2

·d d31 3 2
2

32 1 2 33 2 3 2 0
2

0

We denote the determinant of matrix A by |A|, and whenever −A| |1 exists, according to Cramér's rule,

= = =α

b a a
b a a
b a a
a a a
a a a
a a a

K

a b a
a b a
a b a
a a a
a a a
a a a

p

a a b
a a b
a a b
a a a
a a a
a a a

, , .red red red

1 12 13

2 22 23

3 32 33

11 12 13
21 22 23
31 32 33

11 1 13

21 2 23

31 3 33

11 12 13
21 22 23
31 32 33

0

11 12 1

21 22 2

31 32 3

11 12 13
21 22 23
31 32 33 (A.2)

In (A.2) we use the superscript red to reflect the solution for the reduced problem (6). We now address the feasibility of the solution under the
constraint. Following (6.1) and (A.2), the condition of non-negativity of the demand is

+ + ≤β
a b a
a b a
a b a

β
a a b
a a b
a a b

β
b a a
b a a
b a a

n
a a a
a a a
a a a

.1

11 1 13

21 2 23

31 3 33

2

11 12 1

21 22 2

31 32 3

3

1 12 13

2 22 23

3 32 33

0

11 12 13
21 22 23
31 32 33 (A.3)
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Appendix B. Proof of Theorem 1

(a) The optimality of problem (6) may result from two possible scenarios. The first, represented by (A.2), is associated with the case where constraint
(A.3) is not violated under the solution of the reduced problem, K p α( , , )red red red

0 . The optimality and uniqueness of solution (A.2) under the
existence of −A| |1 is supported by Cramér's theorem [10]. In the case where constraint (A.3) is violated (the second scenario), the solution is
represented by K p α( , , )act act act

0 , that is, a root of the equation − − − =n β K β p β α 00 1 2 0 3 . We use superscript act to reflect the active solution for
problem (6). In this scenario, constraint (6.1) is active and =π K p α( , , ) 0act act act

0 . Thus, to summarize, the feasibility under constraint (6.1) is
ensured in both scenarios; however, K p α( , , )red red red

0 additionally complies with (A.3) in order to be considered.
(b) To ensure that an optimal solution is also the global maximum, a sufficient condition is that the Hessian matrix is negative definite and that the

feasible domain defined by the constraints is a convex set. After taking the second order derivatives, the Hessian matrix is

⎡

⎣

⎢
⎢
⎢
⎢

− − − − −

− − − − −

− − − − −

⎤

⎦

⎥
⎥
⎥
⎥

T

β β T β β T β

β T β β T β T β T

β T β β T β T β T

1
2

2 .
1 1 2

1
2 1

2
3

1 2 2
1
2 2

2
3

1
2 1

2
3

1
2 2

2
3 3

2

Since constraint (6.1) defines a convex set (as also do (5.1)-(5.3)), it is sufficient to show that the Hessian is negative definite. The conditions are:

− <β2 01 (B.1)

− + >β β T β T β4 ( ) 01 2 1 2
2 (B.2)

− ⎡
⎣

− + ⎤
⎦

+

+ ⎡⎣
+ − + + ⎤⎦

−

+ ⎡⎣
+ + − + ⎤⎦

<

( )
( )( )

( ) ( ) ( )

β β β T β T β T

β T β β T β T β β T β T β T β

β T β β T β β T β T β T β T β

2 2

( ) ( )

( ) 2 0

1 2 3
3 1

2 2
2

3
2

1 2 3
2

1 2
1
2 2

2
3

1
2 1

2
3

1
2 1

2
3 1 2

1
2 2

2
3 2

1
2 1

2
3 (B.3)

□

Appendix C. Proof of Lemma 1

The objective is = −( )π p p e( )s
β
T s

β ps5 6 . The first derivative with respect to the variable ps is

∂
∂

= −− −[( ) ]π p
p

β
T

e p β e
( )

.s

s

β p
s

β p5
6s s6 6

Equating the above expression to zero yields =p*s β
1

6
. The second derivative is

= − = − − −∂
∂

∂
∂

− − − − −( ) ( ) [( ) ]e p β e e e p β e( )π p
p p

β
T

β p β
T s

β p β β
T

β p β β
T

β p
s

β p( )
6 6

s

s s
s s s s s

2

2
5 6 5 6 5 6 6 5 6 6 6 Inserting =ps β

1

6
into the above expression yields <∂

∂
0π p

p
( )s

s

2

2 . We

conclude that =p*s β
1

6
is maximum. □

References

[1] Acharya J, Yates RD. Resource and power costs in dynamic spectrum allocation.
Proc. CISS 2008:938–43.

[2] Aziz HA, Saleh M, Rasmy MH, ElShishiny H. Dynamic room pricing model for hotel
revenue management systems. Egyptian Inf. J. 2011;12(3):177–83.

[3] Bitran G, Caldentey R. An overview of pricing models for revenue management.
Manufact. Serv. Operat. Manag. 2003;5(3):203–29.

[4] Burton PJ, Sanders K. Patient attitudes to donation of embryos for research in
Western Australia. MJA 2004;180:559–61.

[5] Chambers GM, Adamson GD, Eijkemans MJ. Acceptable cost for the patient and
society. Fertil. Steril. 2013;100(2):319–27.

[6] Chen JM, Chen LT. Periodic pricing and replenishment policy for continuously
decaying inventory with multivariate demand. Appl. Math. Model.
2007;31(9):1819–28.

[7] Chou WS, Julian P. Inventory system of deteriorating items with exponential de-
clining demand and partial backlogging. J. Interdiscipl. Math. 2015;18(1–2):89–96.

[8] Connolly MP, Griesinger G, Ledger W, Postma MJ. The impact of introducing pa-
tient co-payments in Germany on the use of IVF and ICSI: a price-elasticity of de-
mand assessment. Human Reprod. 2009;24(11):2796–800.

[9] Cooke DL. Public and Low-Cost IVF. Organizat. Manag. IVF Units 2016:301–14.
https://doi.org/10.1007/978-3-319-29373-8_16.

[10] Cramér H, Wold H. Some theorems on distribution functions. J Lond Mathemat Soc
1936;1(4):290–4.

[11] Gan SS, Pujawana IN, Widodob SB. Pricing decision model for new and re-
manufactured short-life cycle products with time-dependent demand. Operat Res
Perspect 2015;1:1–12.

[12] Gilson, H. (2012). Center for Reproductive Health (1986-1995). Embryo Project
Encyclopedia (2008-09-30). ISSN: 1940-5030. http://embryo.asu.edu/handle/

10776/1946.
[13] Golombok S, Wilkinson S, editors. Regulating reproductive donation. Cambridge

University Press; 2016.
[14] Hodel TB, Cong S. Parking space optimization services, a uniformed web applica-

tion architecture. Intelligent Transport Systems and Services. ITS World Congr Proc
2003:16–20.

[15] De Lacy S. Decisions for the fate of frozen embryos: fresh insights into patients'
thinking and their rationales for donating or discarding embryos. Human Reprod
2007;22(6):1751–8.

[16] Koninckx PR, Schotsmans P. Frozen embryos: too cold to touch? Human Reprod
1996;11:1841–2.

[17] Lee DH. Note on the optimal pricing strategy in the discrete-time Geo/Geo/1
queuing system with sojourn time-dependent reward. Operat Res Perspect
2017;4:113–7.

[18] Liu X, Tang O, Huang P. Dynamic pricing and ordering decision for the perishable
food of the supermarket using RFID technology. Asia Pacific J Market Logist
2008;20:7–22.

[19] Lyerly AD, Faden RR. Willingness to donate frozen embryos for stem cell research.
Science 2007;317:46–7.

[20] Mackie-Mason JK, Varian HR. Pricing congestible network resources. IEEE J
Selected Areas Commun 1995;13(7):1141–9.

[21] Coticchio G, Debrock S, Lundin K, Plancha CE, Prados F, Rienzi L, Verheyen G,
Woodward B, Vermeulen N. Revised guidelines for good practice in IVF labora-
tories. Human Reproduct 2016;31(4):685–6.

[22] Manthari B, Nasser N, Hassanein H. Congestion pricing in wireless cellular net-
works. IEEE Commun Survey Tutor 2011;13(3):358–71.

[23] McMahon CA, Gibson FL, Leslie GI, Saunders DM, Porter KA, Tennant CC. Embryo
donation for medical research: attitudes and concerns of potential donors. Human
Reprod 2003;18(4):871–7.

[24] Michelmann HW, Nayudu P. Cryopreservation of human embryos. Cell Tissue Bank

A. Herbon, et al. Operations Research Perspectives 7 (2020) 100157

11

http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0001
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0001
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0002
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0002
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0003
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0003
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0004
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0004
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0005
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0005
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0006
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0006
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0006
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0007
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0007
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0008
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0008
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0008
https://doi.org/10.1007/978-3-319-29373-8_16
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0010
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0010
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0011
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0011
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0011
http://embryo.asu.edu/handle/10776/1946
http://embryo.asu.edu/handle/10776/1946
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0012
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0012
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0013
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0013
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0013
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0014
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0014
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0014
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0015
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0015
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0016
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0016
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0016
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0017
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0017
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0017
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0018
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0018
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0019
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0019
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0020
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0020
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0020
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0021
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0021
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0022
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0022
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0022
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0023


2006;7:135–41.
[25] Merrill JP. Embryos in limbo. The New Atlantis 2009;24:18–28.
[26] Oren SS, Smith AS. Critical mass and tariff structure in electronic communications

markets. Bell J Econom 1981;12(2):467–87.
[27] Qu SJ, Zhou YY, Zhang YL, Wahab MIM, Zhang G, Ye YY. Optimal strategy for a

green supply chain considering shipping policy and default risk. Comput Ind Eng
2019;131:172–86.

[28] Provoost V, Pennnings G, DeSutter P, Gerris J, Van der Velde A, DeLissnyder E,
Dhont M. Infertility patients’ beliefs about their embryos and their disposition
preferences. Human Reprod 2009;24(4):896–905.

[29] Provoost V, Pennings G, De Sutter P, Gerris J, Van de Velde A, Dhont M. Patients’
conceptualization of cryopreserved embryos used in their fertility treatment.
Human Reprod 2010;25(3):705–13.

[30] Sambangi S. Cloud data storage services considering public audit for security.

Global J Comput Sci Technol 2013;13(1):1–5. Online ISSN: 0975-4172 & Print
ISSN: 0975-4350.

[31] Sattenspiel L. The geographic spread of infectious diseases: models and applica-
tions. Princeton, NJ, USA: Princeton University Press; 2009. ISBN
978‐0‐691‐12132‐1.

[32] Theodorovic D, Lucic P. Intellient parking systems. Eur J Oper Res
2006;175:1666–81.

[33] Thakker Y, Woods S. Storage of vaccines in the community: weak link in the cold
chain. Br Med J 1992;304:756–8.

[34] Tuviam J, Priyanka S. Security services of data storage in the cloud considering
third party servers. Int Res J Eng Technol 2017;4(10):70–3.

[35] You PS. Inventory policy for products with price and time-dependent demands. J
Operat Res Soc 2005;56:870–3.

A. Herbon, et al. Operations Research Perspectives 7 (2020) 100157

12

http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0023
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0024
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0025
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0025
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0026
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0026
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0026
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0027
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0027
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0027
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0028
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0028
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0028
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0029
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0029
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0029
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0030
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0030
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0030
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0031
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0031
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0032
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0032
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0033
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0033
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0034
http://refhub.elsevier.com/S2214-7160(20)30047-6/sbref0034

	A pricing scheme for a human embryo storage service as a source for a secondary market
	Introduction
	IVF process and human embryo storage
	Motivation
	Literature survey
	Limiting the storage period
	Revenue management for similar storage services

	The current paper

	Model formulation and assumptions
	System description
	Problem formulation

	Mathematical analysis of the model
	The discarding model
	The extended model: allowing a secondary market

	Numerical example and sensitivity analysis
	Optimal pricing policy
	Sensitivity analysis of the parameters
	Comparing strategies

	Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Solution method for the discarding model
	Proof of Theorem 1
	Proof of Lemma 1
	References




