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A B S T R A C T

Not all problem instances in combinatorial optimization are equally hard. One famous study “Where the Really
Hard Problems Are” shows that for three decision problems and one optimization problem, computational costs
can vary dramatically for equally sized instances. Moreover, runtimes could be predicted from an ‘order para-
meter’, which is a property of the problem instance itself. For the only optimization problem in the study, the
asymmetric traveling salesman problem (ATSP), the proposed order parameter was the standard deviation in the
probability distribution used for generating distance matrices. For greater standard deviations, most randomly
generated instances turned out to be easily solved to optimality, whereas smaller standard deviations produced
harder instances. In this replication study, we show these findings can be contested. Most likely, the difference in
instance hardness stems from a roundoff error that was possibly overlooked. This gives rise to a sudden emer-
gence of minimum-cost tours, a feature that is readily exploited by most branch and bound algorithms. This new
contradiction renders the earlier proposed order parameter unsuitable and changes the perspective on the
fundamentals of ATSP instance hardness for this kind of algorithm.

1. TSP

Surely one of the most iconic problems in computational history, the
Traveling Salesman Problem1 (TSP), has a broad range of appearances
and applications. In its most general formulation, and without pre-
sumptions about specific instances, it falls into one of two complexity
classes. As a decision problem (“Is there a tour smaller than k?”), it is
NP-complete, because although finding such a tour takes non-
polynomial time in the worst case for the best known algorithm, ver-
ifying whether a found solution actually is shorter than k takes only
polynomial time: simply add up all the individual tour segments.
Contrarily, TSP in its optimization formulation (”what is the shortest
tour?”) is NP-hard, but not NP-complete, because finding the shortest
tour not only takes nonpolynomial time (again), but there is also no
known faster way to verify that a given solution is actually shortest than
to simply try all the tours - in again nonpolynomial time. Many authors,
including us, believe that in the most general sense, the optimization
problem is the harder of the two, not only for the lack of a non-
polynomial verification procedure, but also because the optimization
problem usually involves finding the shortest tour, instead of finding

any shorter-than-k tour, which is the case for the decision problem.
There is an intimate relationship between the two though: when the
optimization problem is treated as a sequence = …t n{1, 2 } of search
problems with an increasingly tightening upper bound uppt, there might
be a polynomial multiplicative runtime relationship between the two if
the minimum difference between uppt and +uppt 1 is known, such as
when the cost matrix is integer based, especially when the numerical
diversity of its entries is low.

Exact algorithms for the TSP optimization problem always give the
shortest tour, regardless of instance specifics. Perhaps the most
straightforward of these is an enumeratively exhaustive depth-first
search which runs in factorial runtime [1]. In practice, extending the
algorithm by pruning off partial tours along a problem instance’s upper
and lower bounds (”branch and bound”) can reduce these runtimes
considerably, especially when starting off with a good initial bound, but
its worst case is still O(n!). The branch and bound paradigm has two
major 'algorithmic families’, depending on the underlying data struc-
ture: a stack-based depth-first implementation, or a (priority) queue
based design. An early implementation from this second family is the
algorithm by Little et al. (henceforth: ‘Lital’), which runs in a
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dinosaurical O (2 ),n( )2 but still managed to solve relatively large in-
stances for the time, which might be due to its clever choice of
branching [2]. A better runtime upper bound is achieved by another
member of this algorithmic family, the algorithm best known as ‘Held-
Karp’, but discovered slightly earlier by Richard Bellman [3,4]. It runs
in O(n2 · 2n) and thereby to this date still has the lowest time complexity
of all known exact algorithms. In fact, finding an exact algorithm for
TSP that runs in O*(cn) with c< 2 was stated as an open problem (#31)
by Gerhard Woeginger in his survey on exact algorithms for NP-hard
problems [5].

By explicitly stating this complexity bound as an open problem,
Woeginger firmly underlines the impracticality of exact algorithm
runtimes. It is hardly surprising therefore, that many generic heuristic
algorithms such as simulated annealing, ant colony optimization, ge-
netic algorithms and the plant propagation algorithm have been applied
to the TSP [6–10]. Even though heuristic algorithms, contrary to exact
algorithms, waive the absolute guarantee of an optimal solution, many
give good answers in little time, sometimes even providing an ‘anytime
solution’: the longer it runs, the better it gets. But a good heuristic for
TSP can also be a tool for ‘hacking’ its NP-hardness: if one heuristically
finds a very good tour, but then subsequently proves that no better tour
exists, the end result is the same as running an exact algorithm ”
without suffering its oppressive runtime.

Such is the work of Applegate et al. [12]. Using the specialized Lin-
Kernighan heuristic, Dantzig et al.’s cutting plane method and a branch-
and-cut approach, they found optimal tours for instances of 15,112, of
24,978 and of 85,900-city2 Euclidean TSP-instances from Gerhard Re-
inelt’s benchmark TSP-library [12–16]. The computation took 136 CPU-
years, but their work of heuristically finding a good solution first and
actually proving it to be optimal afterwards pries at the very barrier that
separates P from NP, but also stirs the interplay between problem, in-
stance, and algorithm [17].

Even though these achievements are respectable, their results are
not general. It raises the question how hard these individual instances
actually are, and how their method scales to a broader range of input
data (for a similar discussion on a decision problem, see [18]). A partial
answer is given in a particularly interesting study by Stützle et al., who
deployed both Applegate’s Concorde and Helsgaun’s Lin-Kernighan
implementation to (partially) structured Euclidean TSP-instances made
up from grids and fractals, so that the shortest tour is a priori known.
When perturbing these TSP-instances with various intensities, these
authors show that as the structure deteriorates, instances gets harder to
solve [19].

For the asymmetric (and therefore non-Euclidean) TSP, an influ-
ential study by Cheeseman et al. (henceforth: ‘Cetal’) exists. Cited over
1400 times, the study reports an experiment on the asymmetric TSP
that shows there is great variety in solving difficulty from one instance
to the next [20]. When the random generator used for making cost
matrices is parameterized with a low standard deviation (σ), the com-
putational effort is a number of magnitudes greater than for cost ma-
trices with high standard deviations, which are solved almost instantly.
As such, σ was proposed an ‘order parameter’ (or ‘predictive data
analytic’) for accurately predicting algorithmic runtimes. Identifying
such order parameters might have profound implications for problems
in NP, and eventually possibly the =P NP? problem itself.

These findings however, are debatable, as their findings appear to
be an effect of the specific distribution of the random generator, the
subsequent roundoff to integer values, and the resulting sudden emer-
gence of zero-cost tours, which effectively nullifies an instance’s hard-
ness. In other words: the choice of σ as a predictive analytic for ATSP is

not generally applicable, and relies on a possibly overlooked roundoff
error. And even though the literature on (A)TSP is vast, a direct re-
plication of Cetal’s experiment appears unavailable. Their experiment
on the Hamiltonian cycle problem from the same study however, has
been successfully replicated [21].

The rest of this paper is organized as follows: first we will describe
Cetal’s original experiment on the ATSP as closely as possible. Then, we
will describe our replication study, after which the results are pre-
sented. Finally, an explanation for the differences between the original
results and our replication study is given, discussed, and positioned in
the context of related work.

2. The original experiment

In their original experiment on the asymmetric TSP, Cetal create an
unspecified number of “[integer-valued cost matrices that in general are
not symmetric. We choose cost matrices with a mean edge of 10 but
with varying standard deviations. The results of running Little’s algo-
rithm for 16, 32 and 48 city instances with random cost matrices
constructed according to a log-normal distribution with a given stan-
dard deviation are shown.]”3. Though Cetal neither explicitly state the
values for σ nor the number of generated cost matrices, one can visually
infer from their Figure 5 that for each of the three instance sizes,
standard deviations are 26 values of = …{0, 0.2, 0.4, .4.8, 5.0} with
approximately 20 random cost matrices each, totaling 520 random
matrices for each of the 16-, 32- and 48-city instance sizes (also see the
inset in Fig. 1). We were unsuccessful in contacting the authors to verify
these exact numbers.

These 1560 randomly generated TSP-matrices are then solved by
Lital’s algorithm (“the best exact algorithm we could find”)[20], which
was developed nearly three decades earlier on an IBM 7090 at the MIT
Computation Center[2]. Indeed a surprisingly sophisticated algorithm
for the time, it deploys the branch and bound4 principle from the ‘best-
first family’ in a somewhat counterintuitive but very effective way.
Instead of stepwise extending partial tours, Lital’s algorithm chooses
individual costs between cities (cells in the cost matrix), independent
from the order in which they would appear in the final tour. This
particular method of choice aims to minimize the total number of steps
needed to exhaustively find the shortest tour - and thereby the total
runtime. Although deployed to integer matrices in both Cetal’s ex-
periment and Lital’s original report, the algorithm can operate on
floating point value matrices just as well.

Lital’s algorithm starts off by “reducing the matrix”: from each row
r, it subtracts the minimum value in that row rmin from all cells, re-
sulting in at least one zero for each row in matrix M. It then does the
same for minimum values cmin for every column c, and adds up all rmin
and cmin which amount to a lower bound on any final tour on matrix M.
One of these zero cells, and its corresponding city pair (x, y), will be
selected for branching. To optimally decide which zero cell to choose, a
value θ(x, y) is calculated for each zero cell, which is the sum of the
lowest value in the zero cell’s row and column, other than the zero cell
itself. Thereby, θ can be seen as the minimal consequence of not
choosing (x, y). The zero cell with the highest θ is then selected for
branching. In doing so, the ‘right-hand’ branch holds the subset of all
the tours containing (x, y); it has the same lower bound as M, since a
zero cell was chosen. The ‘left-hand’ branch holds the subset of all tours
without (x, y); it has the same lower bound as M plus θ(x,y), the
minimum consequence of not choosing (x, y).

Then the algorithm “[selects the next node for branching, by picking

2 The first two instances contain real topographical data from cities in
Germany and Sweden. The third and largest instance is actually a VLSI routing
problem from the chip manufacture industry, and therefore does not contain
“cities” as such, but has been remodeled to Euclidean TSP by the authors.

3 Even though Cetal use the word “city”, their TSP-instances are clearly non-
Euclidean.
4 Lital’s study actually introduced the term “branch and bound”, but the au-

thors rightfully cite Ailsa Land and Alison Doig, who invented the principle
[22].
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the node with the smallest lower bound.]” [2]. This means two things:
first, the algorithm uses (or could use) a priority queue5, much like an

efficient implementation of A*, or Dijkstra’s algorithm [23,24]. Second,
if a zero-cost tour is present in the matrix, the algorithm is likely to find
it in the minimum number of operations (O(n) operations for an n-city
instance size) by constantly branching to the right. Since the algorithm
after finding its first tour “[checks to see whether the search is finished -
whether the best tour so far has cost less or equal to the lower bounds
on all terminal nodes on the tree]”6 [2], it will also immediately halt

Fig. 1. Results from the replication of Cetal’s experiment solving asymmetric TSP with Lital’s algorithm on lognormally generated integer cost matrices (top half) are
roughly equivalent to the originals (top right inset), showing large and sudden differences in computational costs as σ increases. However, if the roundoff to integers
values is omitted for the same matrices, the effect completely disappears (bottom half). These graphs can interactively be consulted online [11].

5 Maybe even should use a priority queue - a technicality inferred and im-
plemented in this study, but not explicitly specified by Lital. The specific choice
of data structure can result in small differences in the results.
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after finding a zero-cost tour, since no shorter (partial) tour exists. This
is an important principle for any branch and bound algorithm, but will
also play a key role in explaining the results later on.

It should be carefully noted that both of both Cetal’s and Lital’s
paper, various versions circulate that differ substantially in (technical)
details. We supply pdfs of the referenced papers used for this study, as
well as a refurbished version of Lital’s paper [25]. Although Lital’s study
is well written and largely unambiguous, some implementational de-
tails could cause small differences in the results. The source code of our
version of the algorithm therefore, as well as the source data of the TSP-
matrices generated for this study, is publicly available [26], and we
encourage other teams to replicate and further experiment with our
results. Instead of also supplying a refurbished version of Cetal’s paper,
we intend to supply a completely new interactive online replication
report once all four experiments from the original study are done.
Graphs of this study however, are already interactively available online
[11].

3. The replication and the results

For the replication, we generate 50 cost matrices with log-normally
distributed values for each of the 26 standard deviations

= …{0, 0.2, 0.4, .4.8, 5.0} for each of the 16-city, 32-city and 48-city
TSP-instances, resulting in 1300 random cost matrices for each instance
size, totaling up to 3900 random integer matrices for the replication.
Note that these numbers are approximately 21

2 times greater than
Cetal’s original study, thereby not only eliminating possible counting
errors, but also increasing the robustness of the presumed effects. Like
the original study, the matrices are integer valued, but before rounding
off values to the nearest integer, we also ran Lital’s algorithm on the
3900 corresponding floating-point matrices.

Our results when using the integer cost matrices are quite similar to
Cetal’s for all instance sizes (we only show 48 cities), and there indeed
appears to be a critical zone with very hard TSP-instances for ‘inter-
mediate values’ of the standard deviation, roughly 0.2 ≤ σ ≤ 1.6. For
larger values of σ, all instances are easy, which makes it an immensely
strong predictive analytic for computation time. This effect however,
completely disappears when the corresponding floating point matrices
from before the roundoff are used (fig. 1)7. So the right question seems
not to be why the effect disappears, but why it appears in the first place,
and the answer is quite surprising.

4. Explanation of the results

The lognormal probability distribution indeed provides an open-
ended scale with nonnegative values for any given mean μ and standard
deviation σ. But as its standard deviation increases, so do its ex-
tremities: a few very large values are ‘compensated’ by many small
values, as μ remains fixed at 10. When subsequently converting to in-
tegers, any value smaller than 0.5 gets rounded to zero. As such, the σ-
value of the distribution is directly related to the expected number of
zeroes in the resulting cost matrix, and it can be calculated exactly.

As integer roundoff to zero occurs for floating points values below
0.5, the chance of any cell in the integer cost matrix being zero (or
lower than 0.5 in the corresponding floating-point matrix) for some σ is
given by the cumulative lognormal distribution:

=F x ln x µ( ) ( )
X (1)

in which ϕ is the cumulative distribution function of the standard

normal distribution. Substituting =x 0.5 and fixating =µ 10 gives the
probability Pzero(n, μ, σ) of a cell being zero in the integer cost matrix
after roundoff (or equivalently: being smaller than 0.5 before roundoff)
for any given from Cetal’s experiment. The probability Pzero(n, μ, σ)
increases rapidly with σ, is well over 0.5 for = 3 and very close to 1
for = 5 (see inset in Fig. 2). Multiplying Pzero(n, μ, σ) with n n·( 1) for
an n-city asymmetric TSP instance gives Nzero(n, μ, σ), the expected
number of zeroes in the integer cost matrix of the corresponding n-city
instance.

As mentioned in Section 2, the existence of a zero-cost tour has a
tremendous effect on Lital’s algorithm, reducing its runtime to linear
complexity. The probability of a distance matrix generated in Cetal’s
experiment actually having a zero-cost tour can also be calculated ex-
actly, and there is an interesting relation with the first experiment
(Hamiltonian cycle problem instance hardness) from the exact same
study by Cetal.

With some abstraction, the probability of a zero-cost tour in an
asymmetric TSP cost matrix of n cities and Nzero(n, μ, σ) zeroes is
identical to the probability of an unweighted graph of n vertices and E
randomly placed edges having a Hamiltonian cycle. This latter prob-
ability is given by János Komlós and Endre Szemerédi for undirected
graphs as

=P V E e( , )Hamiltonian
e c2

(2)

in which

= + +E V ln V V ln ln V cV1
2

· ( ) 1
2

· ( ( )) (3)

[27]. In the set of equations (2) and (3), the term
+V V V Vln( ) ln(ln( ))1

2
1
2 denotes the point of the ‘phase transition’, a

sudden jump from the graphs being almost-surely-nonHamiltonian to
almost-surely-Hamiltonian, and it gets steeper for larger graphs. The
corresponding point for a directed Hamiltonian cycle, which is relevant
for this investigation, is given by McDiarmid as

= +m q V ln V ln ln V· ·( ( ) ( ( )) (4)

in which q is a constant [28]. The actual value of q at which the phase
transition occurs8 has been empirically estimated by Vandegriend and
Culberson at =q 1.08, which is probably too high [29]. These authors
understandably took the probability of 0.50 as threshold point of the
phase transition, but theory dictates the point of the maximum deri-
vative revolves around a somewhat counterintuitive e 0.371 (which
also appears to fit their data better, see Figure 1 in [29]). Jäger and
Zhang later estimated q ≈ 0.9 [30].

From our randomly generated distance matrices after integer
roundoff, we count the numbers of zeroes for all 50 matrices for any
given = …{0, 0.2, 0.4, .4.8, 5.0} and compare the average number of
zeroes per matrix to the expected number of zeroes per matrix as given
from equation (1) (results are in fig. 2). Then, for all

= …{0, 0.2, 0.4, .4.8, 5.0}, we counted the fraction of the 50 matrices
that turned out to have a zero-cost tour, and fitted equation (2) to the
data points with the Levenberg-Marquardt method to approximate the
point of the phase transition. From the fit to equation (4), we find that
for 48-city instances, the threshold for existence of a zero-cost tour lies
at 215 zeroes ( 1.18·102 5). This corresponds to q ≈ 0.86 which is
relatively close to Jäger and Zhang’s value of q ≈ 0.9 (whose value
would correspond to 225 zeroes for equally-sized instances).

6 “On the tree” can also be understood as “in the priority queue”.
7 We received feedback that for the inset of Fig. 1, the axes’ lables are hardly

readable. This is also the case in the original paper, which was the original
motivation for this replication study.

8 The variable q was originally designated as c in studies mentioned in this
paragraph. We replaced it to avoid confusion with equation (2), which is used
in a large number of studies on random graphs, including Komlós and Sze-
merédi’s
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5. Conclusion and discussion

It seems that the hard-easy phase transition in Cetal’s asymmetric
TSP-instances is not a consequence of increasing σ in itself, but of the
gradually increasing number of small values that become zeroes at
roundoff, and the resulting sudden emergence of zero-cost tours (Fig. 2,
bottom). Because Lital’s algorithm (and many others) exploits zero-cost
tours by preferring to expand on lower bound subsets via its matrix
reduction and clever choice of θ, it is no surprise that the runtime drops

dramatically as the probability of zero-cost tours in Cetal’s randomly
generated cost matrices increases.

These findings might be regarded as complementary to the work of
WeiXiong Zhang and Richard Korf [31]. These authors find that in-
stance hardness for the asymmetric TSP depends on the expected nu-
merical diversity, instantiated by parameter randmax9 when generating

Fig. 2. The lognormal probability distribution (top left) and the related cumulative probability distribution (top right) as used by Cetal for generating asymmetric
TSP cost matrices. As σ increases for a constant =µ 10, the expected number of values below 0.5 increases along with it. In a roundoff, these values get reduced to
zero, eventually leading to the sudden appearance of a zero-cost tour in the cost matrices (bottom). As Lital’s algorithm carefully exploits lower bounds during its tour
construction, its runtime is directly related to the existence of zero-cost tours.

9 Originally designated as rmax. Substituted to avoid confusion.
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asymmetric TSP cost matrices from uniform random integers
0≤ r≤ randmax. Solving is relatively easy when randmax is low, but
instances get substantially harder as randmax increases. This is inter-
esting for three reasons.

First, their algorithm is branch and bound too, but from the opposite
algorithmic family, being a depth-first branch and bound instead of a
best-first branch and bound. Second, we suspect that their easy in-
stances of the asymmetric TSP are also easy instances for ‘our’ branch
and bound algorithm, because Lital’s matrix reduction step would
generate a relatively high number of zeroes, which again triggers the
sudden emergence of a minimal-cost tour (which isn’t necessarily zero
in this case). Third, we suspect the converse holds too, as ‘our’ easy
instances might also be easy for their algorithm, again from the ex-
istence of a zero-cost tour due to lognormal generation and integer
roundoff.

But whereas the concept of expected numerical diversity in itself
might be sufficient for characterizing the hardness of asymmetric TSP-
instances for Zhang & Korf’s algorithm, it is certainly not so for Lital’s,
which terminates quickly if the lowest value in the matrix (zero or
otherwise) has a prevalence of at least +q V ln V ln V· ·( ( ) ln( ( )) (in
which q ≈ 0.9), regardless of its total numerical diversity. To what
extend these principles are universal remains to be seen.

A last but important point of discussion concerns the origin of the
order parameter. In the most desirable case, it is a property of the
problem instance alone, serving as a predictive data analytic for the
performance of one or more solving algorithms [32]. For many decision
problems, like SAT, Hamiltonian cycle or even (A)TSP in its decision
form, dramatic peaks in computational costs are found along a steep
phase transition in solvability, which in terms usually aligns with the
order parameter of constrainedness [33] [21] [34] [35] [36].

Most of these investigations involve large numbers of instances
generated by parameterized random functions. By nature, randomized
ensembles will approach a certain stochastic parameter (like μ or σ) in
the size limit, but not guarantee it for an individual outcome (the dif-
ference is very well illustrated in a study by Barbara Smith [37]). In
Cetal’s study, this has a dramatic effect because of the possibly over-
looked roundoff, but in every case, it inevitably brings noise to the
robustness and predictive power of the resulting order parameter. Even
though constraining variables brings along other problems, such as
overrepresentation of instances in the order parameter’s extremes, an
exact instance property is still favourable over a stochastic one.
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