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A B S T R A C T   

Multi-manned assembly lines are widely applied to manufacturing industries that produce large-size products 
and are concerned with high levels of productivity. Such lines are commonly found in automotive industries, 
where different tasks are simultaneously performed by more than one worker on the same product in multi- 
operated stations, giving rise to a class of balancing problem that aims to minimize the line’s cycle time. This 
clear practical application had made the type-2 multi-manned assembly line balancing problem to be explored in 
the past. However, only few small-size instances could be solved by preceding exact solution approaches, 
whereas large and real-life cases still lack optimality proofs since they were tackled by heuristics. In this work, a 
new Mixed-Integer Linear Programming model is presented and its modeling decisions discussed. Moreover, an 
innovative exact solution procedure employing a combination of decomposition techniques and combinatorial 
Benders’ cuts is presented to solve large and real-life instances optimally. Tests on an extended literature dataset 
and a real-life assembly plant case study have demonstrated that the proposed algorithm outperforms previously 
developed methods in terms of solution quality by an ample margin in efficiency gains. Synergies between the 
algorithm’s components are also revealed. Finally, the proposed exact method has been able to yield 60 optimal 
results out of a 108-instance dataset, with the remaining 48 solutions presenting a small integer gap (less than 
2%).   

1. Introduction 

Assembly lines are production systems usually applied to large-scale 
industries of similar and standardized products. They are frequently 
built to fit homogeneous products and enable their mass production, 
hence generally designed as flow-shop layouts. In the academic re-
search, the Assembly Line Balancing Problem (ALBP) is widely dis-
cussed in the literature, which is the main combinatorial problem that 
assembly lines have created [4]. 

In its simplest form, the Simple Assembly Line Balancing Problem 
(SALBP) consists in assigning a list of tasks subjected to a precedence 
graph to stations, whilst considering various simplification hypotheses 
described by Baybars [6]. One of them is to solely allow one worker to 
operate each station. Furthermore, a serial, straight line organization is 
imposed to the stations. In turn, such line produces a single product 
model. The most common goals in a SALBP are (i) minimizing the 
number of stations (SALBP-1) or (ii) minimizing the cycle time (SALBP- 
2) and important contributions to its literature was surveyed by Scholl 
and Becker [40]. Among those, algorithmic solution methods were 
proposed and related to practical applications: developed by Scholl and 

Klein [41], SALOME is an effective procedure based on a bidirectional 
branch-and-bound, while Bautista and Pereira [5] proposed a dynamic 
programming approach, which were followed by Sewell and Jacobson  
[42] and their branch, bound, and remember algorithm, as well as a 
multi-Hoffmann heuristic with enhanced properties proposed by Ster-
natz [44]. For an overview and improved techniques for SALBP-1, it is 
possible to refer to Pape [33]. 

Notwithstanding, by revisiting the “only one worker per station” 
hypothesis applied to SALBPs, one can verify that it often is not a 
practical limitation on, for instance, manufacturing lines found in au-
tomotive factories. These industries regularly produce cars, buses, and 
trucks, which are large-size products, broadly speaking. Because the 
physical area occupied by stations are quite large compared to an op-
erator’s working space, multiple workers can simultaneously perform 
tasks on the same product. Accordingly, more generalized extensions of 
the SALBP come to light as natural extensions: the Multi-manned 
Assembly Line Balancing Problem (MALBP) and the Two-sided 
Assembly Line Balancing Problem (TALBP). Both problems, along with 
an assortment of other practical extensions, are surveyed by Becker and 
Scholl [7]. 
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These above mentioned lines are illustrated in Fig. 1. It exhibits 
examples of assembly lines composed of three stations each: simple, 
two-sided, and multi-manned assembly lines are respectively depicted. 
As observed, both two-sided and multi-manned assembly lines admit 
multiple workers in each station (first and third stations), with workers 
simultaneously performing tasks on the same product. Notice, however, 
that MALBPs are more flexible than TALBPs in terms of the quantity of 
workers and their positioning. The main difference is that two-sided 
lines allow at most one operator in each side of the station (right and 
left), whereas multi-manned lines have their maximum number of 
workers set depending on product’s attributes. These can be seen as 
size, structure, and tasks’ specificities. The last divergence is that 
TALBPs may have to deal with tasks exclusively performed on the right 
or left side of the product. Both of these problems can also be solved 
considering analogous goal functions studied for SALBP [7]. 

This work focuses on the MALBP-2 variant, namely cycle time 
minimization. A previous MALBP-1 specialized algorithm [28], when 
adapted, was not capable to satisfactorily solve the proposed problem, 
not even generating feasible solutions for most large-size instances, and 
the best-known meta-heuristic for the MALBP-2 [35] produces several 
sub-optimal solutions. Therefore, the main contribution to the state-of- 
the-art herein proposed comes from the implementation of an in-
novative exact algorithm to optimally solve the MALBP-2 dataset. Some 
relevant simplification hypotheses from SALBP-2 mentioned in Baybars  
[6] are kept, viz. a serial, straight line is considered and such line 
produces a single, unique model. The remaining of the paper is orga-
nized as follows. In Section 2, the relevant literature is introduced, 
focusing on specific objective functions, extensions, and methodologies 
used by each author. In order to define the problem, Section 3 precisely 
explains the characteristics of a type-2 MALBP, demonstrating ad-
vantages associated to obtainable production rate improvement and 
line length reduction when using a multi-manned configuration.  
Section 4 presents the MILP model, valid inequalities, upper and lower 
bounds, and a brief discussion on modeling decision. Section 5 de-
scribes the development and applications of the proposed Benders’ 
decomposition algorithm and combinatorial cuts, as well as how an 
initial solution is constructed for the problem at hand. Computational 
results retrieved from a benchmark dataset and a real-life assembly 
plant case study are presented and discussed in Section 6. Finally, in  

Section 7, a summary of the concluding remarks and further research 
directions are described. 

2. Literature review 

As a consequence of the intense use of multi-operated stations in 
industrial environments, several studies regarding MALBPs and TALBPs 
have been elaborate in the literature. To the best of the authors’ 
knowledge, Akagi et al. [1] is the first study to take on the problem of 
allowing more than one worker per station in assembly lines, while 
attaining good production rates. For that, an approach denominated 
Parallel Assignment Method (PAM) was developed. 

Much later, a heuristic method to address such problem was in-
troduced by Dimitriadis [12], which was based on altering a procedure 
previously created by Hoffmann [16]. Given a fixed cycle time, it has 
been shown that the heuristic was useful in enhancing stations physical 
utilization. The objective of minimizing the total number of workers 
and stations was considered, which turns out to be the most customary 
goal function exploited in subsequent works since then. 

Following those pioneer publications, the attention on MALBPs have 
been growing in the last ten years. Becker and Scholl [8] proposed the 
Assembly Line Balancing Problem with Variable Workplaces 
(VWALBP), in which a cycle time is given and working areas are 
minimized. Here the product is fragmented into mounting positions, 
while imposing in each multi-manned station that only one worker is 
capable of assembling them. A Mixed-Integer Linear Programming 
(MILP) formulation is modeled in conjunction with lower bounding 
techniques. Besides, a branch-and-bound algorithm based on SALOME – 
called VWSolver – is developed to solve large instances. In sequence, a 
novel efficient algorithm was implemented by Kellegöz and Toklu [19] 
to tackle ALBPs with multi-manned stations (Jumper), which is also 
based on branch-and-bound procedures. Jumper outperforms VWSolver 
in both computational processing times and quality of feasible solu-
tions. 

Fattahi and Roshani [13] were the first to propose a mathematical 
formulation that simultaneously minimizes the total number of workers 
and stations in a MALBP, defining the type-1 variant. In the optimiza-
tion procedure, minimizing the number of workers is the primary ob-
jective and minimizing the number of stations is the secondary one. 
Keeping the remaining SALBP hypotheses, their model failed in solving 
medium and large cases, but was able to solve small-size test problems 
in an acceptable time limit. To settle this issue, they have developed an 
Ant Colony Optimization (ACO) algorithm. The ACO algorithm could 
find the same optimal solutions for small-size problems in a much re-
duced computational time, as well as feasible and near-optimal solu-
tions for many medium and large instances. Later, Kellegöz [18] has 
created a better MALBP-1 mathematical model proposed by Fattahi and 
Roshani [13]. Additionally, a Gantt-based heuristic was developed 
within a Simulated Annealing (SA) framework. This procedure is able to 
solve medium and large-size instances, finding improved feasible so-
lutions to a large number of instances in the tested benchmark. 
Therefore, it has been concluded that the GSA algorithm outperforms 
the ACO algorithm given by Fattahi and Roshani [13]. 

The examination of assembly lines with multi-operated stations 
regarding cost-oriented problem instances has been conducted by 
Kazemi and Sedighi [17] and Michels et al. [27] on real-size case stu-
dies. The former presents a heuristic method based on Genetic Algo-
rithm (GA) that takes into account the objective of minimizing costs per 
production unit, whereas the latter analyzes a robotic assembly line 
that considers the employment of multiple robotic workers per station, 
conceiving robots, facilities, and tool prices. Hence, an MILP model to 
minimize implementation costs for the line design is developed. 

A multi-objective function to address MALBPs is firstly proposed by 
Roshani et al. [37]. By maximizing line efficiency and minimizing the 
line length and smoothness index, a mathematical model is formulated. 

Fig. 1. Layout examples of simple, two-sided, and multi-manned assembly 
lines. 
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Furthermore, an improved SA algorithm has been developed to tackle 
the problem. Meanwhile, a constructive heuristic based on priority 
rules followed by an improvement procedure based on GA has been 
presented by Kellegöz and Toklu [20]. Computational experiments have 
been conducted on MALBP instances to minimize the total number of 
workers in the line. At this point, Yilmaz and Yilmaz [48] have created 
a new mathematical formulation, aiming at the minimization of total 
number of workers, stations, as well as workload difference between 
workers. Subsequently, Yilmaz and Yilmaz [49] also studied the im-
pacts of equipment needs and skilled workers on MALBPs. In order to 
solve the problem, a heuristic procedure was proposed. 

For a given fixed number of stations, Roshani and Giglio [35] ap-
proached the MALBP by attempting to minimize the cycle time and the 
number of workers in a line as the primary and secondary objective, 
respectively. This strategy is further discussed in Section 4.3, as it ne-
glects fundamental MALBP hypotheses regarding the higher importance 
of workers over stations, flexibility gains over SALBP solutions, and 
conditions found in practice. Alongside the MILP model, two meta- 
heuristics, the indirect and direct SA algorithm (ISA and DSA, respec-
tively), were implemented. In both terms of solution quality and com-
putational time. Therefore, the DSA showed to be more efficient, with a 
better performance in solving the problem. Moreover, another SA al-
gorithm was developed by Roshani and Nezami [36], this one under-
takes the mixed-model variant of MALBP-1. 

More recently, both Naderi et al. [30] and Michels et al. [28] de-
veloped and applied Benders’ decomposition algorithms (BDA) [9] with 
combinatorial Benders’ cuts (CBC) [11] to the MALBP-1 variant, 
reaching outstanding results. The former is able to solve a realistic five- 
sided MALBP with moving workers and limited workspace, whereas the 
latter solves various medium and large-size MALBP-1 instances opti-
mally, proving the optimality of some solutions reported by Kellegöz  
[18] and improving many others in terms of solution quality. The 
Benders’ decomposition method aspires to reformulate an original and 
complete monolithic model into a master problem (MP) and slave (or 
sub) problems (SP), transforming them into two hierarchical problems. 
This partition aims at removing the burden of several variables and 
restrictions from the MP, transferring part of the load to one or more 
SPs, which are then solved individually. By iteratively working between 
the MP and SPs, solutions can be found and evaluated much faster: 
values for key variables are fixed in a given solution of the MP, then 
used in the SPs to define the remaining ones. Each MP candidate so-
lution is generally decomposable into multiple smaller problems, which 
is translated into a set of SPs that are solved individually, supposedly 
reducing the computational burden when compared to straightfor-
wardly solving the monolithic problem. Each SP yields a solution that 
can be used to inform the MP of infeasible combinations: these are 
known as CBC. The MP with these added cutting planes (extra CBC 
restrictions) is then solved and the procedure iterates with the next 
result. Specifically, this decomposition method strips off complicated 
variables from the MP, then repeatedly corrects misled solutions by 
solving the SPs [28]. These corrections are made by finally applying 
CBC to the MP [11], pointing out infeasibilities caused by parts that 
were omitted in it. As BDAs are highly dependent on the problem being 
dealt with, straightforward adaptations of previous algorithms rarely 
work as well as intended. Thus, authors generally develop specific al-
gorithms to their problems, incorporating as much particular informa-
tion as possible from the problem under study. 

Rahmaniani et al. [34] surveys and summarizes the use of BDAs in 
the literature, where only one work concerning a transfer line balancing 
problem is listed in the review [32]. Nonetheless, it was verified by 
further investigation that, besides the aforementioned works, various 
real-world problems have been approached by using BDAs. However, 
related research was scarcely developed for assembly line balancing 
problems. In Hazir and Dolgui [14] and Hazir and Dolgui [15], different 
layouts (straight lines and U-lines) are considered under uncertainty. A 
robust optimization model and a specialized algorithm are formulated 

for each case. Lastly, Akpinar et al. [2] task-dependent set-up times are 
taken into account. In this problem, task assignment and task sequen-
cing decisions can be interpreted as hierarchical problems. 

Finally, other recent works worth mentioning on MALBP variants 
are: Sahin and Kellegöz [38], which considered resource investment 
and developed a hybrid heuristic based on Particle Swarm Optimization 
(PSO) to tackle the problem; Sahin and Kellegöz [39] took into account 
the possibility of walking workers [43] in the line and solved large 
instances with a reduced integer gap by applying an Electromagnetic 
Field Optimization (EFO) algorithm to the problem; Lopes et al. [22] 
pointed out inconsistencies in a previously published paper [10] and 
proposes a model based hierarchical decomposition procedure to 
minimize the number of stations after the task-worker assignment so-
lution has been decided in a multi-manned assembly line; Lopes et al.  
[23] brought more flexibility to multi-manned lines by explicitly con-
sidering continuous paced line control, relaxing the limitation of fixed, 
discrete, and restrictive frontiers between stations. Their model, heur-
istic procedure, and algorithmic lower bounds accommodate sig-
nificantly shorter line lengths; Yilmaz and Yilmaz [51] proposed a 
mathematical model to consider assignment restrictions, i.e. positive 
and negative zoning, distance, station, and synchronous task restric-
tions. A tabu-search algorithm is also developed to effectively solve the 
problem; and Yadav et al. [46] improved worker and station efficiencies 
of a real-life automotive plant by reconfiguring the assembly line under 
study. 

In summary, none of the reviewed works but Roshani and Giglio  
[35] considered the type-2 MALBP. Nevertheless, by using SA algo-
rithms that would not guarantee optimality, they obtained sub-optimal 
solutions with lower levels of efficiency than its SALBP-2 counterpart. 
In order to bridge this gap, a new mathematical formulation with dif-
ferent modeling decisions is developed with valid inequalities to ad-
dress the problem. Furthermore, a solution method for the problem 
under study is proposed. It combines the decomposition technique in-
troduced by Lopes et al. [22] to find an initial assignment with a BDA as 
the strategy to find and prove optimal solutions for MALBP-2 instances. 
Larger benchmark instances can be solved to optimality by applying 
CBC [9,11] as lazy constraints while the algorithm is executing. Unlike 
classical Benders’ decompositions with linear SPs [9], the proposed 
algorithm presents integer slave problems [11], which are intended for 
feasibility seeking, as in Michels et al. [28] and Naderi et al. [30]. 
Besides Roshani and Giglio [35] being the only work concerning 
MALBP-2, they likewise supply an comprehensive dataset to validate 
both the proposed model and algorithm. Therefore, these instances are 
provided as a benchmark for this work and the solution method herein 
proposed, which defines the MALBP-2 and focus on minimizing the 
cycle time as the primary objective and the number of stations as the 
secondary given a fixed number of worker. In this way, objective 
function results can be directly compared to evaluate the algorithm’s 
performance. 

3. Problem statement 

As aforementioned, multi-manned stations from assembly lines ex-
amined in this study are employed to large-scale production of a single 
model of large products. Such stations are sequentially positioned in a 
straight, serial line. Work-pieces can just be processed one at a time in 
each station. These pieces move forward between stations within a 
cycle time (CT) to be optimized (minimized), whilst their transfer times 
between stations are neglected. As a single product is produced in the 
line, its pace – and consequently its production rate – is entirely de-
termined by the most loaded station [6]. 

A set of indivisible tasks T must be performed in order to assemble 
any product. Since precedence relations must be respected, they cannot 
be executed in an arbitrary order. Tasks have a deterministic processing 
duration time (Dt) to be finished. Therefore, the sum of task processing 
times assigned to the same worker must not surpass the cycle time limit, 
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which is imposed by the most loaded worker. However, the possibility 
of parallel work within each station makes it essential to schedule tasks 
in such a manner that precedence restrictions are still respected. 

In Table 1, an illustrative instance is sampled to depict differences 
between SALBP and MALBP possible results. This illustrative instance 
will be used as a numerical example throughout the paper to explain 
the proposed method. For the considered precedence graph, task index 
numbers are ordered on the first line, their respective durations are 
represented by the value just below it, and their direct predecessor are 
given in the last line. Additionally, optimal solutions for both SALBP 
(Fig. 2a) and MALBP (Fig. 2b) versions of this instance are shown in the 
format of Gantt diagrams, with a defined maximum number of workers 
in the line to be five ( =Nmax 5). Differently from multi-manned lines, 
the total number of workers and stations must be the same for SALBPs. 
In the former, notwithstanding, each work-piece is allowed to be en-
gaged by more than one worker employed in the same station si-
multaneously. Due to product sizes, the maximum number of workers 
that a station can suit to perform different tasks concomitantly (NW) 
may vary. In this example, =NW 3. 

The SALBP’s solution requires 5 workers (represented by bars) as-
signed to 5 stations (on the y-axis) to deliver a production rate (with 
times on x-axis) of one product unit each 11 time units (i.e. 

=CT 11SALBP ) in its optimal configuration. Represented by dashed blank 
spaces in each station, idle times total 5 time units along the line, which 
translates to approximately 9.09% of the line’s available task per-
forming time. On the other hand, by permitting simultaneous opera-
tions within stations by different workers, the MALBP optimal solution 

could, at the same time, reduce the line length from 5 to 2 stations and 
improve the production rate to a cycle time of 10 time units 
( =CT 10MALBP ) instead of 11 to perform the same task set. Hence, an 
advantage of multi-manned lines over simple ones was demonstrated: 
the additional flexibility allowed idle time to be reduced to zero. 
Naturally, these improvements depend on the instance’s parameters, 
but it is clear that efficiency gains can occur at no extra or even reduced 
cost when multiple workers are allowed to perform different tasks at 
the same time within a station. 

Nevertheless, tasks must still be scheduled within each station to 
ensure that precedence relations are respected. These task-scheduling 
requirements imply on a computational burden to solve the problem, 
which inevitably comes along as a drawback by allowing such flex-
ibility to acquire the presented viable advantage. Notice that, into the 
same station, at most one task can be executed by each worker at a 
given time, whilst cooperation between workers is forbidden, which 
means that common tasks are not considered [43,47]. Moreover, po-
sitioning and zoning restrictions do not constrain task assignments  
[3,8], and interferences between workers do not happen during the 
assemblage process [24] as long as precedence relations are respected. 
Workers are homogeneous [29], meaning all of them have the same 
regular capability and can perform any task with the same specific time 
duration required for its execution. As stated, even though different 
workers can perform different tasks synchronously, all precedence re-
lations enforced by the precedence graph still must be satisfied. Con-
sequently, for each station a task scheduling problem originates, with 
possible waiting (idle) times for workers between or before the per-
formance of tasks. These must be taken into account, thus making 
MALBPs more complex and difficult to solve than SALBPs [13]. 

Due to high line utilization associated to assembly lines, it is as-
sumed that balancing decisions are a long-term plan for the studied 
problem, which implies in a desire to maximize productivity with the 
available resources. In this situation, the number of workers that a 
company can employ is the main fixed resource, as they represent costs 
related to wages, equipment, labor regulations, among others. Stations 
and facilities, on the other hand, are a one-time investment that is re-
latively much cheaper when compared to workers, but should be con-
sidered nonetheless [13,18,28]. Hence, the mathematical model pre-
sented in Section 4 prioritizes productivity maximization in its 
objective function, i.e. minimizing cycle time, accompanied by a sec-
ondary objective of reducing facility costs, i.e. minimizing the total 
number of stations and, accordingly, the line length. 

Ultimately, solutions that are deemed optimal for SALBPs are ne-
cessarily feasible configurations for MALBPs. It follows that the optimal 
cycle time solution given a fixed number of workers (and stations) 
achieved by a SALBP can be viewed as an upper bound for its MALBP 
counterpart, since simple lines are less flexible and restrict the use of 
workers to only one in each station for any given solution. 
Correspondingly, the maximum number of stations (NS) in a MALBP 
can be set to one unit lesser than the optimal solution found by its 
simpler counterpart. This adopted upper bound is a reasonable mea-
sure: as the MALBP-2’s goal is to minimize both the cycle time and the 
total number of stations, with a much lower importance in the latter, 
the minimal marginal improvement taken from a SALBP solution is 
keeping the same productivity level while reducing the line length in at 
least one station. This has been similarly demonstrated by Michels et al.  
[28] for the MALBP-1 variant. For the illustrative example presented in  
Fig. 2a and b, a MALBP-2 instance starts with an upper bound for the 
number of stations equaling four ( =NS 4). It is explained by the fact 
that, if the model is incapable of reducing at least one station in the 
previous solution (accusing the problem to be infeasible), then it is 
concluded that having the flexibility to allow multiple worker per sta-
tion does not help in obtaining efficiency improvements at no addi-
tional costs, meaning that both versions (SALBP and MALBP) have the 
same optimal solution in terms of objective value. This reasoning is 
further discussed in Section 4.3. 

Table 1 
Task duration times and precedence relations for the illustrative instance.            

Task 1 2 3 4 5 6 7 8 9 
Duration 3 3 5 5 2 2 10 10 10 
Precedence – – 1,2 1,2 3,4 3,4 5 5,6 6 

Fig. 2. Gantt diagram representations of simple and multi-manned optimal 
solutions for the illustrative instance. 
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4. MILP model 

In this section, the developed Mixed-Integer Linear Programming 
(MILP) model is presented. It represents the type-2 Multi-manned 
Assembly Line Balancing Problem (MALBP-2), taking into account the 
characteristics recognized in Section 3. Section 4.1 outlines the main 
model to express the problem and Section 4.2 shows the implemented 
constraints that strengthens the problem’s linear relaxation (valid in-
equalities). Furthermore, modeling decisions concerning the objective 
function and parameter values are discussed in Section 4.3. Tables 2 
and 3 display the applied terminology to describe parameters, sets, and 
variables used in the formulation. Variables are created by the model 
depending on its sets, as detailed in Table 3. 

4.1. Main model 

The formal mathematical definition of the MALBP-2 is given by 
Expressions (1) to (13): 

+
+

CT
NT

Zminimize: 1
1

·
cycle time s S s

number of stations (1)  

=X t T1
s S

t s,
(2)  

=W t T1
w W

t w,
(3)  

+Y X W t s TS t w TW1 ( , ) , ( , )w s t s t w, , , (4)  

Nmax Y
w s WS

w s
( , )

,
(5)  

=F t t P1 ( , )t t i j,i j (6)  

F X X t t T s S t t, , |t t t s
sk S sk s

t sk i j i j, ,
|

,i j j i
(7)  

+ + + +F F X X W W t w s t w s TWS t t3 ( , , ), ( , , ) |ti t j t j ti ti s t j s ti w t j w i j i j, , , , , ,

(8)  

ST CT s B X t s TS·( 1) ·(1 ) ( , )t t s, (9)  

+ +ST D CT s B X t s TS· ·(1 ) ( , )t t t s, (10)  

+ ( )ST ST D B F t t T t t· 1 , |t t t t t i j i j,j i i i j (11)  

Z X t s TS( , )s t s, (12)  

Z Y w s WS( , )s w s, (13)  

Expression (1) states the objective function considered for this 
problem, it is akin to the one used in Roshani and Giglio [35]. The first 
portion in the expression is the same, it corresponds to the line’s cycle 
time. The second component of the objective function, however, re-
presents the total number of stations opened in the line instead of the 
total number of workers, along with its weighted cost (

+NT
1

1
). This 

crucial modification is further detailed in Section 4.3. Notice that, in 
this manner, the primary objective is to minimize the cycle time: there 
is a clear hierarchical order of importance between cycle time and 
number of stations, so that a cycle time unit is at least + NT1 times 
costlier than a station, enforcing a disadvantageous trade-off between 
them. It is also important to mention that cycle time values are always 
integer due to the nature of task processing times: the ALBP benchmark 
only contains instances with integer task durations and, in any case, one 
can simply multiply the actual task processing times (given in seconds 
or minutes) of all tasks by an arbitrary large number in order to obtain 
integer durations, which is a common practice in the surveyed litera-
ture (Section 2). 

Occurrence is stated by Constraints (2), they force each task to be 
assigned to a station exactly once. Analogously, Constraints (3) ensure 
each task to be exclusively executed by a specific worker. Constraints 4 
impute appropriate values to Yw,s variables: whenever a task t is as-
signed to station s and such task t is also performed by worker w, then it 
is conceivable to infer that worker w from station s is employed for such 
tasks. Finally, Constraints (5) state that the total number of workers in 
the line is limited by the maximum number of available workers 
(Nmax). 

The precedence relations and scheduling between tasks are satisfied 
by Constraints (6)–(11), which use the same reasoning recently pre-
sented by Michels et al. [28]. Task following (Ft t,i j) and starting time 
(STt) variables define if and when each task can or must start. It is 
mandatory for a given task tj to follow task ti (Constraints 6) if such pair 
of tasks (ti, tj) is included in P (the precedence set). The variables Ft t,i j
exclude situations in which =t t ,i j since a task cannot follow itself. In 
order to properly determine following variables based on task assign-
ment and worker use, Constraints (7) and (8) work as logical ties. 
Constraints 7 decide whether or not tj follows ti between stations: task ti 
follows task tj whenever ti is not assigned to the same station that tj is or 
in any station after that. In the same station, however, one of them must 
follow the other if both tasks ti and tj are performed by the same worker 

Table 2 
Definition of parameters and sets.    

Parameter Description  

NT Number of tasks 
NS Upper limit on the number of stations 
NW Upper limit on the number of workers per station 
Nmax Upper limit on the number of workers in the line 
Dt Duration [time units] of task t, always a natural number 
B A big positive number 

Set Description 

T Tasks set t; =T t NT{1, 2, ..., , ..., }
S Stations set s; =S s NS{1, 2, ..., , ..., }
W Workers set w; =W w NW{1, 2, ..., , ..., }
TS Task-Station tuple 
TW Task-Worker tuple 
WS Worker-Station tuple 
TWS Task-Worker-Station tuple 
P Precedence relations between tasks (ti, tj): ti≺tj 

Table 3 
Definition of variables.      

Variable Set Domain Description  

CT – + Cycle time [time units] 
Xt,s (t,s) ∈ TS {0, 1} Task assigned to station: 1 if task t is assigned to station s 
Yw,s (w,s) ∈ WS {0, 1} Worker assigned station: 1 if worker w is hired in station s 
Wt,w (t,w) ∈ TW {0, 1} Task assigned to worker: 1 if task t is executed by worker w 
Zs s ∈ S {0, 1} Open station: 1 if station s is used 
Fti t j, ti, tj ∈ T | ti ≠ tj {0, 1} Following: 1 if task tj follows task ti 
STt t ∈ T + Start time: task t starts to be performed at this time 
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(Constraints (8)). Introducing a sufficiently large natural number B 
(whose value is stated in Section 4.3), the starting time of a task t must 
be superior to a minimum value regarding the station s in which it is 
performed (Constraints (9)), as well as inferior to its upper maximum 
limit (Constraints (10)). Lastly, Constraints (11) state that all tasks ti 
that precede tj must be finished before tj can start. 

Finally, the combination of Constraints (12) and (13) along with the 
objective function assists in a logical searching process, as they forbid 
the existence of unoccupied or unproductive stations: they respectively 
state that a station must be opened for a task or a worker to be assigned 
there. 

4.2. Valid inequalities 

The model (1)–(13) represents MALBP-2. Nonetheless, in order to 
save some time by not visiting symmetric solutions, some ordering 
symmetry breaks have to be implemented into the model [45]. The 
problem’s linear relaxation is strengthened and the issue found by 
Yilmaz and Yilmaz [50] in a previous paper is prevented by them. In 
Fattahi and Roshani [13], objective function values would be correct, 
but inconsistent solutions were found because an arbitrary opening 
order of stations was permitted. Therefore, a station can only be opened 
if a previous one is already opened (Constraints (14)) and a worker can 
only be used if a previous one is already in use (Constraints (15)). They 
break the symmetry between stations and workers, respectively, 
avoiding equivalent solutions to be taken into account by the model in 
respect of objective function values, thus shrinking the search-space 
and leading to tighter bounds. These ordering constraints were also 
used by Kellegöz [18], Michels et al. [28], and Naderi et al. [30] in their 
MALBP-1 mathematical models, provided that Constraints (14) and  
(15) are just applied to the model from the second station/worker on-
wards. 

>Z Z s S s| 1s s 1 (14)  

>Y Y w s WS w( , ) | 1w s w s, 1, (15)  

Henceforth, the MILP formulation defined by (1)–(15) is referred to 
as PF (proposed formulation). 

4.3. Upper and lower bound values for CT 

This section explores a crucial modeling decision. It concerns the 
definition of an upper bound value applied to CT and its role in the 
objective function. It is necessary to remind that, by hypothesis, 
Baybars [6] define the SALBP to be a very constrained problem, re-
stricted by several simplification assumptions. One of them being that 
each station can only be operated by one worker. Thus, by fixing the 
number of stations in a type-2 SALBP, one is, in practice, minimizing 
the line’s cycle time while maintaining the number of workers fixed as a 
consequence. It makes sense; tasks are actually performed by workers 
rather than by physical stations. Nevertheless, more than one worker 
can be engaged in each station once this hypothesis is relaxed. It follows 
that the number of workers and stations must be expressly dis-
associated, allowing more flexible and efficient manufacturing config-
urations. Moreover, it has been repeatedly stated that weights can be 
attributed to workers and stations based on the explicit economical 
importance of each resource, in which fixed monthly costs (cumulative 
salaries) are generally much costlier than the one-time expense of 
physical parts of a station [13,18,28,30] in MALBP-1 works. 

For a MALBP-2, Roshani and Giglio [35] have chosen to minimize 
the cycle time as the primary goal and the number of workers along the 
line as the secondary, all that whilst fixing the total number of stations. 
As a consequence, their model tends to fit as many workers as possible 
in the stations in order to achieve better levels of productivity. Thus, the 
results reported in their paper show solutions in which a SALBP-2 
configuration with the same number of workers could be more efficient 

in terms of cycle time than the one optimized for MALBP-2. Considering 
that the primary objective is to minimize CT, optimized MALBP solu-
tions should have been at least equivalent to its SALBP counterpart  
[28], but never worse. Taking that issue into consideration, it has been 
decided that the proposed formulation would fix the number of workers 
along the line (Nmax) and minimize the total number of stations as the 
secondary objective. The reasoning behind it is that, in this way, the 
problem is closer to its SALBP-2 relative (minimize cycle time) and still 
accepts the concept of previously developed MALBP-1 works, in which 
the number of workers is the resource that should be prioritize over the 
number of stations. This approach is also in accordance with what can 
be found in reality: it does not exaggerate labor costs to achieve better 
production rates. In fact, overall costs must be lower than (or at least 
equal to) its less flexible counterpart, a characteristic that cannot be 
found in Roshani and Giglio [35]. 

With the number of workers as the fixed resource, it is expected that 
the proposed MALBP-2 formulation cycle time is at least as good as its 
SALBP-2 version with the same given number of workers. That said, 
Constraints (16) are included in the model to represent an upper bound 
for the cycle time value in a MALBP-2, in which CTSALBP is a newly 
introduced parameter for the optimized SALBP-2 variation of the same 
data. On the other hand, Constraints (17) and (18) are trivial lower 
bounds for the cycle time and the total number of stations, respectively. 
Moreover, CTSALBP · NS is sufficiently large to assume the B role in the 
PF. 

CT CTSALBP (16)  

CT
D

Nmax
t T t

(17)  

Z Nmax
NWs S

s
(18)  

5. Solution method 

The Benders’ decomposition algorithm (Section 5.2) – hereafter 
referred to as BDA – and its initial solution procedure (Section 5.1) 
developed for the MALBP-2 are herein presented. Section 5.2.1 presents 
the master problem (MP), whilst Section 5.2.2 is dedicated to the slave 
problem (SP). In the proposed implementation, the former is associated 
to decisions concerning task and worker assignments to stations (high- 
level problem) and the latter is related to feasibility tests of task as-
signments and scheduling to workers in each station (lower-level pro-
blem). However, since Benders’ decompositions are known to have a 
slow convergence process [25], the algorithm may go through en-
hancement modifications to accelerate its operation. Those are ex-
plicitly pointed out along with the initial solution, MP, and SP de-
scriptions. 

5.1. Initial solution decomposition 

An initial feasible solution for the MALBP-2 can be obtained by 
following the routine presented in Sections 5.1.1 and 5.1.2. Afterwards, 
the task-worker-station allocation and scheduling found by this proce-
dure feeds the Benders’ decomposition algorithm, which is, in turn, 
presented in Section 5.2. The illustrative instance presented in Table 1 
is solved step-by-step as the proposed solution method stages are pre-
sented. 

5.1.1. Solving the SALBP counterpart 
In the proposed solution method, the first step to solve a MALBP-2 

instance is to solve its simpler counterpart, the SALBP-2. For that, the 
well-known exact algorithm SALOME [40] is used to find the optimal or 
an integer solution for a given case. By applying this step to the illus-
trative instance (Table 1), the solution previously presented in Fig. 2a 
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can be obtained, with 5 workers placed into 5 stations, and a cycle time 
of 11 time units. 

5.1.2. Minimizing stations 
Since SALBPs assume that there is always only one worker in each 

station, once with a feasible task-station assignment (Xt,s) provided by 
SALOME at hand, it is possible to emulate that solution to a fixed task- 
worker assignment (Wt,w), treating such variables as parameters. 

The residual problem, then, can be reduced to worker-station as-
signment (Yw,s) and task scheduling (STt) problems. As precedence re-
lations constraints between stations are automatically respected from 
the SALBP solution, this model only has to group workers whose as-
signments do not violate such constraints within each station, and 
therefore minimizing the number of stations for a given task-worker 
assignment. 

For example, by considering once again the illustrative instance 
from Table 1, the initial SALBP solution in Fig. 2a, and an upper limit 
on the number of workers per station set to =NW 3, this intermediary 
step of minimizing stations given task-worker assignments can ag-
gregate multiple workers in the same station while still respecting 
precedence relations constraints. An intermediary multi-manned fea-
sible solution for the illustrative instance is presented in Fig. 3. The 
initial decomposition procedure is not able to deliver a solution with a 
reduced production rate (i.e. =CT 11, with times on x-axis), and idle 
times remain at 5 time units along the line, or 9.09% of the line’s 
available task performing time. On the other hand, by allowing co-oc-
curring operations within the third station by three different workers 
(represented by bars), the intermediary MALBP feasible solution was 
capable of reducing the line length from 5 to 3 stations (on the y-axis). 
Notice that all task-worker assignments persist from the input SALBP 
solution (Fig. 2a) and no constraint imposed by precedence relations is 
violated. 

As demonstrated, this approach does not ensure optimality for any 
type of MALBPs. Nonetheless, it has been successfully applied to the 
MALBP-1 instances by Lopes et al. [22], as it yields good solutions in 
quite reduced computational times. As evidenced in Section 6.2, using 
such task-station-worker assignment as an initial solution for the 
complete Benders’ decomposition approach (Section 5.2) can drasti-
cally improve faster convergence for the algorithm (Enhancement 1). 

5.2. Benders’ decomposition algorithm 

For the MALBP-2, the MP tackles task and worker assignments to 
stations, whereas the SP takes care of task scheduling problems, orderly 
assigning tasks to workers. Naturally, MP and SP cannot be formulated 
by simply decoupling parts of the PF: Sections 5.2.1 and 5.2.2 explain 
how each of these models is generated. Fig. 4 is a flowchart that il-
lustrates the path taken by the proposed BDA, when looking for an 
optimal solution, in which HT is a hash-table to be consulted for re-
petitive solutions. When the algorithm loads the initial solution, it 

consequently establishes an upper bound for the problem and gets a 
proxy on the direction that the search process should occur: for the 
illustrative instance, this initial solution is represented by Fig. 3, which 
the proposed algorithm promptly leads to an optimal MALBP-2 solution 
previously presented in Fig. 2b. 

In order to deal with the problem stated in Section 4 by the PF 
(Expressions (1)–(18)), one should notice that the SP is a mixed-integer 
problem in this application, thus a feasibility-seeking variant [11] 
should be used. Once again, the SP must be employed as a feasibility 
check on the algorithm, as analogously proposed by recent MALBP-1 
works [28,30]. Given its resources to each multi-manned station, the 
SPs should, particularly for the proposed BDA, assign and schedule 
tasks to workers for each individual station, in an effort to complete all 
the assigned tasks within the cycle time limit previously defined by the 
current MP iteration. 

The second enhancement is detailed in Section 5.2.1: feasibility cuts 
are implemented and applied to the MP before execution starts, con-
straining the possibilities of task assignments (Enhancement 2). These 
are based on precedence graph analyzes [21]. Besides, each infeasible 
SP returns combinatorial inequalities (cutting planes) to be appended as 
lazy constraints into the MP, originating the third enhancement pro-
cedure to accelerate convergence [11]: the use Combinatorial Benders’ 
Cuts (Enhancement 3). This is done by extending the previous concept to 
use such cuts. The MP is distilled from the monolithic model, i.e. the 
original and complete combinatorial problem, unconstrained from 
scheduling restriction, since it is initially taken apart from the SP. As all 
decision variables to calculate the objective value (CT and Zs) are found 
in any given MP iteration, solving it may generate feasible integer so-
lutions. These candidate solutions are then sent to the SP to be validated 
by it. If all SPs detect the tentative solution to be feasible, the current 
solution is established as the new incumbent. Otherwise, a set of the 
aforementioned CBC is returned from each infeasible SP. Finally, the 
BDA iterates this procedure until (i) an optimal solution is found and 
proven or (ii) the time limit is reached. 

The last improvement prevents redundant feasibility seeking tests to 
occur (Enhancement 4). In order to do so, a hash-table [26], hereafter 
referred to as HT, is exploited to store SP instance data that had led to 
feasible solutions. If a set of task assignments for a given SP is solved 
and deemed to be feasible, such set of tasks is included into a HT with 
tested feasible problems, along with the number of workers and cycle 
time used to perform them. This procedure allows the SP model to skip 
repeated scheduling problems, since the HT can be quickly consulted by 
the algorithm’s sub-routine beforehand. For similar reasons, every time 
an infeasibility is detected by an SP, such circumstance is modeled as a 
new set of constraints and appended to the MP, so those task and 
worker assignments will not be repeated. These combinatorial Benders’ 
cuts are further explained in Section 5.2.2. 

5.2.1. Master problem 
Expressions (1), (2), (5), and (12)–(18) are kept in the MP, since 

they are part of the balancing core of the complete problem. Likewise, 
additional constraints are developed to adapt and strengthen the MP. 
Before establishing them, however, Table 4 newly introduces the ter-
minology needed to describe the remaining of the MP model. 

Independently of the number of workers assigned to a station, there 
are tasks that cannot be performed together in the same station due to 
limitations imposed by cycle time and precedence relation restrictions. 
In order to represent those, a set of incompatible task pairs (Inc) is 
developed. Algorithm 1 shows the steps on how this incompatibility is 
determined to find such task pairs. Firstly, the direct precedence rela-
tions set P must be extended to a complete (direct and indirect) pre-
cedence set P* in order to do so. That is easily made possible by re-
garding all direct and indirect precedence relations in the precedence 
graph. With P* at hand, the next step consists in constructing sets for 
each task containing all their successors and predecessor: Sut represents 
direct and indirect successors of task t and Prt constitutes direct and 

Fig. 3. Gantt diagram representation of an intermediary multi-manned feasible 
solution for the illustrative instance by applying the initial decomposition 
procedure. 
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indirect predecessors of task t. Moreover, the critical path duration and 
the sum of task durations between tasks ti and tj are represented by the 
two extra parameters t t,i j and ,t t,i j respectively. A topological order is 
applied in order to recursively evaluate and properly compute the va-
lues of these parameters. 

That stated, P*, Sut, Prt, CTSALBP, and Dt can be the input for  
Algorithm 1, whereas ,t t,i j ,t t,i j and Inc are its output. Given a task pair 
(ti, tj) ∈ P* (line 3), the code runs through the complete precedence 
graph and establishes the critical path ( ,t t,i j line 4) and capacity bounds 

( ,t t,i j line 5) between any two tasks that have direct or indirect pre-
cedent relations, recursively attributing correct values to the para-
meters. In other words, Algorithm assigns to t t,i j the highest value for 
the sum of task durations that have to be executed between tasks ti and 
tj and to t t,i j the sum of task durations taken from all tasks that are, at 
the same time, successors and predecessor of tasks ti and tj, respectively. 
This is a logical concept inherited from Klein [21] and likewise adopted 
in previous MALBP-1 works [8,28], which takes into account simila-
rities between the SP and project scheduling problems. Lastly, by taking 
the task pair (t1, t8) of the precedence graph from Table 1 for instance, 
these parameters would be = 7t t,1 8 and = 14t t,1 8 . 

If either condition + + >D D CTt t t t SALBP,i j i j or 

+ + >D D CTt t NW SALBPi j
ti t j, is verified (line 6), then the condition to 

flag an incompatibility is satisfied, and the task pair (ti, tj) is included 
into the incompatibility set Inc (line 7). This process goes on until the 
whole complete precedence graph is analyzed. 

Once in possession of Inc, Constraints (19) can be appended to the 
MP, which should restrict specific task pairs to be assigned to the same 
station. Generating a set of weaker but still valid inequalities is possible 
by using information extracted from parameter t t,i j: a very small po-
sitive number (ε) is introduced to prevent dividing by zero, Constraints  
(20) define what is the minimum number of workers that must be 
employed in any given station to perform both ti and tj of a task pair (ti, 
tj). 

+X X s S t t Inc1 , ( , )t s t s i j, ,i j (19)  

Fig. 4. General flowchart scheme of the proposed solution method.  

Table 4 
Definition of new parameters, sets, and variable for the MP.    

Parameter Description  

ti t j, Critical path duration between tasks ti and tj; ti≺tj 

ti t j, Sum of task durations between tasks ti and tj; ti≺tj 

Set Description 

P* Set of complete extended precedence relations P: (ti, tj) 
Sut Set of all direct and indirect successor of task t 
Prt Set of all direct and indirect predecessor of task t 
Inc Set of incompatible task pairs: (ti, tj) 

Variable Description 

Aw,s Auxiliary integer variable: detects the available time for each worker 
w in station s    
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+ ( )Y
CT D D

NW X X s S t t P· 2 , ( , ) *
w W

w s
ti t j

SALBP ti tj
ti s t j s i j,

,
, ,

(20)  

Finally, precedence relations constraints (Constraints (21)) are 
added to the MP and the available time to execute tasks in each station 
(Constraints (22)) is reckoned. Notice that the available time is de-
pendent on the cycle time and the number of workers assigned for a 
given station, leading to a non-linear constraint. To solve that issue, an 
integer auxiliary variable (Aw,s) must be introduced to evaluate how 
much available time each station s has at each worker position w. 
Constraints (23) and (24) are respectively activated as trivial lower and 
upper bounds for Aw,s and limit its value to zero unless some worker w is 
assigned to their position. Constraints (25) and (26), on the other hand, 
attribute the correct amount of cycle time to Aw,s whenever worker w is 
employed in a given station. Ultimately, Constraints (22) can be re-
placed by its linearized version: Constraints (27). 

s X s X t t P· · ( , )
s S

t s
s S

t s i j, ,i j
(21)  

X D CT Y s S· ·
t T

t s t
w W

w s, ,
(22)  

A
D

Nmax
Y w s WS· ( , )w s

t T t
w s, , (23)  

A CT Y w s WS· ( , )w s SALBP w s, , (24)  

A CT CT Y w s WS·(1 ) ( , )w s SALBP w s, , (25)  

A CT
D

Nmax
Y w s WS·(1 ) ( , )w s

t T t
w s, , (26)  

X D A s S·
t T

t s t
w W

w s, ,
(27)  

For the proposed BDA, seeking an optimal solution is the emphasis 
of this reformulated MP. In order to concentrate the efforts in that di-
rection, each feasible solution =X Y X X Y Y( ¯ , ¯ ) {( ¯ , ..., ¯ ), ( ¯ , ..., ¯ )}t s w s1,1 , 1,1 , with 
an improved objective value (CT*, S*) attained by the MP is passed on 
to the SP model, so it can carry on scheduling feasibility checks in each 
station s ∈ S* (Fig. 4). Therefore, the PF is decomposed into an MP that 
decides cycle time, task-station allocation, worker-station assignment, 
and station opening variables: CT, Xt,s, Yw,s, and Zs, respectively. 
Meanwhile, the SPs look for feasible task-worker assignments (Wt,w), by 
accounting for task starting times and ordering (STt and Ft t,i j) for each 
station. 

5.2.2. Slave problem 
The path taken by the BDA to solve each SP is presented in Fig. 4.  

Algorithm 2 details each step of that process. It gets as input an im-
proved solution from the MP, with information regarding the task and 
worker assignments to stations (X Y¯ , ¯ ), as well as the new objective 
value to be tested, represented by a cycle time (CT*) and the total 
number of stations (S*) used for such solution. The current incumbent 
(UB), lower bound (LB), and the parameter CTSALBP are also informed. 

As to generate an SP for each station s ∈ S* (line 3), the SP model 
maintains Expressions (3), (6), and (11) as in Section 4, but simplifies 
Constraints (8) and adds Constraints (29) and (30) as valid inequalities 
for idle time symmetry breaks. 

For that, they are separately applied to each SP (line 4), where task 
and worker sub-sets (Ts and Ws) are extracted from the MP solution 
X Y( ¯ , ¯ ), as declared by on lines 5 and 6. Regarding each station s ∈ S* as 

a detached resource-constrained scheduling problem, Constraints (28), 
(29), and (30) can replace the previous PF’s monolithic ones. 

+ +F F W W t t T w W1 , ,t t t t t w t w i j s s, , , ,i j j i i j (28)  
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There are two situations that an SP is automatically deemed feasible 
(line 7 to 9): (i) the solution under analysis has already been evaluated 
before and is contained in HT or (ii) there is only one worker employed 
in the station, which means there is no scheduling problem in the first 
place. If none of these conditions is observed, then the new SP is solved 
(line 11). Whenever feasibility is detected to this new problem, its in-
formation concerning tasks, workers, and cycle time used in the in-
stance is stored into HT (line 13) in order to avoid wasting time solving 
the same instance in the future by simply accessing HT. On the other 
hand, when the SP is detected to be infeasible, a set of combinatorial 
Benders’ cuts (CBC) can be applied to the MP as lazy constraints, i.e. the 
initial optimization problem receives new restrictions while executing 
in order to cut off infeasible combinations of task and worker assign-
ments to all stations (lines 15 to 29). 

Nonetheless, deciding which set of CBCs to add depends on the 
number of workers (|Ws|) and the trial cycle time (CT*) value used by 
SPs that were proven to be infeasible. The strongest set of CBCs is ap-
pended when the trial solution employs the maximum allowed workers 
(NW) on a maximum allowed cycle time (CTSALBP) for a specific station 
(line 16). On line 17, Constraints (31) state that, if any given task as-
signment set is tested to be infeasible, then it cannot be entirely exe-
cuted in the same station s, thus at least one of the tasks must be per-
formed elsewhere. Alternatively, the SP may be infeasible, but it might 
not be using the maximum number of workers for that set of tasks (line 
19), the trial cycle time might be lower than the SALBP’s imposed one 
(line 22), or both (line 24). 

In such cases, the set of CBCs described by Constraints (32), (33), 
and (34) are applied to the MP; they respectively state that a tested task 
assignment set cannot be totally performed in the same station unless 
an additional worker (represented by the +W| | 1s index) is assigned 
there (line 20), the cycle time is increased (line 23), or both (line 25). 
This wide variety of cuts could not be found in any previous work. 
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The SP evaluates a trial solution as wholly feasible only if it is 
feasible for all stations s ∈ S* (line 32), then the proposed method 
judges this solution sent from the MP as incumbent and the instance’s 
UB is updated with the new, improved cycle time, number of stations, 
and a complete set of task-worker-station assignments (line 33). This 

process is repeated iteratively and the MP keeps searching for better 
solutions, either with a revised UB or newly added lazy constraints, 
until any stopping criterion is met, namely (i) an optimal solution is 
found and proven or (ii) the CPU time limit is reached (line 34). 

In combination with the initial solution generation technique 
(Section 5.1), the BDA herein presented (Section 5.2) is what con-
stitutes the whole proposed solution procedure, which is hereafter re-
ferred to as PM (Proposed Method). 

6. Computational study 

This section carries out a computational study based on the same 
benchmark dataset and industrial case used by Roshani and Giglio [35]. 
Nevertheless, the current dataset extends the previous one (with 72 
instances) by considering the possibility of employing 2, 4, or 6 workers 
in the same station, totaling 108 instances. A well-known literature 
benchmark is contained in the tested instances. It is also accessible for 
download at <www.assembly-line-balancing.de>. They comprise in-
formation about task durations, precedence graphs, and cycle time 
values. The list of instances is summarized in Table 5; in it, instances are 
divided into three categories: small, medium, and large, according to 
the number of tasks (NT) parameter. Additionally, there are 4 case 
study instances regarding the problem studied by Dimitriadis [12]. 
These instances are run with different values of total number of workers 
in the line (Nmax) and maximum number of workers allowed in each 
station (NW). As explained in Section 4.3, upper bounds for the cycle 
time (CT) and number of stations (NS) have been obtained with a 
preliminary process, retrieving information from SALBP-2 counterpart 
solutions of each instance. 

The computational tests are split in three parts. Firstly, Section 6.1 
reports results obtained by the monolithic model (PF) presented in  
Section 4 when it is applied to small-size instances. These results are 
compared to those described in Roshani and Giglio [35]; this last 
mathematical model is henceforth referred to as RF (Roshani’s For-
mulation). In addition, the same fraction of the benchmark dataset is 
also solved by the PM displayed in Section 5, whilst its performance is 
compared to the best outcome obtained by either Direct or Indirect 
Simulated Annealing (DSA/ISA) heuristics developed by Roshani and 
Giglio [35] in terms of solution quality reported by them; the latter 
method is henceforth referred to as RM (Roshani’s Method). 

Secondly, as both methods demonstrated dominance over their re-
spective mathematical formulations, monolithic models (PF and RF) 
were discarded in the remainder testing process, as they are not ex-
pected to keep up with specific methods in terms of solution quality and 
computational processing time. Therefore, for this medium and large- 
size computational study conducted afterwards, only PM and RM were 
considered and applied to MALBP-2 instances. Moreover, in order to 
test the synergies between the initial decomposition (Dec) and the 
Benders’ decomposition algorithm (BDA) that compose the PM, Dec and 
BDA were also applied to medium and large-size instances separately.  
Section 6.2 presents and discusses such results and comparisons. 

These comparisons are conducted as suitably as possible: as Roshani 
and Giglio [35] fixed the number of stations and minimized cycle time 
as the primary objective, their formulation tends to fit as many workers 
as it can to the limited number of stations, which leads to solutions with 
lower efficiencies than its less flexible version. As argued in Section 4.3, 
the assumption of limited number of stations (line area) is not practical 
and ignore the fact that workers and stations have completely different 
costs, with those of the former being much higher. Wages are paid to 
the workforce at least in a monthly basis, so labor costs directly influ-
ence the final cost of the product and impose a limit on the resources 
one can use. Assembly line plants for the automotive industry can 
regularly surpass 300,000m2 in area, with extreme examples such as 
the Hyundai Ulsan Factory and the Volkswagen Wolfsburg Plant with 
5,050,000m2 and 6,500,000m2 in area, respectively. Considering the 
dimensions of a regular car and the additional space to perform tasks by 

Table 5 
Summary of dataset instances.       

Size (Total of 
instances) 

Problem NT Nmax NW  

Small (32) Mitchell 21 3; 4; 5; 7; 8; 9 2  
Heskiaoff 28 4; 6; 8; 9; 10 2; 4  
Sawyer 30 4; 6; 8; 9; 10; 12; 13; 14 2; 4 

Medium (34) Kilbridge 45 4; 6; 8; 10; 11 2; 4  
Tonge 70 12; 14; 16; 18; 19; 20; 22; 

23 
2; 4; 6 

Large (42) Arcus1 83 11; 12; 14; 15; 18; 19; 21 2; 4; 6  
Arcus2 111 12; 16; 18; 23; 24; 26; 27 2; 4; 6 

Case study (4) Dimitriadis 64 8; 10 2; 4 
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multiple workers, a station is a much more plentiful resource than 
skilled labor. That is precisely why objective functions in the type-1 
problem make sense, with workers representing higher costs than sta-
tions with a difference of one or two orders of magnitude [13]. Ac-
knowledging that, PF and PM may have outperformed RF and RM in 
some instances due to such space limitation imposed by Roshani and 
Giglio [35]. Nevertheless, specific instances for direct comparison are 
identified and examined in both Sections 6.1 and 6.2. 

Lastly, Section 6.3 evaluates the performance of both methods (PM 
and RM) when applied to a real-life automotive assembly plant case 
study. Their efficiency improvements are compared based on instances 
that contain a dataset originally published by Dimitriadis [12]. Since 
Roshani and Giglio [35] also solved a case by fixing the upper limit on 
the number of workers in the line to be =Nmax 8, the comparison here 
is decidedly straightforward. Furthermore, the other case ( =Nmax 10) 
yielded a solution with workers hired for all possible positions in the 
station, which equally allows a direct comparison with the PM. 

In all Sections 6.1, 6.2, and 6.3, each instance result is reported in a 
line of Tables 6 to 9. They are addressed by their precedence graph 
structure, Nmax, and NW values. For the results, columns headlines 
with CT, St, Gap, CPU, DCPU, SCPU, CBC, and HT respectively indicate: 
best found cycle time (CT), best found total number of stations (St) for 
that cycle time, integrality gap (Gap), computational processing time in 
total (CPU), for the initial decomposition (DCPU), for the slave pro-
blems (SCPU), total number of applied combinatorial Benders’ cuts 
(CBC), and how many times the hash-table has been accessed (HT) for 
each instance. For small-size instances, Gap is not reported because PM 
has found the optimal solution for all of them. Some results are left 
unfilled (–) due to the fact that no integer solutions could be found by 
the BDA within the time limit for some instances. As this is an extended 
dataset, the same happens for some instances that were not solved in 

Roshani and Giglio [35]. For the case study, line efficiency (LE) is also 
computed. 

For every instance, Gurobi 8.1 [31] with optimality focus for the MP 
and feasibility focus for SPs was employed as universal solver. Four 
threads of a 64-bit Intel™ i7-3770 CPU (3.4 GHz) with 16GB of RAM 
were used to run the algorithm. The PM’s BDA and its interaction with 
Dec were coded in Microsoft Visual Basic 2019 programming language. 
Roshani and Giglio [35] solved their instances on a 64-bit Intel™ i3- 
330M CPU (2.13 GHz) with 4GB of RAM. Therefore, a factor of 0.37 
(obtained by Passmark Performance Test 9.0) will be applied to their 
CPU time. Nonetheless, notice that computational processing time re-
sults are just mentioned, while relevant comparisons are strictly focused 
on solution quality. 

6.1. Small-size instances 

Table 6 is a summary of the comparison between monolithic models 
(PF and RF) and solution methods (PM and RM). In this section, they 
were applied to the small-size instances with a time limit set to 3600 
seconds. Whenever an instance had been solved by Roshani and Giglio  
[35] as well, results obtained by PF are compared to those found in the 
referred paper. Complementary, PM results are exhibited alongside 
with the best result reported by either DSA or ISA in their respective 
paper (RM). 

The PF clearly outperforms RF in this subset containing 32 in-
stances: the former obtained 16 optimal solutions (50% of cases), whilst 
the latter reached optimality in only 6 out of the 16 instances tested by 
Roshani and Giglio [35], being 4 of them in the smallest problem. In 
other words, PF has improved 8 previously known integer solutions 
obtained by a mathematical model and has proven the optimality of 4 
of them. This may be attributed to the fact that PF and RF took different 

Table 6 
Results for small-size instances: comparison between monolithic formulations (PF and RF) and solution methods (PM and RM).                     

Problem Nmax NW PF RF PM RM    

CT St CPU CT St CPU1 CT St CPU DCPU SCPU CBC HT CT St CPU1  

Mitchell 3 2 35 3 0.07 39 2 0.97 35 3 0.07 0.05 0.00 0 0 39 2 17.06  
4 2 27 3 0.19 27 3 1.60 27 3 0.16 0.02 0.01 0 0 27 3 14.33  
5 2 21 5 0.13 – – – 21 5 0.19 0.01 0.00 0 0 27 3 2.64  
7 2 16 6 0.87 16 6 5.01 16 6 0.26 0.01 0.00 0 0 16 6 12.32  
8 2 14 7 0.05 14 7 6.35 14 7 0.21 0.02 0.00 0 1 14 7 2.58  
9 2 13 8 0.10 13 8 9.32 13 8 0.26 0.01 0.00 0 0 13 8 0.29 

Heskiaoff 4 2 256 3 22.01 274 2 1h 256 3 32.23 0.01 31.97 1326 1 274 2 6.31   
4 256 3 25.26 – – – 256 3 36.81 0.01 36.56 1401 1 – – –  

6 2 171 4 1h 183 3 1h 171 4 0.05 0.02 0.00 0 2 183 3 7.50   
4 171 4 1h – – – 171 4 0.04 0.01 0.01 0 2 – – –  

8 2 129 5 1h 139 4 1h 129 5 0.31 0.02 0.03 20 3 139 4 6.87   
4 129 5 1h – – – 129 5 0.34 0.02 0.04 35 3 – – –  

9 2 116 7 100.71 124 5 1402.28 116 7 1.53 0.02 0.30 749 14 124 5 41.66   
4 116 7 140.03 – – – 116 7 2.73 0.02 0.86 1148 13 – – –  

10 2 108 6 13.85 108 6 63.26 108 6 0.27 0.02 0.18 318 59 108 6 2.91   
4 108 6 20.99 – – – 108 6 0.93 0.02 0.46 804 84 – – – 

Sawyer 4 2 81 2 446.71 82 2 1h 81 2 0.27 0.02 0.02 4 0 83 2 5.93   
4 81 2 108.45 – – – 81 2 0.42 0.02 0.01 0 0 – – –  

6 2 55 4 1h 56 3 1h 55 4 0.22 0.01 0.00 0 2 57 3 7.08   
4 55 4 1h – – – 55 4 0.26 0.01 0.00 0 2 – – –  

8 2 41 4 1h 41 4 123.49 41 4 0.13 0.01 0.02 7 3 42 4 7.36   
4 41 4 1h – – – 41 4 0.29 0.01 0.02 7 2 – – –  

9 2 37 6 1h 39 5 1h 37 6 1.82 0.01 0.01 0 5 40 5 7.16   
4 37 6 1h – – – 37 6 2.23 0.01 0.09 24 1 – – –  

10 2 34 6 1h – – – 34 6 6.34 0.02 0.05 80 12 34 6 32.15   
4 34 6 1h – – – 34 6 8.08 0.02 0.04 80 10 – – –  

12 2 28 7 1h 28 7 1h 28 7 0.39 0.02 0.01 0 4 29 7 19.81   
4 28 7 1h – – – 28 7 0.22 0.02 0.01 0 4 – – –  

13 2 26 8 1h – – – 26 8 2.84 0.02 0.02 10 8 28 7 7.49   
4 26 8 1h – – – 26 8 1.83 0.02 0.01 0 7 – – –  

14 2 25 8 16.50 25 8 1h 25 8 1.35 0.02 0.02 36 6 25 8 4.42   
4 25 8 32.05 – – – 25 8 1.62 0.02 0.03 27 5 – – – 

1 As reported in Roshani and Giglio [35] multiplied by a factor of 0.37.  
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modeling decisions: as reported in Section 4, the proposed formulation 
prioritizes cycle time minimization taking into account information 
acquired from SALBP bounds. 

A particular attention is given to the Sawyer family of instances. For 
=Nmax 4, solutions reported for both formulations and methods 

comprise 2 stations, however, PF and PM were able to prove an optimal 
cycle time result of 81 time units, while RF and RM were outperformed 
by yielding solutions with 82 and 83 cycle time units, respectively. By 
just considering the solution methods, PM has also outperformed RM in 
instances with =Nmax 8 and =Nmax 12: PM has proven cycle times of 
41 and 28 time units, whereas RM had reached solutions with 42 and 
29 cycle time units for the same number of workers and stations along 
the line. 

The remaining information in Table 6 compares PM and RM results. 
Similar computational processing times were reported for both 
methods. Nevertheless, the PM presented in Section 5 has improved and 
proven 12 previously known integer solutions (boldfaced values in  
Table 6). Therefore, it can be stated that the PM has reached better 
results than RM’s heuristics. Moreover, it has guaranteed solutions to be 
optimal for all small-size instances in a very low CPU time, achieving 
100% of optimality proofs in this subset of instances. 

6.2. Medium and large-size instances 

By rapidly finding and proving optimal solutions in all small in-
stances (Section 6.1, Table 6), the PM has been validated as an efficient 
and reliable method. Besides, its superiority over the monolithic model 
was evidenced. Hence, only specialized methods (i.e. PM and RM) are 
compared in this section regarding solution quality. The comparison 
only takes into account instances that were previously reported in 
Roshani and Giglio [35], focusing on computationally solving medium 
and large-size instances. Furthermore, in order to observe possible sy-
nergy effects caused by integrating the initial decomposition (Dec) and 
the Benders’ decomposition algorithm (BDA) that compose the PM, they 
were also applied to medium and large-size instances separately. 

Table 7 reports results for 34 medium-sized instances from Table 5. 
Out of that enlarged dataset, Roshani and Giglio [35] has only solved 
and reported solutions for 13 instances. In terms of solution quality, the 
PM has outperformed RM in 12 instances (boldfaced in Table 7), whilst 
tying in the last one. Out of the totality of 34 medium-sized instances, 
the PM has solved 15 cases to optimality (i.e. 44.12% of this subset), 
with a minor integer gap for the remaining 19 solutions (1.81% in the 
worst case and 0.77% on average). 

The importance of the possibility to allow 4 workers per station was 
evidenced for both Kilbridge and Tonge families of instances. By de-
fining =NW 4 as a parameter, it has been possible to further reduce the 
required number of stations along the line in all 13 instances with 

=NW 2. Since this flexibility was not considered by Roshani and Giglio  
[35], it can be seen as a novel contribution to the MALBP-2 literature. 
Furthermore, by closely analyzing the Tonge family last instance 
( =Nmax 23), one can realize that, even for the same number of workers 
and stations, PM demonstrated to be superior to RM in terms of cycle 
time, the former resulting in a solution with 156 time units, while the 
latter only achieved a solution with 177 time units. It is, in relative 
terms, a 11.86% improvement generated by the PM. 

Synergies between Dec and BDA could be verified in many instances 
throughout the medium dataset. Although PM and BDA have been able 
to optimally solve the same instances, CPU time reduction was observed 
in the most challenging ones. In addition, PM found better integer so-
lutions than BDA in 2 instances, and also yielded good integer solutions 
to 8 instances in which BDA was not capable of attaining any initial 
solution. It means an improved result in 29.41% of the medium-size 
instances when compared to the direct BDA approach. Such improve-
ment can be attributed to Dec feeding the PM with a feasible solution at 
the beginning of its execution. Nonetheless, also notice that, for those 
same 8 instances that BDA could not find any feasible solution, PM did 

not simply maintained the initial solution provided by Dec, but in fact 
improved all of them in terms of the number of used stations. 

The large-size subset from Table 5 contains the last 42 instances to 
be tested. The comparison between Dec, BDA, PM, and RM when they 
are applied to such instances is presented in Table 8. The boldfaced 
values represent 14 results in which the PM has outperformed RM in 
terms of solution quality for the instances solved and reported in 
Roshani and Giglio [35]. In total, PM has optimally solved 12 large- 
sized instances (i.e. 28.57% of them for this subset), whilst reaching 
integer solutions with gaps inferior to 0.14% (or 0.03% on average) in 
the remaining 30 ones. Synergies between Dec and BDA were strongly 
verified this time: (i) out of the 9 instances that both PM and BDA 
solved to optimality, a reduced CPU time could once again be observed 
for PM; (ii) out of the remaining 33 instances, BDA was unable to find a 
feasible solution, whereas PM yielded good integer solutions for all of 
them, which translates into obtaining improved results for 78.57% of 
the large-size instances when compared to the direct BDA approach; 
and (iii) the PM has improved the initial solution found by Dec in 23 
instances. 

These results convey the efficiency of the PM when applied to the 
studied problem: similar methods used in isolation in the past for 
MALBP-1 [23,28,30] were not sufficient to generate solutions as good 
as the ones produced by the PM, and the known MALBP-2 solutions 
previously found by RM [35] were greatly improved. 

Another feature that could be examined with these tests herein 
conducted was to evidence the possibility to improve cycle time beyond 
the SALBP-2 optimal solution limit. For MALBP-1, Michels et al. [28] 
has stated that the results obtained for the problem’s type-1 variant 
were an indicative that it would be more profitable to accept SALBP-1 
optimal solutions as the number of workers, while trying to minimize 
the line length as much as possible, since no improvement could be 
verified in the total number of workers throughout the entire dataset. 
Indeed, such methodology generates great results, as corroborated by 
Lopes et al. [22,23]. Nevertheless, cycle time improvements could have 
been confirmed in 12 instances (3 medium and 9 large) for the MALBP- 
2 dataset, supporting with empirical evidence that the possibility de-
picted in Fig. 2, Section 3 exists for benchmark instances as well. 

The full assignment and scheduling results concerning tasks, 
workers, and stations were tested for all solutions in order to carry on 
with a feasibility check. The starting time for each task was evaluated 
for consistency in regard to station and worker assignments, global 
cycle times, and order imposed by precedence relations. These assign-
ment files are made available in the paper’s supporting information for 
reproducibility purposes, filling their function of validating the pro-
posed PM’s reliability. 

Finally, contrary to the BDA applied to MALBP-1 [28], in most cases 
the PM has a tendency to spend the majority of its available CPU time 
running the MP. The latter is more similar to the case of the BDA 
proposed by Naderi et al. [30], which spends more than 98% of its 
computational processing time solving the MP. 

6.3. Real-life assembly plant case study 

The PM is lastly applied to the data of an industrial assembly plant 
originally published by Dimitriadis [12] and its results are compared to 
those obtained by the RM: Table 9 summarizes the results of such 
comparison. The number of tasks to be performed in this case study is 
64, with a total duration time of 65693 time units. In this study, 
Roshani and Giglio [35] also fixed the total number of workers, lines 
with 8 and 10 total workers were tested, allowing at most 2 or 4 
workers per station in each case. 

According to these results, the PM methodology is once again more 
effective than RM when it comes to determining lower values of cycle 
time. In fact, for =NW 2, PM reduced the cycle time (improved the line 
efficiency) for =Nmax 8 and =Nmax 10 from 8310 (98.80%) to 8212 
(99.99%) and from 6650 (98.60%) to 6571 (99.97%), respectively, 
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with the same numbers of workers in both cases and one less stations in 
the former. Moreover, when =NW 4 is allowed, line length is reduced 
to 3 stations in both situations, with improvements in cycle time (6571 
to 6570) and line efficiency (99.97% to 99.99%) for =Nmax 10. 

7. Conclusions 

The type-2 Multi-manned Assembly Line Balancing Problem 
(MALBP-2) has been addressed in this study. The objective is to mini-
mize the cycle time and the total number of stations as ranked goals. 
The existing literature on MALBP-2 was very limited, and efficient exact 
solution methods were only available for the type-1 variant (MALBP-1). 
This paper’s main contribution was presenting an innovative method to 
optimality solve larger MALBP-2 instances by decomposing the original 
problem. It proposed an initial solution procedure and implemented a 
Benders’ decomposition algorithm with the application of multiple 
combinatorial Benders’ cuts during its execution. The results showed 
that the proposed algorithm is very efficient in comparison to an 
adapted version of an exact method for the MALBP-1 and to a meta- 
heuristic for the MALBP-2. 

In order to solve the optimization problem, a new Mixed-Integer 
Linear Programming (MILP) model was developed (Section 4.1), along 
with several symmetry break constraints (i.e. valid inequalities,  
Section 4.2) and strong bounds (Section 4.3). The proposed formulation 
(PF) outperformed previous monolithic mathematical formulations in 
terms of solution quality and computational processing time 
(Section 6.1). By studying MALBP-1 specific solutions methods, it was 
possible to infer that the type-2 variant was also hierarchically divisible 

into a Master Problem (MP) and a group of Slave Problems (SPs). By 
reformulating the original monolithic model and using problem specific 
knowledge, a new Benders’ Decomposition Algorithm (BDA) with an 
initial feasible solution procedure is forged (Section 5). The solutions 
obtained by the proposed method (PM) were compared to previously 
developed methods by applying the PM to an extended benchmark 
dataset and a real-life assembly plant case study (Section 6.1). From the 
46 instances that an integer solution was known in the literature, the 
PM was able to produce improved results in most cases, totaling 38 new 
integer solutions, of which 29 were proven optimal. In total, 60 optimal 
solutions were obtained out of a dataset with 108 instances, resulting in 
55.56% of optimal solutions in the proposed dataset (Section 6.2). 
Lastly, better integer solutions were found in all case study instances 
(4), of which 2 were deemed optimal (Section 6.3). 

Industries manufacturing large-size products often allow multiple 
tasks to be simultaneously performed by different workers in the same 
station. Given the resources, the managers aim to achieve the best 
possible productivity level. This is a notable realistic feature, which is 
viewed as a natural extension of the problem’s simpler version and is 
widely employed in the literature. Nonetheless, incorporating more 
practical extensions is a desirable modification. For instance, equip-
ment selection, worker heterogeneity, product variability (multi and 
mixed-model lines), and line layouts (U-line, parallel stations) could be 
valuable features to be added to the PM. Further research should con-
centrate in doing so, as well as implementing balancing and project 
scheduling heuristics for the master and slave problems to mitigate 
computational burden. 

Table 7 
Results for medium-size instances: comparison between solution methods (PM and RM).                     

Problem Nmax NW Dec BDA PM RM    

CT St DCPU CT St CPU CT St Gap CPU SCPU CBC HT CT St CPU1  

Kilbridge 4 2 138 3 0.09 138 3 1h 138 3 0.02% 1h 1h 1128 1 146 2 9.60   
4 138 3 0.06 138 2 1.95 138 2 0.00% 2.46 2.03 0 1 – – –  

6 2 92 5 0.04 92 4 95.74 92 4 0.00% 96.66 91.90 5680 837 98 3 8.64   
4 92 5 0.06 92 3 0.11 92 3 0.00% 1.05 0.65 5 1 – – –  

8 2 69 5 0.04 69 5 2.35 69 5 0.00% 2.68 2.30 185 22 75 4 7.87   
4 69 5 0.04 69 4 0.14 69 4 0.00% 0.55 0.27 10 2 – – –  

10 2 56 7 0.03 56 6 0.54 56 6 0.00% 0.96 0.26 35 3 60 5 7.47   
4 56 7 0.03 56 5 0.15 56 5 0.00% 0.29 0.04 7 3 – – –  

11 2 55 7 0.06 55 6 1h 55 6 1.81% 1h 6.15 6216 992 55 6 7.35   
4 55 7 0.04 55 5 1h 55 5 1.81% 1h 427.77 251370 55578 – – – 

Tonge 12 2 294 9 0.11 294 7 1h 294 7 0.34% 1h 76.59 2106 180 311 6 46.14   
4 294 9 0.11 294 6 1h 294 6 0.34% 1h 68.61 1008 40 – – –   
6 294 9 0.11 294 6 1h 294 6 0.34% 1h 609.12 5319 913 – – –  

14 2 251 10 0.12 251 8 514.44 251 8 0.00% 282.67 3.34 290 43 280 7 33.78   
4 251 10 0.11 251 7 965.28 251 7 0.00% 901.05 225.78 2430 483 – – –   
6 251 10 0.11 251 7 773.48 251 7 0.00% 409.16 25.01 690 36 – – –  

16 2 221 14 0.16 220 10 733.06 220 10 0.00% 360.79 42.96 10346 1231 240 8 33.17   
4 221 14 0.17 220 9 1928.28 220 9 0.00% 1022.80 66.70 5166 487 – – –   
6 221 14 0.16 221 7 1h 220 9 0.01% 1h 51.02 4998 298 – – –  

18 2 196 14 0.09 – – 1h 196 13 0.51% 1h 6.45 4381 257 225 9 37.41   
4 196 13 0.11 – – 1h 196 12 0.52% 1h 19.64 5447 276 – – –   
6 196 13 0.10 – – 1h 196 11 0.51% 1h 14.85 4108 183 – – –  

19 2 186 14 0.16 – – 1h 186 12 0.53% 1h 5.42 4200 161 206 10 147.49   
4 186 14 0.16 – – 1h 186 11 0.54% 1h 70.82 7518 607 – – –   
6 186 14 0.16 – – 1h 186 11 0.54% 1h 45.60 7140 385 – – –  

20 2 177 14 0.11 177 12 235.86 177 12 0.00% 228.95 14.29 9264 1152 197 10 70.78   
4 177 12 0.11 177 11 2479.63 177 11 0.00% 1581.09 63.97 12924 1704 – – –   
6 177 12 0.11 177 11 3567.05 177 11 0.00% 2692.13 78.77 14664 1854 – – –  

22 2 162 16 0.24 – – 1h 162 15 1.24% 1h 11.45 13536 1206 178 12 117.11   
4 162 16 0.24 – – 1h 162 11 1.22% 1h 40.16 11632 686 – – –   
6 162 16 0.24 162 11 1h 162 11 1.23% 1h 20.44 9392 518 – – –  

23 2 156 14 0.09 156 12 1h 156 12 0.64% 1h 10.62 23016 5701 177 12 22.75   
4 156 14 0.09 156 10 1h 156 10 1.24% 1h 59.62 25844 2724 – – –   
6 156 14 0.09 156 12 1h 156 10 1.25% 1h 22.22 18130 1479 – – – 

1 As reported in Roshani and Giglio [35] multiplied by a factor of 0.37.  

A.S. Michels, et al.   Operations Research Perspectives 7 (2020) 100163

14



CRediT authorship contribution statement 

Adalberto Sato Michels: Conceptualization, Methodology, 
Software, Validation, Formal analysis, Investigation, Data curation, 
Writing - original draft, Visualization. Thiago Cantos Lopes: 
Conceptualization, Methodology, Software, Validation, Formal ana-
lysis, Investigation, Data curation, Writing - review & editing, 
Visualization. Leandro Magatão: Conceptualization, Validation, 
Resources, Writing - review & editing, Supervision, Funding acquisi-
tion. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper. 

Acknowledgement 

The authors would like to thank the financial support from 
Fundação Araucária (Agreement 041/2017 FA–UTFPR–RENAULT), and 
CNPq (Grants 406507/2016-3 and 307211/2017-7). This study was 
also financed in part by the Coordenação de Aperfeiçoamento de 
Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. 

Supplementary material 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.orp.2020.100163. 

References 

[1] Akagi F, Osaki H, Kikuchi S. A method for assembly line balancing with more than 
one worker in each station. Int J Prod Res 1983;21(5):755–70. https://doi.org/10. 

Table 8 
Results for large-size instances: comparison between solution methods (PM and RM).                     

Problem Nmax NW Dec BDA PM RM    

CT St DCPU CT St CPU CT St Gap CPU SCPU CBC HT CT St CPU1  

Arcus1 11 2 7084 9 0.09 – – 1h 7084 9 0.00% 897.11 58.97 171 7 7909 6 311.65   
4 7084 9 0.09 – – 1h 7084 9 0.00% 710.37 59.31 189 9 – – –   
6 7084 9 0.09 – – 1h 7084 9 0.00% 1911.08 62.45 153 9 – – –  

12 2 6412 11 0.10 – – 1h 6412 11 0.02% 1h 57.36 693 17 7688 6 83.51   
4 6412 11 0.10 – – 1h 6412 10 0.03% 1h 87.91 220 5 – – –   
6 6412 11 0.10 – – 1h 6412 10 0.03% 1h 58.17 253 9 – – –  

14 2 5441 12 0.08 5441 10 136.83 5441 10 0.00% 124.42 1.92 180 5 6412 8 449.18   
4 5441 11 0.09 5441 10 193.60 5441 10 0.00% 181.12 121.97 1012 18 – – –   
6 5441 11 0.08 5441 10 260.13 5441 10 0.00% 164.33 11.72 0 4 – – –  

15 2 5104 11 0.20 5104 10 347.04 5104 10 0.00% 221.40 48.24 1309 85 6194 8 81.15   
4 5104 11 0.29 5104 9 1658.65 5104 9 0.00% 996.66 115 913 48 – – –   
6 5104 11 0.19 5104 9 1413.57 5104 9 0.00% 1270.48 350.75 1287 69 – – –  

18 2 4317 17 1.46 – – 1h 4317 17 0.14% 1h 0.42 102 4 4811 10 85.61   
4 4317 17 1.45 – – 1h 4317 17 0.14% 1h 0.16 136 3 – – –   
6 4317 17 1.45 – – 1h 4317 16 0.14% 1h 0.16 85 5 – – –  

19 2 4068 16 0.32 – – 1h 4068 16 0.03% 1h 1.73 608 5 4494 12 61.93   
4 4068 16 0.32 – – 1h 4068 16 0.03% 1h 11.28 912 14 – – –   
6 4068 16 0.31 – – 1h 4068 16 0.03% 1h 8.88 496 23 – – –  

21 2 3691 18 3.20 3691 14 1144.26 3691 14 0.00% 275.22 5.24 3924 175 4320 12 252.04   
4 3691 17 3.20 3691 14 1155.77 3691 14 0.00% 555.81 16.80 2822 58 – – –   
6 3691 17 3.20 3691 14 1240.87 3691 14 0.00% 187.77 7.11 527 29 – – – 

Arcus2 12 2 12534 9 9.25 – – 1h 12534 9 0.01% 1h 3412.53 2835 57 13350 6 158.48   
4 12534 9 9.60 – – 1h 12534 9 0.01% 1h 3277.14 1800 20 – – –   
6 12534 9 9.66 – – 1h 12534 9 0.01% 1h 3241.73 2106 67 – – –  

16 2 9412 12 6.75 – – 1h 9412 12 0.01% 1h 0.01 0 12 10889 8 219.91   
4 9412 12 6.80 – – 1h 9412 12 0.01% 1h 0.01 0 12 – – –   
6 9412 12 6.76 – – 1h 9412 12 0.01% 1h 34.62 300 16 – – –  

18 2 8377 14 1’ – – 1h 8377 14 0.02% 1h 211.07 840 23 9726 10 193.71   
4 8377 13 1’ – – 1h 8377 11 0.02% 1h 1197.72 11414 48 – – –   
6 8377 13 1’ – – 1h 8377 11 0.02% 1h 321.29 1001 10 – – –  

23 2 6561 17 1’ – – 1h 6560 17 0.03% 1h 1815.44 16150 48 7467 13 161.03   
4 6561 17 1’ – – 1h 6560 17 0.06% 1h 974.15 7871 29 – – –   
6 6561 17 1’ – – 1h 6560 17 0.05% 1h 1428.07 9554 37 – – –  

24 2 6313 18 1’ – – 1h 6310 17 0.02% 1h 2635.00 17280 75 7235 13 793.65   
4 6313 18 1’ – – 1h 6310 17 0.03% 1h 2661.06 15750 121 – – – 

1 As reported in Roshani and Giglio [35] multiplied by a factor of 0.37.  

Table 9 
Results for real-life case study instances: comparison between solution methods (PM and RM).                 

Problem Nmax NW PM RM    

CT St LE CPU DCPU SCPU CBC HT CT St LE CPU1  

Dimitriadis 8 2 8212 4 99.99% 7.27 9.66 5.52 0 3 8310 5 98.80% –   
4 8212 3 99.99% 1h 10.01 1h 108 2 – – – –  

10 2 6571 5 99.97% 1h 1’ 95.29 1945 155 6650 5 98.60% –   
4 6570 3 99.99% 191.55 1’ 191.49 6 4 – – – – 

1Not reported in Roshani and Giglio [35].  

A.S. Michels, et al.   Operations Research Perspectives 7 (2020) 100163

15

https://doi.org/10.1016/j.orp.2020.100163
https://doi.org/10.1080/00207548308942409


1080/00207548308942409. 
[2] Akpinar S, Elmi A, Bekta T. Combinatorial Benders cuts for assembly line balancing 

problems with setups. Eur J Oper Res 2017;259(2):527–37. https://doi.org/10. 
1016/j.ejor.2016.11.001. 

[3] Bartholdi JJ. Balancing two-sided assembly lines: a case study. Int J Prod Res 
1993;31(10):2447–61. https://doi.org/10.1080/00207549308956868. 

[4] Battaïa O, Dolgui A. A taxonomy of line balancing problems and their solution 
approaches. Int J Prod Econ 2013;142(2):259–77. https://doi.org/10.1016/j.ijpe. 
2012.10.020. 

[5] Bautista J, Pereira J. A dynamic programming based heuristic for the assembly line 
balancing problem. Eur J Oper Res 2009;194(3):787–94. https://doi.org/10.1016/ 
j.ejor.2008.01.016. 

[6] Baybars . A survey of exact algorithms for the simple assembly line balancing 
problem. Manage Sci 1986;32(8):909–32. https://doi.org/10.1287/mnsc.32.8.909. 

[7] Becker C, Scholl A. A survey on problems and methods in generalized assembly line 
balancing. Eur J Oper Res 2006;168(3):694–715. https://doi.org/10.1016/j.ejor. 
2004.07.023. 

[8] Becker C, Scholl A. Balancing assembly lines with variable parallel workplaces: 
problem definition and effective solution procedure. Eur J Oper Res 
2009;199(2):359–74. https://doi.org/10.1016/j.ejor.2008.11.051. 

[9] Benders JF. Partitioning procedures for solving mixed-variables programming 
problems. Numer Math 1962;4(1):238–52. https://doi.org/10.1007/BF01386316. 

[10] Chen YY. A hybrid algorithm for allocating tasks, operators, and workstations in 
multi-manned assembly lines. J Manuf Syst 2017;42:196–209. https://doi.org/10. 
1016/j.jmsy.2016.12.011. 

[11] Codato G, Fischetti M. Combinatorial Benders’ cuts for mixed-integer linear pro-
gramming. Oper Res 2006;54(4):756–66. https://doi.org/10.1287/opre.1060. 
0286. 

[12] Dimitriadis SG. Assembly line balancing and group working: a heuristic procedure 
for workers’ groups operating on the same product and workstation. Comput Oper 
Res 2006;33(9):2757–74. https://doi.org/10.1016/j.cor.2005.02.027. 

[13] Fattahi P, Roshani A. A mathematical model and ant colony algorithm for multi- 
manned assembly line balancing problem. Int J Adv ManufTechnol 
2011;53:363–78. https://doi.org/10.1007/s00170-010-2832-y. 

[14] Hazir O, Dolgui A. Assembly line balancing under uncertainty: robust optimization 
models and exact solution method. Comput Ind Eng 2013;65:261–7. https://doi. 
org/10.1016/j.cie.2013.03.004. 

[15] Hazir O, Dolgui A. A decomposition based solution algorithm for U-type assembly 
line balancing with interval data. Comput Oper Res 2015;59:126–31. https://doi. 
org/10.1016/j.cor.2015.01.010. 

[16] Hoffmann TR. Assembly line balancing with a precedence matrix. Manage Sci 
1963;9(4):551–62. https://doi.org/10.1287/mnsc.9.4.551. 

[17] Kazemi A, Sedighi A. A cost-oriented model for balancing mixed-model assembly 
lines with multi-manned workstations. Int J Serv OperManage 2013;16(3):289. 
https://doi.org/10.1504/IJSOM.2013.056765. 

[18] Kellegöz T. Assembly line balancing problems with multi-manned stations: a new 
mathematical formulation and Gantt based heuristic method. Annals of Oper Res 
2017;253(1):377–404. https://doi.org/10.1007/s10479-016-2156-x. 

[19] Kellegöz T, Toklu B. An efficient branch and bound algorithm for assembly line 
balancing problems with parallel multi-manned workstations. Comput Oper Res 
2012;39(12):3344–60. https://doi.org/10.1016/j.cor.2012.04.019. 

[20] Kellegöz T, Toklu B. A priority rule-based constructive heuristic and an improve-
ment method for balancing assembly lines with parallel multi-manned work-
stations. Int J Prod Res 2015;53(3):736–56. https://doi.org/10.1080/00207543. 
2014.920548. 

[21] Klein R. Scheduling of resource-constrained projects. 1st ed. Springer US; 2000. 
https://doi.org/10.1007/978-1-4615-4629-0. 

[22] Lopes TC, Michels AS, Magatão L. A note to: a hybrid algorithm for allocating tasks, 
operators, and workstations in multi-manned assembly lines. J Manuf Syst 
2019;52:205–8. https://doi.org/10.1016/j.jmsy.2019.06.003. 

[23] Lopes TC, Pastre GV, Michels AS, Magatão L. Flexible multi-manned assembly line 
balancing problem: model, heuristic procedure, and lower bounds for line length 
minimization. Omega (United Kingdom) 2019. https://doi.org/10.1016/j.omega. 
2019.04.006. 

[24] Lopes TC, Sikora CGS, Molina RG, Schibelbain D, Rodrigues LCA, Magatão L. 
Balancing a robotic spot welding manufacturing line: an industrial case study. Eur J 
Oper Res 2017;263(3):1033–48. https://doi.org/10.1016/j.ejor.2017.06.001. 

[25] Magnanti TL, Wong RT. Accelerating benders decomposition: algorithmic en-
hancement and model selection criteria. Oper Res 1981;29(3):464–84. https://doi. 
org/10.2307/170108. 

[26] Maurer WD, Lewis TG. Hash table methods. ACM Comput Surv (CSUR) 
1975;7(1):5–19. https://doi.org/10.1145/356643.356645. 

[27] Michels AS, Lopes TC, Sikora CGS, Magatão L. The robotic assembly line design 
(RALD) problem: model and case studies with practical extensions. Comput Ind Eng 
2018;120(February):320–33. https://doi.org/10.1016/j.cie.2018.04.010. 

[28] Michels AS, Lopes TC, Sikora CGS, Magatão L. A Benders’ decomposition algorithm 
with combinatorial cuts for the multi-manned assembly line balancing problem. Eur 
J Oper Res 2019;278(3):796–808. https://doi.org/10.1016/j.ejor.2019.05.001. 

[29] Moreira MCO, Miralles C, Costa AM. Model and heuristics for the assembly line 
worker integration and balancing problem. Comput Oper Res 2015;54:64–73. 
https://doi.org/10.1016/j.cor.2014.08.021. 

[30] Naderi B, Azab A, Borooshan K. A realistic multi-manned five-sided mixed-model 
assembly line balancing and scheduling problem with moving workers and limited 
workspace. Int J Prod Res 2019;57(3):643–61. https://doi.org/10.1080/00207543. 
2018.1476786. 

[31] Optimization, G. (2019). Gurobi optimizer reference manual. 
[32] Osman H, Baki MF. Balancing transfer lines using Benders decomposition and ant 

colony optimisation techniques. Int J Prod Res 2014;52(5):1334–50. https://doi. 
org/10.1080/00207543.2013.842017. 

[33] Pape T. Heuristics and lower bounds for the simple assembly line balancing pro-
blem type 1: overview, computational tests and improvements. Eur J Oper Res 
2015;240:32–42. https://doi.org/10.1016/j.ejor.2014.06.023. 

[34] Rahmaniani R, Crainic TG, Gendreau M, Rei W. The Benders decomposition algo-
rithm: a literature review. Eur J Oper Res 2017;259(3):801–17. https://doi.org/10. 
1016/j.ejor.2016.12.005. 

[35] Roshani A, Giglio D. Simulated annealing algorithms for the multi-manned as-
sembly line balancing problem: minimising cycle time. Int J Prod Res 
2017;55(10):2731–51. https://doi.org/10.1080/00207543.2016.1181286. 

[36] Roshani A, Nezami FG. Mixed-model multi-manned assembly line balancing pro-
blem: a mathematical model and a simulated annealing approach. Assembly Autom 
2017;37(1):34–50. https://doi.org/10.1108/AA-02-2016-016. 

[37] Roshani A, Roshani A, Roshani A, Salehi M, Esfandyari A. A simulated annealing 
algorithm for multi-manned assembly line balancing problem. J Manuf Syst 
2013;32(1):238–47. https://doi.org/10.1016/j.jmsy.2012.11.003. 

[38] Sahin M, Kellegöz T. A new mixed-integer linear programming formulation and 
particle swarm optimization based hybrid heuristic for the problem of resource 
investment and balancing of the assembly line with multi-manned workstations. 
Comput Ind Eng 2019;133(March):107–20. https://doi.org/10.1016/j.cie.2019.04. 
056. 

[39] Sahin M, Kellegöz T. Balancing multi-manned assembly lines with walking workers: 
problem definition, mathematical formulation, and an electromagnetic field opti-
misation algorithm. Int J Prod Res 2019;7543. https://doi.org/10.1080/00207543. 
2019.1566672. 

[40] Scholl A, Becker C. State-of-the-art exact and heuristic solution procedures for 
simple assembly line balancing. Eur J Oper Res 2006;168(3):666–93. https://doi. 
org/10.1016/j.ejor.2004.07.022. 

[41] Scholl A, Klein R. SALOME: A bidirectional branch-and-bound procedure for as-
sembly line balancing. INFORMS J Comput 1997;9(4):319–34. https://doi.org/10. 
1287/ijoc.9.4.319. 

[42] Sewell EC, Jacobson SH. A branch, bound, and remember algorithm for the simple 
assembly line balancing problem. INFORMS J Comput 2012;24(3):433–42. https:// 
doi.org/10.1287/ijoc.1110.0462. 

[43] Sikora CGS, Lopes TC, Magatão L. Traveling worker assembly line (re)balancing 
problem: model, reduction techniques, and real case studies. Eur J Oper Res 
2017;259:949–71. https://doi.org/10.1016/j.ejor.2016.11.027. 

[44] Sternatz J. Enhanced multi-Hoffmann heuristic for efficiently solving real-world 
assembly line balancing problems in automotive industry. Eur J Oper Res 
2014;235:740–54. https://doi.org/10.1016/j.ejor.2013.11.005. 

[45] Walsh T. General symmetry breaking constraints. Principles and practice of con-
straint programming - CP. 4204. 2006. p. 650–64. https://doi.org/10.1007/ 
11889205_46. 

[46] Yadav A, Kumar S, Agrawal S. Reconfiguration of assembly line balancing–an au-
tomobile case study solved by the exact solution procedure. Benchmarking 
2020:1–29. https://doi.org/10.1108/BIJ-08-2019-0386. In press 

[47] Yazgan HR, Beypinar I, Boran S, Ocak C, et al. A new algorithm and multi-response 
Taguchi method to solve line balancing problem in an automotive industry. Int J 
Adv ManufTechnol 2011;57:379–92. https://doi.org/10.1007/s00170-011-3291-9. 

[48] Yilmaz H, Yilmaz M. Multi-manned assembly line balancing problem with balanced 
load density. Assembly Autom 2015;35(1):137–42. https://doi.org/10.1108/AA- 
05-2014-041. 

[49] Yilmaz H, Yilmaz M. A multi-manned assembly line balancing problem with clas-
sified teams: a new approach. Assembly Autom 2016;36(1):51–9. https://doi.org/ 
10.1108/AA-04-2015-035. 

[50] Yilmaz H, Yilmaz M. Note to: a mathematical model and ant colony algorithm for 
multi-manned assembly line balancing problem. Int J Adv ManufTechnol 
2016;89(5–8):1935–9. https://doi.org/10.1007/s00170-016-9223-y. 

[51] Yilmaz H, Yilmaz M. A mathematical model and tabu search algorithm for multi- 
manned assembly line balancing problems with assignment restrictions. Eng Optim 
2020;52(5):856–74. https://doi.org/10.1080/0305215X.2019.1618288.  

A.S. Michels, et al.   Operations Research Perspectives 7 (2020) 100163

16

https://doi.org/10.1080/00207548308942409
https://doi.org/10.1016/j.ejor.2016.11.001
https://doi.org/10.1016/j.ejor.2016.11.001
https://doi.org/10.1080/00207549308956868
https://doi.org/10.1016/j.ijpe.2012.10.020
https://doi.org/10.1016/j.ijpe.2012.10.020
https://doi.org/10.1016/j.ejor.2008.01.016
https://doi.org/10.1016/j.ejor.2008.01.016
https://doi.org/10.1287/mnsc.32.8.909
https://doi.org/10.1016/j.ejor.2004.07.023
https://doi.org/10.1016/j.ejor.2004.07.023
https://doi.org/10.1016/j.ejor.2008.11.051
https://doi.org/10.1007/BF01386316
https://doi.org/10.1016/j.jmsy.2016.12.011
https://doi.org/10.1016/j.jmsy.2016.12.011
https://doi.org/10.1287/opre.1060.0286
https://doi.org/10.1287/opre.1060.0286
https://doi.org/10.1016/j.cor.2005.02.027
https://doi.org/10.1007/s00170-010-2832-y
https://doi.org/10.1016/j.cie.2013.03.004
https://doi.org/10.1016/j.cie.2013.03.004
https://doi.org/10.1016/j.cor.2015.01.010
https://doi.org/10.1016/j.cor.2015.01.010
https://doi.org/10.1287/mnsc.9.4.551
https://doi.org/10.1504/IJSOM.2013.056765
https://doi.org/10.1007/s10479-016-2156-x
https://doi.org/10.1016/j.cor.2012.04.019
https://doi.org/10.1080/00207543.2014.920548
https://doi.org/10.1080/00207543.2014.920548
https://doi.org/10.1007/978-1-4615-4629-0
https://doi.org/10.1016/j.jmsy.2019.06.003
https://doi.org/10.1016/j.omega.2019.04.006
https://doi.org/10.1016/j.omega.2019.04.006
https://doi.org/10.1016/j.ejor.2017.06.001
https://doi.org/10.2307/170108
https://doi.org/10.2307/170108
https://doi.org/10.1145/356643.356645
https://doi.org/10.1016/j.cie.2018.04.010
https://doi.org/10.1016/j.ejor.2019.05.001
https://doi.org/10.1016/j.cor.2014.08.021
https://doi.org/10.1080/00207543.2018.1476786
https://doi.org/10.1080/00207543.2018.1476786
https://doi.org/10.1080/00207543.2013.842017
https://doi.org/10.1080/00207543.2013.842017
https://doi.org/10.1016/j.ejor.2014.06.023
https://doi.org/10.1016/j.ejor.2016.12.005
https://doi.org/10.1016/j.ejor.2016.12.005
https://doi.org/10.1080/00207543.2016.1181286
https://doi.org/10.1108/AA-02-2016-016
https://doi.org/10.1016/j.jmsy.2012.11.003
https://doi.org/10.1016/j.cie.2019.04.056
https://doi.org/10.1016/j.cie.2019.04.056
https://doi.org/10.1080/00207543.2019.1566672
https://doi.org/10.1080/00207543.2019.1566672
https://doi.org/10.1016/j.ejor.2004.07.022
https://doi.org/10.1016/j.ejor.2004.07.022
https://doi.org/10.1287/ijoc.9.4.319
https://doi.org/10.1287/ijoc.9.4.319
https://doi.org/10.1287/ijoc.1110.0462
https://doi.org/10.1287/ijoc.1110.0462
https://doi.org/10.1016/j.ejor.2016.11.027
https://doi.org/10.1016/j.ejor.2013.11.005
https://doi.org/10.1007/11889205_46
https://doi.org/10.1007/11889205_46
https://doi.org/10.1108/BIJ-08-2019-0386
https://doi.org/10.1007/s00170-011-3291-9
https://doi.org/10.1108/AA-05-2014-041
https://doi.org/10.1108/AA-05-2014-041
https://doi.org/10.1108/AA-04-2015-035
https://doi.org/10.1108/AA-04-2015-035
https://doi.org/10.1007/s00170-016-9223-y
https://doi.org/10.1080/0305215X.2019.1618288

	An exact method with decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing problem
	1 Introduction
	2 Literature review
	3 Problem statement
	4 MILP model
	4.1 Main model
	4.2 Valid inequalities
	4.3 Upper and lower bound values for CT

	5 Solution method
	5.1 Initial solution decomposition
	5.1.1 Solving the SALBP counterpart
	5.1.2 Minimizing stations

	5.2 Benders’ decomposition algorithm
	5.2.1 Master problem
	5.2.2 Slave problem


	6 Computational study
	6.1 Small-size instances
	6.2 Medium and large-size instances
	6.3 Real-life assembly plant case study

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	Supplementary material
	References




