
de Souza, Marcelo; Ritt, Marcus; López-Ibáñez, Manuel; Pérez Cáceres, Leslie

Article

ACVIZ: A tool for the visual analysis of the configuration
of algorithms with irace

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: de Souza, Marcelo; Ritt, Marcus; López-Ibáñez, Manuel; Pérez Cáceres, Leslie
(2021) : ACVIZ: A tool for the visual analysis of the configuration of algorithms with irace, Operations
Research Perspectives, ISSN 2214-7160, Elsevier, Amsterdam, Vol. 8, pp. 1-9,
https://doi.org/10.1016/j.orp.2021.100186

This Version is available at:
https://hdl.handle.net/10419/246445

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2021.100186%0A
https://hdl.handle.net/10419/246445
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Operations Research Perspectives 8 (2021) 100186

Available online 21 April 2021
2214-7160/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

ACVIZ: A tool for the visual analysis of the configuration of algorithms
with irace

Marcelo de Souza a,b,*, Marcus Ritt b, Manuel López-Ibáñez c, Leslie Pérez Cáceres d

a Santa Catarina State University, Brazil
b Federal University of Rio Grande do Sul, Brazil
c University of Málaga, Spain
d Pontificia Universidad Católica de Valparaíso, Chile

A R T I C L E I N F O

Keywords:
Algorithm configuration
Parameter tuning
irace

A B S T R A C T

This paper introduces acviz, a tool that helps to analyze the automatic configuration of algorithms with irace. It
provides a visual representation of the configuration process, allowing users to extract useful information, e.g.
how the configurations evolve over time. When test data is available, acviz also shows the performance of each
configuration on the test instances. Using this visualization, users can analyze and compare the quality of the
resulting configurations and observe the performance differences on training and test instances.

1. Introduction

Many algorithms have input parameters that allow adapting their
behavior to the problem being solved. A specific parameter configuration
often has an impact on the performance of the algorithm. The search for
good configurations is a fundamental step of the algorithm design. There are
different tools, called configurators, for configuring algorithms
automatically. Examples of such configurators include ParamILS [1], SMAC
[2], GGA [3], and irace [4]. They reduce the human effort required for
comparing several parameter configurations on different problem instances,
minimize the human bias and make the configuration process reproducible.

In this work, we focus on irace [4], a configurator written in R and
widely used in different domains. The main application of irace is the
automatic configuration [5] of optimization [6–9] and decision [10,11]
algorithms. Besides that, irace was used to configure the parameters of
the GCC compiler [12], the CPLEX optimization software package [10,
11,13], machine learning models [14–16], and also for improving the
anytime behavior of optimization algorithms [17]. Some works define a
parameterized framework with algorithmic design choices, then use
irace to automatically design algorithms [18]. This approach was applied
to design algorithms for different problems, including permutation
flowshop scheduling [19–22], binary quadratic programming [23,24],
bin packing [25], and also to construct control software for robots
[26–28]. The irace configurator was also used to configure and design

algorithms to tackle multi-objective problems, including evolutionary
approaches [29–32], ant colony optimization [33,34], hybrid local
searches [35] and clustering algorithms [27]. Additional applications of
irace include the optimization of traffic light programs [36] and the
analysis of configurations through ablation [37].

The use of configurators like irace allows users to adjust algorithms
for obtaining high performance without the need of vast expert knowl-
edge about the algorithm or the problem. The configuration process
implemented in irace often generates large volumes of algorithm per-
formance data that is used to guide the search for good configurations.
Additionally, the data produced by irace can be used to obtain insights
about the configured algorithm and the configuration process. Despite
the widespread use of irace, many users apply it without a careful
analysis of its operation, i.e. they simply use the tool as a black-box
method for configuring algorithms. Nevertheless, understanding how
the configurator works and analyzing its execution is essential to obtain
the best results from the configuration process and to ensure the efficient
use of the computational resources. This understanding is essential when
designing the configuration scenario, since it can be easily setup inad-
equately, e.g. by using too little or too much computational effort may
lead to poor results or the waste of available computational resources.
Using training instances that are not representative of typical problem
instances may lead to poor results on a separate set of test instances. Too
much configuration effort and insufficiently diverse training instances

* Corresponding author.
E-mail addresses: marcelo.desouza@udesc.br (M. de Souza), marcus.ritt@inf.ufrgs.br (M. Ritt), manuel.lopez-ibanez@uma.es (M. López-Ibáñez), leslie.perez@

pucv.cl (L. Pérez Cáceres).

Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

https://doi.org/10.1016/j.orp.2021.100186
Received 8 December 2020; Received in revised form 13 March 2021; Accepted 13 April 2021

mailto:marcelo.desouza@udesc.br
mailto:marcus.ritt@inf.ufrgs.br
mailto:manuel.lopez-ibanez@uma.es
mailto:leslie.perez@pucv.cl
mailto:leslie.perez@pucv.cl
www.sciencedirect.com/science/journal/22147160
https://www.elsevier.com/locate/orp
https://doi.org/10.1016/j.orp.2021.100186
https://doi.org/10.1016/j.orp.2021.100186
https://doi.org/10.1016/j.orp.2021.100186
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2021.100186&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Operations Research Perspectives 8 (2021) 100186

2

will lead to overtuning [38], i.e. the algorithm performs increasingly
worse on the test instances as more effort is spent on the configuration
process. A detailed analysis of the configuration process helps to identify
such cases and adjust the configuration scenario. Currently, there are no
tools available to directly visualize the configuration process data and
thus, promoting and simplifying the analysis of it.

We present acviz, a visual tool to analyze runs of irace based on the
graphical representation of the configuration process. The acviz tool
provides two types of visualizations. The first shows the evolution of a
single run of the configuration process performed by irace. The second
visualizes the performance of the best found configurations on test in-
stances and contrasts them with the performance on the training in-
stances used by irace. This paper describes acviz in detail and presents
examples that show how it can be used to understand the configuration
process, and how it can provide useful information to design better
configuration scenarios.

The remainder of this paper is organized as follows. Section 2 re-
views the basic concepts about automatic algorithm configuration and
explains the irace configurator. Section 3 introduces the acviz program
and its functions. Section 4 presents examples of applying acviz to
analyze the automatic configuration of algorithms. Finally, Section 5
gives some concluding remarks.

2. Automatic algorithm configuration

Let A be a target algorithm with parameters p1, p2,⋯, pn and corre-
sponding domains Θ1,Θ2,⋯,Θn. The parameter space Θ is a subset of Θ1
×Θ2 × ⋯ × Θn, from which invalid parameter combinations are
excluded. Parameters that determine the selection of algorithmic com-
ponents (e.g. the neighborhood operator to be used in a local search)
have usually categorical or ordinal domains. Parameters that control the
behavior of algorithmic components (e.g. the perturbation size of an
iterated local search) are usually numerical and have integer or real
domains. A configuration of the algorithm θ ∈ Θ is a valid assignment of
values to all parameters.

Given a set Π of problem instances, the performance of a particular
run of the target algorithm with configuration θ ∈ Θ on instance π ∈ Π is
given by some function c(θ, π). For optimization scenarios, c is usually
the cost of the best solution found after running the algorithm for a
predefined time limit. For decision algorithms, c is usually the running
time. If A is stochastic, then c(θ, π) is a random variable. The algorithm
configuration task consists in finding at least one good configuration θ ∈

Θ that optimizes the expected performance of running A under θ on
instances Π.

The irace configurator [4] uses iterated racing [39,40] for the

automatic configuration of algorithms. The basic steps of irace are shown
in Algorithm 1. Given the configuration scenario 〈Θ,Π, c〉 and a
computational budget B, irace iteratively samples a population of con-
figurations Θ′ and evaluates them using a racing procedure. The best
found configurations form the elite set Θelite, which is used to guide the
sampling of new configurations. The sampling process followed by the
racing procedure are repeated while the budget B is not exhausted. The
budget B can be defined as a maximum number of configuration eval-
uations or an execution time limit. The number of iterations is deter-
mined by irace at the beginning of the configuration process, based on
the number of parameters to be configured. The budget of an iteration is
determined at the start of the iteration, based on the remaining budget
available and the number of iterations to be executed next.

The sampling phase (line 3 of Algorithm 1) behaves as follows. At the
beginning of the execution, irace samples the parameter space Θ uni-
formly, since Θelite is empty. In subsequent iterations, irace ranks the elite
configurations according to their performance in previous evaluations,
and iteratively selects one of them to generate each new configuration θ.
Elite configurations of a higher rank have a higher probability of being
selected. The value of each parameter of θ is determined based on
probability distributions associated with its parent. Newly generated
configurations inherit this set of probability distributions (one for each
parameter) from their parents. The parameters of these distributions are
updated at the beginning of each iteration to focus the sampling process
around the best parameters values.

The racing phase (line 4 of Algorithm 1) evaluates the quality of the
new and elite configurations (Θ′ and Θelite, respectively) on a subset of
the instances Π according to the performance metric c. After evaluating
each configuration on a predefined number of initial instances, the
configurations that perform statistically worse than the best one are
discarded. The remaining configurations are evaluated on a new
instance before performing a new statistical test. This process is repeated
until the budget of the iteration is exhausted, or a minimum number of
surviving configurations is reached. The surviving configurations
become the elite set for the next iteration.

The updates of the probability distributions may lead to a premature
convergence of the configuration process. In this case, the newly
generated configurations are very similar to those already evaluated and
the configuration process loses diversity. To avoid this, irace implements
a convergence detection mechanism that compares each new configu-
ration to the elite configuration used to generate it. The comparison is
carried out by calculating their distance, based on the differences of the
parameter values presented by both configurations. If this distance is
less than a threshold, irace performs a soft restart that updates the pa-
rameters of the sampling distributions associated to that elite configu-
ration, in order to increase the probability of generating different
configurations.

3. The acviz program

Given a log file produced by running irace, the acviz program provides
visualizations of the configuration process. Fig. 1 gives examples of the
configuration of two different algorithms. A point (i, v) shows the per-
formance v obtained in the ith evaluation in the configuration process.
Note that each evaluation is associated to a unique configuration-
instance pair (θ, π). The first example shows the configuration of an
optimization algorithm. In this case, the performance value v is the
relative deviation of the best solution found in each evaluation from an
instance-based reference performance value. These reference values can
be provided by the user when, for example, there are best known

Algorithm 1. Iterated racing procedure.

M. de Souza et al.

Operations Research Perspectives 8 (2021) 100186

3

solutions for the instances or there is a current default configuration and
its performance can be used as reference. When no reference value is
provided, the best values found by irace are used. The plot also shows the
beginning of each iteration by a vertical dashed line, with the number of
evaluations (bottom) and the number of different instances (top) used
until that iteration. This vertical line is presented in red for iterations in
which a soft restart was applied. Finally, evaluations on different in-
stances are indicated by different colors, and evaluations of elite con-
figurations are represented using different markers (for elite
configurations of the current iteration, for configurations that were
elite in the final iteration, and for the best found configuration, i.e. the
first ranked elite configuration of the final iteration).

The horizontal lines present the estimated performance of the elite
(purple line) and non-elite (orange line) configurations in each iteration.
The estimated performance is determined by the median of the results
obtained by all configurations of the current iteration on all instances
evaluated so far, considering evaluations in the current and previous
iterations. Some of the non-elite configurations may not be evaluated on
a subset of the instances, e.g. when the configuration is discarded in the
middle of an iteration. For the calculation of the estimated performance,
we replace missing values by the worst result of the elite configurations,
since the eliminated configuration is not better than the worst elite
configuration (called elite imputation strategy). An alternative approach
is to use the worst result of the configurations being evaluated in the
current iteration (called alive imputation strategy).

Table 1 details the input arguments of acviz. The command to pro-
duce the first visualization shown in Fig. 1 is:

which provides the irace log file to be used, in this case irace.Rdata,
and the file containing the reference values used to compute the relative
deviations (bkv.txt). Additional options control the elements of the
visualization, like presenting the absolute performance values or the
absolute deviations from the reference values (option --typeresult),
or changing the imputation strategy. Users can also disable the coloring
of instances and the markers of elite configurations, or tell acviz to show
the ID of the configurations associated with the p% best performing
evaluations of each iteration (option --pconfig). The opacity of the

points can be changed and the default logarithmic scale of the y-axis can
be disabled.

The second visualization in Fig. 1 shows the configuration of a de-
cision algorithm, where the performance of each evaluation is the
running time used to solve the corresponding instance. In this case, the
configuration budget is a time limit, then users can opt to plot the
starting time of evaluations on the x-axis (option --overtime), making
it possible to observe how the configuration time is distributed over the
iterations, and identify evaluations that took a long time. To produce
this visualization, we select to show absolute performance values in the
y-axis and disable the logarithmic scale.

During the configuration process, evaluations that reach the running
time limit without solving the instance are penalized by returning to
irace the time limit multiplied by a penalization factor [10]. If we inform
the time limit to acviz, each evaluation with a result that exceeds this
limit is presented in the upper border of the plot, indicating that these
evaluations did not solve the instance (see those cases in the second
visualization shown in Fig. 1). The following command produces this
visualization (observe that argument --iracelog can be omitted):

A second plot provided by acviz presents the results obtained by the
best found configurations on the set of test instances (this requires the
testing feature to be enabled when running irace). Fig. 3 shows an
example, presenting the results of the best elite configurations of each
iteration and all elite configurations of the last iteration. Each column in
the plot is associated with a configuration. The acviz tool presents its ID
and, in parenthesis, the iterations in which it was the first ranked elite
configuration (e.g. 251 (3,4) means configuration 251 was the best
ranked elite configuration in iterations 3 and 4). For the final iteration,
we also present the rank of the corresponding configuration in the elite
set in a subscript (e.g. 91 means that the configuration was ranked first in
the 9th iteration). The instance name is black if the instance has been
used during training and testing, and blue, if it has been used only for
testing. The subplot on the left shows the mean relative deviations from
the reference values that, as for the previous plot, can be provided using

Table 1
Arguments of acviz (default options are shown in bold).

Argument Options Description

--iracelog <log file> The irace log file (.Rdata)
--typeresult {aval, adev, rdev} Which values are presented
--bkv <bkv file> The file containing reference values
--imputation {elite, alive} Imputation strategy for missing values
--scale {log, lin} Scaling of the y-axis
--noelites – Disables different markers for evaluations of elite configurations
--noinstances – Disables coloring evaluations on different instances
--pconfig [0, 1] Identifies the configurations of the best evaluations
--overtime – Presents the configuration time on the x-axis
--alpha [0, 1] The opacity of the points
--timelimit [0, ∞] Time limit used to evaluate decision algorithms
--testing – Presents the plot of the test phase
--testcolor {instance, overall} The scheme for the color map
--exportdata – Exports the data of the configuration process to a csv file
--exportplot – Exports the produced plot to pdf and png files
--output <prefix> The prefix name of the exported files
--monitor – Monitors the irace log file and updates the plot after each iteration

M. de Souza et al.

Operations Research Perspectives 8 (2021) 100186

4

the --bkv option, or are determined by acviz based on the best values
found during the execution of irace (in both training and test phases).
The subplot on the right presents the ranking of each configuration on
each instance, allowing us to compare the performance of different
configurations across instances. The command to produce the visuali-
zation shown in Fig. 3 indicates that acviz should present the plot of the
test phase:

In the visualization of the test phase, we can also use option
--typeresult to present the mean absolute values or the mean ab-
solute deviations from the reference values. The colors in the plot help to
differentiate the performance obtained by the resulting configurations.
In Fig. 3, the color map is calculated according to the results obtained
within each instance. Worst values for each instance are in red while the
best values are in green. Alternatively, the color map can be defined
according to the whole range of values in all instances, thus visualizing
the overall performance obtained in the test phase.

When using the interactive presentation mode, acviz allows the user
to control the visualization by moving the plot, zooming and control-
ling the margins of the figure. When positioning the cursor over a
point, acviz shows a tooltip box with the corresponding evaluation
number, the associated instance name and configuration ID. It is also
possible to export the data and both of the plots. Finally, when option
--monitor is enabled, acviz monitors the irace log file during the
configuration process and updates the visualization after each iteration,
allowing the user to analyze the evolution of the configuration process
during its execution. All acviz options discussed above are summarized
in Table 1.

4. Analyzing the configuration process with acviz

In this section we present three exemplary case studies of configu-
rations with flaws that can be easily identified when using acviz. We use
two scenarios from the Algorithm Configuration Library [41]. The first
scenario considers the configuration of ACOTSP [42], a framework of
ant colony optimization algorithms, applied to the symmetric traveling
salesperson problem (TSP) [43]. ACOTSP has 11 parameters, 5 of which
are conditional. We run ACOTSP with a time limit of 20 seconds of CPU
time. In the first and second case studies, we use the Euclidean TSP in-
stances with 2000 cities from a previous study [44]. For the third case
study, we additionally use ten TSP instances with uniformly random
distance matrices, generated with portmgen from the 8th DIMACS
Implementation Challenge [45]. In this scenario, irace optimizes the cost
of the best found solution.

The second scenario considers the configuration of SPEAR [46], an
exact solver for boolean satisfiability (SAT) problems. SPEAR has 26
parameters, 9 of which are conditional. We use the SAT-encoded in-
stances of graph coloring from Gent et al. [47], and a limit of 10 seconds
of wall-clock time. Here, irace minimizes SPEAR’s solving time, where
for evaluations in which the instance is not solved, a penalized perfor-
mance value is returned.

In all experiments, we use the default settings of irace. The detailed
results of all experiments are available in De Souza et al. [48]. The
source code of acviz, usage instructions, and further application exam-
ples are available in the project website (https://github.com/souzamarc
elo/acviz).

4.1. Case study 1: Easy and hard instances

In this section we discuss two example scenarios and show how easy
and hard instances can be identified. We configure ACOTSP with a
budget of 2K evaluations, and SPEAR with a budget of 20K seconds.
Fig. 1 shows the visualizations produced by acviz. When configuring
ACOTSP we observe the evolution of the configuration process, i.e. how
the sampled configurations present better performance over the itera-
tions. At the beginning of the configuration, there is a subset of the
configurations with bad performance on almost all evaluated instances
(points in the upper part of the figure in the four first iterations). The
number of such bad performers decreases over the iterations, while the
estimated performance of elite and non-elite configurations (the median
values given by the horizontal lines) becomes better. We can also see
that the instance selection strategy implemented in irace iteratively in-
creases the number of instances on which the configurations are
evaluated.

In the configuration of SPEAR, the estimated performance of the
configurations also improves over the iterations. Besides that, we see
that different configurations have a similar performance on each
instance. Note that the evaluations of different configurations on a
particular instance, represented by clusters of points of the same color,
present a small variation of the running time. Nevertheless, we observe
that elite configurations perform better than others, since they are often
among the best in each cluster.

The visualizations shown in Fig. 1 also provide some information
about the configuration scenarios. We can see that both scenarios are
quite homogeneous, i.e. a configuration with good performance on one
instance often presents good performance on the others. For example, if
we look at the elite configurations (markers) of each iteration, we see
that they present the best results for almost all instances. This contrib-
utes to irace easily identifying the best configurations in the racing
phase, and consequently, using less evaluations than the budget avail-
able for the iterations. The saved budget is then used to perform more
iterations than the five initially scheduled, as observed in the plot. Those
additional iterations are increasingly shorter because they are
consuming the remaining budget and fewer new configurations are
sampled.

We included in both scenarios two additional instances: one that is
easy to solve, shown in gray, and another that is hard to solve, shown in
green. Fig. 1 shows an interesting behavior of the configurations on
those instances. In ACOTSP, we can see that almost all configurations
perform very well on the easy instance. Besides that, there is no varia-
tion of different configurations on this instance. Therefore, the evalua-
tions on this instance do not help to determine the quality of different
configurations and decide which one is better. In the case of the hard
instance, we observe that it helps to differentiate the quality of the
configurations in the first iterations. However, as for the easy instance,
from the fifth iteration on, it stops being useful for the configuration
process.

In the configuration of SPEAR it is even more evident that the easy
and hard instances do not contribute to the configuration process. We
observe that all configurations immediately solve the easy instance,
while no configuration solves the hard instance. In this case, we could
exclude the easy instance from the configuration scenario, since it does
not help to evaluate the configurations. We could also exclude the hard
instance, or increase the time limit, trying to find configurations that
can solve it. In this context, acviz helps to identify such cases by visu-
alizing and comparing how the configurations perform on the training
instances and which ones are actually contributing to the configuration
process.

M. de Souza et al.

https://github.com/souzamarcelo/acviz
https://github.com/souzamarcelo/acviz

Operations Research Perspectives 8 (2021) 100186

5

4.2. Case study 2: Unnecessarily large budget

Choosing an adequate configuration budget can be difficult. A small
budget may not be sufficient to find good configurations. A common
practice is to use the highest possible budget, according to time con-
straints and the available computational resources. However, even after

running irace, it may not be clear if the chosen budget was appropriate.
In this second experiment, we configure both ACOTSP and SPEAR with
very large budgets of 100K evaluations and 500K seconds, respectively.
Fig. 2 shows the resulting visualizations. Since the budget is larger, irace

samples more configurations and uses more instances to evaluate them.
In ACOTSP, the observed behavior is similar to the first case study.

Fig. 1. Example of configuring ACOTSP and SPEAR using instances of different hardness.

M. de Souza et al.

Operations Research Perspectives 8 (2021) 100186

6

We can see a fast evolution of the configuration process in the first it-
erations, producing configurations with better performance compared
to those obtained in the first case study. From the fifth iteration on, after
approximately 20K evaluations, the quality of the sampled configura-
tions stagnates. Note that the estimated performance of both elite and
non-elite configurations (orange and purple horizontal lines) does not
improve from that point until the end of the configuration process. We
can also see that irace performs a soft restart (red dashed line) in almost
all subsequent iterations, which indicates that the sampling models
converged. The same behavior is observed in the configuration of

SPEAR, where soft restarts are present after about 400K seconds.
In both scenarios, if we needed to repeat the process, we could

decrease the budget to about 20K ∼ 30K evaluations (ACOTSP) or
300K ∼ 400K seconds (SPEAR), for example. Alternatively, if we have
the time for a large budget, we could tell irace to sample more config-
urations at each iteration to increase diversification (parameter
nbConfigurations). For heterogeneous scenarios, the additional
budget could be better spent in increasing the number of instances
evaluated before the first and between each elimination test (parameters
firstTest and eachTest of irace, respectively).

Fig. 2. Example of configuring ACOTSP and SPEAR with large budgets.

M. de Souza et al.

Operations Research Perspectives 8 (2021) 100186

7

4.3. Case study 3: Unrepresentative instances

A common mistake when configuring algorithms is to choose
training instances that are not representative of the instances to be used
in production. Suppose, for example, we use an algorithm that has been
configured on a certain class of instances Π′. Now, we want to solve
additional instances of class Π′. In order to get the best performance, we
may want to configure the algorithm again to reflect the new instance
distribution. If the goal is to obtain a configuration that performs well for
both instance classes, then starting the configuration process from the
current configuration (tuned for Π′) and training only on instances of Π′

would be a methodological mistake.
In this experiment, we reproduce the above situation using ACOTSP

to analyze how the configuration process behaves. In a first step, we
select ten TSP instances with random distances and tune ACOTSP on
them to obtain a set of initial configurations. Then, we select ten
Euclidean TSP instances, and use them as training instances for an irace

run with a budget of 3K evaluations. We provide the configurations from
the first step as initial configurations. We use the testing options of irace

to evaluate the resulting configurations on all Euclidean instances (used
as training set) and all random distance instances (not used as training
set, thus we call it test set). Random distance and Euclidean instances
define structurally different TSP instances and thus, ACOTSP

configurations that exhibit high performance in one instance class are
not expected to maintain such high performance in the other class. The
testing results are shown in Fig. 3. Since we evaluate the resulting
configurations on both training and test instances, we have useful in-
formation about how they perform on both instance sets. The mean
deviations give an overview of the results, allowing us to observe the
evolution in the quality of configurations found during the configuration
process. We can also observe how those configurations compare with
each other by analyzing the obtained ranks.

When the training instances are not representative, the found con-
figurations may specialize on the known training instances and present
poor performance on unseen test instances. Such an overtuning can be
observed in Fig. 3. As the configuration progresses, the performance of
the configurations is becoming better on the training instances. On the
other hand, the performance on the test instances degrades over the it-
erations. Since we initialized irace with configurations known to perform
well on the test instances, the best configuration in the first iteration still
performs well on the test set, but the performance quickly degrades on
subsequent iterations. To solve this problem, we need to include some
random distance instances in the training set, and make sure that the
relative frequency of each type of instance seen during training matches
their relative frequency in the test set, or the frequency expected in
unseen instances when the algorithm is deployed in production.

Fig. 3. Test results after configuring ACOTSP with unrepresentative training instances. Instances with random distances (starting with ‘r’ and in blue) were used only
for test, while Euclidean instances (in black) were used for both training and test.

M. de Souza et al.

Operations Research Perspectives 8 (2021) 100186

8

Reproducibility. All materials necessary for reproducing the ex-
periments are available at De Souza et al. [48]. Experiments were run on
a GNU/Linux platform running on an 8-core AMD FX-8150 CPU 3.6 GHz
and 32 GB memory. We used acviz 1.1, irace 3.1, ACOTSP 1.03, and
SPEAR 1.2.1. The acviz program was written in Python 3 and requires R
(≥ 3.4) and the following libraries: numpy (≥ 1.18), pandas (≥ 1.0.3),
matplotlib (≥ 3.1), rpy2 (≥ 3.2), and natsort (≥ 7.0). Results of ACOTSP,
SPEAR, and as a consequence of irace, are sensitive to CPU speed.

5. Concluding remarks

We described in this paper a graphical tool to support the automatic
configuration of algorithms with irace. We presented a visualization
scheme for the configuration process, which provides useful information
to help the design of configuration scenarios. We also presented a second
visualization to analyze the performance of the resulting configurations
on test instances. We discussed some examples, showing how these vi-
sualizations can help to identify common problems when configuring
algorithms. Both plots are implemented in the acviz program. Additional
features to control the visualization elements and export the results are
also provided. The source code of acviz, instructions of use, and further
application examples are available at https://github.com/souzamarc
elo/acviz.

CRediT authorship contribution statement

Marcelo de Souza: Conceptualization, Methodology, Software,
Investigation, Writing – original draft. Marcus Ritt: Conceptualization,
Methodology, Validation, Investigation, Writing – review & editing,
Supervision. Manuel López-Ibáñez: Methodology, Validation, Investi-
gation, Writing – review & editing. Leslie Pérez Cáceres: Methodology,
Validation, Investigation, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This research has been supported by Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code
001. M. de Souza acknowledges the support of the Santa Catarina State
University. M. Ritt acknowledges the support of CNPq (grant 437859/
2018-5) and Google Research Latin America (grant 25111). L. Pérez
Cáceres acknowledges the support of the Fondecyt Iniciación project
11190154. M. López-Ibáñez is a “Beatriz Galindo” Senior Distinguished
Researcher (BEAGAL 18/00053) funded by the Spanish Ministry of
Science and Innovation (MICINN).

References

[1] Hutter F, Hoos HH, Leyton-Brown K, Stützle T. ParamILS: An automatic algorithm
configuration framework. Journal of Artificial Intelligence Research 2009;36:
267–306. https://doi.org/10.1613/jair.2861.

[2] Hutter F, Hoos HH, Leyton-Brown K. Sequential model-based optimization for
general algorithm configuration. In: Coello Coello CA, editor. Learning and
Intelligent Optimization, 5th International Conference, LION 5. Lecture Notes in
Computer Science, 6683. Springer-Verlag, Heidelberg, Germany; 2011. p. 507–23.
https://doi.org/10.1007/978-3-642-25566-3_40.

[3] Ansótegui C, Sellmann M, Tierney K. A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Gent IP, editor. Principles and Practice
of Constraint Programming, CP 2009. Lecture Notes in Computer Science, 5732.
Springer-Verlag, Heidelberg, Germany; 2009. p. 142–57. https://doi.org/10.1007/
978-3-642-04244-7_14.

[4] López-Ibáñez M, Dubois-Lacoste J, Pérez Cáceres L, Stützle T, Birattari M. The irace
package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 2016;3:43–58. https://doi.org/10.1016/j.orp.2016.09.002.

[5] Hoos HH. Automated algorithm configuration and parameter tuning. In: Hamadi Y,
Monfroy E, Saubion F, editors. Autonomous Search. Berlin, Germany: Springer-
Verlag; 2012. p. 37–71. https://doi.org/10.1007/978-3-642-21434-9_3.

[6] Franzin A, Stützle T. Revisiting simulated annealing: A component-based analysis.
Computers & Operations Research 2019;104:191–206. https://doi.org/10.1016/j.
cor.2018.12.015.

[7] Blum C, Calvo B, Blesa MJ. FrogCOL and FrogMIS: New decentralized algorithms
for finding large independent sets in graphs. Swarm Intelligence 2015;9(2–3):
205–27. https://doi.org/10.1007/s11721-015-0110-1.

[8] Mühlenthaler M. Fairness in academic course timetabling. Lecture Notes in
Economics and Mathematical Systems. 678. Springer-Verlag; 2015.

[9] Yarimcam A, Asta S, Özcan E, Parkes AJ. Heuristic generation via parameter tuning
for online bin packing. In: Angelov P, et al., editors. Evolving and Autonomous
Learning Systems (EALS), 2014 IEEE Symposium on. IEEE; 2014. p. 102–8. https://
doi.org/10.1109/EALS.2014.7009510.

[10] Pérez Cáceres L, López-Ibáñez M, Hoos HH, Stützle T. An experimental study of
adaptive capping in irace. In: Battiti R, Kvasov DE, Sergeyev YD, editors. Learning
and Intelligent Optimization, 11th International Conference, LION 11. Lecture
Notes in Computer Science, 10556. Cham, Switzerland: Springer-Verlag; 2017.
p. 235–50. https://doi.org/10.1007/978-3-319-69404-7_17.

[11] Dang Thi Thanh N, Pérez Cáceres L, De Causmaecker P, Stützle T. Configuring irace
using surrogate configuration benchmarks. In: Bosman PAN, editor. Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO 2017. New York,
NY: ACM Press; 2017. p. 243–50. https://doi.org/10.1145/3071178.3071238.

[12] Pérez Cáceres L, Pagnozzi F, Franzin A, Stützle T. Automatic configuration of GCC
using irace. In: Lutton E, Legrand P, Parrend P, Monmarché N, Schoenauer M,
editors. EA 2017: Artificial Evolution. Lecture Notes in Computer Science, 10764.
Springer-Verlag, Heidelberg, Germany; 2017. p. 202–16. https://doi.org/10.1007/
978-3-319-78133-4_15.

[13] Pérez Cáceres L, Stützle T. Exploring variable neighborhood search for automatic
algorithm configuration. Electronic Notes in Discrete Mathematics 2017;58:
167–74. https://doi.org/10.1016/j.endm.2017.03.022.

[14] Miranda P, Silva RM, Prudêncio RB. Fine-tuning of support vector machine
parameters using racing algorithms. European Symposium on Artificial Neural
Networks, ESSAN. 2014. p. 325–30.

[15] Lang M, Kotthaus H, Marwedel P, Weihs C, Rahnenführer J, Bischl B. Automatic
model selection for high-dimensional survival analysis. Journal of Statistical
Computation and Simulation 2014;85(1):62–76. https://doi.org/10.1080/
00949655.2014.929131.

[16] Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, et al. Mlr: Machine
learning in R. Journal of Machine Learning Research 2016;17(170):1–5.http://jm
lr.org/papers/v17/15-066.html.

[17] López-Ibáñez M, Stützle T. Automatically improving the anytime behaviour of
optimisation algorithms. European Journal of Operational Research 2014;235(3):
569–82. https://doi.org/10.1016/j.ejor.2013.10.043.

[18] Stützle T, López-Ibáñez M. Automated design of metaheuristic algorithms. In:
Gendreau M, Potvin J-Y, editors. Handbook of Metaheuristics. International Series
in Operations Research & Management Science, 272. Springer-Verlag; 2019.
p. 541–79. https://doi.org/10.1007/978-3-319-91086-4_17.

[19] Pagnozzi F, Stützle T. Automatic design of hybrid stochastic local search
algorithms for permutation flowshop problems. European Journal of Operational
Research 2019;276:409–21. https://doi.org/10.1016/j.ejor.2019.01.018.

[20] Brum A, Ritt M. Automatic algorithm configuration for the permutation flow shop
scheduling problem minimizing total completion time. In: Liefooghe A, López-
Ibáñez M, editors. Proceedings of Evo-COP 2018 – 18th European Conference on
Evolutionary Computation in Combinatorial Optimization, volume 10782 of
Lecture Notes in Computer Science. Heidelberg, Germany: Springer-Verlag; 2018.
p. 85–100.

[21] Brum A, Ritt M. Automatic design of heuristics for minimizing the makespan in
permutation flow shops. IEEE CEC. Proceedings of the 2018 congress on
evolutionary computation (CEC 2018). Piscataway, NJ: IEEE Press; 2018. p. 1–8.
https://doi.org/10.1109/CEC.2018.8477787.

[22] Marmion M-E, Mascia F, López-Ibáñez M, Stützle T. Automatic design of hybrid
stochastic local search algorithms. In: Blesa MJ, Blum C, Festa P, Roli A,
Sampels M, editors. Hybrid Metaheuristics. Lecture Notes in Computer Science,
7919. Springer-Verlag, Heidelberg, Germany; 2013, ISBN 978-3-642-38515-5.
p. 144–58. https://doi.org/10.1007/978-3-642-38516-2_12.

[23] De Souza M, Ritt M. Automatic grammar-based design of heuristic algorithms for
unconstrained binary quadratic programming. In: Liefooghe A, López-Ibáñez M,
editors. Proceedings of Evo-COP 2018 – 18th European Conference on
Evolutionary Computation in Combinatorial Optimization, volume 10782 of
Lecture Notes in Computer Science. Heidelberg, Germany: Springer-Verlag; 2018.
p. 67–85.

[24] De Souza M, Ritt M. An automatically designed recombination heuristic for the
test-assignment problem. IEEE CEC. Proceedings of the 2018 congress on
evolutionary computation (CEC 2018). Piscataway, NJ: IEEE Press; 2018. p. 1–8.
https://doi.org/10.1109/CEC.2018.8477801.

[25] Mascia F, López-Ibáñez M, Dubois-Lacoste J, Stützle T. Grammar-based generation
of stochastic local search heuristics through automatic algorithm configuration
tools. Computers & Operations Research 2014;51:190–9. https://doi.org/10.1016/
j.cor.2014.05.020.

[26] Ramos DG, Birattari M. Automatic design of collective behaviors for robots that can
display and perceive colors. Applied Sciences 2020;10(13):4654.

[27] Fisset B, Dhaenens C, Jourdan L. MO-Mineclust: A framework for multi-objective
clustering. In: Dhaenens C, Jourdan L, Marmion M-E, editors. Learning and
Intelligent Optimization, 9th International Conference, LION 9. Lecture Notes in

M. de Souza et al.

https://github.com/souzamarcelo/acviz
https://github.com/souzamarcelo/acviz
https://doi.org/10.1613/jair.2861
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1007/978-3-642-21434-9_3
https://doi.org/10.1016/j.cor.2018.12.015
https://doi.org/10.1016/j.cor.2018.12.015
https://doi.org/10.1007/s11721-015-0110-1
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0008
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0008
https://doi.org/10.1109/EALS.2014.7009510
https://doi.org/10.1109/EALS.2014.7009510
https://doi.org/10.1007/978-3-319-69404-7_17
https://doi.org/10.1145/3071178.3071238
https://doi.org/10.1007/978-3-319-78133-4_15
https://doi.org/10.1007/978-3-319-78133-4_15
https://doi.org/10.1016/j.endm.2017.03.022
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0014
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0014
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0014
https://doi.org/10.1080/00949655.2014.929131
https://doi.org/10.1080/00949655.2014.929131
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0016
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0016
http://jmlr.org/papers/v17/15-066.html
http://jmlr.org/papers/v17/15-066.html
https://doi.org/10.1016/j.ejor.2013.10.043
https://doi.org/10.1007/978-3-319-91086-4_17
https://doi.org/10.1016/j.ejor.2019.01.018
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0020
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0020
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0020
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0020
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0020
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0020
https://doi.org/10.1109/CEC.2018.8477787
https://doi.org/10.1007/978-3-642-38516-2_12
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0023
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0023
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0023
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0023
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0023
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0023
https://doi.org/10.1109/CEC.2018.8477801
https://doi.org/10.1016/j.cor.2014.05.020
https://doi.org/10.1016/j.cor.2014.05.020
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0026
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0026
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0027
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0027
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0027

Operations Research Perspectives 8 (2021) 100186

9

Computer Science, 8994. Springer-Verlag, Heidelberg, Germany; 2015.
p. 293–305.

[28] Francesca G, Brambilla M, Brutschy A, Trianni V, Birattari M. AutoMoDe: A novel
approach to the automatic design of control software for robot swarms. Swarm
Intelligence 2014;8(2):89–112. https://doi.org/10.1007/s11721-014-0092-4.

[29] Campelo F, Batista LS, Aranha C. The MOEADr package: A component-based
framework for multiobjective evolutionary algorithms based on decomposition.
Journal of Statistical Software 2020;92. https://doi.org/10.18637/jss.v092.i06.

[30] Bezerra LCT, López-Ibáñez M, Stützle T. Automatically designing state-of-the-art
multi- and many-objective evolutionary algorithms. Evolutionary Computation
2020;28(2):195–226. https://doi.org/10.1162/evco_a_00263.

[31] Bezerra LCT, López-Ibáñez M, Stützle T. Automatic component-wise design of
multi-objective evolutionary algorithms. IEEE Transactions on Evolutionary
Computation 2016;20(3):403–17. https://doi.org/10.1109/TEVC.2015.2474158.

[32] Bezerra LCT, López-Ibáñez M, Stützle T. Automatic design of evolutionary
algorithms for multi-objective combinatorial optimization. In: Bartz-Beielstein T,
Branke J, Filipič B, Smith J, editors. PPSN 2014. Lecture Notes in Computer
Science, 8672. Springer-Verlag, Heidelberg, Germany; 2014. p. 508–17. https://
doi.org/10.1007/978-3-319-10762-2_50.

[33] López-Ibáñez M, Stützle T. The automatic design of multi-objective ant colony
optimization algorithms. IEEE Transactions on Evolutionary Computation 2012;16
(6):861–75. https://doi.org/10.1109/TEVC.2011.2182651.

[34] Bezerra LCT, López-Ibáñez M, Stützle T. Automatic generation of multi-objective
ACO algorithms for the biobjective knapsack. In: Dorigo M, et al., editors. Swarm
Intelligence, 8th International Conference, ANTS 2012. Lecture Notes in Computer
Science, 7461. Springer-Verlag, Heidelberg, Germany; 2012. p. 37–48. https://doi.
org/10.1007/978-3-642-32650-9_4.

[35] Dubois-Lacoste J, López-Ibáñez M, Stützle T. Automatic configuration of state-of-
the-art multi-objective optimizers using the TP+PLS framework. In: Krasnogor N,
Lanzi PL, editors. Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2011. New York, NY: ACM Press; 2011. p. 2019–26. https://
doi.org/10.1145/2001576.2001847.

[36] Ferrer J, López-Ibáñez M, Alba E. Reliable simulation-optimization of traffic lights
in a real-world city. Applied Soft Computing 2019;78:697–711. https://doi.org/
10.1016/j.asoc.2019.03.016.

[37] Fawcett C, Hoos HH. Analysing differences between algorithm configurations
through ablation. Journal of Heuristics 2016;22(4):431–58.

[38] Birattari M. Tuning metaheuristics: A machine learning perspective. Studies in
Computational Intelligence, 197. Berlin, Heidelberg: Springer-Verlag; 2009.
https://doi.org/10.1007/978-3-642-00483-4.

[39] Balaprakash P, Birattari M, Stützle T. Improvement strategies for the F-race
algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein T,
Blesa MJ, Blum C, Naujoks B, Roli A, Rudolph G, et al., editors. Hybrid
Metaheuristics. Lecture Notes in Computer Science, 4771. Springer-Verlag,
Heidelberg, Germany; 2007. p. 108–22. https://doi.org/10.1007/978-3-540-
75514-2_9.

[40] Birattari M, Yuan Z, Balaprakash P, Stützle T. F-race and iterated F-race: An
overview. In: Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M, editors.
Experimental Methods for the Analysis of Optimization Algorithms. Berlin,
Germany: Springer-Verlag; 2010. p. 311–36. https://doi.org/10.1007/978-3-642-
02538-9_13.

[41] Hutter F, López-Ibáñez M, Fawcett C, Lindauer MT, Hoos HH, Leyton-Brown K,
et al. AClib: A benchmark library for algorithm configuration. In: Pardalos PM,
Resende MGC, Vogiatzis C, Walteros JL, editors. Learning and Intelligent
Optimization, 8th International Conference, LION 8. Lecture Notes in Computer
Science, 8426. Springer-Verlag, Heidelberg, Germany; 2014. p. 36–40. https://doi.
org/10.1007/978-3-319-09584-4_4.

[42] Stützle T., ACOTSP: A software package of various ant colony optimization
algorithms applied to the symmetric traveling salesman problem. 2002. htt
p://www.aco-metaheuristic.org/aco-code.

[43] Dorigo M, Stützle T. Ant colony optimization. Cambridge, MA: MIT Press; 2004.
[44] López-Ibáñez M., Dubois-Lacoste J., Pérez Cáceres L., Stützle T., Birattari M., The

irace package: Iterated racing for automatic algorithm configuration
(supplementary material). http://iridia.ulb.ac.be/supp/IridiaSupp2016-003;
2016b.

[45] Johnson D.S., McGeoch L.A., Rego C., Glover F., 8th DIMACS implementation
challenge: The traveling salesman problem. http://dimacs.rutgers.edu/archive/Ch
allenges/TSP; 2001.

[46] Babić D, Hutter F. Spear theorem prover. SAT’08: Proceedings of the SAT 2008
Race. 2008.https://www.domagoj-babic.com/index.php/Pubs/SAT08.

[47] Gent IP, Hoos HH, Prosser P, Walsh T. Morphing: Combining structure and
randomness. Proceedings of the Sixteenth National Conference on Artificial
Intelligence. 1999. p. 654–60.

[48] De Souza M., Ritt M., López-Ibáñez M., Pérez Cáceres L., ACVIZ: Algorithm
configuration visualizations for irace. 2020. doi:10.5281/zenodo.4714582.

M. de Souza et al.

http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0027
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0027
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.18637/jss.v092.i06
https://doi.org/10.1162/evco_a_00263
https://doi.org/10.1109/TEVC.2015.2474158
https://doi.org/10.1007/978-3-319-10762-2_50
https://doi.org/10.1007/978-3-319-10762-2_50
https://doi.org/10.1109/TEVC.2011.2182651
https://doi.org/10.1007/978-3-642-32650-9_4
https://doi.org/10.1007/978-3-642-32650-9_4
https://doi.org/10.1145/2001576.2001847
https://doi.org/10.1145/2001576.2001847
https://doi.org/10.1016/j.asoc.2019.03.016
https://doi.org/10.1016/j.asoc.2019.03.016
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0037
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0037
https://doi.org/10.1007/978-3-642-00483-4
https://doi.org/10.1007/978-3-540-75514-2_9
https://doi.org/10.1007/978-3-540-75514-2_9
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1007/978-3-319-09584-4_4
https://doi.org/10.1007/978-3-319-09584-4_4
http://www.aco-metaheuristic.org/aco-code
http://www.aco-metaheuristic.org/aco-code
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0043
http://iridia.ulb.ac.be/supp/IridiaSupp2016-003
http://dimacs.rutgers.edu/archive/Challenges/TSP
http://dimacs.rutgers.edu/archive/Challenges/TSP
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0046
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0046
https://www.domagoj-babic.com/index.php/Pubs/SAT08
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0047
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0047
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0047
https://doi.org/10.5281/zenodo.4714582

	ACVIZ: A tool for the visual analysis of the configuration of algorithms with irace
	1 Introduction
	2 Automatic algorithm configuration
	3 The acviz program
	4 Analyzing the configuration process with acviz
	4.1 Case study 1: Easy and hard instances
	4.2 Case study 2: Unnecessarily large budget
	4.3 Case study 3: Unrepresentative instances

	5 Concluding remarks
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

