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A B S T R A C T   

This paper introduces acviz, a tool that helps to analyze the automatic configuration of algorithms with irace. It 
provides a visual representation of the configuration process, allowing users to extract useful information, e.g. 
how the configurations evolve over time. When test data is available, acviz also shows the performance of each 
configuration on the test instances. Using this visualization, users can analyze and compare the quality of the 
resulting configurations and observe the performance differences on training and test instances.   

1. Introduction 

Many algorithms have input parameters that allow adapting their 
behavior to the problem being solved. A specific parameter configuration 
often has an impact on the performance of the algorithm. The search for 
good configurations is a fundamental step of the algorithm design. There are 
different tools, called configurators, for configuring algorithms 
automatically. Examples of such configurators include ParamILS [1], SMAC 
[2], GGA [3], and irace [4]. They reduce the human effort required for 
comparing several parameter configurations on different problem instances, 
minimize the human bias and make the configuration process reproducible. 

In this work, we focus on irace [4], a configurator written in R and 
widely used in different domains. The main application of irace is the 
automatic configuration [5] of optimization [6–9] and decision [10,11] 
algorithms. Besides that, irace was used to configure the parameters of 
the GCC compiler [12], the CPLEX optimization software package [10, 
11,13], machine learning models [14–16], and also for improving the 
anytime behavior of optimization algorithms [17]. Some works define a 
parameterized framework with algorithmic design choices, then use 
irace to automatically design algorithms [18]. This approach was applied 
to design algorithms for different problems, including permutation 
flowshop scheduling [19–22], binary quadratic programming [23,24], 
bin packing [25], and also to construct control software for robots 
[26–28]. The irace configurator was also used to configure and design 

algorithms to tackle multi-objective problems, including evolutionary 
approaches [29–32], ant colony optimization [33,34], hybrid local 
searches [35] and clustering algorithms [27]. Additional applications of 
irace include the optimization of traffic light programs [36] and the 
analysis of configurations through ablation [37]. 

The use of configurators like irace allows users to adjust algorithms 
for obtaining high performance without the need of vast expert knowl-
edge about the algorithm or the problem. The configuration process 
implemented in irace often generates large volumes of algorithm per-
formance data that is used to guide the search for good configurations. 
Additionally, the data produced by irace can be used to obtain insights 
about the configured algorithm and the configuration process. Despite 
the widespread use of irace, many users apply it without a careful 
analysis of its operation, i.e. they simply use the tool as a black-box 
method for configuring algorithms. Nevertheless, understanding how 
the configurator works and analyzing its execution is essential to obtain 
the best results from the configuration process and to ensure the efficient 
use of the computational resources. This understanding is essential when 
designing the configuration scenario, since it can be easily setup inad-
equately, e.g. by using too little or too much computational effort may 
lead to poor results or the waste of available computational resources. 
Using training instances that are not representative of typical problem 
instances may lead to poor results on a separate set of test instances. Too 
much configuration effort and insufficiently diverse training instances 
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will lead to overtuning [38], i.e. the algorithm performs increasingly 
worse on the test instances as more effort is spent on the configuration 
process. A detailed analysis of the configuration process helps to identify 
such cases and adjust the configuration scenario. Currently, there are no 
tools available to directly visualize the configuration process data and 
thus, promoting and simplifying the analysis of it. 

We present acviz, a visual tool to analyze runs of irace based on the 
graphical representation of the configuration process. The acviz tool 
provides two types of visualizations. The first shows the evolution of a 
single run of the configuration process performed by irace. The second 
visualizes the performance of the best found configurations on test in-
stances and contrasts them with the performance on the training in-
stances used by irace. This paper describes acviz in detail and presents 
examples that show how it can be used to understand the configuration 
process, and how it can provide useful information to design better 
configuration scenarios. 

The remainder of this paper is organized as follows. Section 2 re-
views the basic concepts about automatic algorithm configuration and 
explains the irace configurator. Section 3 introduces the acviz program 
and its functions. Section 4 presents examples of applying acviz to 
analyze the automatic configuration of algorithms. Finally, Section 5 
gives some concluding remarks. 

2. Automatic algorithm configuration 

Let A be a target algorithm with parameters p1, p2,⋯, pn and corre-
sponding domains Θ1,Θ2,⋯,Θn. The parameter space Θ is a subset of Θ1 
×Θ2 × ⋯ × Θn, from which invalid parameter combinations are 
excluded. Parameters that determine the selection of algorithmic com-
ponents (e.g. the neighborhood operator to be used in a local search) 
have usually categorical or ordinal domains. Parameters that control the 
behavior of algorithmic components (e.g. the perturbation size of an 
iterated local search) are usually numerical and have integer or real 
domains. A configuration of the algorithm θ ∈ Θ is a valid assignment of 
values to all parameters. 

Given a set Π of problem instances, the performance of a particular 
run of the target algorithm with configuration θ ∈ Θ on instance π ∈ Π is 
given by some function c(θ, π). For optimization scenarios, c is usually 
the cost of the best solution found after running the algorithm for a 
predefined time limit. For decision algorithms, c is usually the running 
time. If A is stochastic, then c(θ, π) is a random variable. The algorithm 
configuration task consists in finding at least one good configuration θ ∈

Θ that optimizes the expected performance of running A under θ on 
instances Π. 

The irace configurator [4] uses iterated racing [39,40] for the 

automatic configuration of algorithms. The basic steps of irace are shown 
in Algorithm 1. Given the configuration scenario 〈Θ,Π, c〉 and a 
computational budget B, irace iteratively samples a population of con-
figurations Θ′ and evaluates them using a racing procedure. The best 
found configurations form the elite set Θelite, which is used to guide the 
sampling of new configurations. The sampling process followed by the 
racing procedure are repeated while the budget B is not exhausted. The 
budget B can be defined as a maximum number of configuration eval-
uations or an execution time limit. The number of iterations is deter-
mined by irace at the beginning of the configuration process, based on 
the number of parameters to be configured. The budget of an iteration is 
determined at the start of the iteration, based on the remaining budget 
available and the number of iterations to be executed next. 

The sampling phase (line 3 of Algorithm 1) behaves as follows. At the 
beginning of the execution, irace samples the parameter space Θ uni-
formly, since Θelite is empty. In subsequent iterations, irace ranks the elite 
configurations according to their performance in previous evaluations, 
and iteratively selects one of them to generate each new configuration θ. 
Elite configurations of a higher rank have a higher probability of being 
selected. The value of each parameter of θ is determined based on 
probability distributions associated with its parent. Newly generated 
configurations inherit this set of probability distributions (one for each 
parameter) from their parents. The parameters of these distributions are 
updated at the beginning of each iteration to focus the sampling process 
around the best parameters values. 

The racing phase (line 4 of Algorithm 1) evaluates the quality of the 
new and elite configurations (Θ′ and Θelite, respectively) on a subset of 
the instances Π according to the performance metric c. After evaluating 
each configuration on a predefined number of initial instances, the 
configurations that perform statistically worse than the best one are 
discarded. The remaining configurations are evaluated on a new 
instance before performing a new statistical test. This process is repeated 
until the budget of the iteration is exhausted, or a minimum number of 
surviving configurations is reached. The surviving configurations 
become the elite set for the next iteration. 

The updates of the probability distributions may lead to a premature 
convergence of the configuration process. In this case, the newly 
generated configurations are very similar to those already evaluated and 
the configuration process loses diversity. To avoid this, irace implements 
a convergence detection mechanism that compares each new configu-
ration to the elite configuration used to generate it. The comparison is 
carried out by calculating their distance, based on the differences of the 
parameter values presented by both configurations. If this distance is 
less than a threshold, irace performs a soft restart that updates the pa-
rameters of the sampling distributions associated to that elite configu-
ration, in order to increase the probability of generating different 
configurations. 

3. The acviz program 

Given a log file produced by running irace, the acviz program provides 
visualizations of the configuration process. Fig. 1 gives examples of the 
configuration of two different algorithms. A point (i, v) shows the per-
formance v obtained in the ith evaluation in the configuration process. 
Note that each evaluation is associated to a unique configuration- 
instance pair (θ, π). The first example shows the configuration of an 
optimization algorithm. In this case, the performance value v is the 
relative deviation of the best solution found in each evaluation from an 
instance-based reference performance value. These reference values can 
be provided by the user when, for example, there are best known 

Algorithm 1. Iterated racing procedure.  
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solutions for the instances or there is a current default configuration and 
its performance can be used as reference. When no reference value is 
provided, the best values found by irace are used. The plot also shows the 
beginning of each iteration by a vertical dashed line, with the number of 
evaluations (bottom) and the number of different instances (top) used 
until that iteration. This vertical line is presented in red for iterations in 
which a soft restart was applied. Finally, evaluations on different in-
stances are indicated by different colors, and evaluations of elite con-
figurations are represented using different markers ( for elite 
configurations of the current iteration, for configurations that were 
elite in the final iteration, and for the best found configuration, i.e. the 
first ranked elite configuration of the final iteration). 

The horizontal lines present the estimated performance of the elite 
(purple line) and non-elite (orange line) configurations in each iteration. 
The estimated performance is determined by the median of the results 
obtained by all configurations of the current iteration on all instances 
evaluated so far, considering evaluations in the current and previous 
iterations. Some of the non-elite configurations may not be evaluated on 
a subset of the instances, e.g. when the configuration is discarded in the 
middle of an iteration. For the calculation of the estimated performance, 
we replace missing values by the worst result of the elite configurations, 
since the eliminated configuration is not better than the worst elite 
configuration (called elite imputation strategy). An alternative approach 
is to use the worst result of the configurations being evaluated in the 
current iteration (called alive imputation strategy). 

Table 1 details the input arguments of acviz. The command to pro-
duce the first visualization shown in Fig. 1 is: 

which provides the irace log file to be used, in this case irace.Rdata, 
and the file containing the reference values used to compute the relative 
deviations (bkv.txt). Additional options control the elements of the 
visualization, like presenting the absolute performance values or the 
absolute deviations from the reference values (option --typeresult), 
or changing the imputation strategy. Users can also disable the coloring 
of instances and the markers of elite configurations, or tell acviz to show 
the ID of the configurations associated with the p% best performing 
evaluations of each iteration (option --pconfig). The opacity of the 

points can be changed and the default logarithmic scale of the y-axis can 
be disabled. 

The second visualization in Fig. 1 shows the configuration of a de-
cision algorithm, where the performance of each evaluation is the 
running time used to solve the corresponding instance. In this case, the 
configuration budget is a time limit, then users can opt to plot the 
starting time of evaluations on the x-axis (option --overtime), making 
it possible to observe how the configuration time is distributed over the 
iterations, and identify evaluations that took a long time. To produce 
this visualization, we select to show absolute performance values in the 
y-axis and disable the logarithmic scale. 

During the configuration process, evaluations that reach the running 
time limit without solving the instance are penalized by returning to 
irace the time limit multiplied by a penalization factor [10]. If we inform 
the time limit to acviz, each evaluation with a result that exceeds this 
limit is presented in the upper border of the plot, indicating that these 
evaluations did not solve the instance (see those cases in the second 
visualization shown in Fig. 1). The following command produces this 
visualization (observe that argument --iracelog can be omitted): 

A second plot provided by acviz presents the results obtained by the 
best found configurations on the set of test instances (this requires the 
testing feature to be enabled when running irace). Fig. 3 shows an 
example, presenting the results of the best elite configurations of each 
iteration and all elite configurations of the last iteration. Each column in 
the plot is associated with a configuration. The acviz tool presents its ID 
and, in parenthesis, the iterations in which it was the first ranked elite 
configuration (e.g. 251 (3,4) means configuration 251 was the best 
ranked elite configuration in iterations 3 and 4). For the final iteration, 
we also present the rank of the corresponding configuration in the elite 
set in a subscript (e.g. 91 means that the configuration was ranked first in 
the 9th iteration). The instance name is black if the instance has been 
used during training and testing, and blue, if it has been used only for 
testing. The subplot on the left shows the mean relative deviations from 
the reference values that, as for the previous plot, can be provided using 

Table 1 
Arguments of acviz (default options are shown in bold).  

Argument Options Description 

--iracelog <log file> The irace log file (.Rdata) 
--typeresult {aval, adev, rdev} Which values are presented 
--bkv <bkv file> The file containing reference values 
--imputation {elite, alive} Imputation strategy for missing values 
--scale {log, lin} Scaling of the y-axis  
--noelites – Disables different markers for evaluations of elite configurations 
--noinstances – Disables coloring evaluations on different instances 
--pconfig [0, 1] Identifies the configurations of the best evaluations 
--overtime – Presents the configuration time on the x-axis  
--alpha [0, 1] The opacity of the points 
--timelimit [0, ∞]  Time limit used to evaluate decision algorithms 
--testing – Presents the plot of the test phase 
--testcolor {instance, overall} The scheme for the color map 
--exportdata – Exports the data of the configuration process to a csv file 
--exportplot – Exports the produced plot to pdf and png files 
--output <prefix> The prefix name of the exported files 
--monitor – Monitors the irace log file and updates the plot after each iteration  
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the --bkv option, or are determined by acviz based on the best values 
found during the execution of irace (in both training and test phases). 
The subplot on the right presents the ranking of each configuration on 
each instance, allowing us to compare the performance of different 
configurations across instances. The command to produce the visuali-
zation shown in Fig. 3 indicates that acviz should present the plot of the 
test phase: 

In the visualization of the test phase, we can also use option 
--typeresult to present the mean absolute values or the mean ab-
solute deviations from the reference values. The colors in the plot help to 
differentiate the performance obtained by the resulting configurations. 
In Fig. 3, the color map is calculated according to the results obtained 
within each instance. Worst values for each instance are in red while the 
best values are in green. Alternatively, the color map can be defined 
according to the whole range of values in all instances, thus visualizing 
the overall performance obtained in the test phase. 

When using the interactive presentation mode, acviz allows the user 
to control the visualization by moving the plot, zooming and control-
ling the margins of the figure. When positioning the cursor over a 
point, acviz shows a tooltip box with the corresponding evaluation 
number, the associated instance name and configuration ID. It is also 
possible to export the data and both of the plots. Finally, when option 
--monitor is enabled, acviz monitors the irace log file during the 
configuration process and updates the visualization after each iteration, 
allowing the user to analyze the evolution of the configuration process 
during its execution. All acviz options discussed above are summarized 
in Table 1. 

4. Analyzing the configuration process with acviz

In this section we present three exemplary case studies of configu-
rations with flaws that can be easily identified when using acviz. We use 
two scenarios from the Algorithm Configuration Library [41]. The first 
scenario considers the configuration of ACOTSP  [42], a framework of 
ant colony optimization algorithms, applied to the symmetric traveling 
salesperson problem (TSP) [43]. ACOTSP has 11 parameters, 5 of which 
are conditional. We run ACOTSP with a time limit of 20 seconds of CPU 
time. In the first and second case studies, we use the Euclidean TSP in-
stances with 2000 cities from a previous study [44]. For the third case 
study, we additionally use ten TSP instances with uniformly random 
distance matrices, generated with portmgen from the 8th DIMACS 
Implementation Challenge [45]. In this scenario, irace optimizes the cost 
of the best found solution. 

The second scenario considers the configuration of SPEAR  [46], an 
exact solver for boolean satisfiability (SAT) problems. SPEAR has 26 
parameters, 9 of which are conditional. We use the SAT-encoded in-
stances of graph coloring from Gent et al. [47], and a limit of 10 seconds 
of wall-clock time. Here, irace minimizes SPEAR’s solving time, where 
for evaluations in which the instance is not solved, a penalized perfor-
mance value is returned. 

In all experiments, we use the default settings of irace. The detailed 
results of all experiments are available in De Souza et al. [48]. The 
source code of acviz, usage instructions, and further application exam-
ples are available in the project website (https://github.com/souzamarc 
elo/acviz). 

4.1. Case study 1: Easy and hard instances 

In this section we discuss two example scenarios and show how easy 
and hard instances can be identified. We configure ACOTSP with a 
budget of 2K evaluations, and SPEAR with a budget of 20K seconds. 
Fig. 1 shows the visualizations produced by acviz. When configuring 
ACOTSP we observe the evolution of the configuration process, i.e. how 
the sampled configurations present better performance over the itera-
tions. At the beginning of the configuration, there is a subset of the 
configurations with bad performance on almost all evaluated instances 
(points in the upper part of the figure in the four first iterations). The 
number of such bad performers decreases over the iterations, while the 
estimated performance of elite and non-elite configurations (the median 
values given by the horizontal lines) becomes better. We can also see 
that the instance selection strategy implemented in irace iteratively in-
creases the number of instances on which the configurations are 
evaluated. 

In the configuration of SPEAR, the estimated performance of the 
configurations also improves over the iterations. Besides that, we see 
that different configurations have a similar performance on each 
instance. Note that the evaluations of different configurations on a 
particular instance, represented by clusters of points of the same color, 
present a small variation of the running time. Nevertheless, we observe 
that elite configurations perform better than others, since they are often 
among the best in each cluster. 

The visualizations shown in Fig. 1 also provide some information 
about the configuration scenarios. We can see that both scenarios are 
quite homogeneous, i.e. a configuration with good performance on one 
instance often presents good performance on the others. For example, if 
we look at the elite configurations ( markers) of each iteration, we see 
that they present the best results for almost all instances. This contrib-
utes to irace easily identifying the best configurations in the racing 
phase, and consequently, using less evaluations than the budget avail-
able for the iterations. The saved budget is then used to perform more 
iterations than the five initially scheduled, as observed in the plot. Those 
additional iterations are increasingly shorter because they are 
consuming the remaining budget and fewer new configurations are 
sampled. 

We included in both scenarios two additional instances: one that is 
easy to solve, shown in gray, and another that is hard to solve, shown in 
green. Fig. 1 shows an interesting behavior of the configurations on 
those instances. In ACOTSP, we can see that almost all configurations 
perform very well on the easy instance. Besides that, there is no varia-
tion of different configurations on this instance. Therefore, the evalua-
tions on this instance do not help to determine the quality of different 
configurations and decide which one is better. In the case of the hard 
instance, we observe that it helps to differentiate the quality of the 
configurations in the first iterations. However, as for the easy instance, 
from the fifth iteration on, it stops being useful for the configuration 
process. 

In the configuration of SPEAR it is even more evident that the easy 
and hard instances do not contribute to the configuration process. We 
observe that all configurations immediately solve the easy instance, 
while no configuration solves the hard instance. In this case, we could 
exclude the easy instance from the configuration scenario, since it does 
not help to evaluate the configurations. We could also exclude the hard 
instance, or increase the time limit, trying to find configurations that 
can solve it. In this context, acviz helps to identify such cases by visu-
alizing and comparing how the configurations perform on the training 
instances and which ones are actually contributing to the configuration 
process. 
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4.2. Case study 2: Unnecessarily large budget 

Choosing an adequate configuration budget can be difficult. A small 
budget may not be sufficient to find good configurations. A common 
practice is to use the highest possible budget, according to time con-
straints and the available computational resources. However, even after 

running irace, it may not be clear if the chosen budget was appropriate. 
In this second experiment, we configure both ACOTSP and SPEAR with 
very large budgets of 100K evaluations and 500K seconds, respectively. 
Fig. 2 shows the resulting visualizations. Since the budget is larger, irace

samples more configurations and uses more instances to evaluate them. 
In ACOTSP, the observed behavior is similar to the first case study. 

Fig. 1. Example of configuring ACOTSP and SPEAR using instances of different hardness.  
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We can see a fast evolution of the configuration process in the first it-
erations, producing configurations with better performance compared 
to those obtained in the first case study. From the fifth iteration on, after 
approximately 20K evaluations, the quality of the sampled configura-
tions stagnates. Note that the estimated performance of both elite and 
non-elite configurations (orange and purple horizontal lines) does not 
improve from that point until the end of the configuration process. We 
can also see that irace performs a soft restart (red dashed line) in almost 
all subsequent iterations, which indicates that the sampling models 
converged. The same behavior is observed in the configuration of 

SPEAR, where soft restarts are present after about 400K seconds. 
In both scenarios, if we needed to repeat the process, we could 

decrease the budget to about 20K ∼ 30K evaluations (ACOTSP) or 
300K ∼ 400K seconds (SPEAR), for example. Alternatively, if we have 
the time for a large budget, we could tell irace to sample more config-
urations at each iteration to increase diversification (parameter 
nbConfigurations). For heterogeneous scenarios, the additional 
budget could be better spent in increasing the number of instances 
evaluated before the first and between each elimination test (parameters 
firstTest and eachTest of irace, respectively). 

Fig. 2. Example of configuring ACOTSP and SPEAR with large budgets.  
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4.3. Case study 3: Unrepresentative instances 

A common mistake when configuring algorithms is to choose 
training instances that are not representative of the instances to be used 
in production. Suppose, for example, we use an algorithm that has been 
configured on a certain class of instances Π′. Now, we want to solve 
additional instances of class Π′. In order to get the best performance, we 
may want to configure the algorithm again to reflect the new instance 
distribution. If the goal is to obtain a configuration that performs well for 
both instance classes, then starting the configuration process from the 
current configuration (tuned for Π′) and training only on instances of Π′

would be a methodological mistake. 
In this experiment, we reproduce the above situation using ACOTSP 

to analyze how the configuration process behaves. In a first step, we 
select ten TSP instances with random distances and tune ACOTSP on 
them to obtain a set of initial configurations. Then, we select ten 
Euclidean TSP instances, and use them as training instances for an irace

run with a budget of 3K evaluations. We provide the configurations from 
the first step as initial configurations. We use the testing options of irace

to evaluate the resulting configurations on all Euclidean instances (used 
as training set) and all random distance instances (not used as training 
set, thus we call it test set). Random distance and Euclidean instances 
define structurally different TSP instances and thus, ACOTSP 

configurations that exhibit high performance in one instance class are 
not expected to maintain such high performance in the other class. The 
testing results are shown in Fig. 3. Since we evaluate the resulting 
configurations on both training and test instances, we have useful in-
formation about how they perform on both instance sets. The mean 
deviations give an overview of the results, allowing us to observe the 
evolution in the quality of configurations found during the configuration 
process. We can also observe how those configurations compare with 
each other by analyzing the obtained ranks. 

When the training instances are not representative, the found con-
figurations may specialize on the known training instances and present 
poor performance on unseen test instances. Such an overtuning can be 
observed in Fig. 3. As the configuration progresses, the performance of 
the configurations is becoming better on the training instances. On the 
other hand, the performance on the test instances degrades over the it-
erations. Since we initialized irace with configurations known to perform 
well on the test instances, the best configuration in the first iteration still 
performs well on the test set, but the performance quickly degrades on 
subsequent iterations. To solve this problem, we need to include some 
random distance instances in the training set, and make sure that the 
relative frequency of each type of instance seen during training matches 
their relative frequency in the test set, or the frequency expected in 
unseen instances when the algorithm is deployed in production. 

Fig. 3. Test results after configuring ACOTSP with unrepresentative training instances. Instances with random distances (starting with ‘r’ and in blue) were used only 
for test, while Euclidean instances (in black) were used for both training and test. 
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Reproducibility. All materials necessary for reproducing the ex-
periments are available at De Souza et al. [48]. Experiments were run on 
a GNU/Linux platform running on an 8-core AMD FX-8150 CPU 3.6 GHz 
and 32 GB memory. We used acviz 1.1, irace 3.1, ACOTSP 1.03, and 
SPEAR 1.2.1. The acviz program was written in Python 3 and requires R 
(≥ 3.4) and the following libraries: numpy (≥ 1.18), pandas (≥ 1.0.3), 
matplotlib (≥ 3.1), rpy2 (≥ 3.2), and natsort (≥ 7.0). Results of ACOTSP, 
SPEAR, and as a consequence of irace, are sensitive to CPU speed. 

5. Concluding remarks 

We described in this paper a graphical tool to support the automatic 
configuration of algorithms with irace. We presented a visualization 
scheme for the configuration process, which provides useful information 
to help the design of configuration scenarios. We also presented a second 
visualization to analyze the performance of the resulting configurations 
on test instances. We discussed some examples, showing how these vi-
sualizations can help to identify common problems when configuring 
algorithms. Both plots are implemented in the acviz program. Additional 
features to control the visualization elements and export the results are 
also provided. The source code of acviz, instructions of use, and further 
application examples are available at https://github.com/souzamarc 
elo/acviz. 
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[12] Pérez Cáceres L, Pagnozzi F, Franzin A, Stützle T. Automatic configuration of GCC 
using irace. In: Lutton E, Legrand P, Parrend P, Monmarché N, Schoenauer M, 
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configuration visualizations for irace. 2020. doi:10.5281/zenodo.4714582. 

M. de Souza et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0027
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0027
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.18637/jss.v092.i06
https://doi.org/10.1162/evco_a_00263
https://doi.org/10.1109/TEVC.2015.2474158
https://doi.org/10.1007/978-3-319-10762-2_50
https://doi.org/10.1007/978-3-319-10762-2_50
https://doi.org/10.1109/TEVC.2011.2182651
https://doi.org/10.1007/978-3-642-32650-9_4
https://doi.org/10.1007/978-3-642-32650-9_4
https://doi.org/10.1145/2001576.2001847
https://doi.org/10.1145/2001576.2001847
https://doi.org/10.1016/j.asoc.2019.03.016
https://doi.org/10.1016/j.asoc.2019.03.016
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0037
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0037
https://doi.org/10.1007/978-3-642-00483-4
https://doi.org/10.1007/978-3-540-75514-2_9
https://doi.org/10.1007/978-3-540-75514-2_9
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1007/978-3-319-09584-4_4
https://doi.org/10.1007/978-3-319-09584-4_4
http://www.aco-metaheuristic.org/aco-code
http://www.aco-metaheuristic.org/aco-code
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0043
http://iridia.ulb.ac.be/supp/IridiaSupp2016-003
http://dimacs.rutgers.edu/archive/Challenges/TSP
http://dimacs.rutgers.edu/archive/Challenges/TSP
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0046
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0046
https://www.domagoj-babic.com/index.php/Pubs/SAT08
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0047
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0047
http://refhub.elsevier.com/S2214-7160(21)00009-9/sbref0047
https://doi.org/10.5281/zenodo.4714582

	ACVIZ: A tool for the visual analysis of the configuration of algorithms with irace
	1 Introduction
	2 Automatic algorithm configuration
	3 The acviz program
	4 Analyzing the configuration process with acviz
	4.1 Case study 1: Easy and hard instances
	4.2 Case study 2: Unnecessarily large budget
	4.3 Case study 3: Unrepresentative instances

	5 Concluding remarks
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


