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Non-Technical Summary 
 

There is now a convincing body of evidence describing the convergence and co-

evolution of scientific and commercial opportunities in the life sciences and the adoption of 

entrepreneurial attitudes and behaviors among academic life science researchers. Along with 

this social transformation, there has been an increase in the number of mechanisms supporting 

commercialization using for-profit firms. In particular, universities are expanding the 

practices of accepting equity in lieu of licensing fees and investing directly in entrepreneurial 

companies. Academic life scientists are also making use of venture capital investment and 

small firm financing programs like the U.S. Small Business Innovation Research (SBIR) 

Program. One consequence of these changes is that university faculty, particularly in the life 

sciences, are increasingly involved in the most extreme form of entrepreneurial behavior – 

working part-time or full-time on commercialization using for-profit firms. To the extent that 

these academic entrepreneurs devote significant time and cognitive effort to the firm, their 

contribution to academic knowledge accumulation is likely to fall – a potentially costly “brain 

drain” on the not-for-profit research sector. 

The objective of this paper is to explore the economic significance of the academic 

brain drain by assessing how it impacts academic research performance. The population for 

this study consists of all university life science researchers in the fields of Biology, 

Chemistry, and Health Sciences who have received at least one research award from the U.S. 

National Institutes of Health (NIH) between 1972 and 1996. We identified NIH scientists who 

take employment positions in for-profit firms using information from the SBIR program. 

Using a case-cohort sampling design, we compiled a scientist-level panel database to examine 

four indicators of academic research performance: journal publications, journal publications 

weighted by the number of coauthors, NIH research grants, and university patents. 

For each of these indicators, our empirical analysis addresses two specific questions. 

First, how does the research performance of NIH academic entrepreneurs differ from a 

randomly selected control group of their NIH research peers during their careers in academe? 

If the most productive academic researchers are the ones taking employment positions at for-

profit firms, the academic brain drain will be larger. Answering this question also provides 

one way to estimate the magnitude of the brain drain phenomenon. Assuming a one-time 

permanent employment transition to industry and immediate replacement at the university by 

an NIH research peer, it can be measured as the relative difference in research performance 

between the two groups over the period following the employment transition. Our second 



 

question asks: How does the academic research performance within the group of NIH 

academic entrepreneurs change once they decide to participate in commercialization by 

joining a for-profit firm? Answering this question provides an alternative way to estimate the 

magnitude of the brain drain phenomenon. It allows us to account for part-time or temporary 

employment transitions by incorporating their academic research performance after their 

decision to start or join a for-profit firm.   

Our results show that life scientists commercializing through the SBIR program 

perform better than their NIH research peers over their entire careers in academe. This holds 

for journal publications, weighted publications, the value of NIH research awards, and 

university patents. These results are robust to a variety of changes in the econometric 

specifications and to scientist unobserved heterogeneity, which may stem from their innate 

research “ability” or “taste” for scientific puzzles or commercialization. Assuming a one-time 

permanent employment transition to industry and immediate replacement at the university by 

an NIH research peer, the brain drain costs per academic entrepreneur are about 26% fewer 

journal publications per year and 206% fewer university patents per year. To assess the 

broader economic significance, we compare the cumulative publication and patent output of 

MIT with estimates of the academic brain drain costs for the period 1994 to 2004. Over this 

period, a number equivalent to 86% of MIT’s cumulative output of journal publications and 

217% of MIT’s cumulative output of approved patents is lost due to the academic brain drain. 
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Abstract 
When academic researchers participate in commercialization using for-profit firms there is a 
potentially costly trade-off – their time and effort are diverted away from academic knowledge 
creation.  This is a form of brain drain on the not-for-profit research sector which may reduce 
knowledge accumulation and adversely impact long-run economic growth.  In this paper, we 
examine the economic significance of the brain drain phenomenon using scientist-level panel 
data.  We identify life scientists who start or join for-profit firms using information from the 
Small Business Innovation Research (SBIR) program and analyze the research performance of 
these scientists relative to a control group of randomly selected research peers.  Combining our 
statistical results with data on the number of university spin-offs in the U.S. from 1994 to 2004 
we find the academic brain drain has a nontrivial impact on knowledge creation in the not-for-
profit research sector.   
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I. Introduction 

There is now a convincing body of evidence describing the convergence and co-

evolution of scientific and commercial opportunities in the life sciences and the adoption of 

entrepreneurial attitudes and behaviors among academic life science researchers (Seashore et 

al. 1989; Dasgupta and David 1994; Powell and Owen-Smith 1998; Etzkowitz 1998, 2003; 

Stephan 1996; Murray 2002; Stuart and Ding 2006).  Along with this social transformation, 

there has been an increase in the number of mechanisms supporting commercialization using 

for-profit firms.  In particular, universities are expanding the practices of accepting equity in 

lieu of licensing fees and investing directly in entrepreneurial companies (Desruisseaux 2000; 

Feldman et al. 2002; Di Gregorio and Shane 2003; Shane 2004).  Academic life scientists are 

also making use of venture capital investment and small firm financing programs like the 

U.S. Small Business Innovation Research (SBIR) Program (Zhang 2005; Toole and 

Czarnitzki 2007).   

One consequence of these changes is that university faculty, particularly in the life 

sciences, are increasingly involved in the most extreme form of entrepreneurial behavior – 

working part-time or full-time on commercialization using for-profit firms (often with an 

equity interest).1  To the extent that these academic entrepreneurs devote significant time and 

cognitive effort to the firm, their contribution to academic knowledge accumulation is likely 

to fall – a potentially costly “brain drain” on the not-for-profit research sector.2 

The costs of this academic brain drain phenomenon stem from its harmful effects on 

the accumulation of public scientific knowledge and the role this knowledge stock plays in 

economic growth.  There are a number of empirical studies supporting the view that 

academic research is an important factor fueling industry innovation, productivity, and 
                                                 
1 Throughout the paper we will use “university” as shorthand for all not-for-profit research institutions and 
“faculty” as shorthand for researchers who work in the not-for-profit research sector. 
2 While the concept of an academic “brain drain” could be applied very broadly to include, say, consulting with 
private industry, we see full-time employment or part-time employment with a vested interest in the firm, either 
temporary or permanent, as the form of private sector involvement that will induce an academic brain drain.  
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national economic growth.  Jaffe (1989) presents evidence that university research 

contributes to state-level corporate patenting.  Adams (1990) shows that cumulative stocks of 

academic research stimulate productivity growth in manufacturing industries.  Toole (2007) 

finds that university research makes a significant contribution to new drug innovation in the 

pharmaceutical industry.  Lichtenberg (1996, 2001, 2003) links pharmaceutical innovation to 

lower hospital costs and increased life expectancy.  Murphy and Topel (2006) find that 

improvements in life expectancy added about $3.2 trillion annually to national wealth since 

1970.   

The objective of this paper is to explore the economic significance of the academic 

brain drain by assessing how it impacts academic research performance.  The population for 

this study consists of all university life science researchers in the fields of Biology, 

Chemistry, and Health Sciences who have received at least one research award from the U.S. 

National Institutes of Health (NIH) between 1972 and 1996.  We identified NIH scientists 

who take employment positions in for-profit firms using information from the SBIR program.  

Based on the SBIR eligibility rules, these NIH scientists who venture into the private sector 

spend at least 51% of their time at the for-profit firms at the moment of award and throughout 

the duration of their projects.  Using a case-cohort sampling design, we compiled a scientist-

level panel database to examine four indicators of academic research performance:  journal 

publications, journal publications weighted by the number of coauthors, NIH research grants, 

and university patents. 

For each of these indicators, our empirical analysis addresses two specific questions.  

First, how does the research performance of NIH academic entrepreneurs differ from a 

randomly selected control group of their NIH research peers during their careers in academe?  

If the most productive academic researchers are the ones taking employment positions at for-

profit firms, the academic brain drain will be larger.  Answering this question also provides 
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one way to estimate the magnitude of the brain drain phenomenon.  Assuming a one-time 

permanent employment transition to industry and immediate replacement at the university by 

an NIH research peer, it can be measured as the relative difference in research performance 

between the two groups over the period following the employment transition.  Our second 

question asks:  How does the academic research performance within the group of NIH 

academic entrepreneurs change once they decide to participate in commercialization by 

joining a for-profit firm?  Answering this question provides an alternative way to estimate the 

magnitude of the brain drain phenomenon. It allows us to account for part-time or temporary 

employment transitions by incorporating their academic research performance after their 

decision to start or join a for-profit firm.     

Our results show that life scientists commercializing through the SBIR program 

perform better (on average) than their NIH research peers over their entire careers in 

academe.  This holds for journal publications, weighted publications, the value of NIH 

research awards, and university patents.  We also find a significant decrease in the research 

performance within the group of NIH academic entrepreneurs after they begin working in 

for-profit firms.  These results are robust to a variety of changes in the econometric 

specifications and to scientist unobserved heterogeneity, which may stem from their innate 

research “ability” or “taste” for scientific puzzles or commercialization (Levin and Stephen 

1991; Stern 2004).  Assuming a one-time permanent employment transition to industry and 

immediate replacement at the university by an NIH research peer, the brain drain costs per 

academic entrepreneur are 25.9% fewer journal publications per year and 206.2% fewer 

university patents per year.  To assess the broader economic significance, we compare the 

cumulative publication and patent output of MIT with estimates of the academic brain drain 

costs for the period 1994 to 2004.  Over this period, a number equivalent to 86% of MIT’s 
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cumulative output of journal publications and 217% of MIT’s cumulative output of approved 

patents is lost due to the academic brain drain. 

The rest of the paper proceeds as follows.  The next section provides a brief overview 

of the literature supporting the emergence of an academic brain drain phenomenon.  Section 

III describes the data and career life cycle models we estimate.  Section IV presents the 

empirical results and estimates of the economic significance of the academic brain drain 

along with the limitations of our approach and assumptions.  The concluding section 

discusses some of the implications of our findings. 

 

II. Prior Literature 

Our search of the literature revealed that Zucker and Darby (1996), Stephan and Levin 

(1996), and Powell and Owen-Smith (1998) expressed similar concerns about the movement 

of academic scientists and its potentially detrimental impact on academic research.  Zucker 

and Darby note that knowledge transfer in people imposes a real cost since it requires a 

significant redirection of time and energy.  Stephan and Levin emphasize the differences in 

property rights regimes between academe and industry, highlight the shortened lag between 

basic research discovery and commercialization, and provide a number of interesting 

anecdotes.  Powell and Owen-Smith suggest the changing reward systems within academic 

research institutions could speed up the outflow of life scientists and weaken the traditional 

educational and research missions.    

The following review of prior research is organized around three observations that 

form the basis of our concern about an emerging academic brain drain. 

The first observation is that academic faculty participation is critical to successful 

commercialization and that faculty effort devoted to this process increases with economic 

incentives.  Based on survey data from 62 universities, Jenson and Thursby (2001) found that 



 

 5

71% of the university inventions required continued faculty participation to have a reasonable 

chance at successful commercialization.  Lowe (2002) and Shane (2004) make this point 

using case studies of academic spin-offs from the campuses of the University of California 

and MIT, respectively.  Agrawal (2006), also using a sample drawn from MIT, shows that 

greater faculty-inventor involvement leads to an increased likelihood and degree of 

commercialization success.  With respect to faculty effort, Lach and Schankerman (2004) 

find that university licensing income increases with faculty royalty rates.3  They suggest that 

higher royalty rates increase faculty effort devoted to commercialization.  Thursby et al. 

(2007) use life cycle models of faculty behavior to show that licensing not only increases 

total research effort but also increases the ratio of applied to basic research.  Since most of 

this increased effort comes at the expense of faculty leisure time, they do not believe 

licensing activities are detracting from university knowledge creation.  However, it is 

important to point out that their model does not address employment of scientists in private 

firms. 

The second observation is that the most productive academic life scientists are the 

ones involved in the commercialization process with private industry.  An influential stream 

of research suggests that “star” scientists transfer new and valuable academic knowledge to 

for-profit biotechnology firms (Zucker and Darby 1996; Zucker et al. 1998; Zucker et al. 

2002a; Zucker et al. 2002b).  For a sample of life scientists, Stuart and Ding (2006) examine 

the factors associated with when scientists choose to become entrepreneurs.  Using a hazard 

model, they find that both cumulative publication counts and patent counts are positively 

related to when a life scientist founds a new biotechnology firm or joins a scientific advisory 

board (SAB).    Lowe and Gonzalez-Brambila (2007) examine the academic research 

productivity of 150 science and engineering faculty entrepreneurs relative to matched control 

                                                 
3 Di Gregorio and Shane (2003) interpret a higher royalty rate as a higher opportunity cost to the faculty member 
if he or she founds a firm.  They find higher royalty rates lead to fewer start-ups using a sample of universities. 
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groups of their graduate school peers and their coauthors working at the same institution.4  

They find mixed results across fields.  Biomedical faculty entrepreneurs publish significantly 

more than their graduate school peers but significantly less than their coauthor peers.  

Publishing by chemistry faculty entrepreneurs is not significantly different than their graduate 

school peers but is significantly more than their coauthor peers.  Faculty entrepreneurs in 

engineering publish significantly more than both their graduate school peers and coauthor 

peers.  They conclude, based on their full sample, that faculty entrepreneurs are more 

productive researchers (on average).   

The third observation is that more and more entrepreneurial life scientists are 

choosing active employment in firms, either part-time or full-time, as their commercialization 

vehicle.  As the most extreme form of faculty entrepreneurial behavior, firm employment 

involves the strongest economic incentives pulling life scientists to venture more completely 

into the private sector.  Audretsch and Stephan (1999) find that fifty percent of the scientific 

founders in their sample of biotechnology firms had prior careers in academe.  Of these 

academic founders, thirty percent had transitioned to full-time employment at the firms and 

seventy percent maintained part-time employment.  Zhang (2005) identified 903 venture 

capital backed academic entrepreneurs who founded or co-founded a firm between 1992 and 

2001 using the VentureOne database.  Toole and Czarnitzki (2007) identified 337 NIH 

academic scientists involved in commercialization through the SBIR and Small Business 

Technology Transfer (STTR) Programs between 1983 and 1996.  Their data show an upward 

trend in life scientist entrepreneurship since 1991. 

 Taken together, these observations suggest a growing number of the most productive 

academic life scientists are participating in commercialization using for-profit firms and 

provide a compelling basis for concern about an emergent academic brain drain.  Based on 

                                                 
4 Their faculty entrepreneurs are full-time faculty members from 12 universities who started a firm based on a 
university disclosure from their own research. 
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the literature, we expect to find that NIH academic entrepreneurs are more productive than 

their NIH research peers in journal publications, NIH research grants, and patenting while in 

academe.  We also expect to find a decrease in research performance for these entrepreneurial 

scientists after they become employed at for-profit firms.  

 

III. Data and Methods 

 We construct a novel scientist-level database using a case-cohort sampling design.  As 

discussed in Stuart and Ding (2006), this sampling design is used most often by 

epidemiologists to study rare diseases.  To implement the case-cohort design, all of the 

observed events of interest in the population are identified and grouped into “subcohorts.”  A 

random sample is drawn from each subcohort and this constitutes the control group which is 

compared to the “cases” or events of interest.  As described below, the statistical analysis 

weights each case and subcohort observation by the inverse probability of being selected into 

the sample.  Thus, using the case-cohort sampling design allows one to appropriately 

generalize the statistical findings to the original population.  

The population for this study is defined to be all academic life scientists in the fields 

of Biology, Chemistry, and Health Sciences who were principal investigators (PIs) on at least 

one research award from the NIH between 1972 and 1996.  We identified all individuals in 

this population using the NIH Computer Retrieval of Information on Scientific Projects 

(CRISP) database.5  Over this period, our target population contains about 61,000 individual 

life scientists.  For each scientist in the population, this database provides their name, grant 

history, institutional affiliation, award amounts, award years, and NIH organizational code.  

The NIH organizational codes identify the individual national institutes within the National 

Institutes of Health such as the National Cancer Institute, National Eye Institute, and so forth.  

                                                 
5 After 1996, the NIH stopped publicly reporting the award amounts in CRSIP for individual grants and 
contracts. 
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As described below, these organizational divisions allow us to form subcohorts by broad 

therapeutic area for the random selection of the control group used in our analysis. 

The cases or events of interest in this study are the NIH supported academic life 

scientists who undertook commercialization by starting or joining a for-profit firm.  

Unfortunately, identifying these individuals in a systematic and consistent way has been a 

significant barrier to research on this form of academic entrepreneurship.  To overcome this 

barrier, we developed a method that exploits the information contained in the SBIR program.  

All SBIR grants, which are only given to small for-profit firms, have principal investigators 

who are the scientific and technical project leaders.  To qualify as an SBIR PI, individuals 

must be employed “full-time” at the small business at the time of award and throughout the 

duration of the project(s).6  For each academic scientist in the NIH researcher population, we 

looked up whether that individual also served as a PI on one or more SBIR 

commercialization grants.7  If the academic scientist received NIH research grant(s) at a not-

for-profit institution and later received SBIR grant(s) at a for-profit firm, then they are an 

academic entrepreneur.  We identified 213 NIH academic entrepreneurs in the SBIR program 

between 1983 and 1996.  For the empirical analysis, however, we further impose the 

restrictions that these NIH academic entrepreneurs have degrees in the fields of Biology, 

Chemistry, or Health Sciences, and have available data on their degree year and institution.8  

                                                 
6 Based on the SBIR eligibility rules, we know our NIH scientists who venture into commercialization spend at 
least 51% of their time at the for-profit firms at the moment of award and throughout the duration of their 
projects.  We do not observe whether the SBIR academic entrepreneurs hold equity, found new firms, or join 
established firms. It is likely that some of the SBIR academic entrepreneurs return to the non-profit research 
sector after their SBIR experience.   
7 Matching PIs by name is notoriously difficult and requires cross-referencing information in order to eliminate 
false matches.  This process was facilitated by using specialized software developed by Thorsten Doherr at the 
Center for European Economic Research (ZEW), Mannheim, Germany, for text field matching and by 
exploiting the internal consistency of the NIH CRISP database, which includes information on all NIH research 
project grants and NIH SBIR grants.  We manually checked each individual in our final group to verify that they 
were researchers in the non-profit research environment prior to their first SBIR award and that they were not 
participating in the Small Business Technology Transfer (STTR) program.  
8 We used the UMI Proquest Dissertation database and web searches to retrieve this information.    



 

 9

These restrictions reduce the sample to 89 NIH academic entrepreneurs.  The small number 

of observed cases motivates our use of the case-cohort method. 

While our usable sample of 89 NIH academic entrepreneurs is small, it is not 

unreasonably small when compared to prior literature.  Using prospectuses of 60 

biotechnology firms, Audretsch and Stephan (1999) identified 50 academic founders.  Zucker 

et al. (2002b) identified 207 U.S. “star” scientists either employed at firms or “linked” to 

firms through co-authorship.  Corolleur et al. (2004) identify 132 academic founders 

associated with 62 French biotechnology firms.  Zhang (2005) identifies 294 academic 

entrepreneurs in the Medical sciences, Bioscience, and Chemistry.  This group represents 

2.6% of all academic and non-academic firm founders and co-founders backed by venture 

capital between 1992 and 2001.  From SEC filings for 533 U.S.-headquartered biotechnology 

firms, Stuart and Ding (2006) identified 190 academic founders.  Finally, Lowe and 

Gonzalez-Brambila (2007) observed 54 academic entrepreneurs in Biology, Chemistry, and 

Medicine who started firms between 1990 and 1999 in their sample of 15 universities. 

Using the SBIR program to identify NIH academic entrepreneurs does have some 

important limitations.  First, we are significantly undercounting the actual number of NIH 

research scientists who choose to leave the academic environment or choose to devote 

significant effort to entrepreneurial ventures.  For instance, it is clear that NIH life scientists 

start and join companies supported by other modes of financing such as venture capital, 

personal assets, friends and family, or some form of internally generated funds.  At the 

present time, little is known about the population of NIH academic entrepreneurs or about the 

population of academic entrepreneurs more broadly.  Consequently, it is impossible to know 

if our SBIR-identified “slice” of this population is representative.  Second, our sample of NIH 

academic entrepreneurs is a selected sample.  In this paper, we do not model an NIH 
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scientist’s choice to become an entrepreneur.  Instead, we observe their choice ex-post and 

use this to define the “cases” for our case-cohort design.   

To form our randomly selected control group of NIH research peers, we allocated the 

observed cases of NIH academic entrepreneurs to fifteen NIH national institutes.  Recall that 

the individual institutes represent broad therapeutic areas.  We drew a total random sample of 

1,500 NIH academic researchers from the population of NIH principal investigators with at 

least one research award from any of the fifteen national institutes (after excluding the NIH 

academic entrepreneurs).  On this random sample of NIH research peers, we impose the 

restrictions that they have degrees in the fields of Biology, Chemistry, or Health Sciences, 

and have available data on their degree year and institution.  These restrictions reduce the 

control group to 444 NIH research peers.  In the final sample, the ratio of controls to NIH 

academic entrepreneur cases is about 5:1. 

To complete the database, we collected information on each scientist’s publication 

and patenting history.  A count of the scientist’s journal publications with coauthors were 

taken from PubMed using the PublicationHarvester software for period 1976 to 2003 

(Azoulay et al. 2006).  For patenting activity, we use the NBER patent database to identify all 

patents assigned to not-for-profit institutions on which the scientists are listed as inventors 

(Hall et al. 2001).9  Our scientist-level panel database has 89 NIH academic entrepreneurs 

and 444 NIH research peers covering the years 1975-1997. 

There are two primary explanatory variables in the database.  First, to analyze 

performance differences between NIH academic entrepreneurs and their NIH research peers 

while in academe, we specify a dummy variable, “AEIN,” which takes the value of one for all 

of those NIH researchers who ever became employed at a for-profit firm as indicated by 
                                                 
9 To identify the scientist’s patents, a name match was performed based on the inventor name and assignee name 
of the not-for-profit institutions where the scientists where employed during their career (obtained from the NIH 
CRISP database). This search also used the text field search engine developed by Thorsten Doherr.  Note that 
our patent variable does not include patents invented by these scientists but assigned to firms, as we are 
interested in the loss of the public sector due to brain drain.  
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winning an SBIR commercialization grant.  This variable is constant over their careers in 

academe and captures differences in research performance levels between the NIH academic 

entrepreneurs and the control group.10  Second, since we are interested in identifying changes 

in research performance once an NIH researcher becomes an academic entrepreneur, we 

specify a dummy variable “AEOUT,” which switches from zero to one in the year the NIH 

researcher becomes an academic entrepreneur through the SBIR program.  Clearly, the NIH 

researchers in the control group never become academic entrepreneurs and these observations 

cannot be used in this part of our analysis.  Using the AEOUT variable, we only look within 

the group of NIH academic entrepreneurs to analyze differences in research performance due 

to starting or joining a for-profit firm. 

Table 1 presents descriptive statistics for our sample of NIH academic entrepreneurs 

and their NIH research peers.  The top panel summarizes their time constant variables, and 

middle panel summarizes their time-varying variables while in academe, and the bottom 

panel shows the time-varying variables for the NIH academic entrepreneurs after they 

become associated with a for-profit firm.11  On average, NIH academic entrepreneurs are 

more productive than their research peers while in academe.  Except for their patenting with 

academic institutions, the research performance of NIH academic entrepreneurs falls on 

average after taking employment at a for-profit firm.  Interestingly, some academic 

entrepreneurs actually have more patents assigned to universities after they have ventured 

into private industry.12   

                                                 
10 For this part of our analysis, annual observations for NIH academic entrepreneurs after they venture into 
private firms are dropped.  This avoids confounding their research performance while in academe with their 
research performance after they decided to commercialize using a for-profit firm. 
11 We only have time-varying data on 87 of the 89 NIH academic entrepreneurs for the period after they become 
associated with for-profit firms.  Two NIH academic entrepreneurs exited at the end of their careers, which is 35 
years after their receiving their advanced degree in our analysis. 
12 Clearly, some NIH academic entrepreneurs do not permanently leave the not-for-profit research sector but 
either leave temporarily or maintain part-time positions at their universities.  We attempted to systematically 
track the academic entrepreneurs to get a sense for how many leave permanently versus temporarily.  While not 
completely successful, we found about one-third leave temporarily, one-third leave permanently, and the other 
third is unknown. 
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Methods  

 We examine four scientist-level indicators of annual research performance:  the 

number of journal publications, the number of journal publications divided by the number of 

coauthors (referred to as “weighted publications”), the value of NIH research awards, and the 

number of patents invented by the scientists and assigned to universities.  To analyze the 

counts of publications and patents, we use a Poisson model where the conditional mean is an 

exponential function of the explanatory variables.  Using annual data, the value of NIH 

research grants and weighted publications are zero for a nontrivial number of observations.  

We treat this as a data-censoring problem and estimate a Tobit model. 

We draw from the literature estimating life cycle models of researcher productivity to 

inform our model specifications (Diamond 1986; Levin and Stephan 1991; Turner and 

Mairesse 2005; Hall et al. 2007; Lowe and Gonzalez-Brambila 2007).  This literature 

highlights three issues.  First, in addition to exogenous time effects, both the scientist’s age 

and gradation cohort may have an important influence on their research productivity.  We 

include time and graduation cohort dummies in the analysis.  Since we focus on research 

productivity during their professional careers, we define age to be “career age,” which is 

equal to the number of years since they received their advanced degrees.  Second, career age 

is usually entered as a quadratic to allow for a nonlinear profile.  Third, there may be 

unobserved heterogeneity among individual scientists due to differences in their “abilities” or 

“tastes” for research.  This suggests controlling for scientist fixed effects in the empirical 

analysis. 

In the next section, we present results for both pooled and fixed effects Poisson and 

Tobit models.  An advantage of the pooled models over the fixed effects models is that they 

do not impose the assumption of strict exogeneity.  This assumption rules out feedback from 
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current realizations of the dependent variable to future values of the explanatory variables.  

On the other hand, even though the fixed effects models impose the strict exogeneity 

assumption, they have the advantage of controlling for unobserved time constant 

heterogeneity.  As pointed out by Wooldridge (1997), the fixed effects estimator is not more 

robust than the pooled estimator but imposes a different set of assumptions.  

In order to obtain estimates of the time constant explanatory variables for publications 

and patents when controlling for fixed effects, we follow Turner and Mairesse (2005) and use 

a two-step estimation method.  The first step regresses the performance measure on the time 

varying explanatory variables using the fixed effects Poisson model.  In the second step, the 

unexplained variation in the dependent variable is regressed on the time constant variables 

using non-linear least squares.13  The complete model can be formulated as 

  ( ) ( )| , , expit it i i i it iE y X Z Z Xα μ γ β α= + + + . 

and the estimating equations are as follows: 

(1) First step:  ( ) ( )| , expit it i it iE y X Xα β α= +  

(2) Second step: ( ) ( ) itiitit ZXy εγμβ ++= expˆexp/  

where yit is the performance measure for individual i at time t. Xit are the time varying 

explanatory variables, Zi are the time constant explanatory variables, and αi is the unobserved 

effect for individual i. 

 To control for fixed effects in the models for weighted publications and NIH grants, 

we use an unobserved effects Tobit model suggested by Wooldridge (2002, p. 540-1).  Unlike 

the random effects Tobit, this model allows the unobserved effect to be correlated with 

explanatory variables.  Under appropriate assumptions we can write: 

(3)  ( )itiiitit XXy εαδβμ ++++= ,0max  

                                                 
13 To get consistent estimates of the time constant explanatory variables, this method assumes that all correlation 
between the unobserved effect and the explanatory variables is due only to the time varying explanatory 
variables and not due to the time constant variables, Zi. 
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(4)  ),0(~,| 2
εσαε NormalX iiit  

(5)  ),0(~| 2
ασα NormalXii  

where yit is the performance measure for individual i at time t. Xit are the time varying 

explanatory variables, iX  are the time averages of the time-varying explanatory variables, 

and αi is the unobserved effect for individual i. 

 Throughout the empirical analysis we assume the explanatory variables satisfy the 

appropriate exogeneity assumptions for the methods used.  Looking back at Table 1, this 

assumption is reasonable to a large extent since most of the explanatory variables are either 

predetermined or not under the control of the academic scientists.  For instance, the career 

age variables, the degree year and institution variables, and gender variable are strictly 

exogenous.  The lagged publications and lagged NIH awards variables are predetermined.   

That is, they can be assumed to be exogenous in the pooled regressions models but may not 

be strictly exogenous as required for the fixed effect models.  The main explanatory 

variables, AEIN and AEOUT, are defined using the observed behavior of the NIH scientists.  

For a research effort intended to explain the behavioral choice to become an academic 

entrepreneur, these variables would be endogenous.  This is not the purpose of this analysis.  

We are interested in the costs of the academic brain drain phenomenon given the observed 

entrepreneurial behavior.  This means our analysis is conditional on the observed “cases” of 

academic entrepreneurship and should not be seen as an effort to explain the determinants of 

this behavior.   

 

IV. Empirical Results 

 This section presents the regression results for each of the four indicators of research 

performance.  Recall that we are interested in two specific questions regarding these 

indicators.  First, how does the research performance of NIH academic entrepreneurs differ 



 

 15

from a randomly selected control group of their NIH research peers during their careers in 

academe?  Second, how does the academic research performance within the group of NIH 

academic entrepreneurs change once they decide to participate in commercialization by 

joining a for-profit firm?  We begin by discussing the statistical findings for each indicator.  

This is followed by exploratory estimates of the academic brain drain costs and a discussion 

of their limitations. 

 

Analysis of Journal Publications 

Our first indicator is a scientist’s journal publications per year.  This is a traditional 

measure of academic research performance and captures aspects of both knowledge creation 

and dissemination in public science.  Models 1-3 on the left side of Table 2 correspond to the 

pooled and fixed effects Poisson estimators for the number of journal publications.  The 

estimations account for sampling weights and heteroscedasticity as well as arbitrary within-

group correlations of the error terms.  Using the pooled estimator, Model 1 shows the key 

variable AEIN is positive and significant at a 5% level.  Relative to the control group of NIH 

research peers, NIH academic entrepreneurs (on average) publish more per year during their 

careers in academe.  Consistent with the life cycle productivity literature, the results for 

career age show a concave publication productivity profile.  NIH researchers appear to reach 

their peak number of publications nearly nineteen years after their advanced degree.  The 

degree-year cohort dummies were never significant and were dropped from the model.  The 

value of NIH research awards, which enters the regression specification as a lagged sum of 

NIH awards over the previous three year, significantly increases journal publications.  

Among the time-constant scientist variables, the only variables significantly affecting journal 

publications are related to medical degrees and medical schools.  Those life scientists with 
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MDs publish more than those with PhDs and those who graduated from a medical school 

publish more than those with degrees from non-medical schools. 

The next two columns in Table 2 report the results for Model 2 which uses the two-

step fixed effects Poisson estimation method.  This method allows for unobserved scientist 

heterogeneity, which may stem from a scientist’s innate ability or taste for research, but 

imposes strict exogeneity on the explanatory variables.  For our key variable, AEIN, the 

results are robust and continue to show that NIH academic entrepreneurs publish more in 

journals on average than their NIH research peers during their careers in academe.  Their 

academic publication productivity profile is the same as in Model 1.  The degree-year cohort 

dummies were jointly significant and included in the second step estimation.  The coefficient 

on lagged NIH research awards is positive and significant but quite a bit smaller than in 

Model 1.  It is not possible to tell whether this is due to controlling for scientist fixed effects 

or failure of the strict exogeneity assumption.  For the time-constant explanatory variables, 

female life scientists publish significantly less than males and graduating from a medical 

school is no longer significantly related to journal publications.   

Model 3 in column 4 examines how annual journal publications of NIH academic 

entrepreneurs change after they become employed at a for-profit firm.  The estimates are 

based on the Poisson fixed effects estimator using only the scientist-year observations on the 

NIH academic entrepreneurs.  The key explanatory variable is AEOUT, which changes from 

zero to one on the first year the scientist is observed as a PI on an SBIR commercialization 

award.  This variable is negative and significant at a 1% level.  On average, NIH academic 

entrepreneurs have fewer journal publications after they join for-profit firms.  Their career 

publication profile is concave and reaches its peak about twenty-one years after their 

advanced degree.  The lagged value of NIH research awards significantly increases journal 

publications. 
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Our second indicator is a scientist’s annual journal publications divided by the 

number of coauthors on the publication (“weighted publications”).  This indicator is 

motivated by the possibility that laboratory size or composition may influence a scientist’s 

annual number of journal publications.14  Models 4-6 on the right side of Table 2 correspond 

to the pooled and fixed effects Tobit estimators for the number of weighted publications.  The 

results are consistent with those found using the Poisson models for the count of journal 

publications.  The pooled Tobit, Model 4 in column 5, shows the key variable AEIN is 

positive and significant at a 5% level.  In the fixed effects Tobit, as shown in column 6, AEIN 

is also positive and significant.  These results confirm the earlier finding that NIH academic 

entrepreneurs (on average) publish more per year during their careers in academe than their 

NIH research peers.  Looking at how weighted publications change after the NIH academic 

entrepreneur joins a firm, column 7 reports a negative and significant effect.  Adjusted for 

coauthors, NIH academic entrepreneurs still publish less after taking employment in a for-

profit firm.  The other findings are broadly similar to those reported above. 

 

Analysis of NIH Awards 

Our third indicator is the value of the life scientist’s NIH research awards per year.  

This indicator is relevant for two reasons.  First, for individual life scientists, NIH funding is 

an important source of research support and grantsmanship is often linked to academic 

promotion.  Second, the universities collect revenue from the “indirect costs” included in 

most grants.  Table 3 reports the pooled and fixed effects Tobit estimators explaining the log 

of annual NIH research awards to individual NIH scientists.15  The pooled Tobit results in 

column 1 show that AEIN is positive and significant at a 1% level.  This finding is confirmed 

                                                 
14 See Turner and Mairesse (2005) and Carayol and Matt (2006) for some evidence on how laboratory size and 
composition may influence an individual scientist’s research productivity.   
15 Since the value of NIH awards to a scientist can be zero in any given year, we add one to all scientist-year 
NIH award amounts to allow the natural log transformation. 
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using the fixed effects Tobit as shown in column 2.  On average, NIH academic entrepreneurs 

win more NIH research awards than their NIH research peers during their careers in academe.  

Each of these models indicates a concave career profile.  In the pooled model without fixed 

effects, NIH supported researchers reach their peak level of awards about seventeen years 

following their advanced degree. Controlling for fixed scientist effects, NIH awards peak a 

little earlier at about fourteen years following their advanced degrees.  Lagged journal 

publications, measured as the sum of their publications over the previous three years, 

significantly increases NIH research awards in both regression models.  Among the time-

constant explanatory variables, the gender dummy is marginally significant and positive in 

the fixed effects regression.   

Column 3 of Table 3 shows the change in the value of NIH research awards received 

by NIH academic entrepreneurs after starting or joining a firm.  The key variable, AEOUT, is 

negative and significant at a 1% level.  Controlling for fixed effects and looking within the 

group of NIH academic entrepreneurs shows the value of NIH research awards drops 

significantly after joining a firm.  The career profile for NIH funding is concave and reaches 

a peak value of awards about ten years following their advanced degree.  As before, lagged 

journal publications and being female significantly increases the value of NIH research 

awards. 

 

Analysis of University Patents 

Our forth indicator of research performance is the number of patents invented by the 

scientists and assigned to universities.  This is the least traditional indicator of academic 

performance but it has become increasingly important as university attitudes and policies 

have become more supportive of commercialization activities.  Nevertheless, university 

patenting appears less important than journal publications as an indicator of academic 
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knowledge accumulation.  For the Massachusetts Institute of Technology (MIT), Agrawal 

and Henderson (2002) find that professors place much greater emphasis on academic papers 

in spite of the fact that MIT is one of the most prolific patenting academic institutions.  Over 

the fifteen year period in their study, almost half the faculty never patented and only 10-20% 

of the faculty actively patented in any year.  In our sample of 89 NIH academic 

entrepreneurs, only 27% patented with a university in any year. 

Column 1 of Table 4 shows the results using the pooled Poisson estimator for the 

number of university patents.  The key variable AEIN is positive and significant at a 1% level.  

The results from the two-step Poisson fixed effects estimator in columns 2-3 also show AEIN 

is positive and significant at a 1% level.  Relative to the control group of NIH research peers, 

NIH academic entrepreneurs (on average) patent more per year during their careers in 

academe.  Both sets of estimation results also show a concave patenting productivity profile 

over their careers.  Age and Age2 are jointly significant even though Age is not individually 

significant.  Lagged journal publications are positive in both models but only marginally 

significant in the fixed effects model.   

Among the time-constant covariates in the patent regressions, the pooled and two-step 

fixed effects models show different results.  First, the pooled model finds that female NIH 

researchers patent significantly less.  This result, however, does not carry over to the fixed 

effects model.  The two-step fixed effects model also finds several other time-constant 

variables statistically significant.  Life scientists with degrees in Chemistry and Health 

Sciences patent significantly more relative to those with degrees in Biology.  The Health 

Sciences area is only marginally significant.  In addition to their field of degree, those life 

scientists with degrees from foreign schools and private U.S. schools patent significantly 

more.  
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Column 3 of Table 4 shows the fixed effects Poisson results using only those 

observations on NIH academic entrepreneurs.  Unfortunately, the sample size for this 

regression is inadequate since it relies on information from only twenty-four NIH academic 

entrepreneurs.  The key variable AEOUT is negative but not statistically significant.  The 

patenting career profile does not have the same shape.  Both Age and Age2 are jointly 

significant and negative.  Since patenting is relatively new to the academic environment and 

has not been part of the expected research output of older life scientists, it is not surprising to 

find that patenting decreases with career age in our sample.     

 

Economic Significance of the Academic Brain Drain 

Our objective in this subsection is to estimate the costs of the academic brain drain for 

the whole not-for-profit research sector.  A major component of these costs is the lost 

research output due to the employment of academic researchers at for-profit firms.  We 

calculate the lost research output for journal publications and university patents.16  Our 

objective requires us to generalize our regression results and impose a number of fairly strong 

auxiliary assumptions.  As will be clear, estimating the costs of the academic brain drain 

phenomenon introduces a number of unresolved conceptual and measurement issues.  For 

this reason, the reader should be cautious when interpreting the broader cost estimates since 

they are exploratory and speculative.  Nevertheless, the estimates allow us to gauge the order 

of magnitude of the academic brain drain and obtain a sense for its economic significance.  

Our starting point is to assume that NIH academic entrepreneurs make a one-time 

permanent employment transition to industry and are replaced immediately at the university 

                                                 
16 Research funding from grant agencies supporting academic research, such as the NIH, is not necessarily lost 
since most of these funds are likely to be reallocated within the not-for-profit research sector. 
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by an NIH research peer.17,18  The lost research output is given by the marginal effect of the 

AEIN variable from the pooled models in Tables 2 and 4.  From these models, each NIH 

academic entrepreneur publishes 25.9% more in journals per year (0.543 more articles) and 

patents 206.2% more per year (0.044 more patents) than their NIH research peers.19  As we 

used sampling weights in the regression analysis, these estimates are statistically valid for the 

target population considered in this study, namely the 61,000 life science researchers in the 

fields of Biology, Chemistry, and the Health Sciences who won at least one research award 

from the NIH between 1972 and 1996. 

To obtain broader estimates of the brain drain costs for the life science segment of the 

not-for-profit research sector, we would like to know how many individuals in the population 

of 61,000 life scientists chose to start or join for-profit firms.  Unfortunately, this type of data 

is not available for the life science segment or for any other segment of academic researchers 

in the not-for-profit research sector.  The only systematic data source we could find comes 

from the annual surveys of universities conducted by The Association of University 

Technology Managers (AUTM).  Their surveys ask universities to report the annual number 

of companies formed around a license of intellectual property from the university.  These 

data cover all university spin-offs regardless of whether they are life science related, 

engineering related, or something else.   

Given this data constraint, to obtain exploratory estimates of the brain drain costs for 

the whole not-for-profit research sector, we impose four assumptions.  First, the marginal 

differences in research output of NIH academic entrepreneurs found in this study are 
                                                 
17 An alternative way to interpret this assumption is:  NIH academic entrepreneurs continue working at the 
university but their academic research performance falls to the level of their NIH research peers due to their 
commitments to the for-profit firm. 
18 This is a conservative method for estimating the cost of the academic brain drain phenomenon since it 
assumes, unrealistically, that the NIH academic entrepreneur is replaced by an existing NIH research peer with 
the same career age.  Because of employment flows, a more realistic assumption would have the NIH academic 
entrepreneur replaced by a life scientist from outside the not-for-profit research sector such as a “newly minted” 
academic life scientist or an industry life scientist.   
19 The marginal decrease in journal publications from the fixed effects regression using only NIH academic 
entrepreneurs is 16.7% (0.373 fewer articles).  
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representative of the marginal differences in research output for all academic entrepreneurs in 

all fields of study.  Second, the average career age at which NIH academic entrepreneurs 

choose employment at for-profit firms is the same for all academic entrepreneurs in all fields.  

In our study, the average career age at exit is 16.56 years after their advanced degree.  

Assuming a 35 year career for each academic researcher implies the not-for-profit research 

sector loses 18.44 career years for each academic entrepreneur.  Third, all university spin-off 

companies have one academic entrepreneur.  Forth, the AUTM data are accurate. 

Under these assumptions and using AUTM data on university spin-offs for 1994 

through 2004, Table 5 reports the annual and cumulative brain drain costs for journal 

publications and university patents.20  Also included in this table are the annual journal 

publications and patents by faculty at MIT.  MIT serves as a benchmark to help interpret the 

relative magnitudes of the academic brain drain loses.  We chose MIT because it is a 

preeminent American university that performs well in both publishing and patenting.  The 

estimated brain drain costs are expressed as a percentage of MIT’s annual publication and 

patent output in columns 7 and 8.  Over the eleven year period shown in the table, a number 

equivalent to 86% of MIT’s cumulative output of journal publications is lost due to the 

academic brain drain.  For university patenting, a number equivalent to 217% of MIT’s 

cumulative output of approved patents is lost due to the academic brain drain.21  These 

figures suggest the academic brain drain has a nontrivial impact on knowledge accumulation 

in the not-for-profit research sector.  

                                                 
20 For example, the 212 spin-offs reported in the AUTM data for 1994 correspond to 3,909 lost academic career 
years (212 times 18.44 years), about 2123 lost journal publications (3909 times 0.543), and about 172 lost 
university patents (3,909 times 0.044).  Over the time period from 1994 to 2004, the number of lost academic 
career years accumulates to more than 70,000 years. 
21 If this calculation were based on the fixed effects regression using only NIH academic entrepreneurs (column 
4 of Table 2), 59% of MIT’s cumulative publication output would be lost.  We do not use the fixed effects 
regression using only NIH academic entrepreneurs for university patents because the sample size of twenty-four 
entrepreneurs is too small to be reliable.  
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While provocative, a number of unresolved conceptual and measurement issues need 

to be addressed in future research to improve on these estimates.  First, it is clear that our 

estimates do not measure a net loss to social welfare since we cannot measure the value 

created by our exiting scientists in the private sector.  The social cost from this form of 

academic entrepreneurship may be offset by the social benefit created through their work in 

the private sector.  Second, it remains unclear how to appropriately value lost academic 

publications and patents when calculating the cost to the not-for-profit research sector.  The 

economic value distributions for academic publications and patents are likely to be highly 

skewed (Scherer and Harhoff 2000).  One approach would be to weight publications and 

patents by forward citations, however, this requires a long time series and the citation data are 

not available for this study.  Third, our estimates of lost academic knowledge accumulation 

are based on a select group of NIH academic entrepreneurs commercializing through the 

SBIR program.  This group may not be representative of the broader population of academic 

scientists who leave academe for industry.  Forth, there may be other unobserved and 

unmeasured dimensions of costs to the not-for-profit sector such as the scientists’ tacit 

knowledge or teaching skills which may have positively influenced future student education 

as well as the research performance among their academic colleagues.   

 

V. Conclusion 

Our analysis highlights an increasing trend among university faculty to pursue 

commercialization using employment positions at for-profit firms.  This is the most extreme 

form of faculty entrepreneurship since it involves the strongest set of incentives drawing the 

faculty member’s time and effort away from academic research.  We argue that this form of 

academic entrepreneurship trades off academic knowledge accumulation for 

commercialization activities – an academic brain drain which may adversely affect prospects 
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for long-run economic growth.  Based on the data analyzed in this paper, the academic brain 

drain imposes a nontrivial reduction in academic knowledge accumulation. 

The trade off between academic knowledge accumulation and commercialization of 

university-based discoveries has important implications for university policy.  Our results 

suggest these policies have not successfully balanced the educational mission of the 

university against the more recent push to foster commercialization.  Some sacrifice of 

academic knowledge creation and student training seems unavoidable as faculty members 

become more involved in commercialization activities.  An important part of this 

involvement, however, appears to be the form of faculty entrepreneurial behavior and the 

incentives imbedded within these forms.  At least among NIH supported life scientists, our 

research indicates that active faculty employment in for-profit firms costs the university in 

terms of journal publications, NIH research awards, and patents.  Clearly, more research is 

needed to understand how variations in the form of academic entrepreneurship relate to 

commercialization outcomes, academic research performance, and successful student 

training.  At this point, we hope university administrators will acknowledge the potential 

costs from the academic brain drain and will incorporate this information into their 

assessments of the costs and benefits of alternative commercialization policies.    

The same can be said about policies intended to promote the commercialization of 

university-based discoveries at the state and federal levels.  When academic scientists use 

small firm financing programs, the social cost from lost academic research and student 

training must be weighed against the social benefit derived from commercialization – when 

it’s successful.  Once again, the form of faculty involvement is pivotal because it mediates 

the degree to which the faculty member is drawn away from academic research.  At the very 

least, as entrepreneurship policies grow in popularity around the world, policymakers need to 

be clear about how the incentive structures in their policies influence the performance of 
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academic research.  While our research has taken an initial step in this direction, we are 

careful to note (see the discussion at the end of section IV) that a number of difficult 

conceptual and measurement issues remain to be addressed in future research. 
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Table 1: Descriptive Statistics 

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max

 
Time constant variables; 
Control sample: N = 444 

Time constant variables; 
Academic Entrepreneurs: N = 89 

Degree Year 1974 9.2 1951 1991 1973 7.9 1954 1991
Cohort dummy 1951-1960 .0721 .259 0 1 .0449 .208 0 1
Cohort dummy 1961-1965 .113 .316 0 1 .124 .331 0 1
Cohort dummy 1966-1970 .171 .377 0 1 .191 .395 0 1
Cohort dummy 1971-1975 .164 .371 0 1 .27 .446 0 1
Cohort dummy 1976-1980 .178 .383 0 1 .225 .42 0 1
Cohort dummy 1981-1985 .169 .375 0 1 .101 .303 0 1
Cohort dummy 1986-1991 .133 .34 0 1 .0449 .208 0 1
Field dummy: Biology .459 .499 0 1 .337 .475 0 1
Field dummy: Chemistry .3 .459 0 1 .461 .501 0 1
Field dummy: Health Sciences .241 .428 0 1 .202 .404 0 1
Female (dummy) .185 .388 0 1 .0674 .252 0 1
Gender missing (dummy)* .0878 .283 0 1 .0899 .288 0 1
Ph.D. (dummy) .899 .302 0 1 .944 .232 0 1
Foreign Degree (dummy) .0405 .197 0 1 .0225 .149 0 1
Public School (dummy) .505 .501 0 1 .562 .499 0 1
Medical School (dummy) .119 .325 0 1 .124 .331 0 1

 
Time varying variables; 

Control sample: NT = 7779 

Time varying variables; 
Academic Entrepreneurs while being 

in academia: NT = 1044 
# Journal Publications 2 2.73 0 27 2.23 2.49 0 17
# Journal Pub./ #authors .675 .964 0 11.2 .768 .906 0 6.31
NIH Awards (in 1,000 US$, prices of 
1996) 122 255 0 3955 134 193 0 1462

# Academic Patents .0179 .157 0 3 .0556 .357 0 7
Lagged # journal pulications (sum of 
t-1, t-2, t-3) 5.56 6.86 0 72 6.02 5.82 0 41

Lagged NIH grants (sum of t-1, t-2, t-
3 and t-4 in million US$, prices of 
1996) 

.434 .86 0 10.7 .469 .651 0 5.45

 

Time varying variables; 
Academic Entrepreneurs after 
leaving academia: NT = 628 

# Journal Publication 1.74 2.66 0 19
# Journal Pub./ #authors .506 .847 0 8.25
NIH Awards (in 1,000 US$, prices of 
1996) 48.1 145 0 935

# Academic Patents .104 .506 0 7
Lagged # journal pulications (sum of 
t-1, t-2, t-3) 5.79 6.93 0 44

Lagged NIH grants (sum of t-1, t-2, t-
3 and t-4 in million US$, prices of 
1996) 

.288 .564 0 3.69

Notes: The regressions will include career AGE = t – degree year; Cohort, field, Ph.D., public school and 
medical school are dummy variables corresponding to the characteristics of the scientists’ academic degree. 
Accounting for 4 years of NIH grants as control variable is motivated due to the fact that the average project 
duration is around 4 years. 
* Gender was determined by the first name of the researchers and internet searches.  When we were not 
confident of the researcher’s gender based on this information, we coded the gender as missing. 
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Table 2: Count data models on publication activity per year (1975-1996) 

Dependent Variable Number of journal publications Number of publications weighted by number of co-authors

 Full Sample AE Sample Full Sample AE Sample 

 Model I Model II Model III Model IV Model V Model VI 

 Fixed effects estimation 

Variable 

Pooled Cross-
sectional Poisson

Time-Variant: 
Fixed Effects 

Poisson Model 

Time constants:
Nonlinear LS 

Fixed Effects 
Poisson Model for 

AE = 1 

Pooled cross-
sectional Tobit Fix effects Tobit Fix effects Tobit for 

AE = 1 

AEIN 0.230 **  0.260***  0.230*** 0.216**   
 (0.097)   (0.090)  (0.102) (0.089)   
AEOUT     -0.183***   -0.224** 
     (0.045)   (0.097) 
AGE 0.075 *** 0.075***  0.083*** 0.060*** 0.035** 0.034 
 (0.012)  (0.016)  (0.025) (0.013) (0.016) (0.041) 
AGE2 -0.002 *** -0.002***  -0.002*** -0.002*** -0.002*** -0.002*** 
 (0.000)  (0.000)  (0.000) (0.000) (0.0002) (0.0004) 
Lagged NIH grants 0.201 *** 0.136***  0.180*** 0.406*** 0.271*** 0.261*** 
 (0.035)  (0.011)  (0.026) (0.080) (0.021) (0.062) 
Field: Chemistry -0.089   -0.079  -0.124 -0.082 0.142 
 (0.117)   (0.095)  (0.102) (0.075) (0.151) 
Field: Health Sciences 0.008   0.180  -0.004 0.140 0.731*** 
 (0.140)   (0.115)  (0.136) (0.100) (0.203) 
Female -0.057   -0.216*  0.005 -0.123 -0.423* 
 (0.166)   (0.115)  (0.124) (0.088) (0.234) 
Gender missing -0.010   0.056  -0.061 -0.021 -0.002 
 (0.230)   (0.198)  (0.223) (0.112) (0.186) 
Ph.D. -0.545 ***  -0.410***  -0.623*** -0.419*** -0.580*** 
 (0.156)   (0.137)  (0.210) (0.137) (0.202) 
Foreign degree 0.344   0.216  0.423 0.144 -0.731 
 (0.221)   (0.208)  (0.319) (0.156) (0.479) 
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Table 2 continued 
Public school -0.121   -0.078  -0.078 -0.039 0.111 
 (0.088)   (0.073)  (0.086) (0.066) (0.133) 
Medical school 0.255 **  0.199  0.291* 0.241** 0.101 
 (0.129)   (0.121)  (0.152) (0.100) (0.183) 
Intercept 0.540 ***  -0.037  0.562 -0.078 0.555 
 (0.197)   (0.285)  (0.243)** (0.283) (0.710) 
Mean(AGEi)       0.030 0.020 
       (0.020) (0.050) 
Mean(Lagged Grantsi)       0.178*** -0.318 ** 
       (0.062) (0.134) 
Mean(AEOUTi)        -0.614* 
        (0.337) 
Time Dummies YES YES NO YES YES YES YES 
Cohort Dummies NO NO YES NO NO NO NO 
N 8823 8674 8674 1672 8823 8674 1672 
(Mc-Fadden) R2 0.107 0.388 0.446 0.325 0.053 0.158 0.126 
Notes: Standard errors in parentheses. *** (**, *) indicate a 1% (5, 10%) significance level.  
Models V and VI: The Mean(.) variables are the individual specific means of the time-varying covariates which are added to the Tobit panel estimations to allow for correlation of the individual 
specific effects and the explanatory variables (see Wooldridge, 2002). 
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Table 3: Tobit regressions on NIH grants per year (1975-1996) 
 Dependent Variable: ln(1+”Amount of NIH grants per year”) 
 Full sample AE sample only 
 Model I Model II Model III 
Variables Pooled Cross-sectional Tobit Fixed-effects Tobit Fixed effects Tobit 
AEIN 1.389*** 1.310***   
 (0.444) (0.334)   
AEOUT   -4.993 *** 
   (0.507)  
AGE 0.755*** 0.622*** 0.352 *** 
 (0.125) (0.097) (0.264)  
AGE2 -0.022*** -0.022*** -0.017 *** 
 (0.002) (0.001) (0.002)  
Lagged publications 0.248*** 0.168*** 0.235 *** 
 (0.031) (0.012) (0.031)  
Field: Chemistry 0.476 0.348 -0.368  
 (0.474) (0.309) (0.680)  
Field: Health Sciences -0.912 -0.271 0.864  
 (0.541) (0.404) (0.900)  
Female 0.170 0.550* 1.979 * 
 (0.461) (0.310) (1.139)  
Gender missing -0.269 0.190 -1.323  
 (0.658) (0.437) (1.063)  
Ph.D. 0.396 -0.204 -0.907  
 (0.713) (0.496) (1.455)  
Foreign degree -1.455 -0.852 -1.443  
 (0.897) (0.521) (1.704)  
Public school -0.436 -0.045 0.691  
 (0.384) (0.263) (0.586)  
Medical school 0.322 0.225 -1.147  
 (0.605) (0.391) (0.936)  
Mean(Lagged publicationsi)  0.073*** -0.108  
  (0.023) (0.086)  
Mean(AGEi)  0.320** 0.806 ** 
  (0.161) (0.377)  
Mean(AEOUTi)   -3.393 * 
   (1.890)  
Intercept -6.979** -12.209*** -16.351 ** 
 (2.980) (3.679) (8.028)  
Time dummies YES YES YES 
Cohort dummies YES YES YES 
Mc-Fadden R2 0.056 0.122 0.141 
N 8823 8823 1672 
Notes: Standard errors in parentheses. *** (**, *) indicate a 1% (5, 10%) significance level.  
Models II and III: The Mean(.) variables are the individual specific means of the time-varying covariates which are added  
to the panel estimations to allow for correlation of the individual specific effects and the explanatory variables (see 
Wooldridge, 2002). 
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Table 4: Count data models on the number of patent applications per year (1975-1996) 
 Dependent Variable: number of patent applications 
 Full Sample AE Sample 
 Model I Model II Model III 
 Fixed effects estimation 

Variable 

Pooled Cross-
sectional Poisson

Step 1: Time 
variant part with 
Poisson Model 

Step 2: Time 
constant part with 

Nonlinear LS 

Fixed Effects 
Poisson Model for 

AE = 1 

AEIN 1.119***  1.466***   
 (0.422)  (0.324)   
AEOUT    -0.281  
    (0.243)  
AGE 0.106 0.193  -0.058  
 (0.131) (0.149)  (0.150)  
AGE2 -0.007** -0.006***  -0.007 *** 
 (0.003) (0.001)  (0.002)  
Lagged publications 0.055*** 0.030*  0.060 *** 
 (0.013) (0.016)  (0.014)  
Field: Chemistry 0.727*  1.555***   
 (0.430)  (0.513)   
Field: Health Sciences -0.254  1.006*   
 (0.506)  (0.556)   
Female -1.238**  -0.149   
 (0.522)  (0.530)   
Gender missing -2.033***  -1.885**   
 (0.718)  (0.661)   
Ph.D. 1.232  3.277***   
 (1.024)  (0.816)   
Foreign degree -0.468  2.151***   
 (0.742)  (0.745)   
Public school -0.597  -0.751**   
 (0.410)  (0.260)   
Medical school -0.369  0.432   
 (0.832)  (0.443)   
Intercept -5.710**  -9.048   
 (2.384)  (1.271)   
Time Dummies YES YES NO YES 
Cohort Dummies YES NO YES NO 
(McFadden) R2 0.147 0.647 0.151 0.650 
N 8823 1012 1012 441 
Notes: Standard errors in parentheses. *** (**, *) indicate a 1% (5, 10%) significance level. 
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Table 5:  Academic Brain Drain Costs to the Not-for-profit Research Sector 

  
Number of 

U.S. Brain Drain Brain Drain MIT MIT Brain Drain Brain Drain 

  
University 
Spin-offs Lost Journal  

Lost 
University Journal Patents 

as 
Percentage 

as 
Percentage 

Year (AUTM)(1) Publications Patents  
Publications

(2)  
(grant 
date)(3) 

of MIT 
Pubs 

of MIT 
Patents 

1994 212 2123 172 3352 99 63% 174% 
1995 192 1922 156 3518 104 55% 150% 
1996 202 2023 164 3440 119 59% 138% 
1997 275 2754 223 3499 102 79% 219% 
1998 306 3064 248 3646 138 84% 180% 
1999 294 2944 239 3675 142 80% 168% 
2000 424 4245 344 3699 113 115% 304% 
2001 426 4266 346 4002 125 107% 277% 
2002 401 4015 325 3954 135 102% 241% 
2003 374 3745 303 4295 127 87% 239% 
2004 462 4626 375 4532 132 102% 284% 

Total Loss 3,568 35,726 2895 41612 1336 86% 217% 
(1) University spin-off were obtained from the AUTM U.S. Licensing Survey:  FY 2004 
(2) MIT annual publications were obtained from searches using the ISI Web of Science. The searches specified 
the English language, the year, and the institution name. 
(3) MIT patents were obtained from the online report “US Colleges and Universities- Utility Patent Grants, 
1969-Present,” downloaded from the United States Patent and Trademark Office website. 
  
 
 

 

 

 

 

 

 

 




