
Kawakatsu, Hiroyuki

Article

Jointly modeling autoregressive conditional mean and
variance of non-negative valued time series

Econometrics

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Kawakatsu, Hiroyuki (2019) : Jointly modeling autoregressive conditional mean
and variance of non-negative valued time series, Econometrics, ISSN 2225-1146, MDPI, Basel, Vol. 7,
Iss. 4, pp. 1-19,
https://doi.org/10.3390/econometrics7040048

This Version is available at:
https://hdl.handle.net/10419/247548

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/econometrics7040048%0A
https://hdl.handle.net/10419/247548
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


econometrics

Article

Jointly Modeling Autoregressive Conditional Mean
and Variance of Non-Negative Valued Time Series

Hiroyuki Kawakatsu

Business School, Dublin City University, 9 Dublin, Ireland; hiroyuki.kawakatsu@dcu.ie

Received: 9 August 2019; Accepted: 10 December 2019; Published: 16 December 2019 ����������
�������

Abstract: This paper considers observation driven models with conditional mean and variance
dynamics for non-negative valued time series. The motivation is to relax the restriction imposed
on the higher order moment dynamics in standard multiplicative error models driven only by the
conditional mean dynamics. The empirical fit of a zero inflated mixture distribution is assessed
with trade duration data with a large fraction of zero observations.
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dynamics; zero-inflated mixture distribution
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1. Introduction

Non-negative valued time series arise naturally in economic and finance data such as
volatility and duration between trades. Dynamic specification of such series must ensure that
predicted values remain non-negative. A commonly used specification is the multiplicative error
model (Engle 2002b; Engle and Russell 1998). The multiplicative error model belongs to the
class of observation driven models where the dynamics is driven by the lagged values of the
observed data (Cox 1981). Although several variations of the multiplicative error model have been
proposed (Bhogal and Variyam 2019; Brownlees et al. 2012; Pacurar 2008), the literature to date
has focused mostly on modeling the dynamics of the conditional mean (first moment) process as
an autoregression.

In one of the early studies that started this literature, Engle and Russell (1998) showed
the close connection between the conditional mean autoregressive multiplicative error
model with exponential distribution and the Gaussian generalized autoregressive conditional
heteroskedasticity (GARCH) model. It is therefore somewhat surprising that less attention
has been paid to the dynamics of higher order conditional moments in multiplicative error
models. One reason might be that the multiplicative error model imposes a strong proportionality
restriction on the higher order moments. For example, the conditional variance is a constant
proportion of the square of the conditional mean in standard multiplicative error models
(Engle 2002b, p. 429). Such strong restrictions may not only result in poor fit to the data
but also raise difficulties in introducing conditional variance dynamics that is consistent with
such restrictions.

This paper considers alternative specifications for non-negative time series that relax
this proportionality restriction. There are three main departures of the proposed specification
from the standard multiplicative error specification. First, the conditional mean dynamics is
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specified in (natural) logs rather than levels. Second, the specification introduces time-varying
conditional variance dynamics. Third, the specification can accommodate non-negative series
with a large number of zero values. The first and third features have been considered in the
literature (Blasques et al. 2018; Harvey and Ito 2020; Hautsch et al. 2014). As described
in more detail below, the proposed specification combines these three features to relax the
proportionality restriction.

Section 2 considers two approaches to relaxing the proportionality restriction. The first
approach is to introduce conditional variance dynamics in a multiplicative error specification.
The difficulty is that the multiplicative error model constrains the type of conditional variance
dynamics that remains consistent with the proportionality restriction. One way to get around this
compatibility constraint is to let the variance parameter of the innovation distribution follow an
autoregression. A similar approach was taken in Hansen (1994) to model higher order conditional
moment (in his case third moment) dynamics. As in Hansen (1994), for this approach we need to
specify a flexible non-negative valued distribution with a ‘free’ variance parameter. As shown in
Section 2.1 the Gamma distribution, also used in Engle and Gallo (2006) for a multiplicative error
model, is a tractable convenient distribution for this purpose.

The second approach is to consider an additive specification. The multiplicative specification
can be transformed into an additive specification in logs. Proponents of the multiplicative error
model argue against specifying the dynamics in logs (Engle 2002b, p. 429). The log transformation
does not apply to non-negative series that may be exactly zero. Even for positive valued series,
very small positive values may result in ‘inlier’ problems with very large negative log values.
Furthermore if the object of interest is the level of series not its log, we need to specify an
analytically ‘convenient’ distribution whose moments of the exponential transformations are
tractable. Against these objections, however, there are also some important advantages of the log
specification (Harvey and Ito 2020). The non-negativity constraint imposes parametric restrictions
on the level dynamics and makes it difficult, for example, to include additional exogenous
regressors that may not always take positive values. There is no difficulty (in principle) in
including such additional exogenous regressors in a log additive specification.

For the purpose of this paper, another important advantage of the log specification is that the
conditional variance dynamics can be introduced without being constrained by the proportionality
restriction as in the multiplicative model. In order to accommodate zero valued observations,
Section 2.2 considers a zero inflated mixture distribution for the innovations together with a log
additive specification for the strictly positive part. The dynamics in this model are driven by two
independent innovations. One is a binary indicator for the zero or positive value observation that
follows a stationary two-state Markov chain. The other is the innovation that determines the size
of the positive value outcome in log space. The conditional mean and variance dynamics for the
strictly positive part can be specified using any of the widely used specifications.

Section 3 applies the proposed specifications to trade duration data with a large fraction of
zero observations. To motivate the need of relaxing the proportionality restriction, Section 3.1
considers an informal but simple diagnostic that indicates that the proportionality restriction
may not hold in the data. Section 3.2 compares the empirical fit of the proposed specifications
with the standard multiplicative error model. The overall fit as measured by the information
criteria favor the proposed specifications over the standard multiplicative error model. Difficulties
with formally testing the presence or absence of conditional heteroskedasticity is discussed.
As a further check of the appropriateness of the proposed specifications, Section 3 carries out
conditional moment restriction tests to assess the adequacy of the proposed conditional mean and
variance specifications.
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2. Model Specifications

The standard multiplicative error model for a non-negative time series xi with autoregressive
conditional mean takes the form (Engle 2002a; Engle and Russell 1998)

xi = diµiεi, εi ∼ iid(1, v), εi > 0 (1a)

µi = ω0 + ω1ui−1 + ω2µi−1. (1b)

di is the deterministic (seasonal or diurnal) component and ui ≡ xi/di = µiεi is the deseasonalized
series. The model is driven by the non-negative innovation term εi with unit mean E[εi] = 1
and constant variance Var(εi) = v > 0. The autoregressive conditional mean specification (1b)
can be generalized to have more than one lag. The one lag specification is used in the majority
of empirical applications. To keep the discussion simple, in what follows the simplest one lag
specification is used in all model specifications considered in this paper.

The conditional moments of xi implied by this baseline multiplicative error model can be
written

Ei−1[xr
i ] = dr

i µr
i Ei−1[ε

r
i ] = dr

i Ei−1[ε
r
i ](Ei−1[xi])

r, r = 1, 2, . . . ,

where the subscript i− 1 indicates moments conditional on information Fi−1 available at i. Fi−1
typically consists of observable data up to observation i− 1. All higher order (r > 1) conditional
moments of xi are a constant proportion of powers of the conditional mean Ei−1[xi]. In particular,
the conditional variance is proportional to the square of the conditional mean (Engle 2002a, p. 429).
This constancy of the squared coefficient of conditional variation,

Vari−1(xi)

(Ei−1[xi])2 = v,

is a restriction imposed not just by the baseline model but many of the multiplicative model
specifications considered in the extensive literature on non-negative time series models as reviewed
in Bhogal and Variyam (2019); Pacurar (2008).

This proportionality restriction may not adequately capture the conditional dynamics of time
series leading to, for example, the well known problem of over- or under-dispersion. One of the
few exceptions with time-varying conditional squared coefficient of variation is the parameter
driven ratio of gamma model of Ghysels et al. (2004).

The main objective of this paper is to explore alternative specifications with time-varying
conditional coefficient of variation. One approach is to consider the class of parameter driven
models with additional random innovation terms in the conditional dynamics as in Ghysels et al.
(2004). However, likelihood evaluation of parameter driven models requires integrating out the
unobserved latent innovation terms. As this is rarely analytically feasible, estimation requires
numerically approximating the likelihood which cannot only be inaccurate but computationally
expensive. This paper therefore restricts attention to the class of observation driven models.

A natural approach to model time-varying conditional coefficient of variation is to specify
time-varying conditional variance dynamics in addition to the conditional mean dynamics (1b).
However, in a multiplicative error model the conditional variance hi ≡ Vari−1(xi) is determined
by the conditional mean due to the proportionality restriction

hi = d2
i v(ω0 + ω1ui−1 + ω2µi−1)

2. (2)
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2.1. Time-Varying Variance Parameter

The expression (2) for hi suggests that one way to have a time-varying coefficient of variation
is to make the variance parameter v of the innovation ε time-varying instead of the conditional
variance of the observed series xi.

A GARCH type specification for a time-varying variance parameter can take the form

vi = β0 + β1(εi−1 − 1)2 + β2vi−1, (3)

where the conditional innovation process is εi|i−1 ∼ (1, vi). vi is specified to depend on εi−1 rather
than ui−1 = µi−1εi−1 to decouple its dynamics from that of µi. To ensure vi > 0, we restrict the
parameters β to be positive. The conditional variance of the observed series xi is Vari−1(xi) =

(diµi)
2vi. Though Vari−1(xi) is no longer a constant proportion of the squared conditional mean

(Et−1[xi])
2 = (diµi)

2, the dynamics of the two conditional processes are not completely decoupled.
(The terminology GARCH ‘type’ is used for (3) because it is the conditional variance of the
innovation process εi. However, as shown above vi itself is not the conditional variance of the
observed series xi.)

Any of a variety of alternative GARCH type specifications (Bollerslev 2010) could be used for
vi instead of (3). For example, an EGARCH type model would specify the dynamics of log(vi) as
in

log vi = γ0 + γ1(εi−1 − 1) + γ2 log vi−1. (4)

This specification ensures vi > 0 without further restrictions on the parameters γ.
The conditional variance of xi under (4) is

Vari−1(xi) = (diµi)
2vi = (diµi)

2 exp(γ0 + γ1(εi−1 − 1) + γ2 log vi−1).

There are two approaches to estimating the β parameters in (3) or the γ parameters in
(4). The first is the method of moments approach based on the conditional moment restrictions
Ei−1[zi] = 0 and Ei−1[z2

i ] = 1 with

zi =
εi − 1√

vi
=

1√
vi
(

xi
diµi
− 1).

This is a semiparametric estimator in that it does not require us to specify a parametric
distribution for the innovation term εi. However, since the models (1a) and (3) or (1a) and (4) have
six parameters to estimate we need to specify at least four additional moment conditions of the
form Ei−1[zigi−1] = 0 or Ei−1[(z2

i − 1)gi−1] = 0 where gi−1 denotes some function of variables in
the information set Fi−1.

The alternative approach is maximum likelihood estimation where we specify a parametric
distribution for εi. A particularly convenient distribution for specifications (3), (4) is the gamma
distribution with log-density parametrized as

log p(εi) = − log Γ(
1
vi
)− 1

vi
log vi + (

1
vi
− 1) log εi −

εi
vi

, εi > 0,

where Γ(x) =
∫ ∞

0 ux−1e−udu is the gamma function, Ei−1[εi] = 1 and Vari−1(εi) = vi. The gamma
distribution for multiplicative error models was considered in Engle and Gallo (2006).
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2.2. Conditional Autoregression in Logs

The approach in Section 2.1 maintains the multiplicative error specification (1a). Although
specifications (3) or (4) can make the conditional coefficient of variation time-varying, the first two
conditional moments of the observed series are not fully decoupled due to the multiplicative error
specification (1a).

If the observed series were strictly positive xi > 0, the multiplicative specification can be
made additive by the (natural) log transformation.

log xi = log di + log µi + log εi.

One important advantage of the log specification is that it frees us from the positivity
constraints of each component di, µi, εi. For example, this allows more freedom in how to
specify the log deterministic component log di of the model including use of additional exogenous
regressors. However, the main difficulty with the log specification is that it cannot handle
boundary values xi = 0. Many empirical applications of models of this type deal with data that
have nontrivial fraction of xi = 0 observations such as the one considered in Section 3.

The zero observations can be dealt with by considering a distribution that is a mixture
of a mass at zero and a distribution with strictly positive support. Such zero inflated or zero
augmented distributions have been used in (static or cross-sectional) count data models (Liu et al.
2019). Applications of zero inflated mixture distributions to dynamic models of non-negative time
series data are Hautsch et al. (2014) and Blasques et al. (2018). These two applications consider
conditional autoregressive specifications in conditional mean or location parameter. The proposal
in this subsection is to consider a specification with both conditional mean and variance dynamics.

In what follows let xi denote the observed diurnally adjusted variable, previously denoted
ui = xi/di. The proposed model for the observed variable is

xi = siyi, si ≡ 1(xi > 0) (5a)

log(yi) = µi + δg(hi) +
√

hiεi, εi ∼ iid(0, 1), εi ⊥ sj. (5b)

si, an indicator for strictly positive values, is assumed to follow a two-state Markov chain si = 0
or si = 1 with transition probability πjk ≡ Pr(si+1 = k|si = j). Under state si = 0, xi is a draw
from the zero mass. For state si = 1, xi is a draw from a distribution with strictly positive support.
To ensure xi > 0, the conditional dynamics under state si = 1 is specified in terms of log(xi) with
mean µi + δg(hi) and variance hi. For full generality, (5b) includes a GARCH-in-mean type term
g(hi) for some smooth function g(·). To keep the model simple, δ = 0 in the empirical application
in Section 3.

The log specification for the conditional mean was considered in Bauwens and Giot (2000).
Their Log-ACD1 model applies only to strictly positive valued series (as it depends on log xi−1).
The Log-ACD2 model takes the form

xi = µiεi, εi ∼ iid(1, v), εi > 0

log(µi) = ω0 + ω1εi−1 + ω2 log(µi−1).

As with the other multiplicative error models, this model has constant squared coefficient of
conditional variation v.

Model (5) is an observation driven model with two (statistically) independent innovations
si (discrete) and εi (continuous on strictly positive support). One interpretation of this model is
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an economy hit by two types of news or shocks, major (s = 0) or regular (s = 1). If x is duration
between trades, a major shock may require immediate action such as submitting a market order
with x = 0. For a regular shock, ε can be interpreted as the strength or quality of shock with ε > 0
indicating ‘good’ news and ε < 0 indicating ‘bad’ news.

Because si and εi are assumed independent, the log-likelihood function is separable in
transition probabilities πjk and the parameters of the strictly positive part. This separability can
both be a curse or blessing. If there is dependence between the two, the model is mis-specified
and estimates are likely to be biased or inconsistent. On the other hand, separability means that
mis-specification of the conditional dynamics on the strictly positive part (to be discussed below)
does not affect the Markov transition probability estimates. This robustness property in addition
to simplicity of estimation is an important reason to consider the independence or separability
assumption at least in the initial assessment of empirical fit. Furthermore, as illustrated in Section 3,
the standard multiplicative error model (1) can be extended to account for zero valued outcomes by
replacing (1a) with xi = siµiεi. The zero augmented model of Hautsch et al. (2014) does not have
this separability property because of the unit conditional mean restriction in the multiplicative
error specification.

For a sample of n observations, denote s = (s1, . . . , sn) the vector of observed states and
x = (x1, . . . , xn) the vector of observed series. The joint log-likelihood function with parameter
vector θ can be written

p(s, x|θ) = p(x|s, θ)p(s|θ)

p(s|θ) = p(s1)
1

∏
j=0

1

∏
k=0

π
δjk
jk , p(x|s, θ) = ∏

si=1
p(xi|θ, xi−1, si−1, . . .)

`(θ) = log p(s1) + ∑
j

∑
k

δjk log πjk + ∑
si=1

log p(xi|θ, xi−1, si−1, . . .),

where δjk ≡ 1(si = j)1(si+1 = k). The first two terms in the log-likelihood `(θ) depends only on
the transition probabilities πjk while the last term does not.

The first term depending on the initial observation s1 is the ergodic distribution of the
Markov chain. If we ignore this term, or condition on the first observation, the maximum
likelihood estimates of the transition probabilities are available in simple closed form as π̂01 =

n01/(n00 + n01), π̂10 = n10/(n10 + n11) where njk = ∑j ∑k δjk is the number of observations with
si = j followed by si+1 = k. (Algebraic details are provided in the supplementary file). Because
the initial condition becomes negligible for large sample sizes, I use these conditional estimates in
the empirical application in Section 3. (The estimated transition probabilities from numerically
maximizing the full likelihood including the first term is numerically practically the same as the
conditional estimates for the data used in Section 3).

For the strictly positive part (5b) a number of autoregressive dynamic specifications can
be considered for the conditional mean µi and variance hi. In contrast to the multiplicative
specification, there is no proportionality restriction that constrains the dynamics of µi and hi.
For the log-duration conditional mean µi, I consider a dynamic specification similar to that used
in Hautsch et al. (2014) that depends on si−1.

µi = α0 + α1εi−1si−1 + α2(1− si−1) + α3µi−1 (6)

= si(α0 + α1εi−1 + α3µi−1) + (1− si)(α0 + α2 + α3µi−1),
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with stationarity condition |α3| < 1. If this process is initialized at the unconditional mean
E[µi] = (α0 + α2π0)/(1 − α3), separability no longer holds as E[µi] depends on the ergodic
distribution π0 of the Markov chain. To maintain separability, one can instead initialize the process
at the sample mean of log positive durations. (In the empirical analysis of Section 3 I initialize at
the unconditional mean evaluated at π̂0 under the separability assumption.)

For conditional variance dynamics, I consider two specifications. The first is a GARCH
type specification

hi = β0 + β1hi−1ε2
i−1si−1 + β2(1− si−1) + β3hi−1 (7)

= si(β0 + β1hi−1ε2
i−1 + β3hi−1) + (1− si)(β0 + β2 + β3hi−1),

with stationarity condition |β1π1 + β3| < 1. The second is an exponential GARCH (EGARCH)
type specification

log(hi) = γ0 + γ1|εi−1|si−1 + γ2εi−1si−1 + γ3(1− si−1) + γ4 log(hi−1) (8)

= si(γ0 + γ1|εi−1|+ γ2εi−1 + γ4 log(hi−1)) + (1− s1)(γ0 + γ3 + γ4 log(hi−1)),

with stationarity condition |γ4| < 1. Because both hi specifications depend on si−1 the
same comment regarding separability and unconditional mean initialization as for the µi
specification applies.

In relation to the two observation driven studies that use zero inflated distribution,
both Hautsch et al. (2014); Blasques et al. (2018) focus on the conditional mean dynamics with
constant conditional second moments. The mixture weight in Hautsch et al. (2014) follows
dynamics specified in terms of log odds ratio and in Blasques et al. (2018) the mixture weight is a
static (fixed) parameter. The dynamics in Blasques et al. (2018) is specified in terms of the location
parameter of a zero inflated negative binomial distribution, an approach similar to Section 2.1
applied to the location parameter instead of the dispersion or variance parameter.

The r-th conditional moment of the observed variable is

Ei−1[xr
i ] = Ei−1[sr

i yr
i ] = Ei−1[si]Ei−1[yr

i ] = πsi−1,1Ei−1[yr
i ].

Because the strictly positive part (5b) is specified in terms of log yi, we need to make
distributional assumptions to obtain moments of the level of yi. Under gaussianity εi ∼ N(0, 1),
log yi|i−1 ∼ N(µi + δg(hi), hi) and yi|i−1 is log-normal with moments

Ei−1[xr
i ] = πsi−1,1 exp(rµi + rδg(hi) + r2hi/2)

and squared coefficient of conditional variation

Vari−1(xi)

Ei−1[xi]2
=

ehi

πsi−1,1
− 1.

An alternative tractable distribution is the gamma distribution. If eξ follows a gamma
distribution with parameters k > 0, θ > 0 such that E[eξ ] = kθ and Var(eξ) = kθ2,
then E[ξ] = ψ(k) + log θ and Var(ξ) = ψ′(k) where ψ(x) = Γ′(x)/Γ(x) is the digamma function
and ψ′(x) = dψ(x)/dx. The values k ≈ 1.42626, θ ≈ 1.03541 such that ξ is a standardized
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log-gamma distribution are found by numerically solving the equations E[ξ] = 0 and Var(ξ) = 1.
For the log-gamma case, E[erξ ] = θrΓ(k + r)/Γ(k) for r > 0 and the conditional moments of xi are

Ei−1[xr
i ] = πsi−1,1 exp(rµi + rδg(hi))

Γ(k + r
√

hi)

Γ(k)
θr
√

hi ,

with squared coefficient of conditional variation

Vari−1(xi)

Ei−1[xi]2
=

Γ(k)Γ(k + 2
√

hi)

πsi−1,1Γ(k +
√

hi)2
− 1.

The process ht in (7) and (8) is the conditional variance of log yi. Hence the usage of the
terminology ‘GARCH type’ and ‘EGARCH type’. As can be seen from the expressions for the
conditional moments of xi, both the conditional first and second moments of xi depend on hi and
hi is not the conditional variance of xi.

3. Empirical Application

3.1. Data

As an application of jointly modeling the conditional dynamics of mean and variance this
section uses duration between trades as the non-negative variable xi. This is the type of data used
in one of the earliest application (Engle and Russell 1998).

The sample is taken from one trading day (30 August 2017) on the Nasdaq TotalView-ITCH
data feed. A record in the ITCH data feed is a message broadcast to all Nasdaq market participants.
On 30 August 2017 there were 189,765,868 messages with 8428 unique ticker symbols. Of the five
ticker symbols with the largest number of messages, I use two tickers AAPL (Apple Inc) and SPY
(SPDR S&P 500 trust) for analysis. (The other three tickers are IWM, QQQ, GILD.) AAPL is a
common stock while SPY is one of the largest exchange traded fund.

The following filter is applied to the raw data. All messages before the market open 9:30
and after market hours 16:00 are removed. Trades are then identified as messages of type E or
C (for order executed messages). Each message has a time stamp recorded as an integer for
nanoseconds since midnight and xi is the difference between the two time stamps.

The raw duration data were then diurnally adjusted by running a regression on dummy
variables for every 10 minute interval between 9:30 and 16:00. The duration data show the
well-known inverted U-shape where duration tends to be short near the beginning and end of
market hours and (relatively) long during the middle of the trading day. The online supplementary
file shows the diurnal pattern of duration data from the fitted regressions.

An alternative diurnal adjustment method that is commonly used is the smoothing cubic
spline (Engle and Russell 1998). The supplementary file compares the regression method with
the smoothing cubic spline. The two trends are quite similar near the beginning and end of the
trading day when trading activity is high (short duration) and somewhat differ in the middle of
the day when trading activity is low (long duration).

The diurnally adjust series xi/x̂i is obtained by dividing the raw duration by the fitted values
from either the fitted regression of smoothed spline. The resulting sample size for analysis is 36,441
for AAPL and 27,877 for SPY. By comparison the sample analyzed in Engle and Russell (1998)
was trade duration data for IBM over the three months 1 November 1990 to 31 January 1991 for
a sample size of 58,942. Table 1 compares the summary statistics of the diurnally adjusted data
using the regression method and smoothing cubic spline.
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Table 1. Summary statistics of diurnally adjusted duration xi. ‘Reg’ is from the regression
on ten minute interval indicators, ‘CS10’ is the smoothing cubic spline with knots every ten
minutes, ‘CS30’ with knots every 30 min. n is the number of observations between 9:30 and 16:00
on 30 August 2017, med is the median, sd is the standard deviation, f0 is the fraction of zero
durations. zr is the z-score for the runs test for the null hypothesis that the indicator for non-zero
duration yi ≡ 1(xi > 0) is iid with p-values in square brackets. πjk is the conditional maximum
likelihood estimate for the Markov transition probability Pr(yi = k|yi−1 = j) with standard errors
in parentheses. Cor(Reg, ·) is the sample (Pearson) correlation with ‘Reg’.

AAPL SPY

Reg CS10 CS30 Reg CS10 CS30

n 36,331 36,331 36,331 27,877 27,877 27,877
mean 1.00 1.00 1.00 1.00 0.99 0.99
med 0.00 0.00 0.00 0.00 0.00 0.00
sd 2.66 2.57 2.85 3.35 3.26 3.31
max 56.68 54.35 185.52 101.59 106.94 98.32
f0 0.40 0.40 0.40 0.54 0.54 0.54

zr −19.18 −19.18 −20.98 −27.77 −27.77 −27.77
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

π01 0.54 0.54 0.53 0.38 0.38 0.38
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

π10 0.36 0.36 0.36 0.45 0.45 0.45
(0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

Cor(Reg, ·) 0.94 0.88 0.98 0.99

A striking feature of the data is the large fraction of zero durations in the sample, about
40% for AAPL and 54% for SPY. The median duration for both tickers is approximately zero in
this sample. As the resolution of the time stamps is nanoseconds, one might expect much less
messages with the same time stamp. However, keep in mind that the time stamps are stored as
(large) integers and that most trades are executed by an algorithm.

To test whether the zero durations occur randomly, the runs test (Wald and Wolfowitz 1940)
was performed on the indicator series si = 1 (xi > 0). As shown in Table 1 the test rejects the null
of randomness at conventional sizes. (The test statistic zr would be the same regardless of the
diurnal adjustment method as long as the adjusted series remain non-negative. However, CS30
returns negative values at the end of the trading day for AAPL as can be seen in the supplementary
file. This explains the discrepancy in the zr value in Table 1).

The estimated Markov transition probabilities, however, do not indicate strong dependence
of each state. The estimated probability of observing two consecutive zero durations is
π̂00 = 1− π̂01 = 0.46 for AAPL and 0.62 for SPY.

Figure 1 shows the autocorrelation functions of duration xi and its square x2
i . Though

the autocorrelations are not strong (all below 0.1), they tend to be persistent and die out slowly.
The autocorrelations of SPY is weaker than those of AAPL both for the level and squared durations.
A noticeable feature of the autocorrelations of the squared durations is the spikes at various lags.
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Figure 1. Autocorrelation functions for duration between trades. The dashed lines are for the
raw (unadjusted) durations and the solid line for diurnally adjusted durations (by the regression
method) for two tickers AAPL and SPY in Nasdaq ITCH. xi (top two panels) for the level of
durations and x2

i (bottom two panels) for squared durations. The shaded area is the±2/
√

n bands.

As can be seen in Table 1, there is little difference between the regression and spline adjusted
series. The supplementary file compares the autocorrelations of the regression and spline adjusted
series. The autocorrelations for AAPL are somewhat lower for the spline adjusted series than
for the regression adjusted series. The autocorrelations for SPY are visually indistinguishable.
The following analysis is primarily based on the regression adjusted series. However, as the
regression adjusted series may not have completely removed deterministic time series dependence
for AAPL, parameter estimates in Section 3.2 are also reported for the spline adjusted series in
the supplementary file.

The motivation for jointly modeling the conditional dynamics of the first two moments was
to relax the constant conditional coefficient of variation restriction in standard autoregressive
duration models. Developing a nonparametric test for such a restriction would be useful but is
beyond the scope of this paper. Instead I use a less formal but easy to compute visual diagnostic.
The first two conditional moments Ei−1[xi], Ei−i[x2

i ] are approximated by a linear projection of
xi, x2

i on variables in Fi−1. Figure 2 plots the estimated first two conditional moments from a
regression on a constant and xi−1, . . . , xi−p, x2

i−1, . . . , x2
i−p for every ten minute intervals with

p = 10 lags. (A summary of the fitted regressions for each ten minute interval are presented in the
supplementary file.)
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Figure 2. Time variation of first two conditional moments of diurnally adjusted duration. The first
two conditional moments are estimated by the least squares projections of xr

i on a constant
and xi−1, . . . , xi−p, x2

i−1, . . . , x2
i−p for p = 10 lags and r = 1, 2 for non-overlapping ten minute

intervals between 9:30 and 16:00 on 2017-08-30. The estimated conditional standard deviation√
∑ x̂2

i /n− (∑ x̂i/n)2 is plotted againts the conditional mean ∑ x̂i/n. Each point in the figure
is an estimate from a ten minute interval. The dashed line is the fitted regression line through
these points.

Under the proportionality restriction, the dots should lie on a straight line through the origin
with positive slope. Figure 2 indicates that the slope is flat for both tickers and negatively sloped
for SPY. The inverse relation between the two estimated conditional moments for SPY is indicative
of volatile durations during active trading with short durations.

3.2. Estimation

For dynamic models of duration it is important not to confound the conditional autoregressive
dynamics with the deterministic intraday seasonality in (1a). Engle and Russell (1998) jointly
estimate the deterministic component di and the autoregressive dynamics of µi. Because the
models considered in this paper have a large number of autoregressive parameters to estimate for
the conditional mean and variance process, I exploit the block diagonality of information matrix
to split the parameter vector into components that are variation free. This keeps the dimension of
the parameter vector to estimate from a single observed series to a reasonably small number for
each sub-vector.

As explained in Section 3.1, the raw data are diurnally adjusted by a regression on time of
day indicators. I also exploit the separability, conditional on the initial observation, of the Markov
chain transition probability parameters πjk from the parameters of the autoregressive processes
as indicated in Section 2.2. To further economize on the number of parameters to estimate the
conditional variance-in-mean term g(hi) in (5b) is excluded by restricting δ = 0.

The baseline model is the standard multiplicative error model (1) with unit exponential
distribution denoted MEM in the tables. The parameters ω are restricted to be positive and
ω1 + ω2 < 1 (stationarity condition). I also consider the multiplicative error model with (1a)
replaced with xi = siµiεi denoted MEMZ where si follows the two-state Markov chain described
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in Section 2.2. Comparing the fit of MEM and MEMZ would indicate the importance of accounting
for the presence of zero values in the series. (I have also tried a version of MEMZ with (1b) replaced
with (6) with all parameters α constrained to be positive. However, the estimates for α0 and α2

were both essentially at the zero boundary resulting in a singular Hessian for the computation of
standard errors. I therefore use the standard conditional mean specification (1b) for MEMZ.)

I consider three specifications with conditional autoregression in logs with zero inflated
distribution discussed in Section 2.2. The model (5) with constant conditional variance hi = β0

is denoted LNZ. The model with GARCH type time-varying conditional variance (7) is
denoted LNZ-G and the model with EGARCH type time-varying conditional variance (8) is
denoted LNZ-E.

LNZ is a restricted (nested) version of the two more general specifications LNZ-G and LNZ-E.
However, against the LNZ-G alternative the restrictions β1 = β2 = β3 = 0 are at the boundary of
parameter space where the β’s are restricted to be non-negative. This is a well-known problem in
the GARCH literature and the usual test statistic (such as the likelihood ratio) has a non-standard
distribution under the null (Andrews 2001; Francq and Zakoïan 2009; Silvapulle and Sen 2004).
Conducting a formal statistical test for the nullity of GARCH parameter in this application is
beyond the scope of this paper and left for future research.

As an informal method to compare the in-sample fit of the five models considered above,
I use the likelihood based information criteria. Sin and White (1996) have obtained conditions
for information criteria to consistently select the model with lower average Kullback-Leibler
information for dependent and heterogeneous processes. The models may be non-nested or
mis-specified (and the information criteria may not select the ‘correct’ model but only the model
with lower information). Checking under what conditions these conditions may be satisfied for
the class of models considered in this paper is beyond the scope of this paper. I therefore use an
information criterion as an informal measure of goodness-of-fit for these models.

Tables 2 and 3 show the maximum likelihood estimates for the five models using the series
diurnally adjusted with the regression method. The Markov chain transition probability estimates
πjk are the same as those in Table 1. Standard errors in parentheses are based on the QML
covariance (except for the transition probabilities), the so-called ‘sandwich’ estimator that is robust
to mis-specified distributional assumption.

The estimates for MEM and MEMZ are similar to those reported for other duration data in
the literature (Engle and Russell 1998). The estimated measure of conditional mean persistence
ω1 + ω2 is very close to the non-stationary boundary of one. This is consistent with the persistent
sample autocorrelations of durations in Figure 1. The estimated ω1 is larger and ω2 smaller for
MEMZ compared to MEM. And this difference is larger for SPY which has a larger fraction of
zeros than for AAPL.
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Table 2. Maximum likelihood parameter estimates for AAPL duration (n = 36, 331 observations).
The (common to all models) estimated transition probabilites are π̂01 = 0.539 (0.004) and π̂10 = 0.361
(0.003) with standard errors in parentheses. MEM is the multiplicative error model (1) with unit
exponential (v = 1), MEMZ is the zero augmented MEM, LNZ is the log duration model (5)
and (6) with δ = 0 and constant conditional variance, LNZ-G is LNZ with Gaussian generalized
autoregressive conditional heteroskedasticity (GARCH) (1,1) (7), LNZ-E is LNZ with EGARCH(1,1)
(8). QML standard errors in parentheses. `/n is the log-likelihood value per observation and AIC,
BIC, HQ are the Akaike, Bayesian (Schwarz), Hannan-Quinn information criterion, respectively.

MEM MEMZ LNZ LNZ-G LNZ-E

ω0 0.008 0.056 α0 −0.269 −0.238 −0.205
(0.002) (0.006) (0.044) (0.042) (0.042)

ω1 0.074 0.092 α1 0.690 0.669 0.684
(0.009) (0.008) (0.041) (0.043) (0.043)

ω2 0.924 0.906 α2 −0.408 −0.385 −0.409
(0.010) (0.008) (0.036) (0.035) (0.035)

α3 0.853 0.873 0.877
(0.017) (0.015) (0.015)

β0 15.360 1.181 γ0 0.059
(0.115) (0.430) (0.018)

β1 0.089 γ1 0.198
(0.017) (0.021)

β2 0.299 γ2 0.082
(0.174) (0.006)

β3 0.860 γ3 0.104
(0.040) (0.018)

γ4 0.925
(0.011)

`/n −0.849 −1.515 −0.590 −0.584 −0.582
AIC/n 1.699 3.030 1.180 1.169 1.164
BIC/n 1.700 3.031 1.181 1.172 1.166
HQ/n 1.699 3.030 1.180 1.170 1.165

For each ticker symbol, the conditional mean process parameter α estimates are similar across
the three specifications LNZ, LNZ-G, LNZ-E with the same signs. α3, a measure of persistence
of the conditional mean process, is positive and consistent with the sample autocorrelations
in Figure 1. α1, the association with the previous news term εi−1, is somewhat weaker for the
specifications with time-varying conditional variance than the baseline with fixed conditional
variance particularly for SPY.

The GARCH parameter β estimates for LNZ-G are restricted to be positive to ensure hi > 0.
A measure of persistence in the conditional variance process based on the GARCH specification (7)
is β1π1 + β3 which is estimated to be 0.914 for AAPL and 0.764 for SPY. The weaker second moment
dependence in SPY is consistent with the sample autocorrelations for the squared durations x2

i in
Figure 1. Given the large sample size, the GARCH parameters are estimated precisely with tight
confidence intervals.
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Table 3. Maximum likelihood parameter estimates for SPY duration (n = 27, 877 observations).
The (common to all models) estimated transition probabilites are π̂01 = 0.384 (0.004) and π̂10 = 0.449
(0.004) with standard errors in parentheses. MEM is the multiplicative error model (1) with unit
exponential (v = 1), MEMZ is the zero augmented MEM, LNZ is the log duration model (5) and
(6) with δ = 0 and constant conditional variance, LNZ-G is LNZ with GARCH(1,1) (7), LNZ-E
is LNZ with EGARCH(1,1) (8). QML standard errors in parentheses. `/n is the log-likelihood
value per observation and AIC, BIC, HQ are the Akaike, Bayesian (Schwarz), Hannan-Quinn
information criterion, respectively.

MEM MEMZ LNZ LNZ-G LNZ-E

ω0 0.024 0.179 α0 −0.151 −0.148 −0.121
(0.007) (0.030) (0.039) (0.038) (0.038)

ω1 0.037 0.134 α1 0.934 0.871 0.883
(0.007) (0.021) (0.046) (0.046) (0.046)

ω2 0.942 0.858 α2 −0.428 −0.389 −0.406
(0.011) (0.021) (0.039) (0.038) (0.038)

α3 0.835 0.850 0.852
(0.015) (0.015) (0.015)

β0 13.424 2.206 γ0 0.172
(0.163) (0.376) (0.046)

β1 0.155 γ1 0.353
(0.014) (0.029)

β2 1.798 γ2 0.110
(0.266) (0.011)

β3 0.693 γ3 0.251
(0.035) (0.032)

γ4 0.829
(0.024)

`/n −0.964 −1.468 −0.831 −0.826 −0.825
AIC/n 1.928 2.936 1.663 1.654 1.651
BIC/n 1.929 2.938 1.665 1.657 1.654
HQ/n 1.929 2.937 1.664 1.655 1.652

The conditional variance (7) of LNZ-G depends on the size of εi−1 but not its sign. LNZ-E
relaxes this restriction and depends on both the size and sign of εi−1. The sign effect parameter
γ2 is positive and precisely estimated for both tickers indicating higher volatility after news that
increases mean duration than news that decreases mean duration. γ3 > 0 indicates that volatility
tends to be higher after a zero duration trade than a positive duration trade. The latter result is
consistent with the hypothesis that high activity (low duration) is associated with high volatility.
The measure of volatility persistence γ4 for LNZ-E is again higher for AAPL than for SPY as was
the case with LNZ-G specification.

The maximized log-likelihood values are larger for the Gaussian log specifications LNZ,
LNZ-G, LNZ-E models than for the multiplicative error model unit exponential MEM, MEMZ.
The various information criteria which penalize models with a larger number of parameters still
favor the LNZ, LNZ-G, LNZ-E models over MEM, MEMZ. The log-likelihood for MEMZ is lower
than that of MEM despite having two additional transition probability parameters. The two
models are not nested since there are no restrictions on the transition probabilities (which must
add up to one) that yield the MEM specification as a special case. This indicates misspecification
of the zero inflated mixture of the unit exponential multiplicative error model for this data set.
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Comparing LNZ, LNZ-G, LNZ-E models the information criteria ranks them in that order (high
to low) for both AAPL and SPY.

As mentioned in Section 3.1, the regression adjusted duration series may not have completely
removed the deterministic dependence especially for AAPL. The supplementary file reports
maximum likelihood estimates for the cubic spline adjusted duration series. They show that
the estimates are practically the same. For AAPL, the estimated ω2 is somewhat smaller and ω1

larger for the cubic spline compared to the regression adjusted series. The measure of persistence
ω1 + ω2 is practically the same: 0.998 (regression) versus 0.997 (cubic spline). α3 (persistence
measure for the conditional mean process (6)), β1π1 + β3 (persistence measure for the conditional
variance process (7)), γ4 (persistence measure for the conditional variance process (8)) are also
practically the same.

3.3. Conditional Moment Tests

The in-sample estimates discussed above indicate better fit for the log specifications in
Section 2.2 than the multiplicative error models. As discussed above, the test for constant
conditional variance for the LNZ-G model is non-standard due to the null hypothesis being
on the boundary of the parameter space.

Ideally, a (pseudo) out-of-sample comparison would provide additional evidence regarding
the importance of time-varying condition variance specification. Unfortunately, however, I only
have access to data for one trading day and cannot perform an out-of-sample test.

As an alternative complementary in-sample specification test, I carry out the conditional
moment tests of Newey (1985); Wooldridge (1991). The restrictions of interest are r conditional
moments of the form Ei−1[ei] = 0 for an r × 1 vector ei. For any r × q matrix of instruments
zi−1 ⊂ Fi−1, termed ‘misspecification indicators’ by Wooldridge (1991), the law of iterated
expectations imply the q unconditional moment restrictions

E[z>i−1ei] = 0, (9)

under the null hypothesis Ei−1[ei] = 0. The test is to check whether the sample analogue
gn = n−1 ∑i ẑ>i−1 êi of (9) is close to zero. The conditional moment test can be made robust
to certain misspecifications. For example, the conditional mean test may be robust to misspecified
conditional variance and the test for conditional variance may be robust to misspecification of
higher order moments provided the first two moments are correctly specified under the null
(Wooldridge 1991).

Instead of the regression form of Wooldridge (1991) I use the test in Hautsch (2012, 5.6.5) based
on the long-run covariance to account for potential serial correlation and heteroskedasticity in
the sample moments. It appears important to correct for potential serial correlation as some
of the moment conditions appear to be persistent with a large bandwidth selected for the
long-run covariance.

The ‘art’ in implementing a conditional moment test is how to choose the relevant moments
ei and instruments zi−1 for the test. This depends on which aspects of the model specification
we want to test. For this application, I consider two types of tests. The first is designed to
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test the whether the conditional mean (6) is correctly specified. This test would be robust to
misspecification of the conditional variance process. For the conditional mean test, I set

ei = xi − Ei−1[xi] =


xi − µi for MEM

xi − πsi−1,1µi for MEMZ

xi − πsi−1,1 exp(µi + hi/2) for LNZ, LNZ-G, LNZ-E

and use two sets of instruments zi−1. The first set is the ‘placebo’ set zi−1 = (si−1, ui−1) where

ui = siνi, νi =


xi/µi − 1 for MEM

xi/µi − πsi−1,1 for MEMZ

(log(xi)− µi)/
√

hi for LNZ, LNZ-G, LNZ-E.

This is called a placebo set because we do not expect the test to reject the moment restrictions
for these instruments as the conditional mean µi specification (6) controls for both si−1 and ui−1.

The second set uses zi−1 = (d−i−1, d+i−1, d−i−1νi−1, d+i−1νi−1) where

d−i =

{
1, if xi > 0, νi < 0

0, otherwise
, d+i =

{
1, if xi > 0, νi > 0

0, otherwise.

d−i and d+i do not always add up to one since d−i = d+i = 0 for xi = 0. This is a slightly modified
version of the lagged sign bias variables used in Engle and Ng (1993). The conditional mean
specification (6) does not control for the sign of εi−1. As the conditional mean Ei−1[xi] also depends
on the conditional variance hi for the Gaussian model, the test may not reject if hi controls for the
sign of εi−1 as in the LNZ-E specification (8).

The second type of test is to test the conditional variance specifications (7) and (8) assuming
the conditional mean (6) is correctly specified. Thus these tests are valid provided the first type of
test is not rejected. For the conditional second moment test, I set

ei = x2
i − Ei−1[x2

i ] =


x2

i − 2µ2
i for MEM

x2
i − 2πsi−1,1µ2

i for MEMZ

x2
i − πsi−1,1 exp(2µi + 2hi) for LNZ, LNZ-G, LNZ-E

and consider two sets of instruments zi−1 = (si−1, νi−1, |νi−1|) and zi−1 = (si−1, ν2
i−1).

These two instrument sets are chosen to see if one of the conditional variance specification
(7) or (8) can ‘encompass’ the other non-nested specification. One expects LNZ-G to pass
the test with instruments zi−1 = (si−1, ν2

i−1) and LNZ-E to pass the test with instruments
zi−1 = (si−1, νi−1, |νi−1|). The tests of interest are the LNZ-G specification with instruments
zi−1 = (si−1, νi−1, |νi−1|) and the LNZ-E specification with instruments zi−1 = (si−1, ν2

i−1).
The results of these conditional moment tests are presented in Table 4. The top two blocks are

the results for the conditional mean tests. The test using placebo instruments zi−1 = (si−1, ui−1)

and lagged sign bias instruments zi−1 = (d−i−1, d+i−1, d−i−1νi−1, d+i−1νi−1) give similar results for
both tickers and bandwidth selection method. The conditional mean specification is rejected for
MEMZ and LNZ with large test statistic values. LNZ-E and LNZ-G also reject for AAPL though
the test statistic values are smaller than those for MEMZ/LNZ. For the conditional mean tests,
MEM does not reject but LNZ-G/LNZ-E do for AAPL but it is the opposite for SPY.
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The conditional variance tests are reported in the bottom two blocks of Table 4.
The multiplicative specifications MEM/MEMZ are rejected for both instrument sets with large
test statistic values. The constant conditional variance specification LNZ is near the borderline
of accept/reject at conventional test sizes. For either ticker neither the LNZ-G nor LNZ-E
specifications are rejected using either of the instruments.

Table 4. Conditional moment tests. The null hypothesis under test is E[ei|zi−1] = E[zi−1ei] = 0.
MEM is the multiplicative error model (1) with unit exponential (v = 1), MEMZ is the zero
augmented MEM, LNZ is the log duration model (5) and (6) with δ = 0 and constant conditional
variance, LNZ-G is LNZ with GARCH(1,1) (7), LNZ-E is LNZ with EGARCH(1,1) (8). nw and
da indicate how the bandwidth was selected for the long-run covariance matrix used in the
computation of the χ2 statistic. nw uses the nonparametric procedure of Newey and West (1994)
and da is the AR(1) based bandwidth of Andrews (1991). p-values in square brackets.

AAPL SPY

χ2
nw [p-val] χ2

da [p-val] χ2
nw [p-val] χ2

da [p-val]

ei = xi − Ei−1[xi], zi−1 = (si−1, ui−1)

MEM 0.24 [0.888] 0.42 [0.811] 63.85 [0.000] 66.62 [0.000]
MEMZ 134.14 [0.000] 247.40 [0.000] 32.47 [0.000] 40.45 [0.000]
LNZ 74.42 [0.000] 134.16 [0.000] 69.81 [0.000] 110.31 [0.000]
LNZ-G 16.51 [0.000] 16.63 [0.000] 1.08 [0.583] 1.15 [0.563]
LNZ-E 23.00 [0.000] 28.73 [0.000] 4.79 [0.091] 5.47 [0.065]

ei = xi − Ei−1[xi], zi−1 = (d−i−1, d+i−1, d−i−1εi−1, d+i−1εi−1)

MEM 10.11 [0.039] 10.01 [0.040] 70.17 [0.000] 74.67 [0.000]
MEMZ 148.55 [0.000] 275.39 [0.000] 37.17 [0.000] 47.10 [0.000]
LNZ 78.59 [0.000] 156.46 [0.000] 72.63 [0.000] 121.73 [0.000]
LNZ-G 21.11 [0.000] 20.11 [0.000] 2.22 [0.696] 2.34 [0.674]
LNZ-E 28.05 [0.000] 32.92 [0.000] 5.47 [0.242] 6.48 [0.166]

ei = x2
i − Ei−1[x2

i ], zi−1 = (si−1, ui−1, |ui−1|)

MEM 185.52 [0.000] 192.12 [0.000] 163.57 [0.000] 167.92 [0.000]
MEMZ 285.97 [0.000] 311.37 [0.000] 72.65 [0.000] 72.52 [0.000]
LNZ 7.49 [0.058] 10.48 [0.015] 6.22 [0.101] 7.59 [0.055]
LNZ-G 0.10 [0.991] 0.11 [0.991] 0.11 [0.991] 0.11 [0.991]
LNZ-E 0.73 [0.866] 0.80 [0.850] 0.28 [0.964] 0.28 [0.964]

ei = x2
i − Ei−1[x2

i ], zi−1 = (si−1, u2
i−1)

MEM 193.96 [0.000] 193.70 [0.000] 111.43 [0.000] 112.49 [0.000]
MEMZ 286.87 [0.000] 288.54 [0.000] 46.36 [0.000] 46.47 [0.000]
LNZ 7.47 [0.024] 10.32 [0.006] 5.99 [0.050] 7.24 [0.027]
LNZ-G 0.10 [0.950] 0.10 [0.950] 0.04 [0.979] 0.04 [0.979]
LNZ-E 0.63 [0.729] 0.69 [0.707] 0.13 [0.938] 0.13 [0.938]

These conditional moment test results indicate the importance of controlling for
autoregressive conditional variance at least for this data sample. Accounting for zero inflation
alone (with constant conditional variance) does not appear to be an adequate specification.

4. Concluding Remarks

This paper considered conditional autoregressive specifications for non-negative time series
with both conditional mean and variance dynamics. A proposed parsimonious specification with
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zero inflated mixture distribution appears to provide a reasonable fit to financial trade duration
data with a large fraction of zero durations. The application focused on modeling duration
between trades, that is, autoregressive conditional duration models. However, the proposed
specifications can be generally applied to any non-negative valued time series.

It remains to be seen how important it is to relax the proportionality restriction imposed by
the standard multiplicative error specifications for other non-negative time series data such as
number of shares traded. As the empirical analysis was limited to a sample one trading day, it is
also of interest to see how the proposed specifications perform in a longer sample. In particular,
various (pseudo) out-of-sample diagnostics could be used to examine the importance of relaxing
the proportionality restriction.

Another important area for future work is to devise a model free, or nonparametric, test of
the proportionality restriction of the first two conditional moments. One can also consider
specifications that relax the proportionality restriction with parameter driven models following
the lead in Ghysels et al. (2004).

The empirical fit of zero inflated mixture distribution for samples that do not have excessive
fraction of zero observations is also worth exploring. It is not the fraction of zero observations per
se that is important. Rather it is the dependence in zero observations that the Markov chain model
tries to capture. Although there is a temptation to generalize the model by including adding
lags or dependence between the Markov chain and the strictly positive part of the distribution,
the exercise has been to focus on the importance of jointly modeling the conditional mean and
variance dynamics with a parsimonious specification.

There are several theoretical loose ends that need to be worked on. The properties (consistency
and asymptotic gausssianity) of the maximum likelihood estimator need to be established for the
proposed class of models. As mentioned in Section 3.2 the test for constant conditional variance
for the LNZ-G specification is non-standard. It remains to be established whether the approach
used for the GARCH volatility models (Andrews 2001; Francq and Zakoïan 2009; Silvapulle and
Sen 2004) can be extended to the LNZ-G type models. Another result of interest is whether the
consistency conditions for information criteria established by Sin and White (1996) can be verified
for the class of models proposed in this paper.
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