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Abstract: This paper discusses the notion of cointegrating space for linear processes integrated of
any order. It first shows that the notions of (polynomial) cointegrating vectors and of root functions
coincide. Second, it discusses how the cointegrating space can be defined (i) as a vector space of
polynomial vectors over complex scalars, (ii) as a free module of polynomial vectors over scalar
polynomials, or finally (iii) as a vector space of rational vectors over rational scalars. Third, it shows
that a canonical set of root functions can be used as a basis of the various notions of cointegrating
space. Fourth, it reviews results on how to reduce polynomial bases to minimal order—i.e., minimal
bases. The application of these results to Vector AutoRegressive processes integrated of order 2 is
found to imply the separation of polynomial cointegrating vectors from non-polynomial ones.

Keywords: VAR; cointegration; I(d); vector spaces

1. Introduction

In their seminal paper, Engle and Granger (1987) introduced the notion of cointegration
and of cointegrating (CI) rank for processes integrated of order 1, or I(1). They did this in
the following way:1

DEFINITION: The components of the vector xt, are said to be co-integrated of
order d, b, denoted xt ∼ CI(d, b), if (i) all components of xt, are I(d); (ii) there
exists a vector β( 6= 0) so that zt = β′xt ∼ I(d− b), b > 0. The vector β is called
the co-integrating vector.
[...] If xt has p components, then there may be more than one co-integrating
vector β. It is clearly possible for several equilibrium relations to govern the
joint behavior of the variables. In what follows, it will be assumed that there
are exactly r linearly independent co-integrating vectors, with r ≤ p− 1, which
are gathered together into the p× r array β. By construction the rank of β will
be r which will be called the “co-integrating rank” of xt.

Engle and Granger (1987) did not define explicitly the notion of cointegrating space,
but just the cointegrating rank, which corresponds to its dimension; explicit mention of the
cointegrating space was first made in Johansen (1988).

The Granger representation theorem in Engle and Granger (1987) showed that the
cointegration matrix β needs to be orthogonal to the Moving Average (MA) impact matrix
of ∆xt. More precisely, for ∆xt = C(L)εt, the MA impact matrix C(1) has rank equal to
p− r and representation C(1) = β⊥a′, where β⊥ is a basis of the orthogonal complement
of the space spanned by the columns of β and a is full column rank.

Johansen (1991, 1992) stated the appropriate conditions under which the Granger
representation theorem holds for I(1) and I(2) Vector AutoRegressive processes (VAR)
A(L)xt = εt, where the AR impact matrix A(1) has rank equal to r < p and rank factoriza-
tion A(1) = −αβ′, with α and β of full column rank. He defined the cointegrating space as
the vector space generated by the column vectors β j in β over the field of real numbers R.
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Johansen (1991) noted that B = rowR(β′) is uniquely defined2 by the rank factoriza-
tion A(1) = −αβ′, but the choice of basis β′ is arbitrary, i.e., β′ is not identified. Hypotheses
that do not constrain B are hence untestable. He proposed likelihood ratio tests on B and
described asymptotic properties of a just-identified version of β′. Later Johansen (1995)
discussed the choice of basis β′ as an econometric identification problem of a system of
simultaneous equations (SSE) of cointegrating relations describing the long-run equilibria
in the process. He discussed identification using linear restrictions, along the lines of the
classical identification problem of SSE studied in econometrics since the early days of the
Cowles Commission.

The observation in Johansen (1988) that the cointegrating vectors formed a vector
space B was an important breakthrough. For instance, it addressed the question: ‘How
many cointegrating vectors should one estimate in a given system of dimension p?’. A
proper answer is in fact: A set of r linearly independent vectors, spanning the cointegrating
space B, i.e., a basis of B.

Similarly, when assuming that a set of p interest rates is described by an I(1) process,
the notion of cointegrating space B enables one to discuss questions like ‘How should one
test that all interest rates spreads are stationary?’. In fact, if all (p

2) = p(p− 1)/2 interest
rates differentials were stationary, then one should have cointegrating rank r = p − 1,
which gives a first testable hypothesis on the cointegrating rank. Moreover there is no need
to test all possible interest rates differentials to be stationary, but, if the cointegrating rank
has been found to be p− 1, one can test that the cointegrating space is spanned by any set
of linearly independent r contrasts between pairs of interest rates. If the cointegrating rank
is found to be 0 < r < p− 1, one may still want to test the restriction that the cointegrating
space B is a subspace of the linear space spanned by all contrasts.

These questions, and many more, found clear answers thanks to the introduction of
the notion of cointegrating space. The recognition that the set of cointegrating vectors
forms a vector space was then instrumental to represent any cointegrating vector as a linear
combination of the ones in a basis of the vector space.

The notion of cointegrating space, together with the complementary notion of at-
tractor space, has been recently discussed in the context of functional time series for infi-
nite dimensional Hilbert space valued AR processes with unit roots, see Beare et al. (2017),
Beare and Seo (2020), Franchi and Paruolo (2020), and for infinite dimensional Banach space
valued AR processes with unit roots, see Seo (2019).

For systems with variables integrated of order d, I(d), with d = 2, 3, . . .
Granger and Lee (1989) and Engle and Yoo (1991) introduced the related notions of multi-
cointegration and polynomial cointegration; see also Engsted and Johansen (2000). How-
ever, no proper discussion of cointegrating spaces or of their corresponding bases has been
proposed in the literature for higher order systems.

The present paper closes this gap, making use of classical concepts in local spectral
theory, see Gohberg et al. (1993). A central role is played by canonical system of root
functions, which have already been exploited in Franchi and Paruolo (2011, 2016) to
characterize the inversion of a matrix function, and used in Franchi and Paruolo (2019) to
derive the generalization of the Granger-Johansen representation theorem for I(d) processes.

In order to simplify exposition, this paper focuses on unit roots at a single point zω,
indexed by frequency ω. When ω /∈ {0, π}, the resulting matrices are complex-valued,
and the symbol F is taken to indicate C. For ω ∈ {0, π}, F is taken instead to indicate
R. Unit roots at distinct seasonal frequencies different from 0 have been considered e.g.,
in Hylleberg et al. (1990), Gregoir (1999), Johansen and Schaumburg (1998), Bauer and
Wagner (2012). Several of these papers paired frequencies ±ω when ω /∈ {0, π} to obtain
real coefficient matrices for Equilibrium Correction (EC) representations; in order to keep
exposition as simple as possible, this is not attempted in the present paper.

To the best of the authors’ knowledge, local spectral theory tools are employed here
for the first time to discuss the definition of cointegrating space for I(d) processes, d > 1,
and related bases. It is observed that several candidate cointegrating spaces exists, corre-
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sponding to different choices of the set of vectors and scalars. The sets of vectors are chosen
here to be either the set of polynomial vectors or the one of rational vectors, while the set of
scalars are taken to be (i) the field F = R,C, (ii) the ring of polynomials with coefficients in
F (denoted F[z]) or (iii) the field of rational function with coefficients in F (denoted F(z)).
The resulting spaces are either vector spaces, in cases (i) and (iii), or a free module in case
(ii). The relationship among their bases is discussed following Forney (1975), whose results
are used to derive a polynomial basis of minimal degree—i.e., a minimal basis.

The focus of this paper is on the parsimonious representation of the set of cointegrat-
ing vectors. As noted by a referee, the present results may find application also in the
parametrization and estimation of I(d) EC systems. This, however, is beyond the scope of
the present paper.

The rest of the paper is organised as follows. Section 2 provides the motivation for the
paper. Section 3 reports definitions of integration and cointegration in I(d) systems, where
the cointegrating vectors ζ(z)′ = ∑∞

j=0(z− zω)jζ ′j are allowed to be vector functions; here
(z− zω) and its powers are associated with the difference operator and its powers. Section 4
defines root functions and canonical systems of root functions and Section 5 discusses
possible definitions of the cointegration space. Section 6 discusses how to derive bases
for the various notions of cointegrating space from VAR coefficients. Section 7 discusses
minimal bases using results in Forney (1975) and Section 8 applies these results in order
to obtain a minimal basis in the I(2) VAR case. Section 9 concludes; Appendix A reports
background results.

2. Motivation

This section motivates the study of the represention of cointegrating vectors in terms
of bases of suitable spaces, for systems integrated of order two, which are more formally
introduced in Section 3 below. Let xt be a p× 1 vector process, and let ∆ = 1− L and L be
the (0-frequency) difference and the lag operators. Assume that xt is integrated of order 2,
I(2), with ∆jxt nonstationary for j < 2 and stationary for j ≥ 2.

Mosconi and Paruolo (2017) consider the identification problem for the following
cointegrating SSE with I(2) variables

ecmt = ξ(∆)′xt, with ξ(∆)′ :=

 β′ + υ′∆
γ′∆
β′∆

 } r0
} r1
} r0

The first set of r0 polynomial vectors has coefficient β′ of order 0 (i.e., that multiplies ∆0) and
coefficient υ′ of order 1 (i.e., that multiplies ∆1). The last r0 + r1 polynomial vectors have 0
coefficients of order 0 and γ′ and β′ coefficients of order 1. They discussed identification of
the SSE with respect to transformations corresponding to pre-multiplication of ξ(∆)′ (or
ecmt) by a block triangular, nonsingular matrix of the form

Q =

 Q00 Q0γ Q0β

0 Qγγ Qγβ

0 0 Q00

,

where Qab are blocks of real coefficients, a, b ∈ {0, γ, β}, with Q00 and Qγγ nonsingular
square matrices.

They show that Qξ(∆)′ = ξ◦′(∆) has the same structure as ξ(∆)′ in terms of the
null coefficient of order 0 in the last r1 + r0 equations, as well as the same β block as the
coefficient of order 0 in the first r0 and as the coefficient of order 1 in the last r0 rows. More
precisely,

• β′ is replaced by β◦′ = Q00β′, a set of r0 linear combinations of β′,
• γ′∆ is replaced by a set of r1 linear combinations of γ′∆ and β′∆,
• υ′∆ is replaced by a set of r0 linear combinations of υ′∆, γ′∆ and β′∆.
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Remark 1 (F-linear combinations). Note that the Q linear combinations have scalars taken from
F = R, and that any CI vectors can be obtained as linear combinations with coefficients in F of the
rows in ξ(∆)′, called in the following ‘F-linear combinations’.

The main motivation to study the notion of cointegration space for I(d) processes
with d ≥ 2 comes from the following observation.

Remark 2 (F[∆]-linear combinations). The set of CI vectors obtained as F-linear combinations
of the rows in ξ(∆)′ can be also obtained by considering the alternative set of cointegrating vectors

ζ(∆)′ :=
(

β′ + υ′∆
γ′

)
} r0
} r1

and choosing linear combinations with scalar in the set of polynomials F[∆], where a(z) ∈ F[z] has
the form a(z) = ∑n

j=0 ajzj for some finite n.
To show that the set of F[∆]-linear combinations of ζ(∆)′ is the same as the set of F-linear

combinations of ξ(∆)′, it is sufficient to show that the rows of ξ(∆)′ can be obtained as F[∆]-linear
combinations of the rows in ζ(∆)′, possibly up to terms of the type c′∆2 which generate stationary
processes by definition.

Note first that β′ + υ′∆ is common to ξ(∆)′ and ζ(∆)′. In order to obtain γ′∆ in ξ(∆)′ from
ζ(∆)′ one needs to select the scalar ∆ from F[∆] and multiply it by γ′. Similarly, in order to obtain
β′∆ in ξ(∆)′ one only needs to select the scalar ∆ ∈ F[∆] and multiply it by β′ + υ′∆ to obtain
β′∆ + υ′∆2. Because ∆2xt is stationary by the assumption that xt is I(2), the term υ′∆2 can be
discarded, and this completes the argument.

The take-away from Remark 2 is that, if one allows the set of multiplicative scalars to
contain polynomials, i.e., if one moves from F-linear combinations to F[∆]-linear combi-
nations, then one can reduce the number of rows needed to generate the set of CI vectors:
ξ(∆)′ in fact has 2r0 + r1 rows, while the number of rows in ζ(∆)′ is r0 + r1.

The previous discussion shows that the two sets, F and F[∆], could be used as possible
set of scalars in taking linear combinations. The first one, F, is a field (i.e., a division ring),
the second one, F[∆], is a ring but not a field because it lacks the multiplicative inverse.

Given that vector spaces require the set of scalars to be a field, one may also consider
another possible set of scalars, namely F(∆), the set of rational functions of the type
a(∆) = c(∆)/d(∆) with c(∆), d(∆) ∈ F[∆], and d(∆) not identically equal to 0, indicated
as d(∆) 6≡ 0. This leads to consider three possible choices for the set of scalars: (i) The field
F, (ii) the ring F[∆] and (iii) the field F(∆). The rest of the paper discusses relative merits of
using any of them.

The above discussion focused on unit roots at z = 1, which are associated to the long
run behavior of the process. When data are observed every month or quarter, seasonal unit
roots, seasonal cointegration and seasonal error correction have been shown to be useful
notions, see Hylleberg et al. (1990). For instance, in the case of quarterly series, the relevant
seasonal unit roots are at z = −1 and at z± i where i is the imaginary unit. These roots
are represented as zω = exp(iω) with 0 ≤ ω < 2π, where zω = 1, i,−1,−i correspond to
ω = 0, 1

2 π, π, 3
2 π.

Johansen and Schaumburg (1998) showed that the conditions under which a VAR
process allows for seasonal integration (and cointegration) of order 1 are of the same type
as for roots at z = 1, except that expansions of the VAR polynomial are performed around
each zω, see their Theorem 3. They also provided the corresponding EC form in their
Corollary 2; see also Bauer and Wagner (2012) and the discussion in Remark 9 below.

In general, the conditions for integration of any order d at a point zω on the unit circle
can be shown to be of the same type. This paper hence considers the generic case of a linear
process with a generic root on the unit circle zω = exp(iω), and discusses the notions of
cointegration, root functions and minimal bases in this general context. This allows to
show that the present results hold for generic frequency ω, 0 ≤ ω < 2π.
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Incidentally, the results presented below in Section 6 state the generalization of the
Granger and the Johansen Representation Theorems presented in Franchi and Paruolo (2019)
for a generic unit root zω = exp(iω) at any frequency ω.

3. Setup and Definitions

This section introduces notation and basic definitions of integrated and cointegrated
processes.

3.1. Linear Processes

Assume that {εt, t ∈ Z} is a p × 1 i.i.d. sequence, called a noise process,3 with
E(εt) = 0 and E(εtε

′
s) = Ω 1s=t where 1· is the indicator function, and define the linear

process ut = µt + C(L)εt, where µt is a nonstochastic p× 1 vector and C(z) = ∑∞
j=0 zjC◦j is

a p× p matrix function, with coefficient matrices C◦j ∈ Rp×p. Note that the matrices C◦j are
defined by an expansion of C(z) around z = 0. The term µt is nonstochastic, i.e., E(µt) = µt,
and can contain deterministic terms. Because E(εt) = 0, one sees that E(ut) = µt, and
hence in the following ut is often written as ut = E(ut) + C(L)εt.

The matrix function C(z) = ∑∞
j=0 zjC◦j is assumed to be finite when z is inside the open

disk D(0, 1 + η), η > 0, in C with center at 0 and radius 1 + η > 1, i.e., C(z) is assumed
analytic on D(0, 1 + η). Here and in the following | · | indicates the modulus and D(z?, ρ)
indicates the open disk D(z?, ρ) := {z ∈ C : |z− z?| < ρ} with center z? ∈ C and radius
ρ > 0. In this paper C(z) is assumed to be regular on D(0, 1 + η), i.e., C(z) can lose rank
only at a finite number of isolated points in D(0, 1 + η).

Because of analyticity of C(z), it can be expanded around any interior point of D(0, 1+ η).
In particular, define the point zω := eiω on the unit circle at frequency ω, ω ∈ [0, 2π), and
observe that it lies inside D(0, 1 + η) because η > 0. Hence one can expand C(z) as
C(z) = ∑∞

j=0(z− zω)jCj on D(zω, η), η > 0. Note that the matrices Cj are defined by an
expansion of C(z) around z = zω, but that the dependence of Cj on ω is not included in
the notation for simplicity. The analysis of the properties of C(z) is done locally around
z = zω on D(zω, η), η > 0.

Similarly to C(z), one can consider a scalar function of z, a(z) say, or a 1× p vector
function b(z)′ taken to be analytic on D(zω , η), η > 0. This means that a(z) has representa-
tion a(z) = ∑∞

j=0(z− zω)jaj around zω and similarly for b(z)′. A special case is when a(z)

is a polynomial of degree k, a(z) = ∑k
j=0(z− zω)jaj, which corresponds to setting all aj = 0

for j > k. Another special case is given by rational functions a(z) = c(z)/d(z) with c(z)
and d(z) polynomials, where d(z) 6≡ 0 and zω is not a root of d(z). Similarly for b(z)′.

3.2. Integration

The following definition specifies the Iω(0) class of processes as a subset of all linear
processes built from the noise sequence εt, and introduces the notion of Iω(d) processes
using the difference operator at frequency ω, ∆ω := 1− e−iω L = 1− z−1

ω L. To simplify
notation, the dependence of ∆ω on the lag operator L is left implicit. Observe also that,
because zω = eiω 6= 0, z− zω in the analytic expansions can be expressed as (−zω)(1−
z/zω), where (1− z/zω) corresponds to the operator ∆ω.

Next, the definition of order of integration is introduced; this is defined as the differ-
ence between two nonnegative integer exponents d1 and d2 of ∆ω in the representation
that links the process xt with its driving linear process ut. This definition allows for the
possibility to have xt integrated of negative order.

Definition 1 (Integrated processes at frequency ω). Let C(z) be analytic on D(0, 1 + η),
η > 0, and let εt be a noise process. If {ut, t ∈ Z}, satisfies ut = E(ut) + C(L)εt, then ut is called
a linear process; if, in addition,

C(zω) 6= 0, zω = exp(iω), 0 ≤ ω < 2π, (1)
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then ut is said to be integrated of order zero at frequency ω, indicated ut ∼ Iω(0).
Let d1, d2 ∈ N0 = N ∪ 0 be finite non-negative integers; if {xt, t ∈ Z} satisfies ∆d1

ω (xt −
E(xt)) = ∆d2

ω (ut− E(ut)) where ut ∼ Iω(0), then xt is said to be integrated of order d := d1− d2
at frequency ω, indicated xt ∼ Iω(d); in this case xt has representation

∆d1
ω (xt − E(xt)) = ∆d2

ω C(L)εt, (2)

where C(z) is analytic on D(0, 1 + η), η > 0, and C(zω) 6= 0.

Remark 3 (Negative orders). When d1 < d2, the integration order d := d1 − d2 is negative.
Note also that Definition 1 avoids to define the operator ∆−1

ω ; see however Equations (5) and (6)
below.

Remark 4 (Mean-0 linear process). The linear process ut in Definition 1 can have any expectation
E(ut), which however, does not play any role in the definition of the xt process. Hence, one can
assume that E(ut) = 0 in Definition 1 without loss of generality.

Remark 5 (E(xt) in Definition 1). Assume xt = cos(2t) + exp(−3t) + C(L)εt with C(z)
analytic on D(0, 1 + η), η > 0, and C(zω) 6= 0, zω := eiω. Then E(xt) = cos(2t) + exp(−3t)
and Definition 1 implies that xt is Iω(0). This example shows that the presence of E(xt) in
Equation (2) allows to concentrate attention on the stochastic part of the process xt.

Remark 6 (Preference for low d1, d2). Assume for instance that (2) is satisfied for (d1, d2) =
(1, 0), and observe that this implies that (2) is satisfied for (d1, d2) = (1 + m, m) for any m ∈ N.
In the following, preference is given to the minimal pair (d1, d2) for which (2) is satisfied, i.e., to
(d1, d2) = (1, 0) in the example.

Leading cases are the ones where either d1 or d2 equals 0. Specifically, when 0 = d1 < d2,
d = d1 − d2 = −d2 is negative, and (2) reads

xt − E(xt) = ∆d2
ω C(L)εt. (3)

When d1 ≥ d2 = 0 and hence d = d1 − d2 = d1 is nonnegative, (2) reads

∆d1
ω (xt − E(xt)) = C(L)εt. (4)

Remark 7 (Example of I0(−1)). As an example, consider the process xt = C(L)εt with C(L) =
1− L. Setting ω = 0 one finds that Equation (2) is satisfied with d = −1, i.e., that the process
is I0(−1). Selecting any other frequency 0 < ω < 2π, one sees that Equation (2) is satisfied for
d = 0, i.e., that the order of integration is 0, i.e., Iω(0) for 0 < ω < 2π. This illustrates the fact
that a process may have different orders of integration at different frequencies.

Remark 8 (t ∈ Z versus t ∈ N0). Consider the process xt = c + ∑t
j=1 εt defined only for

t ∈ N0 = N∪ 0, which satisfies ∆0(xt − c) = εt for t ∈ N. Consider another process {x?t , t ∈ Z}
satisfying the same equation ∆0(x?t − c) = εt for t ∈ Z with xt = x?t for t ∈ N0. The process
{x?t , t ∈ Z} is I0(1) according to Definition 1, and it is suggested to extend this qualification to xt,
because it coincides with the x?t process on the non-negative integers, xt = x?t for t ∈ N0.

Remark 9 (One or more frequencies). Definition 1 of integration refers to a single frequency ω,
but it can be used to cover multiple frequencies. In fact, consider the ‘ARMA process with unit root
structure’, as defined in Bauer and Wagner (2012), i.e., a process xt satisfying D(L)xt = vt where
D(L) := ∏n

j=1 ∆mi
ωj for a (finite) set of frequencies ω1, . . . , ωn, with vt a stationary ARMA process

vt = C(L)εt with C(exp(iωj)) 6= 0. They call {(ωj, mj), j = 1, . . . , n}, the ‘unit root structure’
of xt, see their Definition 2. This can be obtained using Definition 1 for each ωj in turn, noting that
vt being ARMA corresponds to a rational C(z), which is a special case of the definition above.
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Hylleberg et al. (1990), Gregoir (1999), Johansen and Schaumburg (1998), Bauer and Wagner (2012)
consider xt to be real-valued, which implies that integration frequencies ±ωj are ‘paired’, so that if
exp(iωj) is a unit root of the process, so is exp(−iωj); this implies that in this case one can pair
frequencies ±ωj with 0 < ωj < π and rearrange coefficients so as to obtain real coefficient matrices in
EC representations. This is not done in this paper for reasons of simplicity.

Remark 10 (Relation with other definitions). The definition of an Iω(0) (respectively an Iω(d))
process in the present Definition 1 coincides with Definition 3.2 (respectively Definition 3.3) in
Johansen (1996) when setting ω = 0 (respectively ω = 0 and d2 = 0). The present definition also
agrees with Definitions 2.1 and 2.2 of integration in Gregoir (1999), both for positive and negative
orders and any frequency ω. The definition also agrees with the one in Franchi and Paruolo (2019)
when applied to vector processes.

Remark 11 (Entries in C(z)). When ω differs from 0 or π, the point zω = eiω has a nonzero
complex part; hence the matrix C(zω) in (1) has complex entries and the coefficient matrices Cj in
the expansion C(z) = ∑∞

j=0(z− zω)jCj are complex even when the coefficients in the expansion
around z = 0 are real.

Following Gregoir (1999), the summation operator at frequency ω is defined as

Sωut := 1t>0

t

∑
j=1

uje−iω(t−j) − 1t<0

0

∑
j=t+1

uje−iω(t−j). (5)

Basic properties of the operator are proved in Gregoir (1999); these include

∆ωSωut = ut, Sω∆ωut = ut − u0e−iωt, (6)

where {ut, t ∈ Z} is any sequence over Z.

Remark 12 (Simplifications of ∆ω and initial values). Take d1 = d2 = 1 in (2), which in this
case reads ∆ωxt = ∆ωut with ut ∼ Iω(0). Applying the Sω operator on both sides one obtains
xt− x0e−iωt = ut− u0e−iωt.4 If one assigns the initial value of x0 equal to u0, one obtains xt = ut,
which corresponds to the cancellation of ∆ω from both sides of (2). The same reasoning applies for
generic d1, d2 > 0 to the cancellation of ∆min(d1,d2)

ω from both sides of (2). This shows that one can
simplify powers of ∆ω from both sides of (2) by properly assigning initial values; this cancellation
is always implicitly performed in the following, in line with preference for minimal values of d1, d2
as discussed in Remark 6.

3.3. Cointegration

Cointegration is the property of (possibly polynomial) linear combinations of xt to
have a lower order of integration with respect to the original order of integration of
xt at frequency ω. Specifically, consider a nonzero 1 × p row vector function ζ(z)′ =
∑∞

j=0 ζ ′j(z− zω)j, analytic on a disk D(zω, η), η > 0. As in Engle and Granger (1987), the
idea is to call ζ(L)′ cointegrating if ζ(L)′xt has lower order of integration than xt, excluding
cases such as ζ(L)′ = ∆ωa′ where a′ by itself does not reduce the order of integration.

This leads to the following definition.

Definition 2 (Cointegrating vector at frequency ω). Let xt ∼ Iω(d) be as in Definition 1, i.e.,

∆d1
ω (xt − E(xt)) = ∆d2

ω C(L)εt,

where d := d1 − d2, C(z) is analytic on D(0, 1 + η), η > 0, and C(zω) 6= 0, see (2); let also
ζ(z)′ = ∑∞

j=0(z− zω)jζ ′j be a 1× p row vector function, analytic on D(zω, η) with ζ(zω)′ =
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ζ ′0 6= 0′. Then ζ(z)′ is called a cointegrating vector at frequency ω if ζ(L)′xt ∼ Iω(d− s) for
some s ∈ N, i.e.,

ζ(L)′∆d1
ω (xt − E(xt)) = ∆d2+s

ω g(L)′εt, (7)

where g(z)′ is analytic on D(zω , η), η > 0, and g(zω)′ 6= 0′. Given Equation (2), Equation (7) is
equivalent to the condition

ζ(L)′C(L) = ∆s
ωg(L)′, g(zω)

′ 6= 0′. (8)

The positive integer s ∈ N is called the order of the cointegrating vector ζ(z)′ of C(z) at zω. xt
is said to be cointegrated at frequency ω if any cointegrating vector ζ(z)′ = ∑∞

j=0(z − zω)jζ ′j
can be replaced by ζ(zω)′ = ζ ′0 without decreasing the order s in (8); otherwise xt is said to be
multicointegrated at frequency ω.

Remark 13 (C(z) has full rank on D(zω, η), η > 0, except at z = zω). Because cointegrating
vectors are by definition different from zero at zω, xt is cointegrated at frequency ω if and only if
C(zω) 6= 0 has reduced rank. Moreover, because C(z) is regular on D(0, 1 + η), the point zω is
isolated, i.e., C(z) has full rank on D(zω, η), η > 0, except at z = zω.

Remark 14 (Entries in cointegrating vectors). Similarly to Remark 11, the coefficient vectors ζ ′j
in the expansion ζ(z)′ = ∑∞

j=0(z− zω)jζ ′j are in general complex. Note that ζ(L)′ = ∆ωa′ does
not satisfy the definition because the requirement ζ(zω)′ = ζ ′0 6= 0′ is not satisfied.

Remark 15 (d and s). Recall that d (the order of integration) is the difference between the exponents
of ∆ω on the l.h.s. and r.h.s. of (2). When pre-multiplied by ζ(L)′, the exponent on the r.h.s.
decreases by s and the difference of the exponents on the l.h.s. and r.h.s. of (7) becomes d − s.
Because ζ ′0 6= 0′, this can only happen if ζ(L)′ factors ∆s

ω from C(L), see (8). The condition
g(zω)′ 6= 0′ guarantees that no remaining additional power of ∆ω can be factored from C(L) using
ζ(L)′.

Remark 16 (Examples of cointegration vectors). Take ζ(L)′ = ζ ′0 with ζ0 chosen in (col C(1))⊥,
and note that this implies s ≥ 1 in (7). This shows that the definition contains the I0(1) definition
of cointegrating vectors as a special case.

The usual definition of cointegration, see Definition 3.4 in Johansen (1996), considers
a p× 1 process xt ∼ I0(1) and defines xt cointegrated with cointegrating vector ζ 6= 0 if
ζ ′xt “can be made stationary by a suitable choice of initial distribution”. The following
proposition clarifies that his definition coincides with the one in this paper.

Proposition 1 (Relation with Definition 3.4 in Johansen (1996)). ζ ′ is a cointegrating vector
in the sense of Definition 3.4 in Johansen (1996) if and only if Definition 2 is satisfied with ω = 0
and ζ(z)′ = ζ ′, d = 1, s ∈ N.

Proof. For simplicity and without loss of generality, set E(xt) = 0 and omit the subscript
ω = 0. Assume Definition 2 is satisfied with ω = 0 and ζ(z)′ = ζ ′, d = 1, and s ∈ N, i.e.,

∆ζ ′xt = ∆sg(L)εt (9)

see Remark 12, and set vt := ∆s−1g(L)εt. Applying S to both sides of Equation (9) one
finds ζ ′xt − ζ ′x0 = vt − v0. Note that vt is stationary for any s ∈ N, and hence the initial
values ζ ′x0 can be chosen equal to v0, so as to obtain ζ ′xt = vt, a stationary process.

Conversely, assume that ζ ′ is a cointegrating vector in the sense of Definition 3.4 in
Johansen (1996). Because xt ∼ I(1), one has ∆xt = C(L)εt, see Definition 1, with C(z)
analytic on a disk D(0, 1 + η), η > 0, which admits expansion C(z) = C + C̃(z)(1− z)
around 1, where C̃(z) is analytic on the same disc. A necessary and sufficient condition for
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cointegration in the sense of Definition 3.4 in Johansen (1996) is that ζ ′C = 0 as shown in
Johansen (1988) Equation (17); see also Engle and Granger (1987, p. 256).5 Hence one finds
ζ ′∆xt = ∆g(L)′εt with g(z) := ζ ′C̃(z), which is analytic on D(0, 1 + η), η > 0, and hence
also on D(1, η), η > 0. By Corollary 1 below, one has that g(z)′ satisfies g(z)′ = ∆m g̃(z)′

with finite m ∈ N0 and g̃(zω)′ 6= 0′. This shows that Definition 2 is satisfied with ζ(z)′ = ζ ′,
d = 1, and s = m + 1 ∈ N.

Remark 17 (ζ ′xt can have negative order of integration). Johansen (1996) makes the following
observation just after his Definition 3.4: “Note that ζ ′xt need not be I(0)”, which recognises that ζ ′xt
can have negative order of integration. This is indeed the case when to s = 2, 3, . . . in Definition 2,
because ζ ′xt ∼ I(1− s).

Remark 18 (Relation to other definitions in the literature). The definition of cointegration in
Engle and Granger (1987) reported in the introduction is a special case of the present one with
ζ(z)′ = ζ ′0 a constant vector and ω = 0, under the additional requirement that all variables are inte-
grated of the same order. For more details on this for the case ω = 0, see Franchi and Paruolo (2019).
When s > 1 and ω = 0, Definition 2 covers the definitions of multicointegration and polynomial
cointegration in Granger and Lee (1989), Engle and Yoo (1991), Johansen (1996). When s = 1
and ω = 2π j/n for j = 1, . . . , n where n is the number of seasons, the definition covers seasonal
cointegration in Hylleberg et al. (1990), Johansen and Schaumburg (1998).

Example 1 (I(1) VAR). Following Johansen (1988), consider A(L)xt = εt with A(z) = I −
∑k

j=1(1− z)j Aj analytic on C. Assume also that det A(z) = 0 has only solutions outside D(0, 1 +
η), η > 0, or at z = 1, where ‘det’ indicates the determinant of a matrix. Here and in the following,
let a⊥ indicate a basis of the orthogonal complement of the linear space spanned by the columns
of the matrix a. Moreover Pa := a(a′a)−1a′ for a full-column-rank matrix a is the orthogonal
projection matrix onto col(a). Johansen (1991) (see his Equations (4.3) and (4.4) in Theorem 4.1)
showed that for xt to be I(1) at frequency ω = 0, a set of necessary and sufficient conditions are:

(i) A(1) = −α0β′0 with α0, β0 full column rank matrices of dimension p× r0, r0 < p,
(ii) Pα0⊥A1Pβ0⊥ = −α1β′1 of maximal rank r1 = p− r0.

In this case xt satisfies (2) for d1 = 1, d2 = 0, and ζ(L)′ = ζ ′ taken to be any row vector in
B = rowF(β′0) with F = R.

Example 2 (I(2) VAR). Following Johansen (1992), consider the same VAR process as in Example 1.
Johansen (1992) showed that for xt to be I(2) at frequency ω = 0, a set of necessary and sufficient
conditions are:

(i) A(1) = −α0β′0 with α0, β0 full column rank matrices of dimension p× r0, r0 < p,
(ii) Pα0⊥A1Pβ0⊥ = −α1β′1 with α1, β1 full column rank matrices of dimension p× r1, r1 < p− r0,
(iii) P(α0,α1)⊥(A2 + A1 β̄0ᾱ′0 A1)P(β0,β1)⊥ = −α2β′2 of maximal rank r2 = p− r0 − r1.

In this case xt satisfies (2) for d1 = 2, d2 = 0, and ζ(L)′ = ζ ′0 + ∆ζ ′1 taken to be any row
vector obtained by linear combinations of the rows in β′0 + (1 − L)ᾱ′0 A1 and β′1. The notion
of cointegrating space for I(2) processes is discussed in detail below, where ᾱ′0 A1 is called the
‘multicointegrating coefficient’.

4. Root Functions, Cointegrating Vectors and Canonical Systems

This section introduces root functions and canonical systems of root functions, and
their connection to cointegrating vectors, as defined in Definition 2 above.

4.1. Root Functions

Let xt ∼ Iω(d) be cointegrated at frequency ω, i.e., see Definition 2,

∆d1
ω (xt − E(xt)) = ∆d2

ω C(L)εt,
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where d := d1 − d2 and C(z) has full rank on D(zω, η), η > 0, except at z = zω, see
Remark 13.

The following definition of (left) root functions is taken from Gohberg et al. (1993);
this definition is given in a neighborhood of zω.

Definition 3 (Root function). A 1× p row vector function ϕ(z)′ analytic on D(zω, η) is called
a root function of C(z) at zω if ϕ(zω)′ 6= 0′ and if

ϕ(z)′C(z) = (z− zω)
s ϕ̃(z)′, s ∈ N, ϕ̃(zω)

′ 6= 0′. (10)

The positive integer s is called the order of the root function ϕ(z)′ at zω.

Observe that ϕ̃(z)′ is 1× p and analytic on D(zω, η), η > 0.

Remark 19 (Factoring the difference operator). Definition 3 characterizes roots functions by
their ability to factor powers of (z− zω) from C(z). Note that, because here zω = exp(iω) 6= 0,
one can write (z − zω) as (−zω)(1 − z/zω) where (1 − z/zω) corresponds to the difference
operator ∆ω and (−zω) can be absorbed in ϕ̃(z)′ without affecting its property that ϕ̃(zω)′ 6= 0′.

Remark 20 (Local analysis). Note first that C(z) cannot be identically 0 in Definition 3, because
C(z) is assumed to be regular. Next take for example the 2× 2 matrix C(z) = diag((1− z), (1 + z))
which has full rank on C, except at the two points z0 = 1 and zπ = −1, where it has rank 1.

Take first the point at z0 = 1; in this case one could choose a disk D(1, η) with any η < 2,
on which C(z) is analytic and full rank except at z0 = 1. One can verify that a root function is
ϕ1(z)′ = (1, 0), which satisfies ϕ1(z)′C(z) = (1− z)ϕ̃1(z)′ with ϕ̃1(z)′ = (1, 0). The same can
be repeated for the other point zπ = −1, choosing a different disk D(−1, η) with any η < 2, and a
root function equal to (0, 1).

The implication of this example is that one can have multiple separated points where C(z) has
reduced rank, and apply the above definition to each point separately, using a different disk D for
each point. In other words, the discussion of cointegration in this paper is local to a single unit root.

Remark 21 (Order). A root function factorises (z− zω)s from C(z), and s indicates the order.
The condition ϕ(zω)′ 6= 0′ guarantees that in the analytic expansion ϕ(z)′ = ∑∞

n=0(z− zω)n ϕ′n,
the first term ϕ′0 is not the null vector. Note that the condition ϕ̃(zω)′ 6= 0′ makes sure that one
cannot extract additional factors of (z− zω) from C(z) using ϕ(z)′.

It is immediate to see that a cointegrating vector is a root function of C(z) and vice
versa, as stated in the following theorem.

Theorem 1 (Cointegrating vectors and root functions). ζ(z)′ is a cointegrating vector at
frequency ω if and only if ζ(z)′ is a root function of C(z) at zω, and the order of the cointegrating
vector and of the root function coincide.

Proof. Observe that any root function satisfies Definition 2 of cointegrating vectors and
vice versa, including the definition of their order.

Results in Gohberg et al. (1993) shows that the order of a root functions is finite,
because it is bounded by the order of zω as a zero of det C(z), a result that is reported in
the next proposition.

Proposition 2 (Bound on the order of a root function). The order of a root function of C(z) at
zω is at most equal to the order of zω as a zero of det C(z), which is finite because C(z) is regular.

Proof. See Gohberg et al. (1993).
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Corollary 1 (Bound on the order of a cointegrating vector). The order of any cointegrating
vector at frequency ω is finite.

Proof. This follows from Proposition 2 because cointegrating vectors and root functions
coincide by Theorem 1.

4.2. Canonical Systems of Root Functions

Next, canonical systems of root functions for C(z) at zω are introduced, see
Gohberg et al. (1993). Choose a root function φ1(z)′ of highest order s1. Since the or-
ders of the root functions are bounded by Proposition 2, such a function exists. Next
proceed iteratively over j = 2, . . . , choosing the next root function φj(z)′ to be of the high-
est order sj such that φj(zω)′ is linearly independent from φ1(zω)′, . . . , φj−1(zω)′. Because
m := dim((col C(zω))⊥) < ∞, this process ends with m root functions φ1(z)′, . . . , φm(z)′.

Note that the columns in a := (φ1(zω), . . . , φm(zω)) span the finite dimensional space
(col C(zω))⊥, so that one can choose vectors (φm+1, . . . , φp) = a⊥ that span its orthogonal
complement. This construction leads to the following definition.

Definition 4 ((Extended) canonical system of root functions). Let φ1(z)′, . . . , φm(z)′ and
φ′m+1, . . . , φ′p be constructed as above; then

φ(z)′ =

 φ1(z)′
...

φm(z)′

 and
(

φ(z)′

a′⊥

)
=



φ1(z)′
...

φm(z)′

φ′m+1
...

φ′p


(11)

are called a canonical system of root functions (respectively an extended canonical system of root
functions) of C(z) at zω of orders (s1, s2, . . . , sm) (respectively (s1, s2, . . . , sm, sm+1, . . . , sp)) with
∞ > s1 ≥ s2 ≥ · · · ≥ sm > 0 = sm+1 = · · · = sp.

Such a canonical system of root functions is not unique. To see this, one can show that
the first row vector φ1(z)′ in (11) can be replaced by a combination of φ1(z)′ and φ2(z)′,
called φ?

1 (z)
′, and the canonical system of root functions containing φ?

1 (z)
′ would still

satisfy the definition. More specifically, define φ?
1 (z)

′ := φ1(z)′ + (z− zω)s1−s2 φ2(z)′ and
observe that, by Definition 3, φj(z)′C(z) = (z − zω)

sj φ̃j(z)′, with φ̃j(zω)′ 6= 0′, j = 1, 2.
Hence one has

φ?
1 (z)

′C(z) = (z− zω)
s1 φ̃′1(z) + (z− zω)

s1−s2+s2 φ̃′2(z) = (z− zω)
s1 φ̃?′(z)

where φ̃′?(z) := φ̃′1(z) + φ̃′2(z). Because φ̃j(zω)′ 6= 0′, j = 1, 2, one has φ̃′?(zω) 6= 0′ unless
φ̃1(zω)′ = −φ̃2(zω)′. However, this last case is ruled out because it would contradict the
fact that s1 is maximal. Hence φ̃′?(zω) 6= 0′. This shows that φ′?1 (z) satisfies the definition
of root function of order s1, and hence it can replace φ′1(z) in (11).

While a canonical system of root functions (and also an extended canonical system
of root functions) is not unique, the orders s1 ≥ s2 ≥ · · · ≥ sm > 0 = sm+1 = · · · = sp are
uniquely determined by C(z) at zω , see Lemma 1.1 in Gohberg et al. (1993); they are called
the partial multiplicities of C(z) at zω.

Finally, consider the local Smith factorization of C(z) at z = zω, see Gohberg et al. (1993),
i.e., the factorization

C(z) = E(z)M(z)H(z), (12)

where M(z) = diag((z− zω)sh)h=1,...,p is uniquely defined and contains the partial multi-
plicities s1 ≥ · · · ≥ sp of C(z) at z = zω ; the matrices E(z), H(z) are analytic and invertible
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in a neighbourhood of z = zω and are non-unique. M(z) is called the local Smith form of
C(z) at z = zω.6

Remark 22 (Extended canonical system of root functions in the I(1) VAR case). In the I(1)
VAR case, see Example 1, the orders of an extended canonical system of root functions of C(z) at 1
are (s1, . . . , sr0 , sr0+1, . . . , sp) = (1, . . . , 1, 0, . . . , 0) and a possible choice of an extended canonical
system of root functions corresponding to these unique orders is given by the p rows in (β0, β1)

′.

Remark 23 (Extended canonical system of root functions in the I(2) VAR case). In the I(2)
VAR case, see Example 2, the orders of an extended canonical system of root functions of C(z) at
0 are (s1, . . . , sr0 , sr0+1, . . . , sr0+r1 , sr0+r1+1, . . . , sp) = (2, . . . , 2, 1, . . . , 1, 0, . . . , 0) and a possible
choice of an extended canonical system of root functions corresponding to these unique orders is
given by the p rows in (β0 + (1− z)(ᾱ′0 A1)

′, β1, β2)
′.

5. Cointegrating Spaces

Let φ(z)′ be a canonical system of root functions of C(z) at zω, see Definition 4.
Appendix A.2 shows that rowG(φ(z)′) with G = F, F[z], F(z) are well defined sets of
(generalized) root functions. This section argues that one could take any of them as a
definition of ‘cointegrating space’ for multicointegrated systems. Note that

rowF(φ(z)′) ⊂ rowF[z](φ(z)
′) ⊂ rowF(z)(φ(z)

′),

so that the three definitions of cointegrating space are naturally nested. Remark that
rowF(φ(z)′) is a vector space over F, rowF[z](φ(z)′) is a free module over the ring F[z]
of polynomials in z (which contains rowF(φ(z)′)) and rowF(z)(φ(z)′) is a vector space
over the field F(z) of rationals functions of z ((which contains rowF[z](φ(z)′) and hence
rowF(φ(z)′)). Finally note the central role played by the canonical system of root functions
φ(z)′ as a basis for these different spaces, which differ for the set of scalars chosen in linear
combinations.

5.1. The Cointegrating Space rowF(φ(z)′) as a Vector Space over F

The cointegrating space rowF(φ(z)′), where F = R,C, is a vector space. In fact, the set
of all F-linear combination of φ(z)′ produces a vector space, because rowF(φ(z)′) is closed
under multiplication by a scalar in F by Proposition A1 and with respect to vector addition,
as a special case of Proposition A2.

In order to discuss the cointegrating spaces rowF[z](φ(z)′) and rowF(z)(φ(z)′), the
notion of generalized cointegrating vector is introduced, as the counterpart of the notion of
generalized root function, see Definition A1.

Definition 5 (Generalized cointegrating vector at frequency ω). Let n ∈ Z and ζ(z)′ be a
cointegrating vector at frequency ω and order s, see Definition 2; then

ξ(z)′ := (1− z/zω)
nζ(z)′

is called a generalized cointegrating vector at frequency ω with order s and exponent n.

5.2. The Cointegrating Space rowF[z](φ(z)′) as a Free Module over F[z]

Consider next rowF[z](φ(z)′). F[z] is the polynomial ring formed as the set of polyno-
mials in z with coefficients in F. As it is well known, F[z] is a ring but not a field (division
ring), see e.g., Hungerford (1980), because polynomials, unlike rational functions, lack the
multiplication inverse. The following propositions summarizes that rowF[z](φ(z)′) is a free
module over the ring F[z] of polynomials.

Proposition 3 (rowF[z](φ(z)′) is a F[z]-module). Consider G = rowF[z](φ(z)′), where φ(z)′

is a canonical system of root functions of C(z) at zω with coefficients in F, and where F[z] is the
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ring of polynomials in z with coefficients in F; then G is closed with respect to the vector sum, and
it is closed under multiplication by a scalar polynomial in F[z]; hence G is a module over the ring
F[z] of polynomials.

Proof. By Propositions A1 and A2, G is closed under addition and under multiplication
by a scalar polynomial in F[z]. One needs to verify that, see e.g., Definition IV.1.1 in
Hungerford (1980), for ζ(z), ψ(z) ∈ G and 1, a(z), b(z) ∈ F[z]

a(z) · (ζ(z)′ + ψ(z)′) = a(z) · ζ(z)′ + a(z) · ψ(z)′

(a(z) + b(z)) · ζ(z)′ = a(z) · ζ(z)′ + b(z) · ζ(z)′ (13)

(a(z)b(z)) · ζ(z)′ = a(z) · (b(z) · ζ(z)′)
1 · ζ(z)′ = ζ(z)′,

where · indicates multiplication by a scalar. The distributive properties in (13) are seen to
be satisfied. This proves the statement.

5.3. The Cointegrating Space rowF(z)(φ(z)′) as a Vector Space over F(z)

Finally consider rowF(z)(φ(z)′). The set of scalars F(z) is the field of rational functions
in z with coefficients in F. As it is well known, F(z) is a field (division ring), see e.g.,
Hungerford (1980).

Remark 24 (Rational vectors without poles at zω). Take ζ(L)′ to be a rational vector, i.e., of the
form ζ(z)′ = 1

d(z) b(z)′ where d(z) is a monic polynomial and b(z)′ is a 1× p vector polynomial,
with d(z) and b(z)′ relatively prime, see Example A1. If d(z) has no root equal to zω , then ζ(z)′ is
an analytic function on D(zω , η), η > 0, see Remark A1 and Lemma A1; hence a special case of an
analytic vector function ζ(z)′ is a rational vector with denominator d(z) without roots equal to zω .

Remark 25 (Rational vectors with poles at zω). If d(z) has one root equal to zω with multiplicity
m, then ζ(z)′ has a pole of order m, and it is not an analytic function on some D(zω, η), η > 0;
hence Definition 2 cannot be applied, because it requires ζ(z)′ to be analytic. However, one could
remove the pole of order m by defining ξ(z)′ := (1− z/zω)mζ(z)′, and use Definition 2 on ξ(z)′,
which is analytic function, as done in Definition 5.

Remark 26 (Representation for generic rational vectors). In the following, when dealing with
rational vectors of the type ζ(z)′ = 1

d(z) b(z)′, it is sufficient to consider the case where d(z)
does not have a root at zω, thanks to Definition 5. In fact, let d(z) be decomposed as d(z) =
(1− z/zω)md?(z) with d?(zω) 6= 0 and m ≥ 0; in this representation, zω is a root of d(z) if and
only if m > 0 and it is not a root if and only if m = 0. By Remark 24, ζ(z)′ is a (generalized)
cointegrating vector if and only if ξ(z)′ := (1− z/zω)mζ(z)′ = 1

d?(z)
b(z)′ is a cointegrating

vector. Hence Definition 5 allows to concentrate on the case where the denominator has no root
at zω.

The following proposition summarizes that rowF(z)(φ(z)′) is a vector space over the
field F(z) of rational functions.

Proposition 4 (rowF(z)(φ(z)′) is a vector space over F(z)). Let H = rowF(z)(φ(z)′) where
φ(z)′ is a canonical system of root functions of C(z) at zω with coefficients in F, where F(z) is the
field of rational function in z with coefficients in F; thenH is closed with respect to the vector sum,
and under multiplication by a scalar rational function in F(z), and H is a vectors space over the
field F(z) of rational functions.

Proof. H is closed with respect to multiplication by a rational function in F(z), see
Proposition A1, and with respect to vector addition, see Proposition A2. One can ver-
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ify for ζ(z), ψ(z) ∈ H and 1, a(z), b(z) ∈ F(z), that the distribution equalities in (13) are
satisfied. Because F(z) is a field, thenH is a vector space over F(z).

6. The Local Rank Factorization

This section shows how to explicitly obtain a canonical system of root functions φ(z)′

or an extended canonical system of root functions (φ(z), a⊥)′ for a generic VAR process

A(L)xt = εt, A0 6= 0, det A0 = 0, (14)

with A(z) analytic for all z ∈ D(0, 1 + η), η > 0, having roots at z = zω = eiω and at z with
|z| > 1, see Remarks 1 and 2.

The derivation of the Granger representation theorem involves the inversion of the
matrix function

A(z) =
∞

∑
n=0

(z− zω)
n An, An ∈ Cp×p, A0 6= 0, det A0 = 0, (15)

in D(zω , η). This includes the case of matrix polynomials A(z), in which the degree of A(z)
is finite, k say, with An = 0 for n > k.7

The inversion of A(z) around the singular point z = zω yields an inverse with a pole
of some order d = 1, 2, . . . at z = zω; an explicit condition on the coefficients {An}∞

n=0 in
(15) for A(z)−1 to have a pole of given order d is described in Theorem 2 below; this is
indicated as the POLE(d) condition in the following. Under the POLE(d) condition, A(z)−1

has Laurent expansion around z = zω given by

A(z)−1 =: (z− zω)
−dC(z) =

∞

∑
n=0

(z− zω)
n−dCn, C0 6= 0, det C0 = 0. (16)

Note that C(zω) = C0 6= 0 and C(z) is expanded around z = zω. In the following, the
coefficients {Cn}∞

n=0 are called the Laurent coefficients. The first d of them, {Cn}d−1
n=0, make

up the principal part and characterize the singularity of A(z)−1 at z = zω.
The following result is taken from Franchi and Paruolo (2019) Theorem 3.3.8

Theorem 2 (POLE(d) condition). Consider A(z) defined in (15); let 0 < r0 := rank A0 < p,
rmax

0 := p and define α0, β0 by the rank factorization A0 = −α0β′0. Moreover, for j = 1, 2, . . .
define αj, β j by the rank factorization

Paj⊥Aj,1Pbj⊥ = −αjβ
′
j, aj := (α0, . . . , αj−1), bj := (β0, . . . , β j−1), (17)

where Px denotes the orthogonal projection onto the space spanned by the columns of x and

Ah+1,n :=
{

An for h = 0
Ah,n+1 + Ah,1 ∑h−1

i=0 β̄iᾱ
′
i Ai+1,n for h = 1, 2, . . .

, n = 0, 1, . . . . (18)

Finally, let

rj := rank(Paj⊥Aj,1Pbj⊥), rmax
j := p−

j−1

∑
i=0

ri. (19)

Then, a necessary and sufficient condition for A(z) to have an inverse with pole of order d = 1, 2, . . .
at z = zω – called POLE(d) condition – is that{

rj < rmax
j (reduced rank condition) for j = 0, . . . , d− 1

rd = rmax
d (full rank condition) for j = d

.
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Observe that because rank Paj⊥Aj,1Pbj⊥ = rank a′j⊥Aj,1bj⊥, one has rj = rank a′j⊥Aj,1bj⊥;
hence d = 1 if and only if

r1 = rmax
1 , where r1 = rank α′0⊥A1β0⊥ and rmax

1 = p− r0.

This corresponds to the condition in Howlett (1982, Theorem 3) and to the I(1) condition
in Johansen (1991, Theorem 4.1). Similarly, one has d = 2 if and only if r1 < rmax

1 ,

r2 = rmax
2 , where r2 = rank a′2⊥(A2 + A1 β̄0ᾱ′0 A1)b2⊥ and rmax

2 = p− r0 − r1,

which corresponds to the I(2) condition in Johansen (1992, Theorem 3).
Theorem 2 is thus a generalization of the Johansen’s I(1) and I(2) conditions and

shows that, in order to have a pole of order d in the inverse, one needs d+ 1 rank conditions
on A(z): The first j = 0, . . . , d− 1 are reduced rank conditions, rj < rmax

j , that establish
that the order of the pole is greater than j; the last one is a full rank condition, rd = rmax

d ,
that establishes that the order of the pole is exactly equal to d. These requirements make up
the POLE(d) condition.

The following result is also taken from Franchi and Paruolo (2019).9

Theorem 3 (Local Smith factorization). Consider A(z) and the other related quantities defined
in Theorem 16; for j = 0, . . . , d, define the rj × p matrix functions γj(z)′ as follows

γ′j,0 := β′j, γ′j,n := −ᾱ′j Aj+1,n, n = 1, 2, . . . γj(z)′ :=
∞

∑
n=0

(z− zω)
nγ′j,n, (20)

and define the p× p matrix functions Γ(z) and Λ(z) as follows

Γ(z) :=

 γ0(z)′
...

γd(z)′

, Λ(z) :=

 (z− zω)0 Ir0
. . .

(z− zω)d Ird

. (21)

Then Γ(z), Ξ(z) := A(z)Γ(z)−1Λ(z)−1 are analytic and invertible on D(zω , η), η > 0, and Λ(z)
is the local Smith form of A(z) at zω , A(z) = Ξ(z)Λ(z)Γ(z). Moreover one can choose the factors
E(z), M(z), H(z) for the local Smith factorization of C(z) defined in (16), see (12), as

E(z) = Γ(z)−1, M(z) = (z− zω)
dΛ(z)−1, H(z) = Ξ(z)−1.

Theorem 3 shows that the LRF fully characterizes the elements of the local Smith
factorization of C(z) at zω . In fact, the values of j with rj > 0 in the LRF provide the distinct
partial multiplicities of C(z) at zω and rj gives the number of partial multiplicities that are
equal to a given j; this characterizes the local Smith form Λ(z). Moreover, it also provides
the constructions of an extended canonical system of root functions.

Remark that the j-th block of rows in Γ(z)C(z) = (z − zω)dΛ(z)−1Ξ(z)−1 can be
written as

γj(z)′C(z) = (z− zω)
d−jγ̃j(z)′, j = 0, . . . , d, (22)

where γj(zω)′ = β′j and γ̃j(zω)′ have full row rank; here γ̃j(z)′ denotes the corresponding

block of rows in Ξ(z)−1. This shows that γj(z)′ are rj root functions of order d− j of C(z).
The next result presents the Triangular representation as proved in Franchi and

Paruolo (2019, Corollary 4.6).



Econometrics 2021, 9, 31 16 of 27

Proposition 5 (Triangular representation). Let xt in (14) satisfy the POLE(d) condition on A(z)
and define

Γ◦(L) :=
(

φ(L)′

β′d

)
,

φ(L)′ :=


γ
(d−1)
0 (L)′

γ
(d−2)
1 (L)′

...
γ
(0)
d−1(L)′

 =


β′0 + ∑d−1

k=1(−zω)kγ′0,k∆k
ω

β′1 + ∑d−2
k=1(−zω)kγ′1,k∆k

ω
...

β′d−1

, (23)

where γ
(d−j−1)
j (z)′ = ∑

d−j−1
k=0 γ′j,k(z − zω)k is the truncation of order d − j − 1 of the root

functions γj(z)′ in (20). Then xt is I(d) and it admits the Triangular Representation

Λ(L)Γ◦(L)xt ∼ I(0)

where no linear combination exists of the l.h.s. that is integrated of lower order.

Observe that the canonical system of root functions φ(z)′ in (23) is not unique and
not of minimal polynomial order, as discussed in the next section. The following example
applies the above concepts in the I(2) VAR case.

Example 3 (I(2) VAR example continued). Consider Example 2. Applying truncation to the rows
of (β′0 + ∆ᾱ′0 A1), see Propositions 5 and A3, one finds that the columns in β′0 are root functions of
C(z) at ω = 0 of order at least min(2, 1) = 1. Consider now one row in (β′0 +∆ᾱ′0 A1 +∆2 A′) for
some matrix A; this root function is of order 2 by Remark 23, and its truncation to degree 1, i.e., to
the corresponding row of (β′0 +∆ᾱ′0 A1) is still of order 2 by Propositions 5 and A3, Finally consider
one row in (β′0 +∆A′), which gives a root function of order at least 1; its truncation to a polynomial
of degree 0 gives the corresponding row of β′0, which has order at least 1 by Propositions 5 and A3.
In fact the rows of β′0 give root functions of order equal to 1 or to 2, when the corresponding entries
in ᾱ′0 A1 in (β′0 + ∆ᾱ′0 A1) are equal to 0, as discussed below.

7. Minimal Bases

This section describes the algorithm of Forney (1975) to reduce the basis φ(z)′ to
minimal order, using the generic notation of b(z)′ in place of φ(z)′. The generic basis b(z)′

is assumed to be rational and of dimension r × p. This algorithm exploits the nesting
rowF(b(z)′) ⊂ rowF[z](b(z)′) ⊂ rowF(z)(b(z)′). In the following, the j-row of b(z)′ is
indicated as bj(z)′, which is the j-th element of the basis, j = 1, . . . , r. Various modifications
of the original basis b(0)(z)′ := b(z)′ are indicated as b(h)(z)′ for h = 1, 2, 3.

Definition 6 (Degree of b(z)′). If b(z)′ is a polynomial basis, the degree vj of its j-th row,
indicated as vj := deg bj(z)′, is defined as the maximum degree of its elements, and the degree v of
b(z)′ is defined as v := deg b(z)′ := ∑r

j=1 vj, i.e., the sum of the degrees of its rows.

The reduction algorithm proposed by Forney (1975, pp. 497–98) consists of the following
3 steps.

Step 1 If b(0)(z)′ is not polynomial, multiply each row by the least common denominator
of each row to obtain a polynomial basis b(1)(z)′.

Step 2 Reduce row orders in b(1)(z)′ by taking F[z]-linear combinations.
Step 3 Reduce b(2)(z)′ to a basis b(3)(z)′ with a full-row-rank high order coefficient matrix,

i.e., a “row proper” basis.

This procedure gives a final basis b(3)(z)′ which has lowest degree, see Forney (1975)
Section 3.
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Remark 27 (Spaces and algorithm). Step 1 works on rowF(z)(φ(z)′), Step 2 works on
rowF[z](φ(z)′), Step 3 uses F-linear combinations on Q(z)φ(z)′ with appropriate square polyno-
mial matrices Q(z).

7.1. Step 1

If b(0)(z)′ is polynomial, the algorithm sets b(1)(z)′ = b(0)(z)′; otherwise b(0)(z)′ is
rational, and its j-th row bj(z)′ has representation bj(z)′ = 1

aj(z)
cj(z)′, where cj(z)′ is a

polynomial row vector and aj(z) is a scalar polynomial, and cj(z) and aj(z) are relatively
prime. The first step consist in computing b(1)(z)′ = diag(a1(z), . . . , ar(z))b(0)(z)′, where
Q(z) := diag(a1(z), . . . , ar(z)) is a square polynomial matrix of dimension r.

7.2. Step 2

The second step reduces the degree of the rows in b(1)(z)′. This involves finding
specific points zh, h = 1, . . . , k, at which rank(b(1)(zh)

′) < r. To find them, one can calculate
the greatest common divisor `(z) of all r × r minors of b(1)(z)′. If `(z) = 1 this step is
complete, and the algorithm sets b(2)(z)′ = b(1)(z)′; otherwise one computes the zeros of
`(z), z1, . . . , zk say, where zh ∈ C, h = 1, . . . , k. The following substep is then applied to
each root zh sequentially, h = 1, . . . , k.

Denote by w(z)′ the current basis; this will be replaced by κ(z)′ at the end of this
substep. For h = 1, one has w(z)′ = b(1)(z)′. For z = zh, all minors of order r of w(zh)

′

vanish, which means that w(zh)
′ is singular, i.e., it has reduced rank and rank factorization

w(zh)
′ = ψa′, say, where ψ, a are full column rank. Let c′ := (c1, . . . , cp) be one row in ψ′⊥.

Indicate by Ac := {i : ci 6= 0} the set of its non-zero coefficients, and let vi0 := maxi∈Ac{vi}
be the maximal degree of rows in w(z)′ with nonzero coefficient in c′.

This substep consists of replacing row i0 of w(z)′ with c′w(z)′/(z− zh), which is still
a polynomial vector. In fact c′w(zh)

′ = 0′, so that c′w(zh)
′ has representation c′w(zh)

′ =
(z− zh)τ(z)′ with τ(z)′ a polynomial vector, so that c′w(z)′/(z− zh) = τ(z)′. This defines
κ(z)′ in terms of w(z)′ as κ(z)′ = B(z)−1Qw(z)′ where Q is an r× r square matrix, equal
to Ir except for row i0, equal to c′, and where B(z) is a diagonal matrix equal to Ir except
for having z− zh in its i0-th position on the diagonal. Note that Q is nonsingular, because
ci0 6= 0. The same procedure is applied to each row c′ of ψ′⊥.

This substep is repeated for all zj, j = 1, . . . , k. The condition on the minors in then
recalculated and the substep repeated for the new roots, until the greatest common divisor
`(z) of all r× r minors of κ(z)′ is 1. When this is the case, Step 2 sets b(2)(z)′ = κ(z)′.

7.3. Step 3

The last step operates on the high order coefficient matrix, repeating the follow-
ing substep. Let w(z)′ indicate b(2)(z)′ at the beginning of the substep, which will be
replaced by κ(z)′ at the end of it. Let vi be the order of the i-th row of w(z)′, indi-
cated as wi(z)′ = ∑vi

j=0(z− zω)jw′ij. The high-order matrix is defined as the r× p matrix
w′∗ := (w1v1 , . . . , wrvr )

′ composed of the coefficient matrix of the highest degree of (z− zω)
for each row of w(z)′.

A necessary and sufficient condition for w′∗ to be of full rank is that the order of w(z)′

is equal to the maximum order of its r× r minors. If this is not the case, w′∗ is singular, i.e.,
it has rank factorization w′∗ = ψa′ with ψ and a of full column rank. Hence one can choose
a vector c′ := (c1, . . . , cp) as one row in ψ′⊥ for which one has c′w′∗ = 0′.
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As before, let Ac := {i : ci 6= 0} and define vi0 := maxi∈Ac{vi}. Let also ni := vi0 − vi,
note that ni ≥ 0 for i ∈ Ac and let Q(z) := diag((z− zω)n1 , . . . (z− zω)nr ). Row i0 in w(z)′

is replaced by

q(z)′ := c′Q(z)w(z)′ = ∑
i∈Ac

ci

vi

∑
j=0

(z− zω)
j+ni w′i,j = ∑

i∈Ac

ci

vi0

∑
s=ni

(z− zω)
sw′i,s−ni

(24)

=

vi0−1

∑
j=0

(z− zω)
jq′j + (z− zω)

vi0 c′w′∗ =
vi0−1

∑
j=0

(z− zω)
jq′j, (25)

where s in the last expression in the first line is defined as j + ni and q′j := ∑i∈Ac ciw′i,ni+j.
The central expression in (24) shows that q(z)′ is polynomial because ni ≥ 0 in the

exponents of (z− zω). In order to see that the degree of q(z)′ is also lower than vi0 , one can
note that the the high order coefficient in (25), which correspond to s = vi0 in (24), equals
∑i∈Ac ciw′i,vi

= c′w′∗ = 0′. This implies that the order of q(z)′ is lower than vi0 , and that
replacing row i0 of w(z)′ with q(z)′ reduces the order of the vector.

This defines κ(z)′ in terms of w(z)′ as κ(z)′ = NQ(z)w(z)′ where N is an r× r square
matrix, equal to Ir except for row i0, equal to c′. Note that N is nonsingular, because ci0 6= 0.
This process is repeated for all the rows c′ in ψ′⊥. Next set w(z)′ = κ(z)′ and repeat until the
high order coefficient matrix has full rank. When this is the case, Step 3 sets b(3)(z)′ = κ(z)′.

8. From a Canonical System of Root Functions to a Minimal Basis for I(2) VAR

This section applies the algorithm of Forney reviewed in Section 7 to φ(z)′ in (23)
to reduce the basis to minimal order in the I(2) VAR example at frequency ω = 0. This
application leads to the separation of the cases of

(i) non-polynomial cointegrating relations reducing the order of integration from 2 to 0;
(ii) polynomial cointegrating relations reducing the order of integration from 2 to 0.

The process of obtaining minimal bases does not lead to a unique choice of ba-
sis; this leaves open the choice of how to further restrict the basis to obtain uniqueness.
Forney (1975) obtains uniqueness requiring the minimal basis to be in upper echelon form.
Other sets of restrictions can also be considered. For the sake of brevity, the restrictions on
how to obtain a unique minimum basis are not further discussed here.

8.1. Step 1 in I(2) VAR

Consider the triangular representation of an I(2) system, see (23):

Γ◦(z) :=
(

φ(z)′

β′2

)
, φ(z)′ :=

(
γ
(1)
0 (z)′

γ
(0)
1 (z)′

)
=

(
β′0 + γ′0,1(z− 1)

β′1

)
, (26)

and apply the algorithm of Forney (1975) to b(0)(z)′ := φ(z)′. Because b(0)(z)′ is already
polynomial, one has b(1)(z)′ = b(0)(z)′ = φ(z)′.

8.2. Step 2 in I(2) VAR

Next consider Step 2, and set w(z)′ = b(1)(z)′. One wishes to find some zero zh and
some corresponding c′ so as have c′w(zh)

′ = 0′. Denoting u = zh − 1, one hence needs to
find the pair (u, c′) such that

c′
((

β′0
β′1

)
+

(
γ′0,1

0

)
u
)
= 0, (27)
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where u is a scalar. Note that u = 0 is not a possible zero of (27), because w(zω) = (β0, β1)
′

is of full row rank, so that u 6= 0. Post-multiplying (27) by the square non-singular matrix
(β̄0, β̄1, β̄2) one finds

c′
((

Ir0 0 0
0 Ir1 0

)
+

(
γ′0,1 β̄0 γ′0,1 β̄1 γ′0,1 β̄2

0 0 0

)
u
)
= 0. (28)

Hence, partitioning c′ as c′ = (ς′, θ′) where ς′ is 1× r0, one finds that the second set of
equations gives θ′ = 0′ and the first one, substituting the expression of γ′0,1 = −ᾱ′0 A1 given
in Theorem 3, implies

ς′ᾱ′0 A1 β̄0 = λς′, λ := u−1 6= 0, (29)

ς′ᾱ′0 A1(β̄1, β̄2) = 0, (30)

where λ = u−1 6= 0 in (29); note also that u 6= 0 has been simplified in (30). This proves the
following proposition.

Proposition 6 (Step 2 condition in I(2)). A necessary and sufficient condition for Step 2 to be
non-empty is that (29), (30) hold simultaneously, i.e., that (λ, ς′) is a non-zero eigenvalue—left
eigenvector pair of ᾱ′0 A1 β̄0, and the left eigenvector v′ is orthogonal to ᾱ′0 A1(β̄1, β̄2). If this is the
case, for each pair (λ, ς′) one has

ς′ᾱ′0 A1 = ς′ᾱ′0 A1Pβ0 = λς′β′0. (31)

Observe that from (27), using c′ = (ς′, θ′) and z− 1 = z− zh + u with u = zh − 1, one
finds

c′w(z)′ = ς′β′0 − (z− zh + u)ς′ᾱ′0 A1

= ς′
(

β′0 − ᾱ′0 A1u
)
− (z− zh)ς

′ᾱ′0 A1 = −(z− zh)ς
′ᾱ′0 A1, (32)

where the last equality follows from (31). This shows that under the necessary and sufficient
condition in Proposition 6, there is a linear combination c′ of w′(z) where one can factor
z− zh out of c′w′(z), which reduces the order from 1 to 0. Here c′w′(z), which has degree
equal to 1, is replaced by c′w′(z)/(z− zh) = −ς′ᾱ′0 A1 = −λς′β′0, which has degree 0. Note
that from (31) the new cointegrating relation is in the span of β′0.

This can be done for all pairs (λ, ς′). Let (λj, ς′j) be all the pairs (λ, ς′) satisfying the
assumptions of Proposition 6, j = 1, . . . , s, and let q′ := (λ1ς1, . . . , λkςs)′. Choose also a′ as
some matrix (r− s)× r matrix such that (q, a) is square and nonsingular; many matrices
satisfy this criterion, including q⊥. The output of Step 2 can be expressed as the following
choice of b(2)(z)′:

b(2)(z)′ =

 a′β′0 − (z− 1)a′ᾱ′0 A1
q′β′0
β′1

. (33)

Remark 28 (CI(2,2) cointegration). This step brings out from φ(z)′ some cointegrating relations
q′β′0 that map the I(2) variables directly to I(0) without the help of first differences ∆.

8.3. Step 3 in I(2) VAR

Consider b(2)(z)′ in (33) and its high order coefficient matrix

w′∗ =

 −a′ᾱ′0 A1
q′β′0
β′1

.
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Step 3 requires to find a nonzero matrix c′ such that c′w′∗ = 0′. Recall that (β̄0, β̄1, β̄2) is
square and nonsingular; hence c′w′∗ = 0′ if and only if, partitioning c′ as c′ = (ζ ′, ρ′, τ′)
one has

0′ = c′w′∗
(

β̄0, β̄1, β̄2
)
=
(
ζ ′, ρ′, τ′

) −a′ᾱ′0 A1 β̄0 −a′ᾱ′0 A1 β̄1 −a′ᾱ′0 A1 β̄2
q′ 0 0
0 Ir1 0

.

This equality can be written as

ζ ′a′ᾱ′0 A1(β̄0, β̄1) = (ρ′q′, τ′), (34)

ζ ′a′ᾱ′0 A1 β̄2 = 0. (35)

Remark 29 (Further degree reductions). Equation (35) requires ζ ′ to be orthogonal to remaining
part of the multicointegrating coefficient a′ᾱ′0 A1 in direction of β2. In addition ζ ′ also needs to
satisfy (34). For some configurations of dimensions, (34) could be solvable for (ρ′, τ′) in terms of
other quantities; in this case (34) would not impose further restrictions.

Let also ϑ′ be any complementary matrix such that (ζ, ϑ) is square and nonsingular;
one possible choice of ϑ is ζ⊥. The output of Step 3 can be expressed as the following choice
of b(3)(z)′ :

b(3)(z)′ =


ϑ′a′(β′0 − (z− 1)ᾱ′0 A1)

ζ ′a′β′0
q′β′0
β′1

. (36)

Remark 30 (Minimal basis). This step brings out from φ(z)′ some other cointegrating relations
ζ ′a′β′0 that map the I(2) variables directly to I(0) without the help of first differences ∆. Equation (36)
shows how the canonical system of root functions can be reduced to minimal order.

Example 4 (Multicointegration coefficient in the span of β2). Consider the special case when
the multicointegrating coefficient ᾱ′0 A1 satisfies ᾱ′0 A1 = ᾱ′0 A1Pβ2 , i.e., it has components only in
the direction of β2. This special case is relevant, because β′2∆xt ∼ I(1) while β′i∆xt ∼ I(d) with
d ≤ 0 for i = 0, 1.

One can see that in this case the conditions in Proposition 6 are not satisfied. In fact (29)
cannot hold, as ᾱ′0 A1 β̄0 = 0. Step 2 is hence empty, and this implies that the rows including q′ are
missing and a = I in b(2)(z)′ in (33) and (36).

Applying Step 3, Equation (34) is always satisfied by the choice ρ′ = 0′, τ′ = 0′ because
ᾱ′0 A1(β̄0, β̄1) = 0. Equation (35) then reads ζ ′ᾱ′0 A1 β̄2 = 0, which is satisfied if and only if
δ := ᾱ′0 A1 β̄2 has reduced rank. In this case, let the rank factorization be δ = ψη′, with ψ and η of
full column rank. One can then let ζ ′ = ψ′⊥ and choose ϑ′ = ψ̄′, so that

b(3)(z)′ =

 ψ̄′β′0 − (z− 1)η′

ζ ′β′0
β′1

. (37)

There are several examples of this separation in the I(2) VAR literature; for example Kongsted (2005)
discusses this when r0 > r2.

9. Conclusions

This paper discusses the notion of cointegrating space for general I(d) processes. The
notion of cointegrating space was formally introduced in the literature by Johansen (1988)
for the case of I(1) VAR system. The definition of the cointegrating space is simplest
in the I(1) case without multicointegration, because there is no need to consider vector
polynomials in the lag operator.
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Engle and Yoo (1991) introduced the notion of polynomial cointegrating vectors in
parallel with the related one of multicointegration in Granger and Lee (1989). However, the
literature has not yet discussed the notion of cointegrating space in the general polynomial
case; this paper fills this gap.

In this context, this paper recognises that cointegrating vectors are in general root
functions, which have been analysed at length in the mathematical and engineering litera-
ture, see e.g., Gohberg et al. (1993). This allows to characterise a number of properties of
cointegrating vectors.

Canonical systems of root functions are found to provide a basis of several notions of
cointegration space in the multicointegrated case. The extended local rank factorization
of Franchi and Paruolo (2016) can be used to explicitly derive a canonical system of root
functions. This result is constructive, as it gives an explicit way to derive such a basis from
the VAR polynomial.

The canonical system of root functions constructed in this way is not necessarily of
minimal polynomial degree, however. The three-step procedure of Forney (1975) to reduce
this basis to minimal-degree is reviewed and restated in terms of rank factorizations. The
application of this procedure to I(2) VAR systems is shown to separate the polynomial and
the non-polynomial cointegrating vectors.
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Appendix A

Appendix A.1. Scalar, Vector, Matrix Analytic Functions

Consider a rational functions a(z), defined as a(z) = c(z)/d(z) with c(z) and d(z)
polynomials, where d(z) 6≡ 0. One can ask when a(z) is analytic on D(zω, η), η > 0. The
following remark states that this is the case provided zω is not a root of d(z).

Remark A1 (Rational scalars can be analytic on D(zω , η)). Let a(z) be a rational function, i.e.,
a(z) = c(z)/d(z) with c(z) and d(z) polynomial; assume also in addition that d(z) has no root
equal to zω. Then a(z) is analytic on D(zω, η), for some η > 0. In fact, let q = deg d(z) be the
degree of d(z), and decompose d(z) = ∑

q
j=0 d◦j zj as d(z) = d◦q ∏n

j=1(z− uj)
kj , where uj are the

roots of d(z) with multiplicity k j, j = 1, . . . , n using the factor theorem for polynomials, see e.g.,
Barbeau (1989, p. 56). Then each term (z− uj)

−kj has an analytic representation on D(zω, η),
η > 0, see e.g., Lemma A1 below. Note that this generates an infinite tail in a(z), i.e., a(z) is not
polynomial in this case (unless q = 0).

Lemma A1 (The inverse of a polynomial is analytic away form its roots). Let u1, . . . , un ∈ C
be the distinct roots of a polynomial d(z) with multiplicities k1, . . . , kn, k j ∈ N, and let v ∈ C be
another point, distinct from uj; then one can pick some radius δ with 0 < δ < minj=1,...,n

∣∣uj − v
∣∣

such that d(z)−1 is analytic on z ∈ D(v, δ).

Proof. The polynomial d(z) can be decomposed as d(z) = a ∏n
j=1(z− uj)

kj . Next consider

each term in the product (z− uj)
kj and observe that z− uj = (z− v)− (uj − v) = (v−

uj)(1− xj) where xj := (z− v)/(uj − v). Define 0 < δj <
∣∣uj − v

∣∣ and note that
∣∣xj
∣∣ < 1

for z ∈ D(v, δj), so that (1− xj)
−1 = ∑∞

s=0 xs
j for z ∈ D(v, δj) and

(z− uj)
−kj =

(
v− uj

)kj

(
∞

∑
s=0

(
z− v
uj − v

)s)kj

z ∈ D(v, δj).
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Hence (z− uj)
−kj is analytic on z ∈ D(v, δj) for any j = 1, . . . , n, and as a consequence also

on z ∈ D(v, δ) with 0 < δ < minj=1,...,n
∣∣uj − v

∣∣. This implies that d(z)−1 = a−1 ∏n
j=1(z−

uj)
−kj is analytic on z ∈ D(v, δ).

Similarly, consider a 1× p vector function ζ(z)′ with rational entries. The denominator
polynomials in all entries can be collected in a single one, the least common denominator,
and hence ζ(z)′ has representation ζ(z)′ = 1

d(z) b(z)′ where d(z) is a monic polynomial
and b(z)′ is a 1× p vector polynomial, and d(z) and b(z)′ are relatively prime. The same
applies to p× p rational matrix functions C(z).

Example A1 (The least common denominator of bivariate rational vectors). The least
common denominator can be illustrated as follows. Take a 1 × 2 rational row vector a(z)′ =
(a1(z), a2(z)) = (c1(z)/d1(z), c2(z)/d2(z)), where ci(z), di(z) are (nonzero) polynomials i =
1, 2; then one can find a polynomial d(z) with lowest degree such that d(z) = h1(z)d1(z) =
h2(z)d2(z) where hi(z) are polynomials i = 1, 2; d(z) is the least common multiple of the denomi-
nators, i.e., the least common denominator, and one has

a(z)′ =
(

c1(z)
d1(z)

,
c2(z)
d2(z)

)
=

(
c1(z)h1(z)

d(z)
,

c2(z)h2(z)
d(z)

)
=:

1
d(z)

b(z)′

with b(z)′ := (b1(z), b2(z)) := (c1(z)h1(z), c2(z)h2(z)) where bj(z) := cj(z)hj(z) are still
polynomials, so that b(z)′ is a vector polynomial. The vector polynomial b(z)′ and the scalar
polynomial d(z) are relatively prime, because there is no scalar polynomial g(z) that divides both
d(z) and all the elements in b(z)′. The polynomials in b(z)′ and d(z) can still be divided by a scalar
in F, so d(z) can be assumed to be monic.

Remark A2 (Rational vector and matrices). The 1× p analytic vector functions ζ(z)′ and
p× p analytic matrix functions C(z) can be generated as rational vectors or matrices, as long as
their denominator polynomial d(z) has no root equal to zω. When d(z) has one root equal to zω

with multiplicity m > 0, this implies that ζ(z)′ or C(z) have a pole of order m > 0 at zω, and
ζ(z)′ or C(z) are not analytic on a disk D(zω, η) centered around zω.

Appendix A.2. Spans of Canonical Systems of Root Functions

This section considers linear combinations of canonical system of root functions φ(z)′

with coefficients in F, F[z] and F(z). Attention is first given to multiplication of a root
function by a rational or polynomial scalar; next generic linear combinations of canonical
system of root functions in φ(z)′ are considered.

In order to discuss results, the notion of generalized root function is introduced first.

Definition A1 (Generalized root function). Let n ∈ Z and ζ(z)′ be a root function of C(z) at
zω and order s, see Definition 3; then

ξ(z)′ := (1− z/zω)
nζ(z)′

is called a generalized root function of C(z) at zω with order s and exponent n.

Observe that this is in line with Definition 5 of generalized cointegrating vectors for
rational vectors. The reason for the introduction of the notion of generalized root function
is provided by the next proposition.

Proposition A1 (Multiplication by a scalar). Let ζ(z)′ be a 1× p root function for C(z) of order
s on D(zω, η), η > 0. Then

(i) if a ∈ F, a 6= 0, then aζ(z)′ is a root function on D(zω, η) of order s;
(ii) if a(z) ∈ F[z], a(z) 6= 0, then a(z)ζ(z)′ is a generalized root function on D(zω , η) of order s

and exponent n ∈ N0 := N∪ 0;
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(iii) if a(z) ∈ F(z), a(z) 6= 0, then a(z)ζ(z)′ is a generalized root function on D(zω , η) of order s
and exponent n ∈ Z.

Proof. Consider first case (iii).
(iii). a(z) = a1(z)/a2(z) where ai(z) are relatively prime polynomials, i = 1, 2. If ai(z) has
root zω then it admits representation ai(z) = (1− z/zω)ni a�i (z) with ni ∈ N0 and a�i (zω) 6=
0, i = 1, 2. Hence a(z) = a1(z)/a2(z) = (1− z/zω)n1−n2 a�(z) where a�(z) := a�1(z)/a�2(z)
with a�(zω) 6= 0 and a(z)ζ(z)′ = (1− z/zω)n1−n2 a�(z)ζ(z)′. The factor (1− z/zω)n1−n2

has exponent n1 − n2, which can be positive, negative or 0; because ai(z) are relatively
prime polynomials, i = 1, 2, either n1 > 0 or n2 > 0 or n1 = n2 = 0. The factor a�(z)ζ(z)′

is a generalized root function of order s, because ζ(z)′ is a root function of order s and the
scalar factor a�(z) satisfies a�(zω) 6= 0, so that a�(zω)ζ(zω)′ 6= 0′. This shows that a(z)ζ(z)′

is a generalized root function of order s and exponent n = n1 − n2.
(ii). Set a2(z) = 1 in the proof of iii), and note that the exponent is n1, which is either 0 or
positive.
(i). Set a1(z) = a, a2(z) = 1 in the proof of iii), and note that the exponent is n1 = 0.

Remark A3 (A generalized root function is meromorphic). A generalized root function ξ(z)′

is analytic on D(zω, η) except for the possibility to have poles at the isolated point zω, i.e., it is a
meromorphic function on D(zω, η).

Remark A4 (A generalized root function can be analytic). When the exponent n of ξ(z)′ is
zero, the generalized root function ξ(z)′ coincides with the root function ζ(z)′. When the exponent
n of ξ(z)′ is positive, then the generalized root function ξ(z)′ has a zero at zω. In both cases ξ(z)′

is analytic. So a generalized root function can be analytic (with or without a zero at zω).

Remark A5 (Generalized root function and cointegration). Observe that Definition A1 implies
the following: given a meromorphic function ξ(z)′, check if it has a root or a pole at zω ; this function
is a generalized root functions if, after removing the pole or the zero at zω by multiplying it by
(1− z/zω)−n where n is the order of the root or of the pole, the resulting function is a root function,
i.e., a cointegrating vector. This is in line with Definition 5.

Attention is now turned to linear combinations of a canonical system of root functions
φ(z)′. The scalars of the linear combination can be in F, F[z] or F(z). The main result in
Proposition A2 below is that F[z]-linear combinations of φ(z)′ generate a generalized root
function possibly with a zero at zω, while F(z)-linear combinations of φ(z)′ generate a
generalized root function possibly with a pole or a zero at zω.

In the following, let v′ = (v1, . . . , vm)′ ∈ Fm be a 1 × m vector with elements in
F. Let also Av be the set of non-zero entries in v, Av := {i : vi 6= 0}, with nv the
cardinality of Av and (i1, . . . , inv) the ordered set of indices in Av, i1 < · · · < inv , ij ∈ Av.
Similarly, let w(z)′ = (w1(z), . . . , wm(z))′ ∈ F[z]m be a 1 × m vector with polynomial
elements in wi(z) ∈ F[z] with (j1, . . . , jnw) its ordered set of indices of nonzero elements
in Aw := {i : wi(z) 6= 0}, and let finally u(z)′ = (u1(z), . . . , um(z))′ ∈ F(z)m be a 1× m
vector with rational elements in ui(z) ∈ F(z) with (k1, . . . , knu) as its ordered set of indices
of nonzero elements in Au := {i : ui(z) 6= 0}.

Proposition A2 (Linear combinations). Let φ(z)′ = (φ1(z), . . . φm(z))′ be a canonical system
of root functions of C(z) on a disc D(zω, η), η > 0 with orders s1, . . . , sm; let also v′ ∈ Fm,
w(z)′ ∈ F[z]m and u(z)′ ∈ F(x)m be nonzero vectors; one has:

(i) v′φ(z)′ = ∑m
i=1 viφi(z)′ is a root function of order s = mini∈Av si;

(ii) w(z)′φ(z)′ = ∑m
j=1 wj(z)φj(z)′ is a generalized root function, with exponent q = minj∈Aw

(qj) ≥ 0 where qj is the order of zω as a zero of wj(z), and with order s := minj∈Aw(qj − q +
sj) > 0;
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(iii) u(z)′φ(z)′ = ∑m
k=1 uk(z)φk(z)′ is a generalized root function, possibly with a pole or a zero

at zω, with exponent q = mink∈Au(qk) ∈ Z where qk is the order of zω as a pole or as a zero
of uk(z), and with order s = mink∈Au(qk − q + sk) > 0.

Proof. (i). By definition φi(z)′ = ∑si
j=0(z− zω)jφ′ij, analytic on D(zω , η) and φ′ij ∈ Fp. One

finds ∑m
i=1 viφi(z)′ = ∑si

j=0(z− zω)j ϕ′j with ϕ′j := ∑m
i=1 viφ

′
ij ∈ Fp because F is a field, and

hence it is closed under multiplication. Hence v′φ(z)′ is a polynomial with coefficients
vectors in Fp, of the same form as each φi(z)′, and one finds that

v′φ(z)′C(z) =
m

∑
i=1

viφi(z)′C(z) = ∑
i∈Av

vi(z− zω)
si φ̃i(z)′ = (z− zω)

sφ̃(z)′ (A1)

where s := min{si1 , . . . , siv}, φ̃(z)′ := ∑nv
h=1(z− zω)sh−svih φ̃ih(z)

′ and φ̃ih(zω)′ 6= 0′. Note
that because v′ is a nonzero vector, the set Av is not empty. Next observe that φ̃(zω)′ 6= 0′

otherwise this would contradict the property of φih(z)
′ to be of maximal order and linearly

independent from the previous root function φi(z)′ for i < ih. This shows that v′φ(z)′ is a
root function of order s.
(ii). Consider w(z)′φ(z)′ = ∑m

i=1 wi(z)φi(z)′, where by Proposition A1. (i), one has
that wi(z)φi(z)′ is a generalized root function with representation wi(z)φi(z)′ = (1 −
z/zω)qi · ·w�i (z)φi(z)′ say, with qi ≥ 0 and w�i (z)φi(z)′ a root function of order si. Let
q := min(qj1 , . . . , qjw), and note that w(z)′φ(z)′ = (1− z/zω)qζ(z)′ with ζ(z)′ := ∑nw

h=1(1−
z/zω)

qjh
−qw�jh(z)φjh(z)

′. In order to show that ζ(zω)′ 6= 0′, let Bw be the set of indices j ∈ Aw

with qj = q, and observe that ζ(zω)′ = ∑j∈Bw w�j (zω)φj(zω)′ where w�j (zω) 6= 0 by con-
struction and φj(zω)′ 6= 0′ by the definition of root function. If ζ(zω)′ = 0′ this would
imply that there is a nonzero linear combination of φ(zω)′ equal to 0’, i.e., that φ(zω)′ is
not of full row rank, which contradicts the construction in Definition 4. This implies that
ζ(zω)′ 6= 0′, and that w(z)′φ(z)′ is a generalized root function of order q.

Next, because φj(z)′ is a root function of order sj one has

ζ(z)′C(z) =
nw

∑
h=1

(1− z/zω)
qjh
−qw�jh(z)φjh(z)

′C(z)

=
nw

∑
h=1

(1− z/zω)
qjh
−q+sjh w�jh(z)φ̃jh(z)

′ = (1− z/zω)
s ζ̃(z)′

where ζ̃(z)′ := ∑nw
h=1(1− z/zω)

qjh
−q+sjh

−sw�jh(z)φ̃jh(z)
′. Finally, in order to prove that the

order of the generalized root function is s, one needs to show that ζ̃(zω)′ 6= 0′. Let Cw be the
set of indices j ∈ Aw with qjh − q+ sjh = s, and observe that ζ̃(zω)′ := ∑j∈Cw w�j (zω)φ̃j(zω)′

where w�j (zω) 6= 0 and φj(zω)′ 6= 0′ as above. If ζ̃(zω)′ = 0′, then there exists a nonzero
linear combination of φ(zω)′ equal to 0′, which would imply the existence of a root func-
tion of higher order obtained by combination of the rows in φ(z)′ with index Cw, which
contradict the fact that the orders are chosen to be maximal. This implies that the order of
the generalized root function is equal to s.
(iii). The proof is the same as in ii). Note that here qi may be negative.

Remark A6 (Closure with respect to linear combinations). Proposition A2 shows that F[z]-
linear combinations and F(z)-linear combinations of a canonical systems of root functions φ(z)′

produce generalized root functions. Note that φ(z)′ is itself a set of generalized root functions
(with 0 exponent). Hence, in this sense, generalized root functions are closed under F[z]-linear
combinations and F(z)-linear combinations.



Econometrics 2021, 9, 31 25 of 27

Remark A7 (Spans). Indicate the set of G-linear combinations φ(z)′ as rowG(φ(z)′), where
G = F, F(z), F[z]. It is simple to observe that

rowF(φ(z)′) ⊂ rowF[z](φ(z)
′) ⊂ rowF(z)(φ(z)

′). (A2)

Remark A8 (Role of characteristics of canonical system of root functions). The proof of
Proposition A2 reveals that, in order to conclude that a F[z]- or F(z)-linear combination of φ(z)′ is
a generalized root function, the property that φ(zω)′ is of full row rank plays a crucial role. In fact,
when reaching the equality w(z)′φ(z)′ = (1− z/zω)qζ(z)′ where q is the exponent of the linear
combination, one can show that ζ(zω)′ 6= 0′ by making use of this property only, without using the
maximal orders of the root functions in φ(z)′. This proves the following corollary.

Corollary A1 (Linear combinations of a set of root functions). Replace the canonical system of
root functions φ(z)′ in Proposition A2 with a set of m root functions ξ(z)′ for C(z) on D(zω, η),
η > 0 such that ξ(zω)′ is of full row rank; then the F[z]- or F(z)-linear combinations w(z)′ξ(z)′

and u(z)′ξ(z)′ are generalized root functions with the same exponents as in Proposition A2.

Appendix A.3. Truncations of Root Functions

This section discusses how the truncation of a root function still delivers a root function,
possibly of lower order. The main implication of this property is that one can take any
element in rowG(φ(z)′) for G = F, F[z], F(z) and obtain other root functions by truncation,
thus enlarging the set of root functions that can be generated from rowG(φ(z)′).

Let ζ(z)′ := ∑∞
j=0(z− zω)jζ ′j be a 1× p root function of order s of C(z) on D(zω, η),

η > 0, and indicate the truncation of ζ(z)′ to a polynomial of degree r as ζ(r)(z)′ :=
∑r

j=0(z − zω)jζ ′j; the remainder ζ(z)′ − ζ(r)(z)′ = ∑∞
j=r+1(z − zω)jζ ′j is called the tail of

ζ(z)′. The following proposition clarifies that one can modify the tail of a root function
without affecting its property to factor some power of (1− z/zω) from C(z). One special
case is that one can delete the tail after the order s of the root function without changing its
order.

Proposition A3 (Truncations). Let ζ(z)′ := ∑∞
j=0(z− zω)jζ ′j be a root function of order s for

C(z) = ∑∞
j=0(z− zω)jCj on D(zω, η), η > 0, ζ(zω)′ 6= 0′, and let ψ(z)′ := ∑∞

j=0(z− zω)jψ′j
be a 1× p vector function, analytic on D(zω, η); then

(i) for an integer ` ≥ 1, the 1× p row vector ξ(z)′ with

ξ(z)′ := ζ(z)′ + (z− zω)
`ψ(z)′ (A3)

is still a root function on D(zω, η) of order n ≥ min(`, s);
(ii) if one chooses ` ≤ s, in the definition (A3) of ξ(z)′ with ψ(z)′ proportional to the tail of ζ(z)′, a

special case of i) is that the truncation of ζ(z)′ to the polynomial ζ(`)(z)′ := ∑`
j=0(z− zω)jζ ′j

of order ` is also a root function on D(zω, η) of order n ≥ `;
(iii) finally if ζ(z)′ := ∑∞

j=0(z− zω)jζ ′j is a root function of order s in a canonical system of root

functions of C(z) at zω, then its truncation ζ(s−1)(z)′ := ∑s−1
j=0(z− zω)jζ ′j to a polynomial

of degree s− 1 is still a root function of C(z) at zω on D(zω, η) of order s.

Proof. (i). By definition one has ζ(z)′C(z) = (z− zω)s ζ̃(z)′ with ζ̃(zω)′ = ∑s
h=0 ζ ′hCs−h 6=

0′. Hence, setting q := min(`, s), one finds

ξ(z)′C(z) = ζ(z)′C(z) + (z− zω)
`ψ(z)′C(z) = (z− zω)

q ξ̃(z)′.

where ξ̃(z)′ = (z− zω)s−q ζ̃(z)′ + (z− zω)`−qψ(z)′C(z). If ξ̃(zω)′ 6= 0′, then ξ(z)′ is a root
function of order q. If, instead, ξ̃(zω)′ = 0′, then ξ(z)′ is a root function of order n greater
than q; in any case n ≥ q, with n finite by Proposition 2.
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(ii). Choose ψ(z)′ = (z− zω)−`(ζ(z)′ − ζ(`)(z)′) = ∑∞
j=`+1(z− zω)j−`ζ ′j in (A3), so that

ξ(z)′ = ζ(`)(z)′. The statement follows from (i).
(iii). The coefficients ζ(z)′ and ζ(s−1)(z)′ generate the same coefficients Wh := ∑h

j=0 ζ ′jCh−j

for h = 0, . . . , s − 1 in the convolution ζ(z)′C(z) = W(z) := ∑∞
h=0(z − zω)hWh, where

Wh = 0 for h = 0, . . . , s− 1 by definition of order s, see (8). This implies that ζ(s−1)(z)′ is
a root function at least of order s. However, because root functions in a canonical system
of root functions are chosen of maximal order, the order of ζ(s−1)(z)′ is equal to s. This
completes the proof.

Remark A9 (Truncated cointegrating vectors). Proposition A3. (ii) implies that truncating a
cointegrating vector to order ` < s preserves the cointegrating property, but not necessarily the
order s.

Remark A10 (Cointegrating vectors in Iω(1) VAR can be chosen not to be polynomial).
Consider Example 1, where the orders of integration of (polynomial) linear combinations can be
either 1 or 0. In this case, root function are of order at most s = 1, and Proposition A3. (iii)
ensures that the root functions can be truncated to order s− 1 = 0, i.e., to non-polynomial linear
combinations.

Remark A11 (A generic Iω(1) process may have polynomial cointegration relations). Con-
sider now the generic case of an I(1) process. The orders of integration of (polynomial) linear
combinations can be 0,−1,−2, · · · − d say, with d > 0. In this case, root function are of order at
most s = 1, 2 . . . , d + 1, and Proposition A3. (iii) ensures that the root functions can be truncated
to order d. If d > 0 this may require polynomial linear combinations also in the Iω(1) case.

Remark A12 (Polynomial cointegration vectors in Iω(2) VAR can be chosen of order at most
1). Consider Example 2, where the orders of integration of (polynomial) linear combinations can
be either 2, 1 or 0. In this case, root function are of order at most s = 2, and Proposition A3. (iii)
ensures that the root functions can be truncated to order s − 1 = 1, i.e., to polynomial linear
combinations of order 1.

Remark A13 (Multicointegrated systems require polynomial cointegration relations). As
shown in the previous three remarks, in general, multicointegrated systems require to consider
polynomial linear combinations.

Notes
1 See Engle and Granger (1987, pp. 253–54). Here N in their notation is replaced by p and α with β for consistency with the rest of

the paper.
2 The following notation is employed: F = R,C indicates either the field of real numbers R or the field of complex numbers C

and if a matrix A = (a1, . . . , an) is written in terms of its columns, colF(A) indicates the column span of A with coefficients in F,
i.e., colF(A) := {v : v = ∑n

j=1 ciai, ci ∈ F} and rowF(A′) denotes the row span of A′ with coefficients in F, i.e., rowF(A′) := {v′ :
v′ = ∑n

j=1 cia′i , ci ∈ F}, where A′ indicates the conjugate transpose of A. Hence v ∈ colF(A) if and only if v′ ∈ rowF(A′), i.e., the
spaces coincide but the former contains column vectors while the latter contains row vectors. Here the row form is employed.

3 εt could be taken to be non-autocorrelated instead of i.i.d. with no major changes in the results in the paper.
4 This result is usually stated as xt = ut − a0 where a0 := x0 − u0 is a generic constant, see e.g., Hannan and Deistler (1988)

Equation (1.2.15).
5 In fact, substituting C(z) = C + C̃(z)(1− z), one finds ζ ′∆xt = ζ ′Cεt + ζ ′C̃(L)∆εt, and applying S to both sides gives ζ ′xt −

ζ ′x0 = ζ ′CSεt + ut − u0 where ut := ζ ′C̃(L)εt is stationary. The term Sεt is a bilateral random walk (Franchi and Paruolo 2019),
a nonstationary process, so that the l.h.s. can be made stationary if and only if the coefficient ζ ′C loading Sεt is 0.

6 Theorem 3 provides two constructions of the local Smith factorization.
7 In this case A(z) is analytic for all z ∈ C.
8 In the first sentence in Definition 3.1 of Franchi and Paruolo (2019) ‘rmax

0 := p− r0’ should read ‘rmax
0 := p’. The results of Franchi

and Paruolo (2019, Theorem 3.3) are applied setting F(z) there equal to A(z) here.
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9 The present statement follows by Franchi and Paruolo (2019, Theorem 3.5) with F(z) and Φ(z) there equal to A(z) and Ξ(z)−1

here.

References
Barbeau, Edward J. 1989. Polynomials. Berlin and Heidelberg: Springer.
Bauer, Dietmar, and Martin Wagner. 2012. A State Space Canonical Form for Unit Root Processes. Econometric Theory 28: 1313–49.
Beare, Brendan, and Won-ki Seo. 2020. Representation of I(1) and I(2) autoregressive Hilbertian processes. Econometric Theory 36:

773–802.
Beare, Brendan, Juwon Seo, and Won-ki Seo. 2017. Cointegrated Linear Processes in Hilbert Space. Journal of Time Series Analysis 38:

1010–27.
Engle, Robert F., and Clive W. J. Granger. 1987. Co-integration and Error Correction: Representation, Estimation, and Testing.

Econometrica 55: 251–76.
Engle, Robert F., and Sam B. Yoo. 1991. Cointegrated economic time series: An overview with new results. In Long-Run Economic

Relations: Readings in Cointegration. Edited by Robert Engle and Clive Granger. Oxford: Oxford University Press, pp. 237–66.
Engsted, Tom, and Søren Johansen. 2000. Granger’s Representation Theorem and Multicointegration. In Cointegration, Causality and

Forecasting: Festschrift in Honour of Clive Granger. Edited by R. F. Engle and H. White. Oxford: Oxford University Press, pp. 200–12.
Forney, G. David, Jr. 1975. Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM Journal on

Control 13: 493–520. [CrossRef]
Franchi, Massimo, and Paolo Paruolo. 2011. Inversion of regular analytic matrix functions: Local Smith form and subspace duality.

Linear Algebra and Its Applications 435: 2896–912.
Franchi, Massimo, and Paolo Paruolo. 2016. Inverting a matrix function around a singularity via local rank factorization. SIAM Journal

of Matrix Analysis and Applications 37: 774–97.
Franchi, Massimo, and Paolo Paruolo. 2019. A general inversion theorem for cointegration. Econometric Reviews 38: 1176–201.

[CrossRef]
Franchi, Massimo, and Paolo Paruolo. 2020. Cointegration in functional autoregressive processes. Econometric Theory 36: 803–39.
Gohberg, Israel, Marinus A. Kaashoek, and Frederik Van Schagen. 1993. On the local theory of regular analytic matrix functions. Linear

Algebra and Its Applications 182: 9–25.
Granger, Clive W. J., and Tae-Hwy Lee. 1989. Investigation of production, sales and inventory relationships using multicointegration

and non-symmetric error correction models. Journal of Applied Econometrics 4: S145–59.
Gregoir, Stèphane M. 1999. Multivariate time series with various hidden unit roots, Part I. Econometric Theory 15: 435–68.
Hannan, Edward J., and Manfred Deistler. 1988. The Statistical Theory of Linear Systems. Hoboken: John Wiley & Sons.
Howlett, Phil G. 1982. Input retrieval in finite dimensional linear systems. Journal of Australian Mathematical Society (Series B) 23: 357–82.
Hungerford, Thomas W. 1980. Algebra. Berlin and Heidelberg: Springer.
Hylleberg, Svend, Robert F. Engle, Clive W. J. Granger, and Sam B. Yoo. 1990. Seasonal integration and cointegration. Journal of

Econometrics 44: 215–38.
Johansen, Søren. 1988. Statistical Analysis of Cointegration Vectors. Journal of Economic Dynamics and Control 12: 231–54.
Johansen, Søren. 1991. Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models.

Econometrica 59: 1551–80.
Johansen, Søren. 1992. A representation of vector autoregressive processes integrated of order 2. Econometric Theory 8: 188–202.
Johansen, Søren. 1995. Identifying restrictions of linear equations with applications to simultaneous equations and cointegration.

Journal of Econometrics 69: 111–32.
Johansen, Søren. 1996. Likelihood-Based Inference in Cointegrated Vector Auto-Regressive Models. Oxford: Oxford University Press.
Johansen, Søren, and E. Schaumburg. 1998. Likelihood analysis of seasonal cointegration. Journal of Econometrics 88: 301–39.
Kongsted, Hans Christian. 2005. Testing the nominal-to-real transformation. Journal of Econometrics 124: 205–25. [CrossRef]
Mosconi, Rocco, and Paolo Paruolo. 2017. Identification conditions in simultaneous systems of cointegrating equations with integrated

variables of higher order. Journal of Econometrics 198: 271–76. [CrossRef]
Seo, Won-ki. 2019. Cointegration and Representation of Cointegrated Autoregressive Processes in Banach Spaces. arXiv

arXiv:1712.08748v4.

doi.org/10.1080/07474938.2018.1536100
doi.org/10.1016/j.jeconom.2004.02.016
doi.org/10.1016/j.jeconom.2017.01.007

	Introduction
	Motivation
	Setup and Definitions
	Linear Processes
	Integration
	Cointegration

	Root Functions, Cointegrating Vectors and Canonical Systems
	Root Functions
	Canonical Systems of Root Functions

	Cointegrating Spaces
	The Cointegrating Space rowF ((z)') as a Vector Space over F
	The Cointegrating Space rowF[z]((z)') as a Free Module over F[z]
	The Cointegrating Space rowF(z)((z)') as a Vector Space over F(z)

	The Local Rank Factorization
	Minimal Bases
	Step 1
	Step 2
	Step 3

	From a Canonical System of Root Functions to a Minimal Basis for I(2) VAR
	Step 1 in I(2) VAR
	Step 2 in I(2) VAR
	Step 3 in I(2) VAR

	Conclusions
	
	Scalar, Vector, Matrix Analytic Functions
	Spans of Canonical Systems of Root Functions
	Truncations of Root Functions

	References

