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Abstract 
 
Bottom-up optimization models neglect the inclusion of investment behavior We 
introduce three investor types that differ in their investment cost specifications, 
financing costs, and discounting. This leads to a substantially different pace and rate 

of adoption for specific generation technologies. For the European power market, 
2050 wind (nuclear, gas-CCS) capacity ranges from 624 to 1,113 GW (84 to 194 GW, 383 
to 502 GW), depending on the respective investor type. Accounting for type heterogeneity 
leads to 2050 wind (nuclear, gas-CCS) capacity of 912 GW (140 GW, 428 GW). Technology-

specific financing cost increase 2050 wind (nuclear, gas-CCS) capacity even to 1,069 GW 
(80 GW, 449 GW). Hence, our results confirm that accounting for more differentiated 
picture of electricity market investment with heterogeneous investor types can provide 
a starting point for tailor-made energy policies, thereby increasing the efficiency and 

effectiveness of public policies fostering the decarbonization of power markets. 
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1. Introduction

Detailed numerical bottom-up models are widely used as tools of analysis to provide robust
policy recommendations. Those models run different scenarios to advice decision makers in the
energy and power sector by informing about the role of climate change and assessing the impact
of potential changes in environmental policies (Cao et al., 2016). Modeling the temporal as well
as spatial resolution, technology details, and economic behavior are some of the major future
challenges facing detailed numerical energy system and power market models (Pfenninger et al.,
2014). Some models are already able to depict complete hourly resolution of the year when
applying a myopic approach (Poncelet et al., 2016, e.g.,). Others have flexible spatial resolution
below country-level scope which can be adjusted in line with the research question (Mart́ınez-
Gordón et al., 2021, e.g.,). Others have fundamental technology richness and depict, for example,
additional technological characteristics of storage such as maximum cycles and power plants like
ramping constraints (e.g., Ringkjøb et al., 2018).

However, those improvements only bring the models moderately closer when depicting reality
while also driving them even further apart from each other. At the same time, one crucial driver of
models’ outcomes—economic behavior of firms and investors, is not covered in these advancements.
We address this gap in the existing research by elaborating on the role of economic behavior in
detailed power market models. In this regard, we evaluate the impact of investor type heterogeneity
by means of diverging investment cost specifications, financing cost, and discounting.

The key determinants of investment behavior are usually attributed to firm-, market-, and
project-specific characteristics (Groot et al., 2013). Starting with firm-specific drivers, investment
behavior differs for stock market listed, privately held, and public firms. Those firms differ in
their investment magnitudes, reaction to changes in investment opportunities, financing costs, and
their way of discounting future cost and benefits from investments. Stock market listed firms
tend to invest considerably less and are not as responsive to changes in investment opportunities,
especially in industries in which stock prices are quite sensitive to earnings news (Asker et al.,
2011). Public firms focus more on long-term projects, tolerate investments with higher levels of
uncertainty, have better access to equity capital because the state as (predominant) owner can
withhold profits and provide additional funding when necessary (Groot et al., 2013). Furthermore,
market specific drivers such as the degree of competition and underlying ownership structures
determine investment behavior, the types of firms active in a specific market, and vice versa.
The lack of attention to market-specific conditions in power market models dates back to the
early 1950s, where the optimization problem was limited to the capacity expansion of a vertically
integrated and heavily regulated monopoly (Foley et al., 2010). The liberalization of power markets
in the United States and Europe heralded the end of an era of monopolies and opened the markets
for new players leading to diverging degrees of competition and various combinations of firms with
varying ownership structures. For instance, private investors and renewable-energy funds entered
the markets when renewables had started to play an important role (e.g. Hirth and Steckel, 2016).1

1Marti-Ballester (2020) suggest that renewable-energy fund investors are less sensitive to past financial perfor-
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Finally, technology-specific drivers cover irreversibility of investments as well as technological and
regulatory uncertainty (Groot et al., 2013). Irreversibility is higher for conventional power plants
and political support to expand renewables contributes to reducing regulatory uncertainty and thus
also financing cost for renewables projects. Moreover, renewable power plants are perceived to be
less technologically demanding. Additionally, a varying discount rate is often applied by investors
when assessing conventional and renewables investments (Steffen, 2020). The key determinants of
investment behavior also interact with each other and can partly induce themselves. For example,
new players on power markets tend to be stock market listed or privately held firms with higher
shares of renewable energies compared to conventional technologies.2 However, existing models
fully neglect the existence of those drivers and instead apply an averaged ”representative” investor
operating in an averaged market environment (Tash et al., 2019).

In this paper, we advance a more differentiated picture of power market investment by de-
veloping a theoretical framework to model investor type heterogeneity and testing in with the
EUREGEN model—a European power market partial equilibrium model that optimizes invest-
ments, decommissioning, and dispatch for generation, storage, and transmission technologies in-
tertemporally until 2050—allowing to quantify the impact of investor type heterogeneity on capac-
ity expansion, generation mix, and CO2 emissions.3 Three different investment cost specifications
reflect three types of investors, which can be observed on the majority of power markets including
utilities, social planners, and private or institutional investors.

Normal investors apply an investment cost specification that carries the burden of investments
in the period of investment (e.g., Weissbart and Blanford, 2019). Such a behavior bests reflects
public firms or heavily regulated (by a social planner) monopolies. Capital cost investors represent
big institutional investors and funds, that only pay for bound capital which is a mix of own and
debt capitals (e.g., Bachner et al., 2019). In turn, repayment is of little consequence for this
type of investor, since capital cost investors can refinance themselves by own revenues or new
debt capital. Repayment, in turn, matters for the annuity investors, who are intended to match
smaller and private firms’ and investors’ behaviors. The underlying assumptions—albeit often not
clearly stated in model documentations—is that investment is 100% financed by debt capital and
the annuity is a constant charge that has to be paid every year over the payback time of the
investment including repayment and interest (e.g., Gerbaulet and Lorenz, 2017, Hess et al., 2018).
We additionally change discount and interest rates for normal, capital cost, and annuity investors.
The normal investor faces lowest discount rates because of the long-run orientation of public firms
and lowest interest rates because the state as owner reduces financing cost. The annuity investor
then faces highest discount and interest rates. Additionally, we apply technology-specific mark-ups

mance than are classic utilities or conventional fund investors because renewable-energy fund investors derive parts
of their utility from non-financial attributes.

2In 2016, 86% of conventional power generation capacity is owned by the four biggest utilities in Germany,
whereas they own 17% of renewables generation capacity.

3See Weissbart and Blanford (2019) for the underlying basics of the EUREGEN model and Weissbart (2020),
Mier and Weissbart (2020), Mier et al. (2020), Siala et al. (2020), Azarova and Mier (2020) for applications.
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on interest rates to reflect irreversibility as well as varying degree of technological and regulatory
uncertainty of conventional and renewables projects.

We start by highlighting the impact of the three investment cost specifications under the
assumption of same interest and discount rates for each investor type. The normal investor invests
earlier and less later. In turn, the capital cost investor closes the gap to the normal investor over
time. The annuity investor invests the least and the gap to the others stays persistent even in
long-term horizon. The normal investor increasingly invests when neglecting discounting, whereas
no discounting hampers investments for capital cost and annuity investors. Differences are also
far smaller for capital cost and annuity investors compared to the discounting case. Next, we vary
discount and interest rates for each investor type. For the normal investor, lower interest rates lead
to more short-term investments. In the long-run total capacity is smaller because nuclear expansion
is fostered by low interest and discount rates. The pattern completely turns for the capital cost
investor. Very low discount and interest rates lead to increasingly investments over the entire time
horizon. The annuity investor, in turn, is very insensitive towards changes in interest and discount
rates. Finally, we apply type- and technology-specific interest and discounts rates and combine
the three investors within the model to account for investor type heterogeneity on markets. The
differences between the types increase when applying type-specific rates (normal investor faces
lowest rates, annuity investor highest). Assuming equal shares of investors in turn gives a robust
projection for the long-run equilibrium of the European power market. However, technology-
specific interest rates impact results more than type-specific interest rates when accounting for
investor type heterogeneity.

In this paper, we examine how integrating investment behavior and investor type heterogeneity
within one model framework affects the outcome of bottom-up optimization models. To do so, we
discuss theoretical and empirical evidence for determinants of investment decisions in Section 2.
Section 3 describes theoretical foundations of the modeling strategy. Section 4 provides illustrative
examples for the different investment cost specifications of each investor type and Section 5 gives
on overview about the most important underlying data. Section 6 presents results and Section 7
concludes.

2. Literature

Explaining and predicting investment behavior has long been the focus of economic studies,
starting in 1920s with a rather simplistic and criticized accelerator theory according to which
investments are triggered by increasing growth in demand (Hochstein, 2018). Jorgenson (1967)
explains the determinants of investment behavior based on the neoclassical theory of optimal
capital accumulation and key assumption of firm’s present value maximization. He defines the
appropriate cost of capital for investment decisions as the weighted average of the expected return
to equity and return to debt. Thereby, the cost of capital and investment decision are assumed to
be independent of the financial structure of the firm or of its dividend policy. This contradicts the
cost of capital as defined in the liquidity theory of investment behavior (Meyer and Kuh, 1955,
Jorgenson et al., 1970). Other studies suggest alternative theories and doubt that firms should
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be aiming to maximize the present value instead of profits (Hannan, 1982, Olsen, 1977). Other
studies forward real option theory (Arrow and Fisher, 1974, Gollier et al., 2005) which advances
importance of timing (investment postponement option) and flexibility, refraining from “now or
never” investment decisions as is the case with prior theories, and introducing risk and uncertainty
considerations (Kozlova, 2017, Black and Scholes, 1973). The real option theory is frequently
applied in the context of investments in generation capacity and renewable energy investments
specifically (e.g. Reuter et al., 2012).

These theories, among others, have been tested and proven (or proven wrong) by a plethora
of empirical works (Farla, 2014) aiming to explain investment behaviour and decision-making
of different actors from variety of sectors and industries (e.g. Jorgenson, 1971, Jorgenson et al.,
1970, Guussen and Opschoor, 1995, Cummins et al., 2006, Lioukas, 1983), countries (e.g. Feldstein
and Flemming, 1971, Gedajlovic et al., 2005, Meinen and Röhe, 2017, Döring et al., 2021), and
policy setups including the impact of feed-in tariffs, investment subsidies, taxation schemes as
well as credits, and certificate systems (e.g. Zwick and Mahon, 2017, Hassett and Metcalf, 1999,
Taubman and Wales, 1969). Yet, neither theoretical nor empirical studies are unanimous on the
key determinants of investment behavior and generally accepted standard model of investment
does not seem to have developed yet(Broer and Van Leeuwen, 1994).

Nonetheless, reported results of these studies have a common denominator; namely, they all
confirm complexity and heterogeneity of investment behavior. In turn, this implies that relying on
a “representative agent” acting fully rational in an averaged ”representative” market is most likely
to be unfeasible. Hence, integrating a more detailed representation of investment decision-making
in bottom-up optimization models such as power market or energy system models reflecting this
heterogeneity is essential for unbiased model-based recommendations.

Growing attention has been devoted to detailed modeling of technical aspects (Ventosa et al.,
2005) including generation technologies and representation of the grid in parallel with a more
sophisticated representation of hourly time series and storage (Lopion et al., 2018). Investment
specifics have not yet been the major focus in the modeling community. This could be due to com-
plexity and absence of agreement or dominant theory explaining investment behavior. Nonetheless,
some efforts to reflect the underlying investor heterogeneity have already been suggested in a few
models. For instance, Hirth and Steckel (2016) use the EMMA model to show that increasing the
capital cost encourages use of fossil fuels and can be harmful for renewable generation technologies.
They model capital cost by applying the weighted average cost of capital (WACC). This approach
matches our capital cost investor. Our findings corroborate their results in the short run. When
investments are more expensive, there are less investments in renewable capacity.

However, we show that when CO2 prices are high enough fossil fuels are mainly phased out even
for higher capital cost, although overall decarbonization and renewables shares are lower. Tash
et al. (2019) introduce a desegregation of investors in the TIMES Actors model through a varying
hurdle rate by technology and actor. The model reflects three actors including utilities, institutional
investors, and citizens. They suggest additional budget constraints in the form of capacity limits.
However, they application of their approach is limited only to wind and solar technologies on the
German electricity market. Lemming and Meibom (2003) introduce an iterative interaction of a
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separate risk-adjustment model with a partial equilibrium model. Implementation is limited to
representation of risk aversion and uncertainty. Technically it is a separate module that interacts
with the model. The authors suggest to integrate it directly. However, they refrain from doing so
due to possible non-linearities. While these studies do not fully account for investment behavior
and investor type heterogeneity, they open an important avenue in energy system and power market
modeling and underline the importance of representing investment behavior in detail. In this paper
we advance these efforts both in scope (introducing heterogeneity of investor types in European
power market without technological constraints) and technical implementation (by introducing
this directly in the model through investment cost specification).

3. Modeling Strategy

Consider technologies j (e.g., wind onshore), regions r (e.g., Germany), time periods t =
2015, 2020, ..., 2050, and the period of installation v = 1960, 1965, ..., 2050. We use subscript j, r
to denote variables and parameters and parentheses for periods v, t, i.e., Qjr (v) is the capacity
installed in period v and Cjr (v) the constant unit cost. The discount factor δ follows from the
discount rate ν and reflects that each period t ≥ 2020 accounts for tstep = 5 years, i.e.,

δ (t) =
(1 + ν)tstep − 1

ν (1 + ν)t−tbase
, (1)

where tbase = 2015 serves as focal point.4

Normal investor. The normal investor considers all investment cost in the period of installation
v. The objective is thus given by

min
Q,...

∑
t
δ(t)
tstep

∑
r

[∑
j

∑
v=t

Qjr (v)Cjr (v) × Γjr (v, t) + ...

]
, (2)

where Q is the vector of investment decisions. Observe that δ already reflects the number of years
within one period, that is, for investments we need to divide by tstep. Qjr (v)Cjr (v) are direct cost
of investing into a technology and Γ is the endeffect. This reflects that the depreciation time of an
investment might expand beyond the model horizon, i.e.,

Γjr (v, t) =

∑
t γ (t)Λir (v, t)∑

tlong
γ (tlong)Λir (v, tlong)

. (3)

42020 reflects the time period 2016 to 2020, 2025 reflects 2021 to 2025, ...
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tlong = 2015, ... reflects an unconstrained time horizon to allow for full depreciation of every
investment. Λ is a binary parameter that takes the value 1 when the investment is still under
depreciation and 0 otherwise, i.e.,

Λjr (v, t) =

{
1 if t ≤ v + tjr,depr (v)

0 if t > v + tjr,depr (v)
, (4)

where tjr,depr (v) is the depreciation time of an investment.5 Finally, γ (t) is the interest factor that
reflects the discount factor by using the interest rate i, i.e.,

γ (t) =
(1 + i)tstep − 1

i (1 + i)t−tbase
. (5)

Annuity investor. The annuity investor assumes that an investment is financed by debt capital
only. The annuity reflects interests and repayment, i.e.,

Ajr (v) =
i (1 + i)tjr,depr(v)

(1 + i)
− 1. (6)

Investments cause a stream of cost over the entire deprecation time of the respective investment.
The underlying objective becomes:

min
Q,...

∑
t δ (t)

∑
r

[∑
j

∑
v≤t

Qjr (v)Cjr (v) × Λjr (v, t)Ajr (v) + ...

]
. (7)

Observe that cash flows are still subject to discounting but are no longer divided by tstep because
annuities have to be paid on an annual basis.

Capital cost investor.. The capital cost investor assumes that a capital stock is subject to capital
cost, best reflected by the weighted average cost of capital WACC. For parsimony, we assume
that WACC = i. The difference to the annuity approach is thus that the depreciation time of an
investment does affect the annual cost, so the objective is:

5The installation period v reflects potential technological progress with respect to lifetime and also depreciation
time. It might also reflect a changing investor behaviour.
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min
Q,...

∑
t δ (t)

∑
r

[∑
j

∑
v≤t

Qjr (v)Cjr (v) × Λjr (v, t)WACC + ...

]
. (8)

Investor type heterogeneity. Suppose that type = nor, ann, cap denote normal, annuity, and capital
cost investors. ςtype is the share of an investor type with

∑
type ςtype = 1. Indicate by νtype, itype

type-specific discount and interest rates. We obtain a weighted discount (interest) rate from
νweight =

∑
type ςtypeνtype (iweight =

∑
type ςtypeitype).

6 The respective discount factor δweight and
interest factor γweight calculate according to (1) or (5), respectively. The annuity follows from (6)
by using i = icap and we have WACC = icap. The cost minimization problem now contains all
three investor types, i.e.,

min
Q,...

∑
t δweight (t)

∑
r[ ςnor

∑
j

∑
v=t

Qjr (v)Cjr (v) × Γjr (v, t)
1

tstep
+

ςann
∑
j

∑
v≤t

Qjr (v)Cjr (v) × Λjr (v, t)Ajr (v) +

ςcap
∑
j

∑
v≤t

Qir (v)Cjr (v) × Λjr (v, t)WACC + ....]. (9)

The first line represents investment cost of normal investors, the second of annuity investor,
and the third of capital cost investors. Each investment cost line is weighted by the respective
shares ςtype and the overall investment cost or again weighted over time with the discount factor
δweight.

Technology-specific financing cost. Assume that certain technologies obtain an interest rate pre-
mium ρ so that iρ = i+ ρ. Endeffect (3), interest factor (5), annuity (6), and WACC = iρ change
accordingly. Note that discount rates are unaffected because they are driven by the share of the
respective investor types.

4. Illustrative Examples

We now provide some intuition for handling of investment cost of the three different investor
types by considering 2020 and 2040 investments in technologies with different depreciation times

6We need to apply a mixed discount rate for all investor types (instead of one for each type) to avoid intertemporal
distortions in relative investment decisions. When not doing so, the investor type with highest discount rates has
lowest effective investment cost. This effect becomes particularly strong in later periods and leads to exaggerated
capacity investments.
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neglecting discounting and considering discounting. This allows us to determine the relative com-
petitiveness of investments for the three investor types depending on investment timing, depreci-
ation time, and discounting. Tables 1 and 2 consider the example of a wind turbine investment
with a depreciation time of 25 years. Tables 3 and 4 consider the example of a nuclear investment
with 40 years of depreciation. For illustrative purposes, we assume that both technologies cost
100 e in 2020 and 2040. We apply an interest rate of 7% and consider 7% discount rate when
accounting for discounting.

Table 1: Comparison of 2020 and 2040 wind turbine investments for the three investor types

2020 2025 2030 2035 2040 2045 2050 Sum Difference

Investment in 2020
Normal 100.0 100.0
Annuity 42.9 42.9 42.9 42.9 42.9 214.5 +114.5%
Capital cost 35.0 35.0 35.0 35.0 35.0 175.0 +75%

Investment in 2040
Normal 78.2 78.2
Annuity 42.9 42.9 42.9 128.7 +64.7%
Capital cost 35.0 35.0 35.0 105.0 +34.3%

The endeffect of the 2020 investment is 100%. The endeffect of the 2040 investment is 78.2%.
The annuity is 8.58% and the capital cost 7% (per year).

Start with the wind turbine investment in the no discounting case (Table 1). The 2020 in-
vestment depreciates completely until 2040 (2016 to 2040 = 25 years) and the 2040 investment
depreciates only partly (2036 to 2050 = 15 years) within the model horizon. For the normal in-
vestor, installation period and depreciation time translates to an endeffect of 100% for the 2020
investment and of 78.2% for the 2040 investment. The annuities of the above mentioned wind
turbine investment are 8.58%. Those annuities need to be paid every year (5 × 8.58 = 42.9%),
accumulating to much more cost (214.5 efor the 2020 investment and 128.7 efor the 2040 invest-
ment) than for the normal investor (100 efor the 2020 and 78.2 efor the 2040 investment). Capital
cost investors merely take 7% instead of the above mentioned 8.58%, leading to costs for those
wind turbines of 175 or 105 e, respectively. Interestingly, the relative competitiveness of the two
investments changes for the three investor types. Annuity and capital cost investors improve their
relative competitiveness compared to the normal investor for the 2040 investment.7 The annuity
investor is 23% more expensive than the capital cost investor for both investments. Thus, the
relative competitiveness between annuity and capital cost investors remains constant.

Now consider a situation with discounting. The corresponding discount factor is presented in
the first line of Table 2. We obtain the values in Table 2 by multiplying the corresponding ones in

7For the annuity (capital cost) investor cost are 115% (75%) higher for the 2020 investment but only 65% (34%)
higher for the 2040 investment.
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Table 2: Comparison of 2020 and 2040 wind turbine investments for the three investor types considering discounting

2020 2025 2030 2035 2040 2045 2050 Sum Difference

Discount factor 4.1 2.9 2.1 1.5 1.1 0.8 0.5

Investment in 2020
Normal 82.0 82.0
Annuity 35.2 25.1 17.9 12.8 9.1 100.0 +21.9%
Capital Cost 28.7 20.5 14.6 10.4 7.4 81.6 –0.5%

Investment in 2040
Normal 16.6 16.6
Annuity 9.1 6.5 4.6 20.2 +21.9%
Capital Cost 7.4 5.3 3.8 16.5 –0.5%

We obtain values from multiplying Table 1 values with the discount factor and divide by 5.

Table 1 with the discount factor and dividing by 5.8 The relative competitiveness of the investments
for the three investor types changes but remains constant for 2020 and 2040 investments. Moreover,
investments are now (almost) equally competitive for the capital cost and normal investor and only
22% more expensive for the annuity investor. Additionally, the relative competitiveness between
annuity and capital cost investor is the same as under no discounting (annuity investor is still 23%
more expensive).

Table 3: Comparison of 2020 and 2040 nuclear investments for the three investor types

2020 2025 2030 2035 2040 2045 2050 Sum Difference

Investment in 2020
Normal 97.1 97.1
Annuity 37.5 37.5 37.5 37.5 37.5 262.5 +170.3%
Capital Cost 35.0 35.0 35.0 35.0 35.0 245.0 +152.3%

Investment in 2040
Normal 68.3 68.3
Annuity 37.5 37.5 37.5 112.5 +64.7%
Capital Cost 35.0 35.0 35.0 105.0 +53.7%

The endeffect of the 2020 investment is 97.1%. The endeffect of the 2040 investment is 68.3%.
The annuity is 7.5% (per year).

The difference between the capital cost and annuity investors is smaller when considering
investments with a longer depreciation time such as nuclear power plants (see Tables 3 and 4).
The annuity reduces to 7.5% so that the annuity investor is only 7% more expensive than the
capital cost investor. Moreover, the relative competitiveness to the normal investor fundamentally

8Note that the discount factor already accounts for a period of 5 years.
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changes. The normal investor only carries cost of 97.1 e(2020 investment, 35 years within the time
horizon) or 68.3 e (2040 investment, 15 years). The annuity investor is 170% and the capital cost
investor 152% more expensive when neglecting discounting. The difference drops to 22% (annuity)
and 14% (capital cost) when applying discounting (Table 4).

Table 4: Comparison of 2020 and 2040 nuclear investments for the three investor types including discounting

2020 2025 2030 2035 2040 2045 2050 Sum Difference

Discount factor 4.1 2.9 2.1 1.5 1.1 0.8 0.5

Investment in 2020
Normal 79.6 79.6
Annuity 30.8 21.9 15.6 11.1 7.9 5.7 4.0 97.1 +22%
Capital Cost 28.7 20.5 14.6 10.4 7.4 5.3 3.8 90.6 +13.8%

Investment in 2040
Normal 14.5 14.5
Annuity 7.9 5.7 4.0 17.7 +22%
Capital Cost 7.4 5.3 3.8 16.5 +13.8%

We obtain values from multiplying Table 3 values with the discount factor and divide by 5.

We can already derive first hypotheses about the effects of investor type heterogeneity from
those simple illustrative examples. Discounting fundamentally reduces differences between in-
vestors and keeps the relative competitiveness constant within the entire time horizon. In turn,
neglecting discounting, favors investments from the normal investor. However, relative competi-
tiveness between annuity and capital investor always remains the same, although annuity investors
are closer to cost of the capital cost investor when an investment’s depreciation time is longer.

5. Calibration

Investment cost and depreciation time. Table 5 summarizes investment cost and depreciation times
for generation, storage, and transmission technologies. Observe that cost for conventional gas (gas-
CCGT, gas-ST, gas-OCGT) technologies and lignite remains constant over time. Cost for all other
generation technologies drop over time, whereas the drop is most pronounced for solar and wind
offshore. Furthermore, power-to-gas cost are assumed to be constant as well because the technology
is not applied yet. In turn, cost of batteries falls tremendously from 1,740 to 440 e/kW, assuming
an energy-to-power ratio of 4. Finally, we consider transmission technologies. AC-line is less
expensive than DC-line but overall line length is higher and only DC-lines can connect countries
via water.

CO2 price and electricity demand. When modeling the European power market, one can either
decide to establish a quantity target or CO2 prices as outcome of the quantity regulation, in other
words, EU ETS including MSR. We opt for the second option and obtain CO2 from Azarova and
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Table 5: Investment cost and depreciation time (in years) for generation (e/kW), storage (e/kW), and transmission
(e/MW per km) technologies

2020 2030 2040 2050 Depreciation

Bio-CCS 4,361 4,272 4,183 4,139 25
Bioenergy 4,236 4,149 4,063 4,020 25
Coal 1,500 1,410 1,380 1,365 40
Coal-CCS 3,415 3,210 3,142 3,108 40
Gas-CCGT 850 850 850 850 25
Gas-CCS 1,495 1,495 1,495 1,495 25
Gas-OCGT 437 437 437 437 25
Gas-ST 850 850 850 850 25
Geothermal 11,993 11,498 11,127 11,004 30
Lignite 1,640 1,640 1,640 1,640 40
Nuclear 6,006 5,082 4,488 4,356 40
Oil 822 822 822 822 25
Solar 1,027 858 780 715 25
Wind offshore 3,024 2,520 2,268 2,088 25
Wind onshore 1,397 1,339 1,310 1,296 25
Power-to-gas 1,520 1,520 1,520 1,520 20
Battery 1,740 1,120 780 440 16 to 22
AC-line 770 770 770 770 50
DC-cable 1,152 1,152 1,152 1,152 50

We restrict hydro and pump storage capacity to existing capacity
and thus refrain from showing cost and depreciation time.
We assume energy-to-power ratios (kWh/kW) of 720 for power-to-
gas and 4 for batteries. Pump storage ratios are 4 in Slovenia (185
MW installed generation capacity) and 3,685 in Norway (1,344 MW
installed generation capacity).

Mier (2020) for a scenario that relies on current EU ETS legislation (including MSR cancelling)
and neglecting a wind turbine technology boost from 2040 onwards. Note that such a scenario does
not take the 2045 carbon neutrality target of the EU into account. Table 6 shows the outcome.
The CO2 price is 26 e/ton in 2020 and increases up to 224 e/ton in 2050.

Electricity demand is the crucial determinant for overall capacity expansion. We obtain electric-
ity demand from a CGE calibration that accounts for certain quantity targets and electrification of
industrial and transport sectors (Mier et al., 2020, Siala et al., 2020). Table 6 shows the respective
country values. Overall electricity demand doubles from 3,089 TWh to 6,204 TWh.

Table 6: CO2 price (e/ton) and electricity demand (TWh/a)

2020 2025 2030 2035 2040 2045 2050

CO2 26 34 55 85 119 149 224
Electricity demand 3,089 4,153 4,500 5,081 5,480 5,830 6,204
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6. Results

We now analyze results by focusing on three different objectives in each of the following three
subsections. Subsection 6.1 shows the impact of the three different investment cost specifications
for the respective investor types and the role of discounting for investment timing. Subsection
6.2 presents diverging behavior of the three investor types when varying discount and interest
rates. Finally, Subsection 6.3 uses type-specific discount and interest rates for the three investor
types, accounts for investor type heterogeneity in the same markets by assigning shares to each
investor type, and applies technology-specific interest premia. We present results by showing one
(three, one) diagram with an upper and lower panel in Subsection 6.1 (6.2, 6.3). The upper
panel invariable demonstrates the evolution of installed generation capacity (left axis, in GW)
by technology-type as well as storage (blue squares) and transfer capacity (yellow triangles, right
axis, in GW).9 The lower panel depicts the evolution of generation (left axis, in TWh) and CO2

emissions (grey diamonds, right axis, in Mt). Both panels cluster model specifications by years
from 2020 to 2050.

6.1. Investment Cost Specifications

The first column of each cluster in Figure 1 reflects investments (and related generation) of
the normal investor, the third those of the capital cost investor, and the fifth refers to the annuity
investor. The second, fourth, and sixth column of each cluster refer to the respective investor type
when neglecting discounting. We start with the normal investor and describe the difference to the
capital cost and annuity investor afterwards.

Normal investor. The normal investors applying discounting (first column of each cluster) in-
creases wind capacity (wind onshore and wind offshore) from 362 GW in 2020 to 974 GW in 2050
(+169%) and intermittent renewables capacity (additionally hydro and solar) from 611 to 1,592
GW (+160%), whereas overall capacity increases by 127% to 1,399 GW. Thus, the share of wind
(intermittent renewables) changes from 33% (56%) in 2020 to 39% (64%) in 2050. Other decisive
technologies are gas-CCS and nuclear. Gas-CCS is first installed in 2030 and makes up 384 GW in
2050 (15% of total capacity). Nuclear capacity (54 GW or 5% in 2020) increases by 93 GW until
2050 constituting a share of 6% of total installed capacity. Turning to generation, wind (intermit-
tent renewables) makes up 29% (45%) of total generation in 2020 and already 40% (55%) in 2050.
Observe that total generation increases from 3,326 to 6,710 TWh driven by rising annual demand
(see Section 5).10 The gap between total generation and intermittent renewables is mainly filled
by gas-CCS (22%) and nuclear (17%). Other gas technologies and bio-CCS are negligible for daily
generation but are somewhat relevant to balance intermittent generation (5% of total generation,
15% of total capacity). Moreover, generation capacity of storage technologies increases from 56
to 153 GW in the period 2020 to 2050. Stored energy increases by a similar extent to 106 TWh.

9Storage capacity refers to generation capacity (for decharge) and not reservoir capacity which would be depicted
in GWh.

10The difference between generation and demand—500 TWh in 2050—lies in storage and transmission losses.
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Transfer capacity (transfers) increases from 171 to 665 GW (325 to 1,713 TWh) in 2050. Note
that the overall storage capacity increase seems quite substantial but the overall amount of stored
energy (106 TWh stored to 6,710 TWh generated) is quite small. On the contrary, the level of
transfer capacity and transfers are fundamental which is required for balancing spatial differences
in the availability of intermittent renewables. 665 GW (1,713 TWh) of transfer capacity (transfers)
is a share of 48% of installed generation capacity (26% of total generation, that is, every fourth
unit of electricity generated is traded to another country). Finally, CO2 emissions drop from 641
to 70 Mt (-89%) within the period 2020 to 2050. Observe that CO2 emissions increase in 2025 and
drop below 2020 level in 2035 (585 Mt).

The normal investor neglecting discounting (second column) shows quite a different investment
decision pattern from 2020 onwards. Some of the differences balance out until 2050, whereas
others are persistent even over the long term. No discounting leads to 85 GW (101 GW) more
wind (intermittent renewables) capacity already in 2020 so that wind (intermittent renewables)
generation is 23% (16%) higher. In 2050, wind (intermittent renewables) capacity and generation
are still 86 GW or 154 TWh (134 GW, 201 TWh), respectively, higher. Thus, the initial 2020
investments (and related generation) remain until 2050. Meanwhile—observe the peak in 2030
and 2035— the differences to the case with discounting are even bigger. For example, wind
(intermittent renewable) capacity and generation are 66% or 47% (70%, 43%), respectively, higher
in 2030. Additionally, substantial investments in gas-CCS already occur in 2025 (181 GW) so that
gas-CCS already assumes a generation share of 17%. Also nuclear capacity is 31 GW higher in 2025
compared to the situation with discounting. Higher gas-CCS and nuclear capacities bring benefits
of lower capacity from other gas technologies and no more coal/lignite from 2025 onwards. However,
differences in 2050 mainly rely on higher generation from wind (+6%), solar (+7%), and gas-CCS
(+7%), whereas nuclear generation is 15% lower. Higher wind and solar generation is accompanied
(or fosters) higher storage capacity (244 GW compared to 153 GW with discounting). Transfer
capacity (and transfers) is slightly lower but still dominant in balancing intermittent generation
compared to storage capacity (and stored energy). We observe a deeper decarbonization (40 Mt
in 2050). However, the path towards 2050 is fundamentally less carbon intensive. CO2 emissions
already drop to 192 Mt in 2030 (compared to 813 Mt). The small absolute difference of 30 Mt in
2050 is thus misleading from the perspective of climate change.

Capital cost investor. The capital cost investor considering discounting (third column) shows a
considerably different investment pattern (compared to the normal investor with discounting).
Installed capacity of wind (intermittent renewables) is 20% (12%) lower in 2020, almost on the
same level from 2030 to 2045, and finally 3% lower (5% higher) in 2050. Solar capacity in particular
is 21% higher in 2050. However, the most substantial differences result from adverse behavior of
gas-CCS and nuclear. Gas-CCS capacity is structurally higher (20% in 2050) and nuclear capacity
always lower (-34% in 2050). As before, other gas technologies and bio-CCS play minor roles
for the capacity mix. Wind generation is in fact 5% lower and solar generation 14% higher in
2050. The gas-CCS-nuclear differential is persistent (+26% gas-CCS generation, -36% nuclear
generation). Finally, observe that transfer capacity (and transfers) are strikingly lower than for
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Figure 1: Impact of investor type and the role of discounting

the normal investor (437 GW and 1,191 TWh in 2050 compared to 665 GW and 1,713 TWh).
Storage capacity in turn is similar. The lower wind generation requires less transfer capacity.
Or conversely, investments in transfer capacity are more expensive (relatively) for the capital
cost investor, hampering wind deployment and finally fostering (more local) solar expansion. The
capital cost investor without discounting (fourth column) invests (and generates) similar to the one
applying discount rates, at least in the long run, i.e., differences are negligible from 2040 onwards.
Before 2040, the investor without discounting invests fundamentally less than the one applying
discounting. For example, wind capacity is 111 GW or 38% lower in 2020. Solar capacity is 46
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GW lower in 2030 (-21%). Interestingly, storage and transfer capacity are 19% or 9%, respectively,
higher in 2050. The investor with discounting invests earlier in wind and solar capacity. The
investor without discounting invests later at a point where storage technologies are cheaper and
transfer capacity is less restricted (transfer capacity expansion is restricted until 2030 and free
from 2035 onwards).

Annuity investor. As we have already shown in the illustrative examples in Section 4, the annuity
investor is the most expensive one. We start by looking at the results with the discounting.
Wind (intermittent renewables) capacity is already 43% (25%) lower in 2020 (compared to the
normal investor applying discounting). The differences become smaller from 2030 onwards and are
virtually constant until 2050 (22% lower wind and 17% lower intermittent renewables capacities).
Conversely, gas-CCS capacity is 23% higher in 2050, whereas nuclear capacity is 7% lower. Again,
we observe the adverse pattern of gas-CCS and nuclear. The generation pattern is consistent with
the capacity pattern. For the no discounting case, qualitative changes are similar to those of the
capital cost investor when neglecting discounting. Wind power capacity is already lower in 2020,
but similar in 2030 onwards. The annuity investor (with and without discounting) tends to react
less intensely than the capital cost investor but pattern-wise both investors are somewhat similar.
The overall costs of investment are higher due to the annuity specification of investment cost.
The annuity specification also fosters more long-term investments compared to the capital cost
investor. Hence, nuclear capacity (40 years of depreciation) is higher. However, transfer capacity
is lower (50 years of depreciation) because less transfers are needed due to lower deployment of
wind power.

Investor Type Patterns. The normal investor invests early and predominantly relies on wind power
and transfers. The capital cost investor takes over investments from the normal investor but relies
more on solar power and less on nuclear capacity. The annuity investor invests the least; in
particular, with wind and solar deployment being the lowest, whereas reliance on gas-CCS and
nuclear is fundamentally higher. Interestingly, shifting between discounting and no discounting is
fundamentally different for the normal investor. No discounting increases overall installed capacity
for the normal investor but decreases it for the capital cost investor. However, what is similar is
that CO2 emissions are always lower for both investors when neglecting discounting, thus, which
means discounting hampers decarbonizing the power system.

6.2. Interest and Discount Rates

We now present results for the normal (Figure 2), capital cost (Figure 3), and annuity (Figure
4) investors for five different discount and interest rates (9%, 7%, 5%, 3%, 1.5%). The first column
of each cluster shows the outcome for 9% and the last for 1.5%. For parsimony, we assume that
discount and interest rates are the same and simply refer to them as rates in the following. Observe
that we changed the scale of the left axes (compared to Figure 1) for installed capacities (to 3,600
GW) and generation (to 7,500 GW). The scale of the right axes remains the same. Note that the
7% outcomes are the same as shown in Figure 1 for the case with discounting (columns one, three,
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and five). We thus mainly refer to (absolute and relative) differences of the respective specification
to 7%.

Normal investor. Before describing the outcome from different rates in detail, let us first summarize
some consistent developments across specifications. Solar and bio-CCS capacity and generation is
quite similar across specifications. Minor differences exists in the bio-CCS starting investments in
2040 but immediately level out in 2045. Solar differences are apparent until 2035 (-15% generation
for normal 9% and +25% for normal 1.5% ) but assume negligible levels from 2040 onwards. Hydro
differences are negligible as well and oil, lignite, and coal are all phased out by 2035. However,
they already play a negligible roles from 2025 onwards. In the following, we thus concentrate on
gas technologies, nuclear, and wind.

Start with the normal 9%. In 2020, such a specification installs 45 GW (-12%) less wind power
compared to our benchmark specification normal 7%. The difference increases to 112 GW (-21%)
in 2030 but then drops and remains almost constant from 2040 onwards with 2050 wind capacity
of 551 GW (-61 GW, -6%). The lower wind expansion impacts the composition of gas capacity.
In 2030, gas-CCGT and gas-ST capacity is 19 and 15 GW higher (8 and 10%) but gas-OCGT and
gas-CCS 19 and 10 GW lower (-7% and -78%). The lower gas-CCS capacity is associated hand with
depressed CO2 abatement incentives (due to higher discount rates). Lower wind deployment and
less requirements for balancing wind output explains the substitution of the peak technology (gas-
OCGT) by base ones (gas-CCGT, gas-ST). Until 2050, the differences for gas-OCGT disappear
but those for gas-CCGT and gas-ST keep persistent with 17 GW (+18%) or 14 GW (+14%),
respectively, more capacity. Interestingly, the difference in gas-CCS capacity turns in 2050 (+12
GW, +3%). Conversely, nuclear capacity is structurally lower from 2035 onwards with 24 GW less
nuclear capacity in 2050 (-16%). Observe that storage and transfer capacity are also structurally
lower (-14% and -6% in 2050) due to lower temporal (storage) and spatial (transfer) balancing
requirements.11 The generation pattern mirrors the capacity development whereas differences in
gas-CCS, nuclear and wind generation become more apparent. Gas generation is structurally
higher, finally leading to emission of 105 Mt (compared to 70 Mt for normal 7%).

Normal 5% (3% ) already installs 36 GW (73 GW) more wind capacity in 2020. Investment
differences peak in 2030 with 84 GW (141 GW) reflecting 16% (27%) more wind capacity. Dif-
ferences then drop until 2050 with just 34 GW or 4% (30 GW, 3%) more wind capacity. Higher
wind capacity reduces the need for classic gas technologies by 37 GW (81 GW), whereas gas-CCS
capacity is 7 GW (36 GW) and nuclear capacity is 19 GW (30 GW) higher by 2030. This pattern
slightly changes until 2050. Classic gas capacity is still lower by 32 GW (78 GW) and nuclear
capacity higher by 26 GW (47 GW). However, gas CCS capacity is 10 GW (1 GW) lower. Ob-
serve that total capacity is higher for normal 3% until 2045 (with highest differences in 2030).
However, total capacity is lower in 2050 reflecting lower wind capacity and a higher reliance on
nuclear. Generation patterns mainly reflect those of installed capacity. Observe that (still carbon-
emitting) gas-CCS generation is structurally higher for normal 5%, whereas normal 3% relies more

11Final stored energy (transfers) are 6% (9%) lower.
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Figure 2: Impact of varying discount and interest rates on investment and generation behavior of the normal investor
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on (completely carbon-free) nuclear, leading to final CO2 emissions of 41 Mt (5%) or 19 Mt (3%),
respectively.

Finally, turning to normal 1.5% which mainly matches (and reinforces) the trends already
described for the 3% specification. Wind capacity (generation) is 110 GW (281 TWh) higher in
2020 compared to the one using 7%. Differences peak in 2025 with 252 GW (577 TWh) more
wind capacity (generation) but level out until 2050 to 64 GW (115 TWh). Classic gas capacity
is 227 GW (share of 9%) but responsible for 101 TWh generation only (share of 1.5%). Reliance
on gas-CCS is structurally lower (-34 GW, -444 TWh) but on nuclear (+70 GW, +491 TWh)
considerably higher, resulting in 10 Mt CO2 emissions. Finally, storage and transfers capacities
are higher by 52% or 17%, respectively.

The magnitude of differences is 13% (9%) for wind capacity (generation), 12% (44%) for gas-
CCS, and 63% (58%) for nuclear capacity when changing rates from 9% to 1.5%. Wind differences
in particular are not so high. Interestingly, there is adverse behavior depending on the rates for
usage of gas-CCS and nuclear. Both technologies are substitutes when reducing or increasing,
respectively, rates. Lower rates lead to structurally more nuclear capacity (and generation). While
higher rates lead to more gas-CCS. Moreover, lower rates also foster transfer capacity expansion,
indicating that lower rates foster more durable (regarding depreciation time) investments such
as nuclear (40 years) and transfer capacity (50 years). Higher rates, in turn, rely more on less
durable ones such as gas-CCS (25 years). However, the gas-CCS vs. nuclear pattern is overlapped
by decarbonization trends. We cannot determine whether this is the cause or a effect of the
technologies’ relative competitiveness when changing rates. Remember that lower discount rates
promote an earlier deployment of capacity (as also shown in Figure 1) for the normal investor
because the relative investment cost when evaluating the cash flow fosters early investment at cost
of later investments. This explains declining total capacity levels in 2050 and quite substantial
usage of gas-CCS and nuclear (for generation, i.e., high full-load hours).

Capital cost investor. For the capital cost investor there are only some similarities across speci-
fications for bio-CCS. For all rates except 9%, bio-CCS expansion starts in 2040. However, 2050
generation is the same for all rates (101 TWh, maximum biomass usage).

We start again with describing differences of capital cost 9% to the 7% specification. Wind
capacity (generation) is 81 GW (246 TWh) lower in 2020. Differences grow until 2035 (220 GW,
469 TWh) and are still considerable in 2050 (181 GW, 431 TWh), reflecting a reduction in the wind
power share of 4% (capacity) or 7% (generation), respectively. Solar pattern is comparable to the
wind pattern. Moreover, usage of conventional gas is structurally higher (+49 GW, +147 TWh),
gas-CCS as well (+49 GW, +670 TWh), and nuclear lower (-42 GW, -333 TWh). Storage and
transfer capacity are lower by 21% or 9%, respectively. Final CO2 emissions are 177 Mt (compared
to 102 Mt).

Lowering the rates goes hand in hand with fundamentally more investments in wind and solar
capacity. A rate of 5% (3%, 1.5%) increases 2020 wind capacity by 33% (69%, 118%). Absolute
differences grow from 96 GW (199 GW, 344 GW) to 164 GW (449 GW, 776 GW) in 2050—
reflecting 17% (47%, 82%) more wind capacity. Similar for solar capacity. Differences increase
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Figure 3: Impact of varying discount and interest rates on investment and generation behavior of the capital cost
investor
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from 0 GW (28 GW, 96 GW) in 2020 to 49 GW (226 GW, 669 GW) in 2050 (+17%, +47%, +82%
in 2050 levels compared to 7% rates). Interestingly, gas-CCS capacity decreases constantly with
lower rates (-13 GW for 5%, -80 GW for 3%, and -188 GW for 1.5%) but nuclear evolution is quite
different. Nuclear capacity is slightly higher for the 5% and 3% specifications (112 GW and 110
GW vs. 97 GW in 2050) but lower for capital cost 1.5%. Storage capacity and transfer capacity
is also structurally higher for lower rates. In particular, storage capacity is 34% (163%, 310%)
higher for 5% (3%, 1.5%), reflecting or fostering wind and solar expansion. Applying rates of 3%
and 1.5% even lead to negative CO2 emissions (the scale does not reflect that fact) of -14 Mt (3%)
or -46 Mt (1.5%) due to high shares of intermittent renewables (71% and 83% of total generation)
combined with negative emissions from bio-CCS.

Higher rates greatly suppress investments and lower rates foster investment. For example, when
changing rates from 9% to 1.5% wind capacity grows by 146% in 2020 and 99% in 2050. Solar
differences are 81% in 2020 and even 126% in 2050. Higher wind and solar capacity for lower
rates suppress investments in gas-CCS and nuclear capacity, whereas gas-CCS production is quite
substantial (39%) when applying highest rates (9%). When comparing those findings with the one
shown by Figure 1 in Subsection 6.1 observe that the no discounting effects is overruled by the
interest rate effect, i.e., lower investment from neglecting (or reducing) discounting can no linger be
observed in Figure 3 anymore. However, the entire discounting effect is from less interest because
the timing of investment does not matter so much due to the constant payments (of interest) for
capital over time.

Annuity investor. Annuity 9% installs 26 GW (-13%) less wind capacity in 2020 compared to
annuity 7%. Differences grow continuously to 135 GW (-18%) in 2050. The solar pattern differs.
We observe -11 GW in 2030, differences peak in 2040 at -110 GW, and become smaller until 2050
with -38 GW. In 2050, gas-CCS capacity is 77 GW (+18%) higher and nuclear 56 GW lower
(-40%). Differences for conventional gas technologies and bio-CCS are negligible. However, higher
rates lead to substantial lower investments into storage and transfer capacity (-12% and -7% in
2050) again. Final CO2 emissions are at 196 Mt (compared to 136 Mt) for annuity 7% ).

Decreasing rates have a strong impact on wind, solar, nuclear, and gas-CCS. The specification
applying 5% (3%, 1.5%) installs 21 GW more wind capacity (47 GW, 87 GW) in 2020. Differences
grow to 81 GW (197 GW, 238 GW) in 2050. Solar capacity is 61 GW (58 GW, 47 GW) higher in
2050. Gas-CCS capacity in turn is 12 GW lower (-57 GW, -59 GW), whereas nuclear capacity is
35 GW (65 GW, 79 GW) higher. Observe that the gas-CCS capacity drops by -3% (-13%, -14%)
but generation by -18% (-37%, -42%) in 2050.

Higher rates dramatically decrease investments in wind and nuclear power. In turn, gas-CCS
and even partly conventional gas technologies play a major role. Lower rates in turn foster deploy-
ment of wind, solar, storage, and transfer capacity. Additionally, nuclear capacity becomes higher.
Finally, decarbonization is also higher with lower rates. Observe that the role of conventional gas
technologies as back-up technologies is still substantial for all rates (compare share of capacity
with share of generation).
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Figure 4: Impact of varying discount and interest rates on investment and generation behavior of the annuity
investor
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Investor Type Patterns. Each investor type has a distinct pattern when varying discount and
interest rates, although those of the normal and annuity investor are structurally more similar
than those of the capital cost investor. Let us start with similarities across types. Higher rates
lead to less investments (less installed capacity), and lower rates to more because investments
become cheaper for lower interest rates. Wind capacity is always higher for lower rates as it
is storage and transfer capacity; resulting in a deeper decarbonization for lower rates because
most investments take place in low-carbon (gas-CCS) or carbon-neutral (wind, solar, nuclear)
technologies. The impact of negative-carbon (bio-CCS) technologies is the same across types
because they all increase bio-CCS generation up to the biomass limit (but overall, the effect is
small).

Normal and annuity investor additionally contain some similarities. Observe the substitution
effect between gas-CCS and nuclear. Final gas-CCS and nuclear levels are even comparable for
lower rates but differ quite substantially for higher rates. However, those differences can be ex-
plained by the relative competitiveness of investing between those two types. In this case, the
normal investor incurs a fundamentally lower cost when it comes to investment, which results in
more investments. When investment cost drops (due to low interest rates), differences become
smaller and cost of generating electricity plays a more dominant role. Moreover, conventional
gas technologies serve as back-up to balance intermittent renewables. Qualitative developments
of storage capacity, transfer capacity, and CO2 emissions are the same, although absolute levels
differ (normal investor has higher storage capacity, higher transfer capacity, and lower emissions).
Higher transfer capacity comes from fostering more durable investments for the normal investor.
Observe that those three qualitative patterns are valid for the capital cost investor as well, whereas
absolute storage levels higher for low rates and CO2 accompanying are lower.

Comparing the capital cost pattern with that of the normal investor presents structural differ-
ences. Observe that the reaction of the capital cost is (1) more extreme and (2) the entire pattern
is different. The capital cost investor overcomes the substitution of gas-CCS and nuclear power by
means of wind and solar expansion, whereas the normal investor adheres to fundamental substi-
tution effects between gas-CCS and nuclear. Bear in mind that the duration of an investment is
not important for relative investment expenses for the capital cost investor. Capital cost investors
only pay an interest rate for invested capital regardless of the duration of the investment. In turn,
the endeffect in the normal investor optimization problem reflects the duration of the investment.
Moreover, the timing of the investment cost seems also to be decisive. The capital cost investor
has running cost from investments, whereas the normal one carries the investment burden in the
period of investment. Such normal specification seems to hamper expansion at the end of the
model horizon when reducing rates.

6.3. Investor Type Heterogeneity and Technology-Specific Financing Cost

We demonstrate the impact of different investor types as well as discount and interest rate in the
previous subsections. All three investor types reflect existing investors. A normal investor might be
a public company that receives guaranteed credit and plans more long-term and eventually close to
invest socially optimal. Such an investor would have lowest interest and discount rates. A capital
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cost investor might be a private but big company with sufficient own capital to back-up credits and
plan projects. Such an investor would have higher interest and discount rates compared to a normal
investor. Finally, the annuity investor is the most expensive from its specification and it is likely
that such an investor—who completely builds on debt capital—has highest interest and discount
rates. An example might be small businesses or even private households or community/cooperative
that invest in a solar PV. We therefore assume interest and discount rates of 3%, 5%, and 9% for
normal, capital cost, and annuity investors. We run the model with those interest and discount
rates and obtain the first three columns of each cluster in Figure 5. Additionally, we acknowledge
that in a power market such as the European one, there is not just one investor type, but rather
a mixture of the three described; that is, investor type heterogeneity. For parsimony, we assume
that each investor type has the same share in each country.12 From this, we calculate a weighted
discount (and interest rate) used to calculate a weighted discount factor to evaluate cash flows
streams (see Section 3).12

Note that endeffects, capital cost, and annuities are still investor dependent. This specification
is shown in the fourth column of each block (mixed with type). We apply investor-unspecific
endeffects, capital cost, and annuities in column five (mixed with technology ). Here, we use the
standard interest and discount rate of 7% but dedicate additional premiums for technologies to
account for project-specific drivers of investment cost. We assume that transmission technologies
and renewable technologies (wind, solar, bioenergy, bio-CCS) receive a premium of 1%, resulting
in interest rates of 6% when investing in those technologies. Low carbon technologies such as
gas-CCS and storage technologies retain the 7%. All other technologies (including nuclear albeit
it is low carbon) receive a premium of minus 1%. We do so to reflect that some technologies
are implicitly subsidized by financial guarantees, while others are seen as high-risk technologies
in the future. However, we could easily adjust those premia in accordance with new findings
from financial markets. Finally, mixed with type and technology (sixth column) combines investor
specific interest with technology-specific premia. Now have a detailed look at Figure 5. Start with
the first three columns in the upper panel.

Observe that specifications depicted here are the same as the fourth column in Figure 2, the
third column in Figure 3, and the first column of each cluster in Figure 4 (note that the scales are
different). The normal investor with 3% rates increases wind (solar, gas-CCS, nuclear) capacity
from 435 GW (98 GW, 0 GW, 52 GW) in 2020 to 1,004 GW (484 GW, 384 GW, 194 GW) in 2050,
reflecting a share in total generation of 35% (4%, 0%, 11%) in 2020 or 41% (9%, 19%, 22%) in
2050, respectively. We take normal 3% as references to describe differences to the other investors as
relative and absolute changes. The capital cost investor with 5% rates has 48 GW lower (-6 GW, 0
GW, +2 GW) wind (solar, gas-CCS, nuclear) capacity in 2020 but 109 GW higher (+153 GW,+64
GW, -83 GW) less in 2050. The annuity investor provides 254 GW less (-6 GW, 0 GW, +2 GW)
wind capacity in 2020 and 381 GW less (-82 GW, +120 GW, + 110 GW) in 2050. Moreover,
transfer (storage) capacity is 706 GW (178 GW) in 2050 for the normal investor, but only 497 GW

12Giving each investor its own discount factor would distort intertemporal investment decisions within the model.
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(199 GW) for the capital cost and 389 GW (112 GW) for the annuity investor. The lower panel
demonstrating generation matches those developments. Interestingly, decarbonization is greatest
for the normal investor (19 Mt in 2050) although the share of intermittent renewables generation
is 5% lower than that of the capital cost investor (56% vs. 61%) that emits 48 Mt in 2050.

Figure 5: Impact of type-specific interest and discount rates, technology premia, and a mixed investor type

Consider the next three columns showing results when accounting for market decomposition and
project-specific financing cost. Assuming equal shares of the three investor types leads to weighted
discount rate of 5.66%. Accordingly, discounting is loser than in our standard application of 7%
and comparable to 5% specifications in Figures 2, 3, and 4. Mixed with type applies the 5.66%
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discount rate for evaluating the stream of cash flows of all investor types as well as type-specific
interest rates of 3% for calculating the endeffect for the normal investor, 5% for determining the
WACC for the capital cost investor, and 9% for computing the annuities. Mixed with technology
uses the standard 7% interest rate and applies the technology-specific interest premia of -1% (for
wind and solar), 0% (bio-CCS, gas-CCS), and 1% (for remaining technologies). Finally, we combine
type- and technology-specific rates in mixed with type and technology.

Start with mixed with type and technology (sixth column). Wind (solar, gas-CCS, nuclear)
capacity grows from 333 GW (119 GW, 0 GW, 54 GW) in 2020 to 1,069 GW (642 GW, 449
GW, 80 GW) in 2050. Generation from wind (solar, gas-CCS, nuclear) makes 42% (12%, 26%,
9%) of total generation in 2050. 2050 storage and transfer capacity are 147 GW or 520 GW,
respectively. 2050 CO2 emissions end with 86 Mt. The differences to mixed with technology must
be seen as impact of type-specific interest rates. The differences to mixed with type are those of
technology-specific interest premia. Hence, the impact of type-specific interest rates (technology-
specific interest premia) is 4% less (-19%) wind capacity in 2020 and 4% less (-15%) in 2050.
Type-specific interest rates (technology-specific interest premia) also impact the final installation
of gas-CCS by 1% (-5%) and those of nuclear by -16% (76%). That is, higher interest rates
for nuclear power reduce nuclear capacity from 88 to 27 GW in 2050. Final decarbonization is
comparable with a higher impact of type-specific rates (+22 Mt vs. +5 Mt). Interestingly, transfer
capacity is also fostered by technology-specific premia (also 1% lower rate).

Mixing up investors yields a weighted mix of all investors but comes closest to the normal
investor in the long-run. In the short run the annuity shares delay investments so that mixed
investors invest more conservative in the beginning but dramatically increase from 2040 onwards.
Additionally, accounting for technology-specific premia promotes more wind and solar power in the
system at cost of nuclear power. Combining type- and technology-specific rates gives a mix of the
two prior discussed specifications but increases capacity in total. In particular, wind offshore and
transfer capacity increases so that total wind output is highest from the three mixed specifications.

7. Conclusion

Existing theoretical studies fail to agree on a single investment model. However, a plethora
of empirical works advances multiple drivers of investment behavior and decision making. These
various drivers are often classified to be related to investor type, project type, and market structure.
Thus, in order to reflect investment behavior and depict a closer to real life picture introducing
investment type heterogeneity and project (or technology) diversity in bottom-up optimization
models is required.

We develop a theoretical framework to account for investor type heterogeneity and technology-
specific interest rates in bottom-up optimization models. We apply three different investment cost
specifications and varying interest and discount rates to create three stylized investor types that can
match existing firms and their specific ownership structures. We combine those different investor
types within one optimization framework by enabling different shares of investor types and type-
specific interest and discount rates by means of a weighted joint discount factor. We implement this
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theoretical framework in the EUREGEN model—a European power market partial equilibrium
model that optimizes investments, decommissioning, and dispatch for generation, storage, and
transmission technologies intertemporally until 2050—to quantify impacts of different investor
types, the role of discounting for investment patterns for each investor type, the impact of varying
interest and discount rates for each investor type, the role of investor type heterogeneity, and
impacts when applying technology-specific interest rates.

We start with disentangling effects stemming from the three different investment cost specifica-
tions of the three investor types. The normal investor considers full investment cost in the period
of investment, whereas capital cost (applying the weighted average cost of capital, WACC) and
annuity (applying annuities) allocate investment cost over the depreciation time of on investment.
Assuming a normal investor applying 7% interest and discount rates leads to 362 GW wind ca-
pacity (generation share of 29%) in 2020 that increases to 974 GW (40%) in 2050. The capital
cost investor with same rates engenders 290 GW (23%) in 2020 and 949 GW (38%) in 2050. The
annuity investor provides 206 GW (15%) in 2020 and 759 GW (32%) in 2050. The normal investor
invests most into wind power and fundamentally earlier than the capital cost and annuity investor.
The capital investor almost closes that gap until 2050, whereas the annuity investor delivers struc-
turally lower wind power capacities or shares, respectively. However, normal and annuity investor
invest similarly in nuclear (147 and 140 GW in 2050) compared to the capital cost investor (97
GW). Conversely, the capital cost investor delivers highest gas-CCS capacity (459 GW in 2050)
and solar capacity (587 GW) compared to the normal investor (384 GW, 487 GW) and annuity
investor (425 GW, 440 GW).

Next, we account for the effects of neglecting discounting. Considering a normal investor
applying 7% interest rate but neglecting discounting leads to early wind deployment (446 GW or
35% in 2020). Differences to the case with discounting become even more dramatic until 2035 but
level out in the long run. Patterns are reversed for capital cost and annuity investors. Neglecting
discounting hampers wind deployment in the short and mid run. However, differences level out
again in the long run. Neglecting discounting fosters in general early investments for the normal
investor because such a specification places a higher weight on later investment cost. In turn,
capital and annuity investors allocate investment cost over time (and not just in the period of
investment) and thus show reversed patterns because neglecting discounting in general makes
investments more expensive (and thus fosters reliance on existing capacities).

We can derive the impact of diverging financing cost by varying interest and discount rates
for each investor type. Higher rates hamper wind deployment at benefits of gas-CCS. Lower rates
foster nuclear deployment at cost of gas-CCS when assuming a normal investor. Lower rates also
foster wind deployment when assuming an annuity investor. When assuming a capital investor in
turn, the magnitude of changes is extreme. Wind and solar deployment for lower rates actually
overcome the substitution of gas-CCS and nuclear.

Investor type-specific interest and discount rates reinforce differences across investor types. We
apply 3% rates for the normal investor, 5% for the capital cost, and 9% for the annuity investor.
Wind capacity increases from 435 GW (386 GW, 180 GW) in 2020 to 1,004 GW (1,113 GW, 624
GW) in 2050 for the normal (capital cost, annuity) investor. Nuclear capacity increases to 194 GW
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(112 GW, 84 GW) and gas-CCS capacity to 383 GW (446 GW, 502 GW). Accounting for investor
type heterogeneity in markets leads to wind (nuclear, gas-CCS) capacity of 912 GW (140 GW, 428
GW). However, wind power (nuclear, gas-CCS) capacity is 157 GW (-60 GW, +21 GW) higher
when applying technology-specific rates but only 45 GW (+13 GW, -5 GW) lower when applying
type-specific rates. Thus, the overall investor type heterogeneity significantly affects outcomes of
the model. This heterogeneity is largely driven by the underlying investment cost specification as
opposed to the final discount and interest rate. However, technology-specific interest rates can,
hugely impact final results.

Our analysis reveals one major flaw: as far as we are aware, all the currently available bottom-
up optimization models used to derive policy-advice fail to capture the heterogeneity of investors’
behaviors, which leads to a substantially different rate and pace of generation capacity development
of technologies such as wind, nuclear and gas-CCS. Consequently, this flaw leads policymakers to
misinterpret the results. Hence, when modeling energy systems and power markets with a large
degree of technological detail, such as is the case in bottom- up optimization models, we need to
account for the underlying investor type heterogeneity. Thus, our results confirm that accounting
for more differentiated picture of electricity market investment with heterogeneous investor types
can provide a starting point for tailor-made energy policies, thereby increasing the efficiency and
effectiveness of public policies fostering the decarbonization of power markets.

Alternatively, we need to interpret the results carefully and eventually consult different models
with a varying specification of investment cost. Modelers and policy makers need to pay more
attention to the role of investment cost specifications, technology-specific financing cost, and overall
discount rates. They need to take account of the fact that some investor types are quite resistant to
changes in the interest and discount rates, whereas other types are extremely sensitive. Moreover,
we suggest to base the modeling analysis on available empirical studies evaluating underlying
market-specifics and the key investor types to be accounted for.

Our analysis is subject to some limitations. We focus on the general impact of three types of
investors and diverging interest and discount rates. We thus neglect region-specific differences in
rates and also region-specific differences in market structures. Moreover, we keep investment cost
the same for each investor, whereas those might differ as well. Those limitations can be addressed
in future work.

References

Arrow, K. J. and A. C. Fisher (1974). Environmental preservation, uncertainty, and irreversibility.
The Quarterly Journal of Economics 88 (2), 312–319.

Asker, J., J. Farre-Mensa, and A. Ljungqvist (2011). Comparing the investment behavior of public
and private firms. Technical report, National Bureau of Economic Research.

Azarova, V. and M. Mier (2020). Market Stability Reserve under exogenous shock: The case of
COVID-19 pandemic. Applied Energy , 116351.

28



Bachner, G., J. Mayer, and K. W. Steininger (2019). Costs or benefits? assessing the economy-
wide effects of the electricity sector’s low carbon transition–the role of capital costs, divergent
risk perceptions and premiums. Energy Strategy Reviews 26, 100373.

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. The Journal of
Political Economy 81 (3), 637–654.

Broer, D. P. and G. Van Leeuwen (1994). Investment behaviour of dutch industrial firms: A panel
data study. European Economic Review 38 (8), 1555–1580.

Cao, K.-K., F. Cebulla, J. J. G. Vilchez, B. Mousavi, and S. Prehofer (2016). Raising awareness
in model-based energy scenario studies—a transparency checklist. Energy, Sustainability and
Society 6 (1), 28.

Cummins, J. G., K. A. Hassett, and S. D. Oliner (2006). Investment behavior, observable expec-
tations, and internal funds. American Economic Review 96 (3), 796–810.
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