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Abstract

In a Mirrleesian environment, a monopsonist sets hourly wages and individuals choose how many
hours to work. Labor market outcomes do not only depend on the level and slope of the income
tax function, but also on its curvature. A more concave tax schedule raises the elasticity of labor
supply, which boosts wages. Consequently, optimal marginal tax rates for low-skilled workers are
declining in income. I derive an optimal tax formula in terms of su�cient statistics that accounts
for the impact of tax curvature on labor market outcomes.
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1 Introduction

Firms exercise signi�cant market power when se�ing wages. How much market power they can exert
depends critically on the elasticity of labor supply (Robinson, 1933, Manning, 2003). �is statistic is not
policy-invariant. I show that this insight has an implication for tax policy. In particular, if wages are
set by a monopsonist and individuals choose how many hours to work, the government can use the
curvature of the tax function to boost wages of low-skilled workers by raising their elasticity of labor
supply. �is is achieved by se�ing marginal tax rates that are declining in income. Consequently, the
optimal tax schedule at the bo�om of the income distribution is concave.

To reach this conclusion, I study aMirrleesian environment where individuals di�er in their ability,
which is not observed by the government. Individuals take their hourly wage and the tax schedule as
given and optimally choose how many hours to work. Wages are not determined competitively as in
Mirrlees (1971), but instead set by amonopsonist that observes ability andmaximizes pro�ts taking into
account how wages a�ect individual labor supply. �e government has a preference for redistribution
and levies a nonlinear tax on labor earnings and a con�scatory tax on pro�ts.

Labormarket outcomes do not only depend on the level and slope of the tax function (the zeroth and
�rst derivative), but also on its curvature (the second derivative). �e la�er determines how responsive
individuals are to wage changes. To illustrate, suppose the tax function is convex andmarginal tax rates
increase steeply with income. Individuals then haveweak incentives to work longer hours following an
increase in the hourly wage. A low elasticity of labor supply, in turn, implies that a pro�t-maximizing
monopsonist sets low wages. Consequently, a local increase in the second derivative of the tax function
reduces the hourly wage, hours worked and labor earnings.

A government that is interested in redistribution can exploit this feature to boost wages of low-
skilled workers. I characterize the second-best allocation and show that the optimal tax schedule is
concave at the bo�om of the income distribution. Declining marginal tax rates at the bo�om raise
the labor supply elasticity of low-skilled workers, which positively a�ects their wages. In fact, the
government sets the curvature of the tax function in such a way that the monopsonist does not extract
any rents from hiring the least-skilled workers. If the tax system is optimized, the monopsonist pays
the least-skilled workers a wage equal to their productivity.

�e �nding that optimal marginal tax rates for low-skilled workers are declining in income is a
local result. I also derive an optimal tax formula that holds at each point in the income distribution. To
that end, I study the welfare e�ects of increasing the second derivative of the tax function just below
a particular income level, and decreasing it right above. �is reform induces a local increase in the
marginal tax rate, cf. Saez (2001) and Golosov et al. (2014). �e optimal tax formula is obtained by
se�ing the sum of the welfare-relevant e�ects from this reform equal to zero. Compared to existing
results from the literature, the additional ‘su�cient statistics’ that characterize optimal tax policy are
the impact of tax curvature on labor earnings and hourly wages, and the impact of the level and slope
of the tax function on hourly wages and pro�ts.

A number of recent papers study optimal redistributive taxation in an environment where �rms
have market power, either in the market for goods (Kaplow, 2019, Boar and Midrigan, 2020, Kushnir
and Zubrickas, 2020, Eeckhout et al., 2021, Gürer, 2021) or, as in the current paper, the market for
labor (Hariton and Piaser, 2007, da Costa and Maestri, 2019, Hummel, 2021). Hariton and Piaser (2007)
and da Costa and Maestri (2019) study a model where �rms do not observe ability and screen workers
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through nonlinear compensation contracts. Hummel (2021) assumes �rms do observe ability and o�er
workers a combination of earnings and labor e�ort. �e main di�erence with these studies is that
in the current paper, the monopsonist sets hourly wages and individuals choose how many hours to
work. An important implication is that, unlike in the aforementioned studies, labor market outcomes
depend on the curvature of the tax function, which is the main focus of this paper.

It is well known that measures of labor supply or earnings responses to wage or tax changes, such
as the elasticity of taxable income (ETI), depend on the curvature of the tax function. See, among
others, Saez (2001) and Jacquet and Lehmann (2021) for a discussion of this issue. A key di�erence
is that in my model, the curvature of the tax function a�ects labor market outcomes directly and not
only the behavioral responses to wage or tax changes. Slemrod and Kopczuk (2002) derive an optimal
elasticity of taxable income in an environment where the government can a�ect this elasticity using
administrative instruments. By contrast, in my model the government uses the curvature of the tax
function to a�ect the elasticity of labor supply.

�e remainder of this paper is organized as follows. Section 2 presents the model and analyzes
the impact of tax curvature on labor market outcomes. Section 3 studies the implications for optimal
marginal tax rates at the bo�om. Section 4 derives an optimal tax formula that holds at each point in
the income distribution. Finally, Section 5 concludes.

2 Model

�ere is a continuum of individuals who di�er in their ability (or skill) n ∈ [n0, n1], which measures
how much output an individual produces per hour worked. �e cumulative distribution of ability
is denoted by F (n) with density f(n). Individuals supply labor on the intensive margin to a single
monopsonist. �e monopsonist observes ability and sets the hourly wage at each ability level in order
to maximize pro�ts. �e government does not observe individual ability but only their labor earnings.
It has a preference for redistribution and levies a nonlinear tax on labor earnings. To focus exclusively
on labor income taxation, I assume pro�ts are taxed at a con�scatory rate. �e timing is as follows.

1. �e government chooses the tax schedule T (·) on labor income z(n) = w(n)l(n).

2. �e monopsonist sets the hourly wage w(n) at each ability level n ∈ [n0, n1].

3. Individuals choose how many hours l(n) to work.

Working backward, an individual with ability n takes the hourly wage w(n) and the tax schedule T (·)
as given. Preferences over consumption c and labor e�ort l are described by a separable utility function
U(c, l) = u(c) − φ(l), with u′(·), φ′(·), φ′′(·) > 0 and u′′(·) ≤ 0. �e individual chooses how many
hours to work in order to maximize utility:

v(n) = max
l

{
u(w(n)l − T (w(n)l))− φ(l)

}
. (1)

�e �rst-order necessary condition determines the optimal choice of labor e�ort l(n):

u′(w(n)l(n)− T (w(n)l(n)))w(n)(1− T ′(w(n)l(n))) = φ′(l(n)). (2)
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At the optimum, the marginal bene�ts of working an extra hour (on the le�-hand side) are equal to
the marginal costs (on the right-hand side). Equation (2) pins down the number of hours worked as a
function of the hourly wage.

�e monopsonist sets the wage w(n) at each ability level in order to maximize pro�ts. It takes the
tax schedule T (·) as given, but has to take into account that wages a�ect hours worked, cf. equation
(2). �e monopsonist thus maximizes aggregate pro�ts Π =

´ n1

n0
π(n)f(n)dn, where the pro�ts from

employing a worker with ability n are

π(n) = max
w,l,λ

{
(n− w)l + λ

[
u′(wl − T (wl))w(1− T ′(wl))− φ′(l)

]}
. (3)

Here, λ denotes the multiplier on the constraint (2). Combining the �rst-order conditions with respect
to the wage and hours worked gives, a�er rearranging,

w(n)

n
=

elw(n)

1 + elw(n)
. (4)

At the optimum, the markdown of wages relative to productivity depends on the (�rm-level) elasticity
elw(n) of hours worked with respect to the hourly wage, which varies across the skill distribution.
Ignoring function arguments to save on notation, the la�er can be found by implicitly di�erentiating
the �rst-order condition (2):

elw =
dl

dw

w

l
=
w

l

u′′wl(1− T ′)2 + u′(1− T ′)− u′wlT ′′

−u′′w2(1− T ′)2 + φ′′ + u′w2T ′′
. (5)

A few remarks are in place. First, because there is a single monopsonist, the �rm-level elasticity of labor
supply is equal to the aggregate, or market-level elasticity of labor supply: both are given by elw.1 �e
assumption of a single monopsonist if of coure extreme, but captures that the labor supply curve each
�rm faces is less than perfectly elastic (Manning, 2003). Second, the elasticity of labor supply depends
on properties of the tax function, in particular the level T (which enters u′ and u′′), the slope T ′ and
the curvature T ′′. �is leads to the following result.

Proposition 1. A local increase in the curvature of the tax function T (·) at earnings z(n) leads to a lower

equilibrium wage w(n), hours worked l(n) and labor earnings z(n).

Proof. An increase in T ′′ lowers the elasticity elw of labor supply, as the numerator (denominator) in
equation (5) decreases (increases). Equation (4) then implies the equilibrium wage decreases. At an
interior optimum, the labor supply curve (2) is upward sloping: elw > 0. Consequently, hours worked
l and labor earnings z = w × l decline as well.

According to Proposition 1, a local increase in the second derivative of the tax function T (·) at
earnings z(n) reduces the hourly wage, hours worked and labor earnings of individuals with ability
n. �e reason is that an increase in the curvature of the tax function makes individual labor supply
less responsive to a change in the hourly wage. To illustrate, suppose the tax schedule is convex and
marginal tax rates are steeply increasing in income. In that case, individuals have weak incentives to

1By contrast, if labor markets are perfectly competitive, the market-level elasticity of labor supply is given by equation
(5), whereas the �rm-level elasticity of labor supply is in�nite. In that case, equation (4) implies there is no markdown:
w(n) = n.
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work longer hours following an increase in the hourly wage. Put di�erently, the elasticity of labor
supply elw is low. A low elasticity of labor supply makes it a�ractive for the monopsonist to pay low
wages as well, cf. equation (4). Consequently, a local increase in the curvature of the tax function
reduces the hourly wage, hours worked and labor earnings. �e following example illustrates this.

Example 1. Suppose the individual utility function is U(c, l) = c − l1+1/ε

1+1/ε and the tax schedule has a

constant rate of progressivity p ∈ (0, 1): T (z) = z − 1−τ
1−pz

1−p.2 Equilibrium labor supply follows from

equation (2): l(n) = (1− τ)
ε

1+pεw(n)
(1−p)ε
1+pε . Hence, the elasticity of labor supply is elw = (1−p)ε

1+pε and the

equilibrium wage is, cf. equation (4):

w(n) = (1− p) ε

1 + ε
n. (6)

A higher rate of tax progressivity p ∈ (0, 1) means that marginal tax rates are more quickly in-
creasing in income. �is makes it less a�ractive for individuals to work longer hours if their wage
increases: the elasticity of labor supply elw is decreasing in p. An increase in the rate of tax progressiv-
ity thus ampli�es the negative impact of market power on wages by making individuals less responsive
to wage changes.

It is useful to point out that the e�ect described in Proposition 1 and illustrated with the example
above di�ers from thewage-moderating e�ect of tax progressivity. �e la�er states that a local increase
in themarginal tax rate lowers the equilibrium wage. �is is a robust prediction in models where labor
markets are imperfectly competitive: it holds in the context of union bargaining (Hersoug, 1984), search
frictions (Pissarides, 1985) and e�ciency wages (Pisauro, 1991). �e main di�erence with Proposition
1 is that the la�er concerns the impact of the second (as opposed to the �rst) derivative of the tax
function. In the aforementioned studies, labor market outcomes only depend on the level and slope of
the tax function. Consequently, a local change in the curvature of the tax function has no impact. By
contrast, a change in the curvature does a�ect labor market outcomes if, as inmymodel, a monopsonist
sets hourly wages and individuals choose how many hours to work.

Turning to the optimal tax problem, the government levies a con�scatory tax on pro�ts and chooses
the tax schedule T (·) on labor earnings to maximize the following welfare function:

W =

ˆ n1

n0

Ψ(v(n))f(n)dn. (7)

�e function Ψ(·) is an increasing, weakly concave transformation of individual utilities. Together
with the concavity in the individual utility function u(·), it determines the government’s preferences
for redistribution from high-skilled to low-skilled workers. �e government chooses the tax schedule
T (·) to maximize social welfare (7), taking into account how a change in the tax function a�ects labor
market outcomes and subject to the budget constraint

ˆ n1

n0

T (z(n))f(n)dn+

ˆ n1

n0

π(n)f(n)dn = G. (8)

2According to Heathcote et al. (2017), this speci�cation provides a good approximation of the current US tax schedule.
�ey estimate a value of p̂ = 0.181.
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Total revenues from taxing labor income and pro�ts must be su�cient to �nance some exogenous
spendingG. �e literature o�ers two methods to solve an optimal tax problem of this kind: the mech-
anism design approach (see, e.g., Mirrlees, 1971) and the tax perturbation approach (see, e.g., Saez, 2001
and Golosov et al., 2014). See Jacquet and Lehmann (2021) for a formal discussion and comparison of
both methods. In what follows, I use the mechanism design approach to derive a property of marginal
tax rates at the bo�om of the income distribution (Section 3) and the tax perturbation approach to
derive an optimal tax formula in terms of su�cient statistics that holds at each point in the income
distribution (Section 4).

3 Declining marginal tax rates

Solving the optimal tax problem using the mechanism design approach requires �nding the allocation
(v(n), π(n), l(n)) for each n ∈ [n0, n1] that maximizes welfare (7) subject to resource and incen-
tive constraints. �e resource constraint is obtained by inverting the relationship v(n) = u(z(n) −
T (z(n)))−φ(l(n)) with respect to T (z(n)) and using the property z(n) = nl(n)−π(n). Substituting
these in the government budget constraint (8) gives

ˆ n1

n0

[
nl(n)− u−1(v(n) + φ(l(n)))

]
f(n)dn = G. (9)

�e incentive constraints, in turn, describe the optimizing behavior of themonopsonist and individuals.
To derive the �rst of these, di�erentiate the expression for pro�ts (3) with respect to ability n and apply
the envelope theorem:

π′(n) = l(n). (10)

To derive the second incentive constraint, di�erentiate the expression for individual utility (1) and
again apply the envelope theorem:3

v′(n) = u′(w(n)l(n)− T (w(n)l(n)))l(n)(1− T ′(w(n)l(n)))w′(n)

= φ′(l(n))l(n)
w′(n)

w(n)
= φ′(l(n))

(
π(n)

nl(n)− π(n)

)
b(n), where b(n) = l′(n). (11)

�e �rst step uses equation (2) and the second step uses the relationship π(n) = (n− w(n))l(n).4

As will be made clear below, in order to �nd the allocation that maximizes social welfare subject
3An alternative way to derive this incentive constraint is the following. Suppose an individual with hourly wage w(n)

chooses labor earnings (recall: the government only observes earnings). Incentive compatibility then requires

n = argmax
m

u(z(m)− T (z(m)))− φ
(
z(m)

w(n)

)
.

Di�erentiating the objective with respect to ability n gives, at the truth-telling solution,

v′(n) = φ′
(
z(n)

w(n)

)
z(n)

w(n)2
w′(n) = φ′(l(n))l(n)

w′(n)

w(n)
,

which coincides with the second line of equation (11).
4To see this, di�erentiate both sides with respect to ability to �nd π′(n) = l(n)+(n−w(n))l′(n)−w′(n)l(n). Equation

(10) then implies w′(n)l(n) = (n− w(n))l′(n).
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to resource and incentive constraints, it is important to take the constraint π(n0) ≥ 0 explicitly into
account. Equation (10) then implies �rmsmake non-negative pro�ts from hiring eachworker. Lastly, to
make sure that the allocation can be implemented using a non-linear tax T (z(n)), labor earnings must
satisfy the monotonicity constraint z′(n) ≥ 0.5 Di�erentiating z(n) = nl(n) − π(n) and imposing
equation (10), the la�er requires b(n) = l′(n) ≥ 0.

�e problem of �nding the optimal nonlinear tax schedule T (·) can now be wri�en as a standard
optimal control problem, with state variables (v(n), π(n), l(n)) and control variable b(n). Solving this
problem leads to the following result.

Proposition 2. Optimal marginal tax rates for the least-skilled workers are declining in income. Put

di�erently, the optimal tax schedule is concave at the bo�om of the income distribution: T ′′(z(n0)) < 0.

Proof. �e key behind this result lies in demonstrating that the constraint π(n0) is binding. To do so,
write the optimal tax problem in terms of allocation variables:

max
[v(n),π(n),l(n),b(n)]

n1
n0

W =

ˆ n1

n0

Ψ(v(n))f(n)dn, (12)

s.t.
ˆ n1

n0

[
nl(n)− u−1(v(n) + φ(l(n)))

]
f(n)dn = G,

∀n : v′(n) = φ′(l(n))

(
π(n)

nl(n)− π(n)

)
b(n),

∀n : π′(n) = l(n),

∀n : l′(n) = b(n),

∀n : b(n) ≥ 0,

π(n0) ≥ 0.

Using integration by parts on the incentive constraints, the Lagrangian is given by

L =

ˆ n1

n0

[(
Ψ(v(n)) + η

(
nl(n)− u−1(v(n) + φ(l(n)))−G

))
f(n)

+ λ(n)φ′(l(n))

(
π(n)

nl(n)− π(n)

)
b(n) + λ′(n)v(n) + µ(n)l(n) + µ′(n)π(n) + χ(n)b(n)

+ χ′(n)l(n) + ψ(n)b(n)

]
dn+ λ(n0)v(n0)− λ(n1)v(n1) + µ(n0)π(n0)− µ(n1)π(n1)

+ χ(n0)l(n0)− χ(n1)l(n1) + ξπ(n0). (13)

5As demonstrated in Appendix A, monotonicity of labor earnings implies the �rst-order conditions of the pro�t maxi-
mization problem are both necessary and su�cient. If that is the case, the �rst-order condition for the utility maximization
problem is necessary and su�cient as well.
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�e �rst-order condition with respect to the states v(n), π(n), l(n) and the control b(n) are:

v(n) :

(
Ψ′(v(n))− η

u′(c(n))

)
f(n) + λ′(n) = 0, (14)

π(n) : λ(n)φ′(l(n))
nl(n)

(nl(n)− π(n))2
b(n) + µ′(n) = 0, (15)

l(n) : η

(
n− φ′(l(n))

u′(c(n))

)
f(n) + µ(n) + χ′(n)

+ λ(n)

[
φ′′(l(n))

π(n)

nl(n)− π(n)
− φ′(l(n))n

π(n)

(nl(n)− π(n))2

]
b(n) = 0, (16)

b(n) : λ(n)φ′(l(n))
π(n)

nl(n)− π(n)
+ χ(n) + ψ(n) = 0. (17)

Here, c(n) = u−1(v(n) + φ(l(n))) denotes the consumption of an individual with ability n. �e la�er
is increasing in ability, because monotonicity of labor earnings, i.e., b(n) ≥ 0, implies labor e�ort l(n)

and utility v(n) are increasing in ability as well.
�e transversality conditions imply λ(n0) = λ(n1) = µ(n1) = 0 and µ(n0) + ξ = 0. Because

Ψ(·) and u(·) are concave and because v(n) and c(n) are increasing in ability, equation (14) implies
that λ(n) ≤ 0 for all n with a strict equality only at the end-points.6 Equation (15) then implies µ(n)

is increasing in ability. From µ(n1) = 0, it follows that µ(n0) < 0 and hence, ξ > 0. �e constraint
π(n0) ≥ 0 thus holds with equality.

If π(n0) = 0, it follows that w(n0) = n0 at the optimal tax system. Equation (4) then implies
elw(n0) → ∞. �is requires that the denominator in equation (5) approaches zero. �erefore, at the
lowest skill level −u′′w2(1 − T ′)2 + φ′′ + u′w2T ′′ → 0. Because u′′ ≤ 0 and φ′′ > 0, it follows that
the tax function is concave at the bo�om of the income distribution: T ′′ < 0.

�emain insight fromProposition 2 is that the government can use the curvature of the tax function
to boost wages of low-skilled workers. �is is achieved by se�ing a tax schedule that is concave at the
bo�omof the income distribution. Amore concave tax schedule, i.e., a decrease in the second derivative
of the tax function, positively a�ects wages: see Proposition 1. As explained before, declining marginal
tax rates make it a�ractive for individuals to work longer hours following an increase in the hourly
wage. A high elasticity of labor supply, in turn, induces the monopsonist to pay high wages as well,
cf. equation (4). A government that is interested in redistribution can exploit this feature to raise the
wages of low-skilled workers, and �nds it optimal to do so.

At the optimal tax system, the monopsonist does not extract any rents from hiring the least produc-
tive workers. Hence, despite that there is a single monopsonist, these workers get paid a wage equal
to their productivity. �e government can guarantee this is the case by se�ing the curvature of the tax
function at the bo�om of the income distribution in such a way that labor supply of the least-skilled
workers becomes in�nitely elastic: elw(n0)→∞. Naturally, doing so requires that marginal tax rates
at the bo�om are declining in income: T ′′(z(n0)) < 0.

6It can be veri�ed that no solution exists where v(n) and c(n) do not vary with ability and hence, λ(n) = 0 for all n. �is
would require b(n) = 0 for all n, in which case l(n) is constant as well, cf. equation (11). Equation (15) and the condition
µ(n1) = 0 then imply µ(n) = 0 for all n. From equation (16) and the transversality conditions χ(n0) = χ(n1) = 0 it
follows that χ(n) ≥ 0 with a strict equality only at the end-points. Equation (17) then contradicts the requirement that the
multiplier ψ(n) ≥ 0.
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�e �nding that optimal marginal tax rates are declining in income is a local result: it holds at
the bo�om of the income distribution. Unfortunately, using the mechanism design approach to derive
optimal tax rules that that hold at each point in the income distribution and that can be meaningfully
interpreted turns out to be particularly challenging. �e next section a�empts to derive such a result
using an alternative approach to solve the optimal tax problem.

4 Optimal tax formula

�e optimal tax problem can also be solved using the tax perturbation approach. See Saez (2001) and
Golosov et al. (2014), among many others. �e idea behind this approach is to study a perturbation, or
reform of the nonlinear tax schedule T (·). Such a reform induces welfare-relevant e�ects. Optimal tax
formulas can then be derived from the requirement that if the tax schedule is optimized, the welfare-
relevant e�ects of the reform sum to zero.

Before studying a particular tax reform, it is useful to restate the labor market equilibrium condi-
tions. In modi�ed form, equations (2) and (4) can be wri�en as

u′(z − T (z)− α)z(1− T ′(z)− β) = φ′(l)l, (18)

n

[
u′′(z − T (z)− α)z(1− T ′(z)− β)2 +

φ′(l)l

z
− u′(z − T (z)− α)z(T ′′(z) + γ)

]
= φ′(l) + φ′′(l)l. (19)

�e �rst of these is obtained from multiplying equation (2) by l and the second from combining equa-
tions (4)–(5), using the property z = w × l. �ese equations pin down equilibrium labor e�ort l and
earnings z as a function of ability n and the reform parameters α, β and γ. �ese reform parameters
can be used to study the impact of a local increase in the level, slope and curvature of the tax func-
tion, respectively. To illustrate, the e�ect of the tax curvature on earnings and labor e�ort is given by
dz/dγ and dl/dγ. �e behavioral responses on equilibrium earnings and labor e�ort can be obtained
by implicitly di�erentiating equations (18)–(19), evaluated at α = β = γ = 0.7 �e e�ects on pro�ts
and wages, in turn, follow from the relationships π = nl − z and w = z/l.

An important advantage of the tax perturbation approach is that it allows for a derivation of optimal
tax formulas in terms of su�cient statistics (Che�y, 2009). In the current se�ing, these are: i) the
income distribution, ii) behavioral responses and iii) welfare weights. Starting with the �rst, let H(z)

denote the cumulative distribution of earnings, with corresponding densityh(z). Monotonicity of labor
earnings z′(n) ≥ 0 implies that the distributions of earnings and ability are related throughH(z(n)) =

F (n) and hence, h(z(n))z′(n) = f(n). �e behavioral responses, in turn, capture how an increase in
the level, slope or curvature of the tax function a�ect labor market outcomes. With a slight abuse of
notation, I denote by yx the impact of a local increase in x ∈ {T, T ′, T ′′} on outcome y ∈ {z, l, w, π}.
As explained before, these behavioral responses can be obtained by implicitly di�erentiating equations
(18)–(19) with respect to α, β and γ respectively, and using the relationships π = nl− z and w = z/l.

7When implicitly di�erentiating equations (18)–(19), it is important to take the dependency of T (z), T ′(z) and T ′′(z)
on earnings z into account. �e behavioral responses then capture the changes along the actual tax schedule, taking into
account its higher-order derivatives. See Jacquet et al. (2013) for a discussion of this issue.
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Lastly, the welfare weight of an individual with earnings z is

g(z) =
1

η
Ψ′(v(n̂(z)))u′(z − T (z)), (20)

where η is the multiplier on the government budget constraint and n̂(z) denotes the ability level that
corresponds to earnings z. In words, the welfare weight g(z) measures by how much social welfare
increases if an individual with earnings z receives an additional unit of a�er-tax income. �ese weights
summarize in a reduced-form way the government’s preferences for redistribution. Because both Ψ(·)
and u(·) are concave, the welfare weights are declining in income z.

Figure 1 graphically illustrates the reform that is used to derive an optimal tax formula. �e black,
do�ed line shows the original tax schedule. For simplicity, it is drawn as a straight line. �e red, solid
line shows the perturbed tax schedule a�er the reform is implemented. Below earnings z′, the two tax
functions are the same. In the small interval [z′, z′ + ζ], the government increases the curvature (i.e.,
the second derivative) of the tax function by dT ′′. �is is shown by the convex part of the solid line.
Following the increase in the tax curvature, the marginal tax rates above earnings z′ + ζ increase by
an amount equal to dT ′ = dT ′′ζ . As a result, the perturbed tax schedule is steeper than the original
tax schedule: see Figure 1. In the interval [z′ + δ, z′ + δ+ ζ] with δ � ζ , the government reverses the
increase in the curvature by lowering the second derivative of the tax function by dT ′′. �is is shown
by the concave part of the solid line. Following this reversal, the marginal tax rates of the perturbed
and original tax schedule are the same at earnings above z′+δ+ζ : the do�ed and solid line are parallel.
However, the reform does increase the tax burden for individuals with earnings above this level by an
amount equal to dT = dT ′δ = dT ′′ζδ.8

To keep track of the welfare-relevant e�ects associated with the tax reform, it is useful to write the
Lagrangian of the government’s optimization problem

L =

ˆ z1

z0

[
Ψ(u(z − T (z))− φ(l)) + η

(
T (z) + π −G

)]
h(z)dz, (21)

where z0 = z(n0) and z1 = z(n1). Note that labor e�ort l and pro�ts π vary along the earnings distri-
bution as well and that earnings, labor e�ort and pro�ts all depend on the level, slope and curvature of
the tax function. �e �rst part of the Lagrangian (21) states the objective, integrated over the income
(as opposed to the ability) distribution. �e second part captures the government budget constraint,
again integrated over the income distribution, with associated multiplier η.

�e reform graphically illustrated in Figure 1 generates three types of welfare-relevant e�ects. In
what follows, I discuss each of these in turn and then turn to derive and explain the optimal tax formula.
First, there are behavioral responses due to a change in the curvature of the tax function in the small

8While Figure 1 graphically illustrates the reform, it is also possible to give a formal de�nition. Let R(z) denote the
di�erence between the perturbed and the original tax schedule. �is reform function is given by

R(z) =



0 if z ≤ z′,
1
2
dT ′′(z − z′)2 if z ∈ (z′, z′ + ζ],

− 1
2
dT ′′ζ2 + dT ′′ζ(z − z′) if z ∈ (z′ + ζ, z′ + δ],

− 1
2
dT ′′ζ2 + dT ′′ζ(z − z′)− 1

2
dT ′′(z − (z′ + ζ))2 if z ∈ (z′ + δ, z′ + δ + ζ],

dT ′′ζδ if z > z′ + δ + ζ.
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Figure 1: Tax reform and behavioral responses

intervals [z′, z′ + ζ] and [z′ + δ, z′ + δ + ζ]. In Figure 1, these are labeled ‘curvature e�ects’. Ignoring
function arguments to save on notation, the welfare impact of raising the curvature in the interval
[z′, z′ + ζ] by an amount equal to dT ′′ is

ˆ z′+ζ

z′

[(
Ψ′
(
u′(1− T ′)zT ′′ − φ′lT ′′

)
+ η
(
T ′zT ′′ + πT ′′

))
h

]
(z)dz × dT ′′. (22)

Here, the entire function between square brackets is evaluated at earnings z. To understand this ex-
pression, note that a change in the tax curvature a�ects earnings z, labor e�ort l and pro�ts π for
individuals with earnings in the interval [z′, z′ + ζ]. �e impact on the Lagrangian is then obtained
by integrating dL

dT ′′ × dT
′′ × h from z′ until z′ + ζ , where L is the term in square brackets below the

integral sign of equation (21). Working out dL
dT ′′ and accounting for the impact of tax curvature on

earnings z, labor e�ort l and pro�ts π gives the result from equation (22).
Equation (22) can be simpli�ed in a number of steps. First, use equation (2) to substitute out for

φ′ = u′w(1 − T ′). Second, the relationship z = w × l implies zT ′′ = wT ′′ l + wlT ′′ and hence,
wT ′′ l = zT ′′ − wlT ′′ . �ird, a local increase in the curvature of the tax function has no impact on
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pro�ts: πT ′′ = 0.9 Fourth, use the de�nition of the welfare weight (20). Rearranging gives

η ×
ˆ z′+ζ

z′

[(
T ′zT ′′ + g(1− T ′)lwT ′′

)
h

]
(z)dz × dT ′′. (23)

By analogous reasoning, the welfare impact of a reduction in the curvature of the tax function in the
small interval [z′ + δ, z′ + δ + ζ] by an amount equal to dT ′′ is

−η ×
ˆ z′+δ+ζ

z′+δ

[(
T ′zT ′′ + g(1− T ′)lwT ′′

)
h

]
(z)dz × dT ′′. (24)

Second, the tax reform raises the marginal tax rate in the interval [z′ + ζ, z′ + δ]: see Figure 1
and recall that δ � ζ . A higher marginal tax rate generates behavioral responses on earnings z, labor
e�ort l and pro�ts π. �e impact on welfare associated with these ‘substitution e�ects’ is

ˆ z′+δ

z′+ζ

[(
Ψ′
(
u′(1− T ′)zT ′ − φ′lT ′

)
+ η
(
T ′zT ′ + πT ′

))
h

]
(z)dz × ζdT ′′. (25)

�is expression is obtained by integrating dL
dT ′ × dT

′ × h from z′ + ζ until z′ + δ, where L is the term
in square brackets below the integral sign of equation (21), as before. �e term dL

dT ′ accounts for the
equilibrium responses of earnings z, labor e�ort l and pro�ts π to a change in the marginal tax rate.
To arrive at equation (25), note that the reform increases the marginal tax rate for individuals with
earnings in the interval [z′ + ζ, z′ + δ] by an amount equal to dT ′ = ζdT ′′.

�e above expression can be simpli�ed in a similar way as before. In particular, use the property
φ′ = u′w(1− T ′) and the de�nition of the welfare weight (20). Moreover, the relationship z = w × l
implies that zT ′ = wT ′ l + wlT ′ . Substituting this in equation (25) gives

η ×
ˆ z′+δ

z′+ζ

[(
T ′zT ′ + πT ′ + g(1− T ′)lwT ′

)
h

]
(z)dz × ζdT ′′. (26)

�ird, the reform increases the tax burden for individuals with earnings above z′ + δ + ζ by an
amount dT = dT ′δ = dT ′′ζδ. �is generates two types of welfare-relevant e�ects. First, the reform
mechanically transfers income from individuals with earnings above this level to the government bud-
get. Second, a change in the tax burden generates behavioral responses on earnings z, labor e�ort l and
pro�ts π. Figure 1 labels these ‘income e�ects’. �e total impact on welfare can be found by integrating
dL
dT × dT × h for earnings above z′ + δ + ζ :

ˆ z1

z′+δ+ζ

[((
−Ψ′u′ + η

)
+ Ψ′

(
u′(1− T ′)zT − φ′lT

)
+ η
(
T ′zT + πT

))
h

]
(z)dz × ζδdT ′′, (27)

where the increase in the tax burden is dT = ζδdT ′′. Note that, when computing dL
dT from equation

(21), there is both a mechanical e�ect (�rst term) as well as behavioral responses (other terms) to an
9To see this, note that pro�ts can be wri�en as

π = max
l,z

{
nl − z s.t. u′(z − T (z)− α)z(1− T ′(z)− β) = φ′(l)l

}
,

where I introduced the reform parameters α and β in the constraint (2). A change in any of these generally has an impact
on pro�ts. However, because γ does not show up, a local increase in the curvature does not a�ect pro�ts.
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increase in the tax burden. To simplify this expression, use the relationship φ′ = u′w(1 − T ′), the
expression for the welfare weight (20) and the property z = w × l. Di�erentiating the la�er with
respect to T gives zT = wT l + wlT . Equation (27) can then be wri�en as

η ×
ˆ z1

z′+δ+ζ

[(
1− g + T ′zT + πT + g(1− T ′)lwT

)
h

]
(z)dz × ζδdT ′′. (28)

If the tax system is optimized, any reform should have no impact on social welfare. Put di�erently,
the sum of the three welfare-relevant e�ects associated with the reform graphically illustrated in Figure
1 is equal to zero. �is leads to the following result.

Proposition 3. At the optimal tax system, the following condition must hold at each point z′ ∈ [z0, z1]

in the income distribution:

0 =− d

dz

[(
T ′(z′)zT ′′(z

′) + g(z′)(1− T ′(z′))l̂(z′)wT ′′(z′)
)
h(z′)

]
+
(
T ′(z′)zT ′(z

′) + πT ′(z
′) + g(z′)(1− T ′(z′))l̂(z′)wT ′(z′)

)
h(z′)

+

ˆ z1

z′

(
1− g(z) + T ′(z)zT (z) + πT (z) + g(z)(1− T ′(z))l̂(z)wT (z)

)
h(z)dz. (29)

Here, it is explicitly taken into account which terms vary along the income distribution and l̂(z) denotes

the labor e�ort associated with earnings z.

Proof. Add equations (23), (24), (26) and (28) and set the resulting expression equal to zero. Dividing
by η × ζ × dT ′′ gives

1

ζ

ˆ z′+ζ

z′

[(
T ′zT ′′ + g(1− T ′)lwT ′′

)
h

]
(z)dz − 1

ζ

ˆ z′+δ+ζ

z′+δ

[(
T ′zT ′′ + g(1− T ′)lwT ′′

)
h

]
(z)dz

+

ˆ z′+δ

z′+ζ

[(
T ′zT ′ + πT ′ + g(1− T ′)lwT ′

)
h

]
(z)dz

+

ˆ z1

z′+δ+ζ

[(
1− g + T ′zT + πT + g(1− T ′)lwT

)
h

]
(z)dz × δ = 0. (30)

Next, take the limit as ζ → 0:[(
T ′zT ′′ + g(1− T ′)lwT ′′

)
h

]
(z′)−

[(
T ′zT ′′ + g(1− T ′)lwT ′′

)
h

]
(z′ + δ)

+

ˆ z′+δ

z′

[(
T ′zT ′ + πT ′ + g(1− T ′)lwT ′

)
h

]
(z)dz

+

ˆ z1

z′+δ

[(
1− g + T ′zT + πT + g(1− T ′)lwT

)
h

]
(z)dz × δ = 0. (31)

�e �rst term in square brackets is evaluated at earnings z′ and the second term is evaluated at earnings
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z′ + δ. To proceed, divide equation (31) by δ and rearrange

−
[
(T ′zT ′′ + g(1− T ′)lwT ′′)h

]
(z′ + δ)−

[
(T ′zT ′′ + g(1− T ′)lwT ′′)h

]
(z′)

δ

+
1

δ

ˆ z′+δ

z′

[(
T ′zT ′ + πT ′ + g(1− T ′)lwT ′

)
h

]
(z)dz

+

ˆ z1

z′+δ

[(
1− g + T ′zT + πT + g(1− T ′)lwT

)
h

]
(z)dz = 0. (32)

Taking the limit as δ → 0:

− d

dz

[(
T ′zT ′′ + g(1− T ′)lwT ′′

)
h

]
(z′) +

[(
T ′zT ′ + πT ′ + g(1− T ′)lwT ′

)
h

]
(z′)

+

ˆ z1

z′

[(
1− g + T ′zT + πT + g(1− T ′)lwT

)
h

]
(z)dz = 0. (33)

�e �rst term is the derivative of the expression in square brackets with respect to earnings, evaluated
at z′. To arrive at the result from Proposition 3, note that equation (33) must hold for a reform consid-
ered at each income level z′ ∈ [z0, z1]. As a �nal step, equation (29) makes explicit which terms vary
across the earnings distribution.

Equation (29) gives an optimal tax formula in terms of su�cient statistics that holds at each point
in the income distribution. To understand the link with Figure 1, recall that the reform increases the
tax curvature below a particular income level and decreases it right above. �is reform leads to a local
increase in the marginal tax rate and an increase in the tax burden for all individuals with earnings
above this level. �e �rst term of equation (29) captures the di�erence between the welfare e�ects
of increasing the tax curvature and subsequently decreasing it. Upon making the intervals arbitrarily
small, this essentially boils down to taking a derivative. �e second term captures the welfare-relevant
e�ects associated with a local increase in the marginal tax rate. Naturally, these e�ects are proportional
to the density of the income distribution at the point where the marginal tax rate is increased. Lastly,
the third term integrates the welfare impact of a higher tax burden over all individuals who see their
tax burden increase as a result of the reform.

It is useful to contrast the result from Proposition 3 with the optimal tax formula that holds if
labor markets are competitive. See, for instance, Saez (2001) and Golosov et al. (2014). Under perfect
competition, labor market outcomes are not a�ected by a local increase in the curvature of the tax
function: zT ′′ = wT ′′ = 0. Moreover, the wage of an individual with ability n is w(n) = n and �rms
make zero pro�ts: π(n) = 0. Consequently, wages and pro�ts do not respond to a change in the level
or slope of the tax function: wT = wT ′ = πT = πT ′ = 0. Equation (29) then becomes:

0 = T ′(z′)zT ′(z
′)h(z′) +

ˆ z1

z′

(
1− g(z) + T ′(z)zT (z)

)
h(z)dz. (34)

Apart from di�erences in presentation, this optimal tax formula coincides with the one derived in Saez
(2001) and Golosov et al. (2014), among others.

Compared to the competitive benchmark, the additional ‘su�cient statistics’ that show up in the
optimal tax formula (29) are the e�ects of tax curvature on earnings and hourly wages and the e�ects

14



of the tax burden and the marginal tax rate on hourly wages and pro�ts. Intuitively, the additional
responses of earnings and pro�ts to tax changes have budgetary e�ects, as the government taxes both
labor income and pro�ts. In equation (29), the budgetary e�ects are captured by T ′zT ′′ , πT ′ and πT . By
contrast, the wage responses wT ′′ , wT ′ and wT have an e�ect on individuals’ disposable incomes. �is
e�ect is proportional to l, the number of hours worked, and the a�er-tax rate 1−T ′. Because changes
in disposable income a�ect individual utilities, the welfare e�ects associated with wage changes in
equation (29) are weighted by the individual welfare weights g.

Unfortunately, implementing the optimal tax formula (29) using estimates of su�cient statistics is
a very challenging task. To the best of my knowledge, there are no estimates available of the impact
of tax curvature on labor market outcomes. Moreover, to implement the optimal tax formula (29),
one also requires knowledge of how these statistics vary across the earnings distribution. �e result
does, however, make clear what forces shape optimal policy and which statistics determine the welfare
impact of tax reforms if labor market outcomes depend on the curvature of the tax function.

5 Conclusion

If a monopsonist sets hourly wages and individuals choose how many hours to work, labor market
outcomes do not only depend on the level and the slope of the tax function, but also on its curvature.
I use that insight to obtain the following three results. First, a local increase in the curvature (i.e.,
the second derivative) of the tax function reduces the hourly wage, hours worked and labor earnings.
Intuitively, a more convex or less concave tax schedule lowers the elasticity of labor supply, which
induces themonopsonist to pay lower wages. Second, the optimal tax schedule is concave at the bo�om
of the income distribution. Declining marginal tax rates at the bo�om make low-skilled workers more
responsive to wage changes, which leads the monopsonist to pay higher wages. �ird, I derive an
optimal tax formula that accounts for the impact of tax curvature on labormarket outcomes. Compared
to existing results in the literature, the additional ‘su�cient statistics’ that characterize the optimal tax
system are the impact of tax curvature on earnings and hourly wages, and the impact of the tax burden
and the marginal tax rate on hourly wages and pro�ts.

How important the e�ects of tax curvature are on labor market outcomes is an open question, but
one that can be investigated empirically. One approach would be to construct a measure of tax cur-
vature T ′′(z) throughout the income distribution, which can then be used as an explanatory variable
in a regression framework with wages, hours worked or labor earnings as the dependent variable.10

Another approach would be to regress any of these outcomes on (instrumented) measures of an indi-
vidual’s own tax burden, marginal tax rate and the marginal tax rate an individual would face if the
individual’s earnings increase or decrease. �e model from this paper predicts that a higher (lower)
marginal tax rate of one’s ‘neighbor’ in the income distribution with slightly higher (lower) earnings
negatively a�ects wages, hours worked and labor earnings. I leave an empirical investigation of this
issue as a topic for future research.

10If the tax system is piecewise linear, T ′′(z) is not de�ned everywhere. One can, however, calculate T ′(zn+1)−T ′(zn)

zn+1−zn
for

two earnings levels zn+1 and zn close to each other, without taking the limit as zn+1 − zn → 0.
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A Monotonicity of labor earnings

�is appendix �rst demonstrates that monotonicity of labor earnings, i.e., z′(n) ≥ 0, implies the
second-order conditions in both the pro�t and utility maximization problem are satis�ed. To do so,
note that the pro�t maximization problem can be wri�en as

π(n) = max
l,z

{
nl − z s.t. u′(z − T (z))z(1− T ′(z)) = φ′(l)l

}
. (35)

Here, the constraint is obtained bymultiplying both sides of equation (2) by l and using the relationship
z = w × l. Inverting this constraint gives l = l̃(z). Substituting this in the objective results in an
unconstrained maximization problem

π(n) = max
z

{
nl̃(z)− z

}
. (36)

�e �rst-order condition is

nl̃′(z)− 1 = 0. (37)

�e second-order condition is nl̃′′(z) ≤ 0. Upon working out l̃′(z) using the implicit function theorem
on the constraint in equation (35), equations (37) and (4) coincide.

Equation (37) determines equilibrium labor earnings z(n) as a function of ability. By the implicit
function theorem,

z′(n) = − l̃′(z)

nl̃′′(z)
= − 1

n2 l̃′′(z)
. (38)

Consequently, z′(n) ≥ 0 if and only if the second-order condition nl̃′′(z) ≤ 0 is satis�ed. Monotonicity
of labor earnings z(n) = nl(n)−π(n), in turn, implies that z′(n) = nl′(n) + l(n)−π′(n) = nl′(n) =

nb(n) ≥ 0, where I use the incentive constraint (10). �erefore, if b(n) ≥ 0, it follows that labor
earnings are monotone in ability and the �rst-order conditions in the pro�t maximization problem are
both necessary and su�cient.

Next, consider the utility maximization problem. �e individual’s �rst-order condition (2) is su�-
cient if the objective (1) is concave in hours worked. �is is the case if

u′′w2(1− T ′)2 − u′w2T ′′ − φ′′ ≤ 0, (39)
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where I ignore function arguments to save on notation. To demonstrate that the �rst-order conditions
of the pro�t maximization problem imply this condition holds, write the �rst-order condition of the
utility maximization problem as

Γ(w, l) = u′(wl − T (wl))w(1− T ′(wl))− φ′(l) = 0. (40)

Next, combine the �rst-order conditions of the pro�t maximization problem (3) with respect to the
wage w and hours worked l to �nd

(n− w)Γw(w, l) + lΓl(w, l) = 0. (41)

Working out Γw(w, l) and Γl(w, l) gives

(n− w)(u′′wl(1− T ′)2 + u′(1− T ′)− u′wlT ′′) + l(u′′w2(1− T ′)2 − φ′′ − u′w2T ′′) = 0. (42)

Using the relationship u′w(1− T ′) = φ′ and collecting terms,

nu′wlT ′′ = n(u′(1− T ′) + u′′wl(1− T ′)2)− φ′ − φ′′l. (43)

To proceed, multiply the �nal expression by w/(nl) and again use u′w(1− T ′) = φ′,

u′w2T ′′ =
φ′

l
+ u′′w2(1− T ′)2 − φ′w

nl
− φ′′w

n
. (44)

Substitute this equation in the second-order condition for the utility maximization problem (39). Sim-
plifying gives

−φ′′ − φ′

l
+
φ′w

nl
+
φ′′w

n
=
(w
n
− 1
)(

φ′′ +
φ′

l

)
≤ 0. (45)

Because the wage is weakly below productivity and φ′, φ′′ > 0, it follows that the second-order con-
dition for utility maximization is satis�ed. To sum up, adding the requirement b(n) ≥ 0 in the gov-
ernment’s optimization problem guarantees that labor earnings are monotone in ability: z′(n) ≥ 0.
�e la�er, in turn, implies that the �rst-order conditions of the pro�t maximization problem are both
necessary and su�cient. If that is the case, the second-order condition for the utility maximization
problem is satis�ed as well.
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