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Abstract 
 
This paper develops and solves a spatiotemporal equilibrium model in which regional wages and 
house prices are determined jointly with location-to-location migration flows. The agent’s optimal 
location choice and the resultant migration process are shown to be Markovian, with the transition 
probabilities across all location pairs given as non-linear functions of wage and housing cost 
differentials, endogenously responding to migration flows. The model can be used for the analysis 
of spatial distribution of population, income, and house prices, as well as for the analysis of the 
entire dynamic process of shock spill-over effects in regional economies through location-to-
location migration. The model is estimated on a panel of 48 mainland U.S. states and the District 
of Columbia over the training sample (1976-1999) and is shown to fit the data well over the 
evaluation sample (2000-2014). The estimated model is then used to analyse the size and speed 
of spatial spill-over effects by computing spatiotemporal impulse responses of positive 
productivity and land-supply shocks to California, Texas, and Florida. The sensitivity of the 
results to migration elasticity, housing depreciation rate and local land supply conditions is also 
investigated. 
JEL-Codes: E000, R230, R310. 
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1 Introduction

This paper contributes to the literature on housing and migration by developing a Markovian
model of the migration process jointly with a regional model of house prices driven by pop-
ulation and exogenously given labor productivity and land supply. It extends the classical
spatial equilibrium model of Rosen (1979) and Roback (1982) by explicitly modelling the
dynamics of location-to-location migration flows that interact with the dynamics of housing
depreciation and accumulation. The size and speed of spatial spill-over effects are quantified
by means of spatiotemporal impulse response analyses of regional shocks. The proposed
model is tractable and can be applied to study spill-over effects in regional housing markets,
which have been the subject of a number of empirical studies by Holly et al. (2010), Bailey
et al. (2016), Sinai (2012), Cotter et al. (2015) and DeFusco et al. (2018), amongst others.
The model can also be used to study the spatiotemporal impacts of changes in local land
supplies on regional house prices and spatial population allocation, which are recently con-
sidered by Hsieh and Moretti (2019) and Herkenhoff et al. (2018).1 Importantly, the model
can be used to quantify the effects of factors such as migration elasticity, housing depreci-
ation rate and local land supply conditions on the spatiotemporal adjustments in regional
economies through migration, which cannot be done using Rosen-Roback style models that
abstract from migration by assuming perfect mobility, or by using reduced form empirical
models.

Specifically, we propose a spatiotemporal equilibrium model of the housing market by
solving explicitly the agent’s optimal location choice problem and the dynamics of location-
to-location migration flows. We model local labor and housing markets jointly with migration
decisions, allowing the latter to be the function of wage and housing cost differentials. This is
in contrast to conventional demographic studies on migration that use Markov chain models,
such as Fuguitt (1965) and Tarver and Gurley (1965), but assume transition probabilities
across locations are exogenously given, whilst in our study we allow migration flows to in-
teract with local housing markets through endogenous and nonlinear variations in transition
probabilities across location pairs and over time. As a result, in our set-up local wage rates
and house prices are jointly determined with migration flows. Our theoretical framework can
be viewed as an example of a dynamic network where regional labor and housing markets
interact with each other via migration flows that function as a source of spatial spill-over
effects. The proposed model has the advantage that it can be used for the analysis of spatial
distribution of population, income and house prices, as well as for the analysis of the entire
dynamic process of shock spill-over effects in regional economies through location-to-location
migration.

We place location choice of individual agents at the core of our modelling strategy. At the
start of each period, agents decide whether to remain where they are or migrate to a different
location. The gain from migration depends on the differences in wage rates and housing costs
between the origin and the destination, as well as migration costs consisting of a route-specific

1Furthermore, our theoretical framework can be adapted to analyze other types of spatial spill-over effects
in regional economies that operate through migration, such as spill-over effects in regional labor markets,
previously considered by Blanchard et al. (1992).
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element plus a stochastic idiosyncratic component. The agent’s optimal location choice and
the resultant migration process is shown to be Markovian with the transition probabilities
across all location pairs given as non-linear functions of wage and housing cost differentials.
In each location, construction firms build new houses by combining land and residential
structures, with housing supplies endogenously responding to migration flows. In addition,
it is shown that the deterministic version of the model has a unique balanced growth path,
with no location ending up with zero population.

The model is estimated on a panel of 48mainland U.S. states plus the District of Columbia
on a training sub-sample, 1976-1999, and then evaluated over 2000-2014, which we refer to
as the evaluation sample.2 The migration elasticity and route-specific migration costs, which
are the key parameters affecting the spatiotemporal spill-over effects of regional shocks, are
estimated jointly using the combined state-to-state migration flows and state level incomes
and housing costs data. It is shown that a large part of variations in migration costs can
be explained in terms of amenity differentials and geographical distances. Parameters that
govern local housing supplies are calibrated using state level housing market data. We
estimate the state level supplies of new residential land from the model using housing market
and urban land acreage data. These estimates are shown to be significantly negatively
correlated with the Wharton Residential Land Use Regulatory Index (WRI henceforth). In
the baseline simulations, we examine the performance of the model in predicting the observed
trends in house prices and migration flows over the evaluation sample. The model predicts the
trends in state level house price-to-income ratios, output and population reasonably well. In
addition, the model adequately captures the observed patterns of interstate migration flows.

To examine the size and speed of spatial spill-over effects, we compute spatiotemporal
impulse responses of positive productivity and land-supply shocks to California, Texas and
Florida in turn. A positive productivity shock in California raises local wages and induces
net migration flows from other states to California. As a result, the population and house
prices of all U.S. states except for California decrease. However, the responses of population
and house prices tend to be stronger and quicker for states close to California than for the
distant states. Similarly, the responses of U.S. states to a positive land-supply shock in
California also have qualitatively similar spatiotemporal patterns. These results suggest,
perhaps not surprisingly, that migration between states that are geographically close are
more responsive to changes in wages and housing costs differentials. This is largely due to
the fact that migration costs tend to increase with migration distance.

We obtain qualitatively similar results for Texas and Florida. However, the responses
of Texas and Florida to local shocks are quantitatively different from those of California,
due to the differences in land supply conditions across these states. For example, a positive
productivity shock in Texas (where housing supplies are more elastic) induces more inward

2Ideally, we would have liked to estimate our model at MSA or even at county levels. But due to the
highly non-linear nature of the model in which the dynamic interaction of location-to-location migration flows
and regional housing markets are explicitly modelled, increasing the number of locations, N , will increase
the computational burden significantly, by a factor N2. There are also important data limitations to be
overcome at the MSA level. Such an extension of our empirical analysis will be beyond the scope of the
present paper.
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migration flows and larger increases in housing stocks, while a positive productivity shock in
California (where housing supplies are less elastic) translates into larger rises in house prices
and less inward migration flows. In addition, a positive land-supply shock in California
induces larger increases in housing supplies in California and more inward migration flows,
while a positive land-supply shock in Texas has less impact on housing supplies in Texas and
induces less inward migration flows. This is because new residential land is more scarce in
California than in Texas, and thus a positive land-supply shock increases housing supplies
more in California than in Texas.3

Finally, we investigate also how migration elasticity and housing depreciation rate can
affect the spatiotemporal adjustment processes. Not surprisingly, when migration elasticity is
larger, a regional shock tends to induce more population reallocation, and the spill-over effects
are stronger, especially for the nearby states. We find also that when housing depreciation
rate is low, housing stocks adjust slowly to changes in local housing demand and supply
conditions, which slows down the migration flows (Glaeser and Gyourko (2005)).

1.1 Related literature

Our modelling approach is to be distinguished from Rosen-Roback style spatial equilibrium
models, such as, Van Nieuwerburgh and Weill (2010), and from the dynamic population
allocation models adopted in the studies on spatial labor allocations by Davis et al. (2021)
and Herkenhoffet al. (2018), among others. These studies rely on static models of population
allocation as an outcome of spatial sorting process under perfect population mobility, or
consider a representative household that centrally allocates household members (population)
across locations. In contrast, we extend the classical spatial equilibrium model of Rosen
(1979) and Roback (1982) in a different direction by modeling explicitly the dynamics of
location-to-location migration flows that function as a source of spatial spill-over effects. In
addition, the tractability of the model allows us to analytically solve the model. Because
of these features, the present model can be used to study the dynamic process of shock
spill-over in regional economics through migration, which has not been dealt with in most
existing Rosen-Roback style models. Furthermore, we explicitly model the dynamic process of
housing depreciation and accumulation, which is a feature that most existing Rosen-Roback
style models do not have. This feature allows us to capture the role of durable housing stock
in slowing down population reallocation (Glaeser and Gyourko (2005)).

Our paper also sheds light on the effects of land-use regulation on regional house prices
and spatial population allocation. Glaeser and Gyourko (2003), Glaeser et al. (2005), Quigley
and Raphael (2005), Ihlanfeldt (2007) and Albouy and Ehrlich (2018) find that areas with
faster than average growth in house prices tend to have more restrictions on residential
land-use.4 Recently, Hsieh and Moretti (2019) and Herkenhoff et al. (2018), go beyond the
analysis of house prices and examine the impact of land-use regulations on spatial labor

3Our analyses of the differences between regional productivity and land-supply shocks are complementary
to Notowidigdo (2020), who focuses on the asymmetric effects of positive and negative shocks on local
population (especially for low-skill worker population), and to Monras (2018), who focuses on the different
responses of in-migration and out-migration to shocks and the speed of convergence across locations.

4A number of studies also consider non-regulatory factors behind land supply availability. For example,
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allocation and the national output.5 Our empirical analysis is complementary to Herkenhoff
et al. (2018), and following them we also adopt a macroeconomic approach and consider
the impact of state-specific land-use regulation on spatial population allocation across U.S.
states. However, while their study emphasizes the positive impacts of land-use deregula-
tion in California on the national output through population reallocation, we investigate the
spatiotemporal patterns of the population reallocation that results from land-use deregula-
tion. As shown in our impulse response analyses, a positive land-supply shock to California
lowers local housing costs and induces net migration inflows from other states to California,
and reduces population and house prices in other U.S. states. However, the adjustment of
population to the deregulation is slow and the population reallocation towards California is
mostly from the nearby states. These results in turn suggest that the population reallocation
from the deregulation in California can be mostly regional.

The rest of the paper is organized as follows: Section 2 sets out the migration module,
and Section 3 specifies the rest of the model. Section 4 summarizes the set of equilibrium
conditions and the model’s solution. Section 5 proves the existence and the uniqueness of the
equilibrium and the balanced growth path in the deterministic case. Section 6 estimates the
model. Section 7 examines the performance of the model in predicting the observed trends in
house price and migration over the evaluation sample. Section 8 presents the spatiotemporal
analyses of productivity and land-supply shocks to California, Texas and Florida. Section
9 provides some sensitivity analyses to the choices of migration elasticity and the housing
depreciation rate. Section 10 concludes. Mathematical derivations and data sources are
provided in Appendix A. To save space, some of the simulation results and details of the
computation of spatiotemporal impulse responses are provided in an online supplement.

2 A dynamic location-to-location migration model

Our theoretical framework consists of two modules: a migration module and a module for
regional labor and housing markets. The migration module is a dynamic version of the
residential choice model originally developed by McFadden (1978), in which the location-to-
location migration choices of agents at the start of each period are explicitly modelled.6 We
begin with the migration module that forms the core of our analysis.

Saiz (2010) considers the impacts of geographical constraints on land supplies, and Kahn (2011) finds that
liberal cities in California grant fewer new housing permits.

5In addition, Hilber and Robert-Nicoud (2013) and Parkhomenko (2016) study how regional housing
supply regulations are endogenously determined in political processes, and Van Nieuwerburgh and Weill
(2010) and Gyourko et al. (2013) attribute the increase in house price dispersion to spatial labor sorting.

6The McFadden location choice model has been used in a number of other areas in economics. Prominent
recent examples include the studies by Artuc et al. (2010) and Caliendo et al. (2019) on trade and labor
allocation choices.
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2.1 Geography and migration flows

Time, denoted by t, is discrete and the horizon is infinite, so that t = 0, 1, 2, .... There are n
locations, and the collection of locations is represented by In = {1, 2, ..., n}, where n is fixed
but possibly large (n ≥ 2). The economy is populated by workers who consume goods and
housing services, and live for only one period. At the start of each period, workers decide
whether to reside at locations where they are born, or migrate to a new location. Denote by
lij(t) the number of workers who are born at location i in period t, and choose to reside at
location j, where i and j ∈ In. Denote the population of workers born at location i at the
start of period t by li·(t). Then

li·(t) =
n∑
j=1

lij(t), (1)

and the number of workers who choose to reside at location j in period t, denoted by l·j(t),
is given by

l·j(t) =
n∑
i=1

lij(t). (2)

The number of workers who are born at location i at the start of period t equals to the
number of workers who reside at that location in period t− 1, plus an intrinsic exogenously
given population change.7 Denote the intrinsic rate of population change (growth rate if
positive) of location i in period t by gl,it. Thus, the number of workers born in location i at
the start of period t is given by

li·(t) = egl,itl·i(t− 1), (3)

where it is assumed that gl,it follows an exogenously given deterministic process, for i ∈ In,
to be specified below.

We model migration probabilities as a Markov process. The probability that an individ-
ual worker born at location i chooses to reside at location j in period t is denoted by ρij(t),
where ρij(t) > 0 and

∑n
j=1 ρij(t) = 1. Workers’location choices are assumed to be condi-

tionally independent given the location-specific wage rates and housing service prices. Thus,
according to the law of large numbers, the fraction of workers born in location i who choose
to reside at location j converges to ρij(t) as population increases. We ignore any randomness
due to finite population and assume the migration flow from location i to location j, lij(t),
is determined by

lij(t) = li·(t)ρij(t). (4)

Thus, by combining (2), (3) and (4), we obtain

l·j(t) =

n∑
i=1

egl,itl·i(t− 1)ρij(t), for j = 1, 2, ..., n.

7The intrinsic population changes are made up of, for example, the net natural population increases (i.e.
birth minus death) and the net migration flows from other countries.
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The above system of equations can be re-written more compactly as

l(t) = l(t− 1)G(t)R(t), (5)

where l(t) ≡ [l·1(t), l·2(t), ..., l·n(t)] is the 1 × n (row) vector of location-specific population,
and G(t) is the n × n diagonal matrix of population growth rates and R(t) is the n × n
Markovian migration probability matrix, defined by

G(t) ≡


egl,1t 0 · · · 0

0 egl,2t · · · 0
...

...
. . .

...
0 0 · · · egl,nt

 , and R(t) ≡


ρ11(t) ρ12(t) · · · ρ1n(t)
ρ21(t) ρ22(t) · · · ρ2n(t)
...

...
. . .

...
ρn1(t) ρn2(t) · · · ρnn(t)

 .

In the standard Markov chain model of migration, transition matrix, R(t), is exoge-
nously given. However, in our model, we allow R(t) to be time varying and endogenously
determined. We consider the endogenous determination of R(t) in the following sections.

2.2 Location choice

At the start of each period, workers decide where to reside by maximizing their utilities
in terms of consumption and housing services across all locations, and then choosing the
location that gives them the highest level of utility. Consider an individual worker τ who is
born at location i in period t, and considers moving to location j ∈ In, where j could be i
(namely not moving). We adopt a log-linear utility function and assume that if the worker
decides to reside in location j, then her utility will be given by

uτ ,t,ij = (1− η) ln cτ ,t,ij + η ln sτ ,t,ij − lnαij + σεετ ,t,ij,

where cτ ,t,ij and sτ ,t,ij are her consumption of goods and housing services, respectively, η
represents the relative preference for housing service to consumption goods with η ∈ (0, 1),
lnαij is the route-specific migration cost, ετ ,t,ij represents the idiosyncratic component of
worker’s relative location preference over (i, j) location pair, and σε is a strictly positive
scaler constant. In our theoretical derivations we assume that the log migration cost from
location i to j, lnαij, is given by

lnαij = (amenityi − amenityj) + rlcij, (6)

where amenityi and amenityj denote the amenity levels at locations i and j, respectively,
and rlcij is a route-specific relocation cost, with rlcij = 0 when i = j, and rlcij > 0 otherwise.
rlcij is intended to capture factors such as distance, geographical, social and economic dif-
ferences between locations i and j.8 We also assume that ετ ,t,ij is distributed independently
of cτ ,t,ij and sτ ,t,ij, and over time t. Also, following the literature on utility-based multiple
choice decision problem, we shall assume that at each point in t, ετ ,t,ij are independently

8In our empirical application we allow for trends in lnαij . See Section 6.1.2.
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and identically distributed (IID) as extreme value distribution. (see, for example, McFadden
(1978)).

Each worker inelastically supplies one unit of labor and allocate her wage income between
consumption of goods and housing services. Denoting the wage rate and the price of housing
services at location j in period t by wjt and qjt respectively, the budget constraint of the
worker is given as

cτ ,t,ij + qjtsτ ,t,ij = wjt.

The utility maximization is done in two steps. First, the worker maximizes her utility in
terms of consumption of goods and housing services across locations. Denote by ũτ ,t,ij the
maximized utility of worker τ if she chooses to reside at location j. It is given as

ũτ ,t,ij = ujt − lnαij + σεετ ,t,ij, (7)

where ujt is the maximal utility a worker expects to get in location j, and is determined by

ujt ≡ max
{cτ,t,ij , sτ,t,ij}

(1− η) ln cτ ,t,ij + η ln sτ ,t,ij, (8)

s.t. cτ ,t,ij + qjtsτ ,t,ij = wjt.

By solving this optimization problem, we obtain:

cjt = (1− η)wjt, (9)

sjt =
ηwjt
qjt

, (10)

where the subscripts τ and i of cτ ,t,ij and sτ ,t,ij are dropped for convenience, since the optimal
levels of consumption of goods and housing services of each worker only depend on j and t.
Thus, the indirect utility function associated with location j can be obtained by substituting
(9) and (10) into (8) to yield:

ujt = u0 + lnwjt − η ln qjt, (11)

where u0 ≡ (1− η) ln(1− η) + η ln η is an scaler.
Second, the worker chooses the location with the highest utility. Using (7) and (11), the

net utility gain of worker τ migrating to location j, denoted by vτ ,t,ij, is given by

vτ ,t,ij = ũτ ,t,ij − ũτ ,t,ii,
= (lnwjt − lnwit)− η (ln qjt − ln qit) + σε (ετ ,t,ij − ετ ,t,ii)− lnαij.

Given the realizations of {ετ ,t,ij}nj=1, the worker chooses the destination with the highest
vτ ,t,ij. Let j∗τ ,t,i denote the location chosen by the worker. Then,

j∗τ ,t,i = argmax
j∈In

vτ ,t,ij.
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Since by assumption ετ ,t,ij is distributed as IID extreme value, it can be shown that the
probability for the worker in location i to migrate to location j is given by (see Appendix
A1.1 for a derivation)

ρij(t) =
[(wjt/wit) (qjt/qit)

−η /αij]
1/σε∑n

s=1[(wst/wit) (qst/qit)
−η /αis]1/σε

, for i and j ∈ In. (12)

Thus, ρij(t) is a function of wage rate differentials, wjt/wit, and housing cost differentials,
qjt/qit.

3 Production and housing supplies

In this section, we focus on the module for regional labor and housing markets, and discuss
how regional wage rates, housing service prices, house prices, and housing supplies endoge-
nously respond to migration flows.

3.1 Production

We assume that location-specific wage rates are competitively determined in local labor
markets, and allow for agglomeration effects in production. We further assume that the
production of final goods is given by

yit = φit (aitl·i(t))
vl , (13)

where yit is the output of final goods in location i in period t, l·i(t) is the labor used in the
production, ait is the location-specific labor productivity, vl ∈ (0, 1) is the share of labor
costs in output, and φit stands for total factor productivity given by

φit = φ̄iy
vφ
it , (14)

where φ̄i > 0, and vφ ∈ [0, 1). It is assumed that total factor productivity, φit, increases with
production scale, which captures agglomeration effects of production. Parameter vφ governs
the magnitude of agglomeration effects, with vφ = 0 corresponding to no agglomeration
effect. The profit of the representative final goods producer at location i is given by

πyit = yit − witl·i(t), (15)

where wit is the wage rate in location i. The representative final goods producer chooses
l·i(t) to maximize its profits (15) subject to (13), while taking φit as given. The first order
condition for l·i(t) is given by,

wit = υl

(
yit
l·i(t)

)
. (16)

By substituting (13) and (14) into (16), we obtain the labor demand function:

wit = τw,ia
λa
it l·i(t)

−λl , (17)

8



where τw,i ≡ υlφ̄
1/(1−vφ)
i is a location-specific scalar, and λa and λl are the elasticities of

wage rate with respect to labor productivity and labor input respectively, which are defined
by

λa ≡
vl

1− vφ
, and λl ≡

1− vl − vφ
1− vφ

. (18)

To ensure that wage rates, wit, decrease with labor inputs, l·i(t), we assume 1− vl − vφ > 0,
which in turn implies 1 > λl > 0.9 We further assume that final goods producers consume
all the profits they earn in each period. Thus, cyit = πyit, where c

y
it denotes the consumption

of final goods by producers at location i in period t.
We adopt a relatively general specification of ait and assume that ln ait comprises of a

linear trend component, ln ai + gat, a national common (unobserved) component, ft, and a
local component za,it:

ln ait = ln ai + gat+ λift + za,it, (19)

where ga is the national growth rate of labor productivity, and λi is the location-specific
coeffi cient on the national component, with E (λi) > 0. In addition, za,it and ft are assumed
to follow first-order autoregressive (AR(1)) processes:

ft = ρfft−1 + σfεf,t, (20)

za,it = ρa,iza,i,t−1 + σa,iεa,it, (21)

where εf,t and εa,it are IID across locations and over time.

3.2 Housing supplies

3.2.1 Housing rental markets

We assume that location-specific housing service prices are competitively determined in local
rental markets. Suppose that each unit of existing houses provides a unit of housing services
in each period, while new houses begin to provide housing services a period after they are
built. Thus, the market clearing condition is given by

hi,t−1 =

(
ηwit
qit

)
l·i(t), (22)

where hi,t−1 is the quantity of houses that are available for rent at location i in period t,
ηwit/qit is the per capita consumption of housing services given by (10).

3.2.2 Construction of new houses

For determination of housing stocks, hit, and house prices, pit, we suppose that in each
period t, a representative contractor is endowed with κit > 0 units of unused or reclaimed
land in location i that can be used for new house construction. New houses are constructed

9It is easily seen that τw,i > 0 and λa > 0, since φ̄i and υl > 0, and vφ ∈ [0, 1).
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by combing residential land and final goods using a Cobb-Douglas technology. Denote the
amount of new houses built at location i in period t by xit, and note that

xit = τx,iκ
ϑκ,i
it m

1−ϑκ,i
it , (23)

where τx,i > 0 is a scalar constant, ϑκ,i ∈ (0, 1) is the share of land in house value, and
mit is the amount of final goods used for investments in residential structures at location
i. Contractors are assumed to be homogeneous and operate competitively across locations.
The profit of the representative contractor in period t, denoted by πct , is given as

πct =
n∑
i=1

pitxit −mit.

The contractor chooses {xit,mit}ni=1 to maximize her profits subject to house construction
technology, (23), while taking the new land supplies, κit, as given. By solving the contractor’s
optimization problem, we obtain the supply function for new houses

xit = τκ,iκitp
λp,i
it , (24)

where τκ,i ≡ τ
1+λp,i
x,i (1− ϑκ,i)λp,i is the location-specific scalar, and λp,i is the elasticity of the

new housing supply with respect to the house price, defined by

λp,i ≡
1− ϑκ,i
ϑκ,i

. (25)

We assume that contractors consume all the profits they earn in each period. Thus, cct = πct ,
where cct denotes the consumption of contractors in period t. Finally, we assume

lnκit = lnκi + gκ,it+ zκ,it (26)

where gκ,i is the trend growth rate of new land supplies, and zκ,it is the state-specific land-
supply shock assumed to follow the AR(1) process:

zκ,it = ρκ,izκ,i,t−1 + σκ,iεκ,it, (27)

where εκ,it are IID across locations and over time.

3.2.3 Housing accumulation process

It is assumed that housing stock depreciates at rate δ ∈ (0, 1) in all locations. Let hi,t−1 be
the quantity of housing stock in location i at the end of period t − 1, which is carried over
to period t. In period t, after depreciation the housing stock is given by (1− δ)hi,t−1, which
is then augmented with xit units of new houses constructed during period t. Thus, the total
stock of housing in location i at the end of period t is given by

hit = (1− δ)hi,t−1 + xit. (28)

10



In addition, homogeneous landlords own local housing stocks and rent them to workers,
and derive utility from consuming their profits. The population of landlords in location i,
denoted by loit, grows over time at the common rate of gl, where gl > 0. Thus, loit = egltloi0,
where loi0 > 0 is the initial population of landlords in location i. The life time utility of
landlords (as a group) in location i is given by

Et

∞∑
s=0

(βegl)s ln(coi,t+s), (29)

where coit is the consumption of the ‘representative’landlord in location i, and βe
gl ∈ (0, 1)

is the adjusted discount factor that allows for the growing number of landlords. The realized
net return on housing investment in location i in period t, denoted by roit, is given by

roit = (1− θi)
[
qit + (1− δ)pit

pi,t−1

]
, (30)

where θi ∈ (0, 1) is the location-specific cost of housing investment. The landlords’budget
constraint is then given by

coitl
o
it + pithit = roit (pi,t−1hi,t−1) . (31)

Landlords maximize (29) subject to (31). The Euler condition for this optimization is given
by

Et
(
Λi,t+1r

o
i,t+1

)
= 1, (32)

where Λi,t+1 is the stochastic discount factor, defined by Λi,t+1 = β
(
coit/c

o
i,t+1

)
. Pre-multiplying

both sides of (32) by pit, and using (30), we can write the house price, pit, as the sum of the
expected present value of rents net of depreciation:

pit =
∞∑
s=1

Et

[
(1− δ)s−1 (1− θi)s

(
s∏

υ=1

Λi,t+v

)
qi,t+s

]
.

Since the utility function of landlords is assumed to be logarithmic, a closed form solution
for landlords’optimization problem exists. The optimal rules for housing investment and
consumption are given by

pithit = βegl (1− θi) [qit + (1− δ)pit]hi,t−1, (33)

and
coitl

o
it = (1− βegl) (1− θi) [qit + (1− δ)pit]hi,t−1.

4 Model solution

We first summarize the set of equilibrium conditions by which the key variables are deter-
mined. We use bold lowercase letters with only time subscripts to denote the vectors of
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prices and quantities for all locations. For example, pt ≡ [p1t, p2t, ..., pnt], which is a 1 × n
vector. We focus only on the key variables that are related to migration and local housing
markets, including pt, qt,wt,xt,ht, l(t) and R(t), and the subset of equilibrium conditions
by which they are determined, which can be categorized into two groups:

• Migration. The first block of equilibrium conditions correspond to the migration
module set up in Section 2, and describe how migration probabilities, R(t), and local
population values, l(t), are determined, given wage rates, wt, and housing service
prices, qt, which include (5) and (12).

• Regional labor and housing markets. The second block of equilibrium conditions
correspond to the module for regional labor and housing markets set up in Section
3, and describe how wage rates, wt, housing service prices, qt, house prices, pt, and
housing supplies, ht, are determined given local population, l(t), which include (17),
(22), (24), (28) and (33), for i ∈ In.

As shown in equations (5) and (12), the agent’s optimal location choice and the resultant
migration process is Markovian, where the transition probabilities across all location pairs,
ρij(t), are functions of wage and housing cost differentials, i.e., wjt/wit and qjt/qit. In turn,
wage rates, wt, housing service prices, qt, house prices, pt, and housing supplies, ht, endoge-
nously respond to migration flows according to (17), (22), (24), (28) and (33).

It is now clear that for given values of the exogenous variables, at,κt, and gl,t, and the
initial values for local population and housing stocks, lt−1 and ht−1, prices, pt, qt, and wt,
and allocations, R(t), l(t),xt,and ht, can be solved for by using equations (5), (12), (17),
(22), (24), (28) and (33). In addition, as shown in Appendix A1.2, these equations can be
written compactly as:

ζt = f
(
ζt−1,at,at−1,κt−1, gl,t;Θ

)
, (34)

χt = g (ζt,at,κt;Θ) , (35)

where Θ is a row vector that contains all the parameters, ζt = [l(t), qt] is a 1 × 2n vector,
and χt = [pt,ht] is a 1× 2n vector. The stochastic processes of at are given by

lnat = lna +gat +λ ft+za,t, (36)

ft = ρfft−1 + σfεf,t, (37)

za,t = za,t−1diag(ρa,1, ρa,2, ...ρa,n) + εa,tdiag(σa,1, σa,2, ...σa,n), (38)

and the stochastic processes of κt are given by

lnκt = lnκ+ gκt+zκ,t, (39)

zκ,t = zκ,t−1diag(ρκ,1, ρκ,2, ...ρκ,n) + εκ,tdiag(σκ,1, σκ,2, ...σκ,n). (40)

and the values of gl,t, for t = 1, 2, ..., are exogenously given.
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5 The balanced growth path

We now consider the non-stochastic version of the model economy set out in Sections 2 and 3,
characterize its short-run and long-run equilibria and prove the existence and uniqueness of
the short-run equilibrium and the balanced growth path. The non-stochastic specification is
obtained by setting to zero the innovations to the national and location-specific components
of labor productivities (εf,t and εa,it in (20) and (21)), and the innovations to the location-
specific land-supply shocks ( εκ,it in (27)), namely εf,t = 0, εa,it = 0, and εκ,it = 0, for
i = 1, 2, ...n, and t = 1, 2, ... In this set up, local productivities are given by

ait = egatai, for i = 1, 2, ...n, and t = 1, 2, .... (41)

In addition, to obtain a balanced growth path we assume the same intrinsic population
growth rate, gl, across locations:

gl,it = gl, for i = 1, 2, ...n, and t = 1, 2, .... (42)

Finally, we assume that the location-specific land supplies are given by

κit = eg
∗
κ,itκi, for i = 1, 2, ...n, and t = 1, 2, ..., (43)

where g∗κ,i is the state-specific land supply growth rate. On the balanced growth path, prices
pt, qt,wt (quantities l(t),xt,ht) should grow at a common rate as t→∞. To find conditions
under which the economy has a balanced growth path, using (24) we note that

ln

(
xit
xi,t−1

)
= ln

(
κit
κi,t−1

)
+ λp,i ln

(
pit
pi,t−1

)
.

Note also that on the balanced growth path by definition we have ln (xit/xi,t−1) = gl,
ln (κit/κi,t−1) = g∗κ,i, and ln (pit/pi,t−1) = gw, where gw is the wage growth rate, and (17)
implies gw = λaga − λlgl. Hence, for a balanced growth path to exist we must have

g∗κ,i = (1 + λp,iλl) gl − λp,iλaga, for i = 1, 2, ..., n. (44)

The above condition states that the growth rate of new land supplies, g∗κ,i, and the growth
of productivity for production of residential structures, ga, should ensure that enough new
houses can be produced to accommodate the housing requirements of the growing population
in all locations. The land supply regime under which land growth rates are given by (44)
will be referred to as the balanced growth path land supply regime. The analysis of the
equilibrium properties of the stochastic version of the model is complicated, and will be
conducted by simulations. The deterministic solution provides information on the local
equilibrating properties of the stochastic version for suffi ciently small-size shocks.

We use letters with stars and time subscripts to denote the corresponding detrended vari-
ables. Specifically, w∗it ≡ e−gwtwit,w

∗
t ≡ [w∗1t, w

∗
2t, ..., w

∗
nt], p

∗
it ≡ e−gwtpit, p∗t ≡ [p∗1t, p

∗
2t, ..., p

∗
nt],

h∗it ≡ e−glthit, and h
∗
t ≡ [h∗1t, h

∗
2t, ..., h

∗
nt]. We denote the detrended aggregate population by
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L∗t ≡
∑n

i=1 l
∗
·i(t). Note that the detrended exogenous variables are time invariant by con-

struction (see (41)-(43)). For example, a∗it = ai and κ∗it = κi. Hence equilibrium conditions
(5), (12), (17), (22), (24), (28) and (33) can be re-written in terms of the detrended vari-
ables as (A.9)-(A.15) in Appendix A1.3. Then the short-run and the balanced growth path
equilibria of the economy can be defined in terms of detrended variables as follows:

Definition 1 (Short-run equilibrium) Consider the dynamic spatial equilibrium model
set up in Sections 2 and 3 by equations (5), (12), (17), (22), (24), (28) and (33), which
can be written equivalently in terms of detrended variables by equations (A.9) to (A.15) in
Appendix A1.3. Suppose that the vectors of exogenous processes for labor productivities, at,
land supplies, κt, and the intrinsic population growth rates, glt, for t = 1, 2, ..., are given by
(41)-(43), condition (44) holds, and the initial values for local population and housing stocks
( l0 and h0) are strictly positive. Then, a short-run equilibrium is defined as series of non-
negative prices [p∗t , q

∗
t ,w

∗
t ] and allocations [l∗(t),x∗t ,h

∗
t ] that solve the system of equations

(A.9)-(A.15) in Appendix A1.3, for given values l∗·i(t− 1) and h∗i,t−1, for i ∈ In.

Definition 2 (Balanced growth path equilibrium) Consider the dynamic spatial equi-
librium model set up in Sections 2 and 3 by equations (5), (12), (17), (22), (24), (28) and
(33), which can be written equivalently in terms of detrended variables by equations (A.9) to
(A.15) in Appendix A1.3. Suppose that the vectors of exogenous processes for labor produc-
tivities, at, land supplies, κt, and the intrinsic population growth rates, glt, for t = 1, 2, ...,
are given by (41)-(43), condition (44) holds, and the initial values for local population and
housing stocks ( l0 and h0) are strictly positive. Then, a balanced growth path equilibrium is
defined as a path on which the economy is in short-run equilibrium in the sense set out in
Definition 1 in each period, and the de-trended prices [p∗t , q

∗
t ,w

∗
t ] and quantities [l∗(t),x∗t ,h

∗
t ]

converge to non-negative limits as t→∞.

The existence and uniqueness of the short-run equilibrium is established in Appendix
A1.5. In what follows we focus on the existence and uniqueness of the long-run balanced
growth path which plays a more fundamental role in our simulation exercises.

Proposition 1 (Existence and uniqueness of the long-run balanced growth path)
Consider the dynamic spatial equilibrium model set up in Sections 2 and 3 by equations
(5), (12), (17), (22), (24), (28) and (33), which can be written equivalently in terms of
detrended variables by equations (A.9) to (A.15) in Appendix A1.3. Suppose that the vectors
of exogenous processes for labor productivities, at, land supplies, κt, and intrinsic population
growth rates, glt, for t = 1, 2, ..., are given by (41)-(43), and condition (44) holds, and the
initial values for local population and housing stocks ( l0 and h0) are strictly positive. Then
the model has a unique balanced growth path as set out in Definition 2.

Proof: By post-multiplying both sides of (A.9) by τ , an n× 1 vector of ones, we have

L∗t = l∗(t)τ = l∗(t− 1)R∗(t)τ = l∗(t− 1)τ = L∗t−1,

which implies
L∗t = L∗t−1, ...,= L∗1 = L0, (45)
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where L0 is the detrended total population for t = 0, 1, .... Using (A.9), l∗(t) can be written
as

l∗(t) = l(0)
[
Πt
s=1R

∗(s)
]
, (46)

where l(0) > 0 is the vector of the initial local populations, and R∗(1),R∗(2), ...,R∗(t), are
a series of stochastic matrices. Lemma A1 in Appendix A1.6 establishes the existence of the
balanced growth path by showing that l∗(t) converges to some time invariant non-negative
population vector l∗, as t→∞.

We use letters with only stars to denote the steady states of the corresponding detrended
variables. To establish that l∗ is unique, we first note that (45) implies

n∑
i=1

l∗·i = L0. (47)

By imposing the balance growth path conditions, the equilibrium conditions (A.9) to (A.15)
can be written as follows

l∗ = l∗R∗, (48)

where R∗ ≡
(
ρ∗ij
)
is the n× n matrix of migration probabilities, and

ρ∗ij =
(w∗j/w

∗
i )

1/σε(q∗j/q
∗
i )
−η/σε(αij)

−1/σε∑n
s=1(w∗s/w

∗
i )

1/σε(q∗s/q
∗
i )
−η/σε(αis)−1/σε

, for i and j ∈ In, (49)

and

w∗i = τw,ia
λa
i (l∗·i)

−λl , for i ∈ In, (50)

h∗i = (ηw∗i /q
∗
i ) l
∗
·i, for i ∈ In, (51)

x∗i = τκ,iκi(p
∗
i )
λp,i , for i ∈ In (52)

h∗i =
[
1− (1− δ) e−gl

]−1
x∗i , for i ∈ In, (53)

p∗i = β (1− θi) [q∗i + (1− δ)p∗i ] , for i ∈ In, (54)

Thus, to prove the uniqueness of the balanced growth path, in what follows we show that
the system of equations given by (47)-(54), has a unique positive solution. In the rest of
the proof, we show that given L0,a and κ , then w∗,p∗, q∗,x∗,h

∗, l∗ and R∗ are uniquely
determined.

We first show that for given values of l∗, a and κ, the solution for w∗,p∗, q∗,x∗ and h∗

is unique and can be obtained using (50)-(54), and then ρ∗ij can be written as a function of
l∗ as

ρ∗ij =
ψij
(
l∗·j
)−ϕj∑n

s=1 ψis (l∗·s)
−ϕs , (55)

where ϕj and ψij are positive constants. See the detailed derivation of the above equation in
Appendix A1.4. Recall that R∗ is the migration probability matrix on the balanced growth
path, with a typical element ρ∗ij given by (49). Thus, R∗ can be written as a function of l∗,
namely R∗ ≡ R(l∗). Then, (48) can be written as
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l∗ = l∗R(l∗), (56)

which is a system of non-linear equations in l∗. Lemma A1 in Appendix A1.6 establishes
that there exists a l∗ that solves (56), and Lemma A2 establishes that (56) cannot have
more than one solution. Therefore, l∗ exists and is unique. Then, using the solution of l∗,
the other variables of the model, namely, w∗,p∗, q∗,x∗,h∗and R∗, can be solved for using
equations (50) and (A.20)-(A.24) in Appendix A1.4.�

6 Estimation and calibration of the model

Parameters of the model are estimated, as far as possible, using panel data on 48 mainland
U.S. states plus the District of Columbia, a total of n = 49 locations or states.10 To avoid
over-fitting, the parameters are estimated using the subset of available data on interstate
migration flows and housing markets over the period 1976-1999 (training sample). The year
indexed by 0 (i.e., the initial period) corresponds to 1976, and the subsequent periods indexed
by 1, 2, ..., T1 correspond to the years 1977 to 1999 (inclusive). Out-of-sample simulations
are carried out over the period 2000-2014 (evaluation sample) in Section 7, with the periods
indexed by T1 + 1, T1 + 2, ..., T corresponding to the years 2000 to 2014.

The model parameters can be divided into three groups; namely the parameters that
characterize migration flows, housing supplies and the exogenous processes. In what follows,
we consider these three sets of parameters in turn. Table A3 of Appendix A3.4 gives a
summary of the key parameters.

6.1 Estimation of the migration module

We start by presenting some important facts about state-to-state migration in the U.S.
in Section 6.1.1, and in Section 6.1.2, we estimate the migration costs that are the key
parameters in our model.

6.1.1 Facts about state-to-state migration in the U.S.

Before estimating route-specific migration cost parameters, αij, we first consider how the
scale of migration varies with the distance between origin and destination states. Population
and migration flows are measured using annual data from the Internal Revenue Service
(IRS).11 The distance between two states is measured as the distance between their centers
of population that are defined by Census.12 Note that the gross migration flow between
states i and j in period t is lij(t) + lji(t), and recall that l·i(t) and l·j(t) are the population
of states i and j in period t, respectively. Thus, (1/10)

∑t1999
t1990

[lij(t) + lji(t)] is the average
annual gross migration flow between states i and j, and (1/10)

∑t1999
t1990

[l·i(t) + l·j(t)] is their

10Data sources for estimation and calibration are described in Appendix A2.
11For further details, see Appendix A2.1.
12For further details about the definitions of population centers, see https://www.census.gov.
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average population. The average rate of migration between states i and j over the 1990-1999
period, denoted by π̂ij, is given by13

π̂ij =

∑t1999
t1990

[lij(t) + lji(t)]∑t1999
t1990

[l·i(t) + l·j(t)]
. (57)

Figure 1 plots ln π̂ij against the migration distance, dij, measured as the geographical distance
between states i and j. Each dot represents a pair of migration distance and migration
scale, (dij, ln π̂ij), for location pair (i, j). As the figure shows, ln π̂ij decreases with migration
distance, dij, indicating that migration cost tends to increase with the distance between
origin and destination states.

0 500 1000 1500 2000 2500 3000
­11

­10

­9

­8

­7

­6

­5

­4

Figure 1: Patterns of migration and geographical distance

Notes: This figure plots ln π̂ij against dij , where π̂ij is defined by (57) and refers to the average annual gross
migration flow between States i and j relative to their population, and dij refers to the geographical distance
between States i and j.

6.1.2 Estimation of migration costs

Recall that in the model set out in Sections 2 and 3, migration costs, lnαij, are the sum of
relocation costs, rlcij, which are intended to capture route-specific factors such as migration
distance, and amenity differentials, amenityi−amenityj (see (6)). To capture the persistent
decline in internal migration in the U.S. since 1980s, we allow for a national time trend,
reflecting the general rise in migration costs due to common factors such as population aging
(Karahan and Rhee (2014)) and increasing labor market frictions (Davis et al. (2010) and

13It makes little difference if we compute the average rate of migration by averaging the annual migration
rates over the period 1990-1999.
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Fujita (2018)). Accordingly, in our empirical analysis we use the more general specification

lnαij,t = cα + gαt+ (amenityi − amenityj) + rlcij, (58)

for i 6= j, and i and j ∈ In,

where cα is a constant, gαt is the national time trend in migration costs, amenityi is an
average index of amenity for state i, rlcij is the relocation cost between states i and j. As
before, we normalize αii,t to one, for i ∈ In and t = 0, 1, .... Let λα,ij denote the route-
specific component in migration cost (i.e., the sum of amenity differential and route-specific
relocation cost), and note that

λα,ij = (amenityi − amenityj) + rlcij. (59)

To identify λα,ij, using (59) in (58) we first note that

lnαij,t = cα + gαt+ λα,ij, for i 6= j. (60)

Also using (4) we have
ρij(t)

ρii(t)
=
lij(t)

li·(t)

li·(t)

lii(t)
=
lij(t)

lii(t)
. (61)

Since by construction αii,t = 1, then (12) implies

ρij(t)

ρii(t)
=

(
wjtq

−η
jt /αij,t

witq
−η
it /αii,t

)1/σε

,⇒

ln

(
ρij(t)

ρii(t)

)
=

1

σε
ln

(
wjtq

−η
jt

witq
−η
it

)
− 1

σε
ln (αij,t) . (62)

Using (61) and (60) in the above now yields

ln

(
lij(t)

lii(t)

)
=

1

σε
ln

(
wjtq

−η
jt

witq
−η
it

)
− 1

σε
cα −

1

σε
gαt−

1

σε
λα,ij, (63)

for i 6= j, and i and j ∈ In.

Note that the relative weight of housing in workers’utility function (8), η, is set to 0.24, as
estimated by Davis and Ortalo-Magné (2011).14 Also data on wit are inferred using (16), and
qit and lij(t) are directly observed data.15 Thus, to estimate 1/σε, cα, gα and λα,ij, we run a
least square regression of ln(lij(t)/lii(t)) on ln(wjtq

−η
jt /witq

−η
it ), with a linear time trend and

14These authors also provide evidence that the shares of expenditure on housing are constant over time
and across U.S. MSAs.
15For further details, see Sections A2.1, A2.2 and A2.3 of Appendix A.
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fixed effects to allow for route (i, j) specific fixed costs and a constant.16 Then, to decompose
λ̂α,ij into amenity differentials and relocation costs (see (59)), we estimate

λ̂α,ij = cλ + β′ddisij + β′a (ami − amj) + ξλ,ij, (64)

where cλ is a constant, disij is a vector of distance measures (geography and climate) between
states i and j, ami is a vector of amenities for state i, and ξλ,ij is the error term that captures
the unobserved attributes of location pair (i, j).17 Then, the amenity index, amenityi, for
state i is defined as a linear combination of different measures of amenities:

amenityi = β′aami, for i ∈ In, (65)

and the relocation cost is given in terms of distance measures as

rlcij = cλ + β′ddisij + ξλ,ij, for i 6= j, and i and j ∈ In. (66)

Migration costs over the training sample (1990-1999). Since the Internal Revenue
Service (IRS) migration flow data that we use are only available from 1990 onward, we
use data over the period 1990-1999 for estimation.18 Note that 1/σε is the elasticity of
ρij(t)/ρii(t), with respect to the income ratio wjt/wit (see (62)). Our estimate of 1/σε is
0.812 (with a standard error of 0.051), which is broadly in agreement with the estimates
reported in Moretti and Wilson (2017).19 Figure 2 displays the scatter plot of the estimated
route-specific costs, λ̂α,ij, with i 6= j, against migration distance, dij. As can be seen, λ̂α,ij
is an increasing concave function of migration distance, dij. This may be due to the fact
that areas that are geographically close to each other tend to share more similarities in
terms of natural and cultural conditions. In addition, λ̂α,ij start to decline slightly when
migration distance is more than 2000 miles. This could be because migration between the
East and West Coasts, which covers a distance more than 2000 miles, is relatively easier due
to the similarities between the eastern and western coastal states. The positive relationship
between λ̂α,ij and migration distance explains why the rate of migration tends to decrease
with migration distance (Figure 1).

To decompose λ̂α,ij into amenity differentials and relocation costs, we estimate (64) using
data over the period 1990-1999. The sources for the amenity data used in the regression
are summarized in Table A1 in Appendix A2.5, which include natural amenities, such as
climate and geography, and non-natural amenities, such as local public goods, air quality
and population densities, as suggested in the studies by Blomquist et al. (1988), Gyourko
and Tracy (1991), Bieri et al. (2014) and Ahlfeldt and Pietrostefani (2019). The R2 from

16The purpose of running this regression is for calibration only. In addition, to separate the constant, cα,
from the route-specific costs λα,ij , we set λα,12 to zero.
17For a list of potential elements of disij and ami see Table A1 in the Appendix.
18For further details, see Appendix A2.1.
19Moretti and Wilson (2017) estimate the migration elasticity (with respect to after tax income) of “star

scientists”, and their estimates range from 0.6 to 2 (with the benchmark estimate being 1.8). Our estimated
migration elasticity is in the lower-range of these estimates. This is because we consider all state-to-state
migrants, the average mobility of whom is lower than those of star scientists.
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Figure 2: Route-specific migration costs estimated based on data during 1990-1999, λ̂α,ij

Notes: This figure shows the route-specific migration costs estimated based on data during 1990-1999, λ̂α,ij ,
against migration distance, dij , where dij refers to the geographical distance between States i and j. Each
dot represents a pair (dij , λ̂α,ij) for migration route (i, j).

this regression is 0.76, indicating that λ̂α,ij can be largely explained by amenity differentials
and distances between origin and destination states. It is noteworthy that the coeffi cients
associated with distances are positive and significant as shown in Table A2 in Appendix
A3.1, confirming that distance have an important role in determining migration costs.

Then, we measure state level amenity and relocation costs by evaluating (65) and (66)
using the estimates for cλ, β

′
d,β

′
a and ξλ,ij and amenity and distance data. The five states

with highest amenity indices are California, Texas, Florida, New York, and Pennsylvania
(ordered from high to low), and the five states with lowest amenity indices are South Dakota,
North Dakota, Delaware, Vermont and Wyoming (ordered from high to low).

Finally, the estimated de-trended migration costs are given by (note that (60) implies
lnαij,t − gαt = cα + λα,ij)

ln α̂ij = ĉα + λ̂α,ij. (67)

Migration costs over the evaluation sample (2000-2014). The state level amenity
is extrapolated for 2000-2014 as

̂amenityi,2000−2014 = β̂
′
aami,2000−2014, for i ∈ In,

where ami,2000−2014 is the vector of amenities in state i for period 2000-2014, in which the
time-varying amenities (e.g., public goods and air quality) are measured using data during
2000-2014.20 Then, migration costs are extrapolated for 2000-2014 as (see (58))

20Note that some of the amenities considered are time-invariant (e.g., climate and geography), whereas
others may vary over time (e.g., public goods and air quality).
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ln α̂ij,t = ĉα + ĝαt+ ( ̂amenityi,2000−2014 − ̂amenityj,2000−2014) + r̂lcij,

for i 6= j, and i and j ∈ In, and for t = t2000, t2001, ..., t2014.

6.2 Labor demand and housing supplies

To calibrate the state-specific labor demand functions, given by (17), we set the share of
labor costs in output, vl, to 0.67 as estimated by Valentinyi and Herrendorf (2008). Following
Davis et al. (2014), the elasticity of TFP with respect to local production scale (namely the
agglomeration effect), vφ, is set to 0.06.21 To distinguish between scale effects of φit and ait
in (13), we set φ̄i defined by (14) to 1.

To calibrate the state-specific supply functions for new houses, given by (24), we estimate,
ϑκ,i, location-specific share of land in house values, by the state level average land values
relative to total value of housing stocks over the 1977-1999 period.22 We estimate the housing
depreciation rate, δ, as the average ratio of aggregate depreciation to aggregate housing
stock over the period 1977-1999 using the data from the Fixed Assets Tables compiled
by the Bureau of Economic Analysis (BEA), and obtain δ̂ = 2%. The discount factor of
landlord, β, is set to 0.98 to match the risk-free annual real interest rate of the U.S. over the
period 1960-1999, which is estimated to be around 2 per cent. The location-specific housing
investment cost parameter, θi, is estimated as follows. Using the housing investment function
on the balanced growth path given by (54), we have

θi = 1− 1

β̂

[
q∗i
p∗i

+ (1− δ)
]−1

,

which suggests the following estimate

θ̂i = 1− 1

β

[
1

1
T1

∑T1
t=1 qit/pit + (1− δ̂)

]
, (68)

where periods 1 and T1 correspond to 1977 and 1999, respectively, δ and β are previously
calibrated and estimated, and qit and pit are observed data.23

6.3 Exogenous processes

We now estimate the parameters that characterize the exogenous processes of regional pro-
ductivities, land supplies and intrinsic population growth.

21Note that in Davis et al. (2014), parameter λ is estimated to be 1.069 (Table 1), which indicates that
the estimated elasticity of TFP with respect to local production scale, (λ̂− 1)/λ̂, is 0.06 (equation (19)).
22The data on state level land share in house values are obtained from Davis and Heathcote (2007).
23For the details on the sources for qit and pit, see Appendix A2.3.
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6.3.1 Productivity processes

To infer the state-specific labor productivities, ait, we first note that (16), (17) and (18)
imply

ln ait = − 1

1− vφ
ln φ̄i +

1− vφ
vl

ln yit − ln l·i(t), (69)

where vφ,vl and φ̄i are previously calibrated and estimated in Section 6.2, and l·i(t) and yit
are observed data.24 Thus, the estimates of ait are obtained by evaluating (69) using the
parameter estimates and realized values of l·i(t) and yit, for t = 0, 1, ..., T1. Then, we estimate
the stochastic processes of state-specific productivities, defined by (19), (20) and (21), using
the estimates of ait.25

6.3.2 Land supplies

To estimate κit, we first note that equilibrium conditions (16), (22), (24), (33) and (28) imply

κit =
γit
τκ,i

, (70)

where26

γit =

{
βegl (1− θi)

[
qit
pit

+ (1− δ)
]
− (1− δ)

}
ηυl

(
yit
qit

)
p

(1−ϑκ,i)/ϑκ,i
it

. (71)

Note that β, gl, θi, η, ϑκ,i, υl and δ are previously calibrated and estimated, and that yit, qit
and pit are observed data.27 Thus, an estimator of γit can be obtained by evaluating (71)
using the parameter estimates and realized values of yit, qit and pit, for t = 0, 1, ..., T1, which
corresponds to the period of 1976-1999. Then, the scalars, τκ,i, in equation (70), are cali-
brated such that the implied accumulated new land flows, κit, over the sample period match
the realized increases in state level urban area sizes over the same period. Details of the
calibration of τκ,i are provided in Appendix A3.3.1. Finally, we compute κ̂it using (70) as

ln κ̂it = ln γ̂it − ln τ̂κ,i, for i = 1, 2, ..., n and t = 0, 1, ..., T1. (72)

We estimate κi and gκ,i in (26) by running OLS regressions of ln κ̂it on a linear time trend
(including a constant), for i = 1, 2, ..., n, and obtain the residuals, ẑκ,it, for t = 0, 1, ..., T1.28

Finally, for each i we estimate ρκ,i and σκ,i by running OLS regressions of ẑκ,it on ẑκ,i,t−1,
over the period t = 1, 2, ..., T1.

Our estimates of land supply growth rates, ĝκ,i, are significantly negatively correlated
with the state level Wharton Residential Land Use Regulatory Index compiled by Gyourko
et al. (2008), and suggest that land use regulation can be an important factor that affects
local house prices through the supplies of new land.29

24For the details on the sources for l·i(t) and yit, see Appendices A2.1 and A2.2.
25For further details see Appendix A3.2.
26For details of the derivations, see Appendix A1.7.
27For the details on the sources for yit, qit and pit, see Appendices A2.2 and A2.3.
28It is worth noting that our estimates of gκ,i reflect the average tightness of state level land-use regulations

over the period 1977-1999, and need not to be good proxies for particular years or sub-periods.
29For further details, see Appendix A3.3.2.
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6.3.3 Intrinsic population growth

The balanced growth path intrinsic population growth rate, gl, defined by (42), is set to
1%, which is the average growth rate of the U.S. population over the period 1977-1999.
The actual state level intrinsic population growth rates, gl,it, over the period 1977-1999 are
measured using the IRS data. For further details, see Appendix A2.1.

7 Model evaluation

We here simulate the model given by (34) and (35) over the evaluation sample (2000-2014)
using the realized state level productivities, land supplies and intrinsic population growth
rates. To do so, we set at, κt and gl,t to their realized values, for t = T1 + 1, T1 + 2, ..., T .30

The initial values, ζT1 , correspond to the realized values in 1999. Recall that ζt ≡ [l(t), qt],
and l(T1) and qT1 are observed data.

Figure 3 shows the simulated changes in log house price-to-income ratio and log output
by states over the evaluation sample (2000-2014) against the realized values. As can be seen
from the figure, the simulated and realized values are quite close.
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Figure 3: Changes in log house price-to-income ratio and log output by states over the
evaluation sample (2000-2014)

Notes: This figure displays the model predicted changes in log house price-to-income ratios and log output
of U.S. states over the evaluation sample (2000-2014) against the realized values. Only the abbreviations of
the ten most populated states are displayed.

Figure 4 compares the actual accumulated net inward migration flows and the actual
30For further details, see Appendix A4.
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changes in log population of U.S. states over the evaluation sample with the model gener-
ated counterparts. As can be seen, the model captures the significant migration outflows
from states with rising house price-to-income ratios, such as California and New York, and
the substantial inflows towards states with decreasing house price-to-income ratios, such as
Florida and Texas.

The model also replicates reasonably well the trends in the bilateral migration flows
between the U.S. states. Figure 5 shows the realized and simulated migration flows between
California, Texas, Florida and other U.S. states cumulated over the evaluation sample (2000-
2014). Panels 1.a, 2.a and 3.a of the figure give the migration flows from California, Texas,
Florida to other states, and Panels 1.b, 2.b and 3.b show the migration flows from other
states to California, Texas, Florida. Only ten states with the largest migration flows are
displayed. Similarly, Figure S1 in Section S1.1 of the online supplement shows the realized
and simulated cumulated migration flows over the evaluation sample between New York,
Pennsylvania, Illinois and other U.S. states. As can be seen, the simulated and realized
values match reasonably well.
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Figure 4: Net inward migration rates and changes in log population by states over the
evaluation sample (2000-2014)

Notes: Panel 1 displays the model predicted accumulated net inward migration rates (i.e., the ratios of net
inward migration to local population) of U.S. states during the period 2000-2014 against the counterpart
realized values. Panel 2 displays the model predicted changes in log population by states over the evaluation
sample (2000-2014) against the counterpart realized values. Only the abbreviations of the ten most populated
states are displayed.

The results show that migration linkages tend to be stronger between two nearby states
as compared to between two distant states. For example, as shown in Panels 1.a and 1.b of
Figure 5, the bilateral migration flows between California and the nearby states tend to be
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Figure 5: Bilateral migration flows between U.S. states during the evaluation sample (2000-
2014)

Notes: Panel 1.a shows the realized and simulated accumulated migration flows from California to other states
during the period 2000-2014 relative to destination-state population in 2014. Only the ten destination-states
with the largest migration flows from California (relative to their own population) are displayed. Panel 1.b
shows the realized and simulated accumulated migration flows from other states to California relative to
origin-state population. Similarly, Panels 2.a and 2.b show the bilateral migration flows between Texas and
other U.S. states, and Panels 3.a and 3.b show the bilateral migration flows between Florida and other U.S.
states.
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larger than the flows between California and other states, and the nearby states, including
both the adjacent states, such as Arizona, Nevada and Oregon, and the nonadjacent states,
such as Washington, Utah and Colorado, have the highest rates of migrations with California
as compared to other states.

Finally, California has experienced considerable net outward migration to other states
during 2000-2014. As shown in Panels 1.a and 1.b of Figure 5, the outward migration flows of
California tend to be larger than the inward flows. The migration flows from California have
also substantially impacted the population of its nearby states. For example, as can be seen
in Panels 1.a and 1.b of Figure 5, the migration flow from California to Nevada is equivalent
to around 25% of Nevada’s population, while the migration flow from Nevada to California
is equivalent to around 15% of Nevada’s population. This indicates a net migration flow
from California to Nevada that is equivalent to around 10% of Nevada population in 2014.
Similarly, the net migration flow from California to Arizona is equivalent to around 5% of
Arizona’s population in 2014.

8 Spatiotemporal impulse responses

One of the important features of our theoretical analyses is the explicit modelling of dynamic
location-to-location migration flows that function as a source of spatiotemporal spill-over
effects. Here we examine the quantitative importance of such spill-over effects using spa-
tiotemporal impulse responses. In particular, we consider not only the spatial patterns of
the responses of different locations to shocks but also the time profile of state-specific shocks
from one location to another. We shall focus on the effects of productivity and land-supply
shocks in California, Texas and Florida. The results for California are discussed in some
detail in sub-section 8.1, and then compared to those for Texas and Florida in sub-section
8.2. Finally, Section 9 provides some sensitivity analysis with respect to two key parameters
of the model, namely migration elasticity and housing depreciation rate.

8.1 Productivity and land-supply shocks in California

We start by considering the effects of a positive productivity shock and a positive land-supply
shock in California in turn. We assume that the economy is initially on the balanced growth
path, and simulate the outcomes and the resultant impulse responses using independent
Gaussian draws for the model’s innovations.31

We first consider the effects of a one per cent positive shock to the labor productivity in
California. Figure 6 displays the responses of real wages, house prices, rent and migration
flows in California to the shock. In response to an exogenous increase in labor productivity
local wages rise, which in turn induces net inward migration towards California, leading to an
increases in local population. Due to rising wage rate and population, the housing demand
in California increases, which raises local rents and house prices. As house prices rise, more

31Details are provided in Section S2 of the online supplement.
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Figure 6: Reponses of California to a positive productivity shock in California

Notes: This figure shows the responses of log wage rate, net inward migration rate (i.e., the ratio of net
inward migration to local population), log population, log house price, log housing rent and log housing stock
in California to a one per cent positive shock to the labor productivity in California.

new homes are constructed, which increases the housing stock in California. Due to the slow
depreciation of houses, the adjustment of housing stock and population is very slow, taking
decades before the economy returns to its steady state.

Figures 7 and 8 show the spatiotemporal responses of population and house price-to-
income ratios of U.S. states to the positive productivity shock in California.32 The different
plots show the responses of U.S. states, except for California, arranged by the number of
periods after the shock, with the states ordered by their average distance to California on
the horizontal axis. The rise in wages in California induces net migration flows from other
states to California, leading to population declines in all other states. (see Figure 7). This
in turn leads to lower house prices and higher wages, causing a drop in the house price-
to-income ratios (Figure 8). However, the responses tend to be stronger in the states that
are geographically close to California, including both the adjacent states, such as Nevada,
Arizona and Oregon, and the nonadjacent states, such as Washington, Colorado and Utah.

32The responses of each of the U.S. states are shown in Figures S10 and S11 in Section S1.3.1 of the online
supplement.

27



1 16 32 48
Distance to CA (rank)

­0.06

­0.04

­0.02

0
P

er
 c

en
t

Period 1

1 16 32 48
Distance to CA (rank)

­0.06

­0.04

­0.02

0

P
er

 c
en

t

Period 4

1 16 32 48
Distance to CA (rank)

­0.06

­0.04

­0.02

0

P
er

 c
en

t

Period 7

1 16 32 48
Distance to CA (rank)

­0.06

­0.04

­0.02

0

P
er

 c
en

t

Period 10

1 16 32 48
Distance to CA (rank)

­0.06

­0.04

­0.02

0
P

er
 c

en
t

Period 13

1 16 32 48
Distance to CA (rank)

­0.06

­0.04

­0.02

0

P
er

 c
en

t

Period 16

1 16 32 48
Distance to CA (rank)

­0.06

­0.04

­0.02

0

P
er

 c
en

t

Period 28

1 16 32 48
Distance to CA (rank)

­0.06

­0.04

­0.02

0

P
er

 c
en

t

Period 40

1 16 32 48
Distance to CA (rank)

­0.06

­0.04

­0.02

0
P

er
 c

en
t

Period 52

Figure 7: Spatiotemporal responses of log population of U.S. states to a positive productivity
shock in California

Notes: Each panel shows the responses of log population of U.S. states (except for California) to a one
per cent positive shock to the labor productivity in California, for the period noted at the top. Each dot
represents a state. States are ordered ascendingly by their distances to California, and the horizontal axis
corresponds to state’s rank in terms of distance to California.

In addition, the responses in some of the East Coast states (e.g., Washington, D.C. and New
York) are also strong. Thus, the snapshots of the responses tend to have an inverse U-shape.

Furthermore, the responses of the nearby states to a California productivity shock are
not only stronger but also take place much more quickly. See Figures 7, 8, and 9.

To quantify the length of time it takes for the effects of the productivity shock in Cali-
fornia to reach other states, let |žt| denote the absolute response of variable z to the shock
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Figure 8: Spatiotemporal responses of log house price-to-income ratios of U.S. states to a
positive productivity shock in California

Notes: Each panel shows the responses of log house price-to-income ratios of U.S. states (except for California)
to a one per cent positive shock to the labor productivity in California, for the period noted at the top. Each
dot represents a state. States are ordered ascendingly by their distances to California, and the horizontal
axis corresponds to state’s rank in terms of distance to California.

after t periods, with t = 1, 2, .... Define the response time of variable z, denoted by RTz, as

RTz =

∑∞
t=1 |žt| t∑∞
t=1 |žt|

. (73)

In the above expression, |žt| / (
∑∞

t=1 |žt|) is the weight atatched to period t responses. There-
fore, RTz can be interpreted as the average length of time it takes for z to respond to the
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Figure 9: Size and speed of responses of mainland U.S. states (except for California) to a
positive productivity shock in California

Notes: In each panel, a dot represents a state. In Panels 1.a and 1.b, the vertical axis corresponds to the
extreme value of state’s response after a one per cent positive productivity shock in California, and in Panels
2.a and 2.b, the vertical axis corresponds to period in which state’s response reaches its extreme value. States
are ordered ascendingly by their distances to California, and the horizontal axis corresponds to state’s rank
in terms of distance to California.

shock.33 Figure 10 display the approximated response time of the log population and log
house price-to-income ratios of U.S. states (except for California) after the California pro-
ductivity shock. In each panel, the states are ordered by their distances to California and the

33Note that if the model is stable, |žt| should converge to zero as t goes to ∞. Thus,
∑∞
t=1 |žt| t and∑∞

t=1 |žt| should be finite if |žt| converge to zero fast enough as t goes to ∞.
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Figure 10: Response time of U.S. mainland states after a positive productivity shock in
California

Notes: In each panel, a dot represents a state. States are ordered ascendingly by their distances to California,
and the horizontal axis corresponds to state’s rank in terms of distance to California. The vertical axes
correspond to the response time of state’s population and house price-to-income ratio computed according
to (73).

horizontal axis corresponds to state’s rank in terms of geographical closeness to California.
As shown in the figure, the response time of the nearby states of California tends to be
shorter.

In sum, the California productivity shock tends to have larger impacts for the nearby
states than for the distant states. In addition, it tends to take longer time for the shock’s
effects to reach more distant states. This can be due to the fact that migration cost tends
to increase with migration distance (see Section 6.1).

We have also computed the impulse responses for the effects of a ten per cent positive
land-supply shock in California.34 The results are shown in Figures S6, S7, S8 and S9 in
Section S1.3.1 of the online supplement. As can be seen, the spatiotemporal patterns of the
responses of U.S. states to this shock are similar as those presented above for the productivity
shock. However, the effects of the California land-supply shock are more persistent when
compared to the effects of California productivity shock considered above. This is because
the positive shock to the land supply in California raises the housing supply in California.
Since houses depreciate slowly, the housing rent in California will be kept low for a long
time, leading to persistent net inward migration to California.

34Note that the annual supply of new land in California (estimated from the model) has been declining
over 1976-1999 (the training sample). The ten per cent land-supply shock would raise the annual supply of
new land in California from its steady state level (corresponding to the average during the training sample,
1976-1999) to its level in the late 1970s.
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8.2 Comparing impulse responses for California,Texas and Florida

Impulse responses of productivity and land-supply shocks for Texas and Florida are presented
in Sections S1.3.2, S1.3.3 and S1.3.4 of the online supplement. We find that responses of
Texas and Florida to the shocks are qualitatively similar to those of California but differ
quantitatively, which is mainly due to the differences in land supply conditions across these
states.35 Residential land uses are much more regulated in California (with a WRI of 0.59)
than in Florida (with a WRI of 0.37) and Texas (with a WRI of −0.45).36 As a result,
available land for residential construction is more limited in supply in California than in
Florida and Texas. During 1976-1999 (the training sample), the share of land in house value
is about 50% in Californian, but only 14% in Florida and less than 10% in Texas (Davis and
Heathcote (2007)). Our model captures such differences in land supply reasonably well.

As shown in Panel 1 of Figure S24 in Section S1.3.4 of the online supplement, following
a one per cent positive productivity shock in Texas, the net migration flows towards Texas
increase considerably, while inducing only mild increases in local house prices. In contrast,
a one per cent positive productivity shock in California translates into sizeable increases in
house prices in California with less net inward migration flows. The responses in Florida are
somewhere between those of California and Texas.

We also find that a ten per cent positive land-supply shock in California results in large
increases in housing supplies which is accompanied with large drops in house prices in Cal-
ifornia and sizable net inward migration flows. See Panel 2 of Figure S24 in Section S1.3.4
of the online supplement. In contrast, a ten per cent positive land-supply shock in Texas
induces less increases in housing supplies in Texas, resulting in less inward migration flows.
Again, responses in Florida are somewhere between those of California and Texas.

Finally, as shown in Figures S13, S14, S16, S17, S19, S20, S22, S23 in Sections S1.3.2
and S1.3.3 of the online supplement, the spatiotemporal patterns of the responses of U.S.
states to shocks in Texas and Florida are qualitatively similar to those of California, and
confirm that spatial spill-over effects tend to be larger for the nearby states than for the
distant states.

9 Calibration sensitivity

We now consider the sensitivity of the model results to our calibration choices for the mi-
gration elasticity, 1/σε, and the housing depreciation rate, δ.

Migration elasticity. As described in Section 6.1.2, we estimate the migration elas-
ticity jointly with migration costs over the period 1990-1999. Our estimate of 1/σε is 0.812
(with a standard error of 0.051), which is in line with Moretti and Wilson (2017) whose
estimates range between 0.6 and 2 (with the benchmark estimate being 1.8). To investigate
the sensitivity of the model results to migration elasticity, we repeat the impulse response

35See Figure S24 in Section S1.3.4 of the online supplement.
36See Table 10 of Gyourko et al. (2008)
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analyses we conducted for California in Section 8.1 but with migration elasticity set to 0.6,
1.8 and 2. The results are shown in Figures S25 and S26 in Section S1.3.5 of the online
supplement.

When migration elasticity is higher, spatial population reallocation after positive pro-
ductivity and land-supply shocks in California is significantly larger and net migration flows
towards California rises significantly more, leading to larger increases in the population of
California. We also note that the spatial spill-over effects are significantly stronger, espe-
cially for the nearby states, when migration elasticity is increased. See Figure S26 in Section
S1.3.5 of the online supplement.

Housing depreciation rate. To gauge the sensitivity of our results to the choice of
the depreciation rate, we conducted the impulse response analyses for California presented
in Section 8.1 but with δ set to 0.01 as compared to the value of 0.02 used in the baseline
simulations. In this way we also shed some light on how housing depreciation rate can affect
the size and speed of population reallocation after regional shocks (Glaeser and Gyourko
(2005)).37 The results are presented in Figures S27 and S28 in Section S1.3.5 of the online
supplement. When the housing depreciation rate, δ, is lower, housing supplies adjust more
slowly to changes in local housing demand and supply conditions. This reduces and slows
down population reallocation, and the effects are quantitatively larger for land-supply shocks
than for productivity shocks.

When the housing depreciation rate, δ, is lower, the increases in housing stocks in Cali-
fornia are smaller and the decreases in housing stocks in other states are also smaller, after
a positive productivity shock in California. See Panel 1 of Figure S27 and Panel 1 of Figure
S28 in Section S1.3.5 of the online supplement. Thus, when the housing depreciation rate,
δ, is lower, due to the slow adjustment of housing supplies, a positive productivity shock
in California induces less population reallocation from other states to California. Similarly,
when the housing depreciation rate, δ, is lower, housing supplies in California increase less
after a positive land-supply shock in California, inducing less population reallocation towards
California. See Panel 2 of Figure S27 in Section S1.3.5 of the online supplement.

10 Concluding remarks

This paper presents and solves a spatiotemporal equilibrium model in which regional wage
rates and house prices are jointly determined with migration flows. It extends existing
studies on regional economies by explicitly modelling the dynamics of location-to-location
migration flows. The model can be viewed as an example of a dynamic network where
regional labor and housing markets interact with each other via migration flows, and provides
a theoretically coherent framework to study the spatiotemporal impacts of changes in regional
supply and demand conditions on regional house prices and spatial population allocation
through endogenized migration flows. The theoretical model can also be adapted to study
other types of spatial spill-overs in regional economies that operate through migration; for
example, spill-over effects in regional labor markets.

37Glaeser and Gyourko (2005) argue that urban decline is highly persistent because of durable housing.
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The estimated model is shown to simultaneously account for the observed trends in the
state level house prices and interstate migration flows over our evaluation sample (2000-
2014). By using spatiotemporal impulse responses we are also able to capture both the
dynamic and equilibrium outcomes of local productivity and land-supply shocks over time
and across states. We also investigate the sensitivity of our results to migration elasticity,
housing depreciation rate, and local land supply conditions.

The analysis of this paper on regional housing markets can be extended in a number of
directions. An econometrically estimated version of the model can be used for the analysis
and predication of house price diffusion across states or MSAs. In addition, given the impor-
tance of labor mobility for population reallocation, it is also worth considering the factors
that determine population mobility, their nature and variations overtime and across space.

References

Ahlfeldt, G.M. and Pietrostefani, E. (2019). The economic effects of density: A synthesis.
Journal of Urban Economics, 111, 93—107.

Albouy, D. and Ehrlich, G. (2018). Housing productivity and the social cost of land-use
restrictions. Journal of Urban Economics, 107, 101—120.

Artuc, E., Chaudhuri, S., and McLaren, J. (2010). Trade shocks and labor adjustment: A
structural empirical approach. American Economic Review, 100, 1008—45.

Bailey, N., Holly, S., and Pesaran, M.H. (2016). A two-stage approach to spatio-temporal
analysis with strong and weak cross-sectional dependence. Journal of Applied Economet-
rics, 31, 249—280.

Bieri, D.S., Kuminoff, N.V., and Pope, J.C. (2014). National expenditures on local amenities.
Department of Economics, Arizona State University, Manuscript.

Blanchard, O.J., Katz, L.F., Hall, R.E., and Eichengreen, B. (1992). Regional evolutions.
Brookings papers on economic activity, 1992, 1—75.

Blomquist, G.C., Berger, M.C., and Hoehn, J.P. (1988). New estimates of quality of life in
urban areas. The American Economic Review, pages 89—107.

Caliendo, L., Dvorkin, M., and Parro, F. (2019). Trade and labor market dynamics: General
equilibrium analysis of the china trade shock. Econometrica, 87, 741—835.

Cotter, J., Gabriel, S., and Roll, R. (2015). Can housing risk be diversified? a cautionary
tale from the housing boom and bust. The Review of Financial Studies, 28, 913—936.

Davis, M.A., Fisher, J.D., and Veracierto, M. (2021). Migration and urban economic dy-
namics. Journal of Economic Dynamics and Control, page 104234.

34



Davis, M.A., Fisher, J.D., and Whited, T.M. (2014). Macroeconomic implications of ag-
glomeration. Econometrica, 82, 731—764.

Davis, M.A. and Heathcote, J. (2007). The price and quantity of residential land in the
united states. Journal of Monetary Economics, 54, 2595—2620.

Davis, M.A. and Ortalo-Magné, F. (2011). Household expenditures, wages, rents. Review of
Economic Dynamics, 14, 248—261.

Davis, S.J., Faberman, R.J., Haltiwanger, J., Jarmin, R., and Miranda, J. (2010). Business
volatility, job destruction, and unemployment. American Economic Journal: Macroeco-
nomics, 2, 259—87.

DeFusco, A., Ding, W., Ferreira, F., and Gyourko, J. (2018). The role of price spillovers in
the american housing boom. Journal of Urban Economics, 108, 72—84.

Fuguitt, G.V. (1965). The growth and decline of small towns as a probability process.
American Sociological Review, 30, 403—411.

Fujita, S. (2018). Declining labor turnover and turbulence. Journal of Monetary Economics,
99, 1—19.

Glaeser, E.L. and Gyourko, J. (2003). The impact of building restrictions on housing afford-
ability. Federal Reserve Bank of New York Economic Policy Review, 9, 21—39.

Glaeser, E.L. and Gyourko, J. (2005). Urban decline and durable housing. Journal of Political
Economy, 113, 345—375.

Glaeser, E.L., Gyourko, J., and Saks, R.E. (2005). Why have housing prices gone up? The
American Economic Review, 95, 329—333.

Gyourko, J., Mayer, C., and Sinai, T. (2013). Superstar cities. American Economic Journal:
Economic Policy, 5, 167—199.

Gyourko, J., Saiz, A., and Summers, A. (2008). A new measure of the local regulatory
environment for housing markets: The Wharton Residential Land Use Regulatory Index.
Urban Studies, 45, 693—729.

Gyourko, J. and Tracy, J. (1991). The structure of local public finance and the quality of
life. Journal of Political Economy, 99, 774—806.

Herkenhoff, K.F., Ohanian, L.E., and Prescott, E.C. (2018). Tarnishing the golden and
empire states: Land-use restrictions and the US economic slowdown. Journal of Monetary
Economics, 93, 89—109.

Hilber, C.A. and Robert-Nicoud, F. (2013). On the origins of land use regulations: Theory
and evidence from us metro areas. Journal of Urban Economics, 75, 29—43.

35



Holly, S., Pesaran, M.H., and Yamagata, T. (2010). A spatio-temporal model of house prices
in the usa. Journal of Econometrics, 158, 160—173.

Hsieh, C.T. and Moretti, E. (2019). Housing constraints and spatial misallocation. American
Economic Journal: Macroeconomics, 11, 1—39.

Ihlanfeldt, K.R. (2007). The effect of land use regulation on housing and land prices. Journal
of Urban Economics, 61, 420—435.

Kahn, M.E. (2011). Do liberal cities limit new housing development? evidence from califor-
nia. Journal of Urban Economics, 69, 223—228.

Karahan, F. and Rhee, S. (2014). Population aging, migration spillovers, and the decline in
interstate migration. FRB of New York Staff Report.

Koop, G., Pesaran, M.H., and Potter, S.M. (1996). Impulse response analysis in nonlinear
multivariate models. Journal of Econometrics, 74, 119—147.

McFadden, D. (1978). Modelling the Choice of Residential Location. In Spatial Interaction
Theory and Planning Models, pages 75—96. North-Holland Publishing Company.

Monras, J. (2018). Economic shocks and internal migration. CEPR Discussion Paper No.
DP12977.

Moretti, E. and Wilson, D.J. (2017). The effect of state taxes on the geographical location
of top earners: evidence from star scientists. American Economic Review, 107, 1858—1903.

Notowidigdo, M.J. (2020). The incidence of local labor demand shocks. Journal of Labor
Economics, 38, 687—725.

Parkhomenko, A. (2016). The rise of housing supply regulation in the us: Local causes and
aggregate implications. Technical report, mimeo.

Quigley, J.M. and Raphael, S. (2005). Regulation and the high cost of housing in california.
The American Economic Review, 95, 323—328.

Roback, J. (1982). Wages, rents, and the quality of life. Journal of Political Economy, 90,
1257—1278.

Rosen, S. (1979). Wage-based indexes of urban quality of life. In Current issues in urban
economics, pages 74—104. Johns Hopkins University Press.

Saiz, A. (2010). The geographic determinants of housing supply. Quarterly Journal of
Economics, 125.

Sinai, T. (2012). House price moments in boom-bust cycles. In Housing and the Financial
Crisis, pages 19—68. University of Chicago Press.

36



Tarver, J.D. and Gurley, W.R. (1965). A stochastic analysis of geographic mobility and
population projections of the census divisions in the united states. Demography, 2, 134—
139.

Valentinyi, A. and Herrendorf, B. (2008). Measuring factor income shares at the sectoral
level. Review of Economic Dynamics, 11, 820—835.

Van Nieuwerburgh, S. and Weill, P.O. (2010). Why has house price dispersion gone up? The
Review of Economic Studies, 77, 1567—1606.

Appendices

A1 Mathematical derivations and proofs

A1.1 Derivation of migration probabilities

Here we derive the migration probability equation (12). For the worker τ who is born in
location i, the probability of residing in location j∗ is

Prob (j∗ is chosen) = Prob (vτ ,t,ij∗ > vτ ,t,ij ∀j 6= j∗) ,

where
vτ ,t,ij = (lnwjt − lnwit)− η (ln qjt − ln qit) + σε (ετ ,t,ij − ετ ,t,ii)− lnαij.

Recall that ετ ,t,ij is IID for all τ , t, i and j, and has an extreme value distribution, with
the cumulative distribution function F (ε) = e−e

−ε
, and the probability density function

f(ε) = e−εe−e
−ε
. Consider the following decomposition of vτ ,t,ij,

vτ ,t,ij = vt,ij + σε (ετ ,t,ij − ετ ,t,ii)

where
vt,ij = (lnwjt − lnwit)− η (ln qjt − ln qit)− lnαij.

Note that vt,ij is known by worker τ , and will be treated as given. The probability that
worker τ selects region j∗ as her migration destination can be written as

Prob (j∗ is chosen) = Prob (vt,ij∗ + σεετ ,t,ij∗ − σεετ ,t,ii > vt,ij + σεετ ,t,ij − σεετ ,t,ii, ∀j 6= j∗) ,

= Prob
(
ετ ,t,ij∗ + σ−1

ε vt,ij∗ − σ−1
ε vt,ij > ετ ,t,ij, ∀j 6= j∗

)
.

Conditional on ετ ,t,ij∗ , the probability that location j∗ is chosen by worker τ is given by

Prob (j∗ is chosen |ετ ,t,ij∗) =
∏
j 6=j∗

F
(
ετ ,t,ij∗ + σ−1

ε vt,ij∗ − σ−1
ε vt,ij

)
.
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Since ετ ,t,ij∗ is also random, the probability that location j∗ is chosen is the integral of
Prob (j∗ is chosen |ετ ,t,ij∗) over its support and weighted by its density function, namely

Prob (j∗ is chosen) =

∫ +∞

−∞

[∏
j 6=j∗

e−e
−(ε+σ−1ε vt,ij∗−σ

−1
ε vt,ij)

]
e−εe−e

−ε
dε

=

∫ +∞

−∞

[∏
j 6=j∗

e−e
−(ε+σ−1ε vt,ij∗−σ

−1
ε vt,ij)

]
e−εe−e

−(ε+σ−1ε vt,ij∗−σ
−1
ε vt,ij∗)

dε

=

∫ +∞

−∞

[∏
j

e−e
−(ε+σ−1ε vt,ij∗−σ

−1
ε vt,ij)

]
e−εdε

=

∫ +∞

−∞
exp

[
−e−ε

∑
j

e−σ
−1
ε (vt,ij∗−vt,ij)

]
e−εdε.

Define s = e−ε. Thus, ds = −e−εdε. Then,

Prob (j∗ is chosen) =

∫ +∞

0

exp

[
−s
∑
j

e−σ
−1
ε (vt,ij∗−vt,ij)

]
ds

= −
exp

[
−s
∑

j e
−σ−1ε (vt,ij∗−vt,ij)

]
∑

j e
−σ−1ε (vt,ij∗−vt,ij)

∣∣∣∣∣∣
+∞

0

=
1∑

j e
−σ−1ε (vt,ij∗−vt,ij)

=
eσ
−1
ε vt,ij∗∑
j e

σ−1ε vt,ij
.

A1.2 Compact form of equilibrium conditions

To derive the compact form of the equilibrium conditions, i.e., (34)-(35), we first note that
(33) implies

pit =
βegl (1− θi) qit

hit/hi,t−1 − βegl (1− θi) (1− δ) . (A.1)

Also, by substituting (24) into (28), we have

hit = (1− δ)hi,t−1 + τκ,iκitp
λp,i
it . (A.2)

Then, substituting (A.1) into (A.2) we obtain

hit = (1− δ)hi,t−1 +

τκ,iκit

[
βegl (1− θi) qit

hit/hi,t−1 − βegl (1− θi) (1− δ)

]λp,i
. (A.3)
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Then, by substituting (22) into (A.3), we can eliminate hit and hi,t−1, and after lagging the
resultant equation by one period we have

η

(
wit
qit

)
l·i(t) = (1− δ)η

(
wi,t−1

qi,t−1

)
l·i(t− 1)+

τκ,iκi,t−1

 βegl (1− θi) qi,t−1(
wit

wi,t−1

)(
l·i(t)
l·i(t−1)

)(
qi,t−1
qit

)
− βegl (1− θi) (1− δ)

λp,i . (A.4)

Thus, equations (5), (12) and (17), together with (A.4), provide 2n non-linear dynamic
equations in l·i(t), i = 1, 2, ..., n, and qit, i = 1, 2, ..., n, which can be written compactly as:

ζt = f
(
ζt−1,at,at−1,κt−1, gl,t;Θ

)
, (A.5)

where Θ is a row vector that contains all the parameters, ζt = [l(t), qt] is a 1 × 2n vector.
In addition, using (17), (22) in (A.2) and (A.1) to eliminate wit and hi,t−1, we have

pit =
βegl (1− θi) qit

hitqit/
(
ητw,ia

λa
it l·i(t)

1−λl
)
− βegl (1− θi) (1− δ)

, (A.6)

hit = (1− δ)
(
ητw,ia

λa
it

qit

)
l·i(t)

1−λl + τκ,iκitp
λp,i
it . (A.7)

Note that using (A.6) and (A.7), we can solve for pit and hit, for given values of l·i(t), qit, ait
and κit. Thus, pt and ht are functions of l(t), qt,at and κt:

χt = g (ζt,at,κt;Θ) , (A.8)

where χt = [pt,ht] is a 1× 2n vector.

A1.3 Equilibrium conditions written in terms of the detrended
variables

Recall that we use letters with stars and time subscripts to denote the corresponding de-
trended variables, and that we use bold lowercase letters with only time subscripts to de-
note the vectors of prices and quantities for all locations. For example, w∗it ≡ e−gwtwit,
w∗t ≡ [w∗1t, w

∗
2t, ..., w

∗
nt], p

∗
it ≡ e−gwtpit, p∗t ≡ [p∗1t, p

∗
2t, ..., p

∗
nt], h

∗
it ≡ e−glthit, and h

∗
t ≡

[h∗1t, h
∗
2t, ..., h

∗
nt]. Hence equilibrium conditions (5), (12), (17), (22), (24), (28) and (33) can

be re-written in terms of the detrended variables as

l∗(t) = l∗(t− 1)R∗(t), (A.9)

where R∗(t) ≡
(
ρ∗ij(t)

)
is the n× n matrix of migration probabilities, and

ρ∗ij(t) =
(w∗jt/w

∗
it)

1/σε(q∗jt/q
∗
it)
−η/σε(αij)

−1/σε∑n
s=1(w∗st/w

∗
it)

1/σε(q∗st/q
∗
it)
−η/σε(αis)−1/σε

, for i and j ∈ In, (A.10)
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and

w∗it = τw,ia
λa
i (l∗·i(t))

−λl , for i ∈ In, (A.11)

h∗i,t−1 = (ηw∗it/q
∗
it) l
∗
·i(t), for i ∈ In, (A.12)

x∗it = τκ,iκi(p
∗
it)
λp,i , for i ∈ In, (A.13)

h∗it = (1− δ)e−glh∗i,t−1 + x∗it, for i ∈ In, (A.14)

p∗ith
∗
it = β (1− θi) [q∗it + (1− δ)p∗it]h∗i,t−1, for i ∈ In, (A.15)

A1.4 Derivation of balanced growth path migration probabilities

To derive the balanced growth path migration probability equation (55), we first observe
that the long run rent-to-price ratio in location i can be obtained from (54) and is given by

q∗i
p∗i

= Γi, (A.16)

where Γi is given by

Γi =
1

β (1− θi)
− (1− δ). (A.17)

Note that β and θi ∈ (0, 1), which implies β−1 (1− θi)−1 > 1. Since δ > 0, it follows that
Γi > δ > 0. Using this result in (51), we obtain the long-run demand function for housing
in location i:

h∗i =
ηw∗i l

∗
·i

Γip∗i
(A.18)

By substituting (53) into (52), we obtain the long-run housing supply function in location i:

h∗i = δ̃−1τκ,iκi(p
∗
i )
λp,i , (A.19)

where δ̃ ≡ 1− (1− δ) e−gl . By substituting (A.19) into (A.18) for h∗i , we have

δ̃−1τκ,iκi(p
∗
i )
λp,i =

ηw∗i l
∗
·i

Γip∗i
.

Using the above equation, we can solve for p∗i

p∗i =

(
δ̃η

τκ,iκi

) 1
1+λp,i

Γ
− 1
1+λp,i

i (w∗i l
∗
·i)

1
1+λp,i , (A.20)

and by substituting (A.20) into (A.16) for p∗i , we have

q∗i =

(
δ̃η

τκ,iκi

) 1
1+λp,i

Γ

λp,i
1+λp,i

i (w∗i l
∗
·i)

1
1+λp,i . (A.21)
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By substituting (A.20) into (A.19) for p∗i , we obtain

h∗i =

(
δ̃

τκ,iκi

)− 1
1+λp,i

(
η

Γi

) λp,i
1+λp,i

(w∗i l
∗
·i)

λp,i
1+λp,i . (A.22)

Finally, by substituting (A.22) into (53) for h∗i , we obtain

x∗i =

(
1

τκ,iκi

)− 1
1+λp,i

(
δ̃η

Γi

) λp,i
1+λp,i

(w∗i l
∗
·i)

λp,i
1+λp,i , (A.23)

Therefore, p∗i , q
∗
i , x

∗
i and h

∗
i can be obtained uniquely in terms of l

∗
·i, w

∗
i ,and κi using (51) -

(54).
By substituting (50) and (A.21) into (49) for q∗i and w

∗
i , then ρ

∗
ij can be written as a

function of l∗:

ρ∗ij =
ψij
(
l∗·j
)−ϕj∑n

s=1 ψis (l∗·s)
−ϕs , (A.24)

where

ϕj =
1

σε

[
η

1 + λp,j
+ λl

(
1− η

1 + λp,j

)]
,

ψij = α
−1/σε
ij

(
δ̃η

τκ,jκj

)− η

σε(1+λp,j)
Γ
− ηλp,j

σε(1+λp,j)
j

(
τw,ja

λa
j

) 1
σε

(
1− η

1+λp,j

)
.

Since σε, λl and λp,j > 0, and η ∈ (0, 1), it follows that ϕj > 0, for any i ∈ In. In addition,
note that ψij > 0, for any i and j ∈ In, since αij, δ̃, η, τκ,i, τw,i, κj, σε and aj > 0, and Γj,
given by (A.17), is strictly positive as previously shown.

A1.5 Existence and uniqueness of short-run equilibrium

Proposition A1 Consider the dynamic spatial equilibrium model set up in Sections 2 and
3 by equations (5), (12), (17), (22), (24), (28) and (33), which can be written equivalently
in terms of detrended variables by equations (A.9) to (A.15) in Appendix A1.3. Suppose
that the vectors of exogenous processes for labor productivities, at, land supplies, κt, and
the intrinsic population growth rates, glt, for t = 1, 2, ..., are given by (41)-(43), condition
(44) holds, and the initial values for local population and housing stocks ( l0 and h0) are
strictly positive. Then the model has a unique short-run equilibrium in the sense set out in
Definition 1.

Proof: To prove the existence and uniqueness of the short-run equilibrium, we show that
given l∗t−1 and h

∗
t−1, where l

∗
t−1 and h

∗
t−1 are strictly positive, then w

∗
t , q
∗
t ,p

∗
t , l
∗
t ,x

∗
t ,h

∗
t and

R∗t are uniquely determined by equations (A.9) to (A.15). We first establish that l
∗
·i(t) > 0,

for all i, and hence 1 > ρ∗ij(t) > 0, for all i and j ∈ In. Since by assumption aggregate
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population across all locations cannot be negative, then
∑n

i=1 l
∗
·i(t) > 0, where l∗·i(t) denotes

the ith element of l∗t . Hence, there must be at least one location with non-zero population,
such that l∗·i(t) > 0 for at least one i ∈ In. Here without loss of generality we assume that
l∗·1(t) > 0. Also since l∗·1(t) is the first element in l∗t , then from (A.9) we have

l∗·1(t) =
n∑
i=1

ρ∗i1(t)l∗·i(t− 1), (A.25)

and upon using (A.10), (A.11) and (A.12), we obtain

ρ∗ij(t) =
α
− 1
σε

ij

(
τw,ja

λa
j

) 1−η
σε
(
h∗j,t−1

) η
σε
(
l∗·j(t)

)− η+λl(1−η)
σε∑n

s=1 α
− 1
σε

is (τw,saλas )
1−η
σε

(
h∗s,t−1

) η
σε (l∗·s(t))

− η+λl(1−η)
σε

, (A.26)

which implies ρ∗i1(t) in equation (A.25) is given by

ρ∗i1(t) =
α
− 1
σε

i1

(
τw,1a

λa
1

) 1−η
σε
(
h∗1,t−1

) η
σε (l∗·1(t))−

η+λl(1−η)
σε∑n

s=1 α
− 1
σε

is (τw,saλas )
1−η
σε

(
h∗s,t−1

) η
σε (l∗·s(t))

− η+λl(1−η)
σε

,

=
1

1 +
∑

s 6=i

(
α
− 1
σε

is (τw,saλas )
1−η
σε (h∗s,t−1)

η
σε

α
− 1
σε

i1 (τw,1aλa1 )
1−η
σε (h∗1,t−1)

η
σε

)(
l∗·1(t)

l∗·s(t)

) η+λl(1−η)
σε

. (A.27)

Note that η ∈ (0, 1) and λl, τw,s,σε, αis and as > 0 by assumption, and also that h∗s,t−1 > 0,
for t = 1, 2, ..., since hs0 > 0 and the depreciation rate of housing stock δ is less than one.
Thus, α−1/σε

is

(
τw,sa

λa
s

)(1−η)/σε (
h∗s,t−1

)η/σε
> 0. In addition, it is supposed that l∗·1(t) > 0.

Hence, if l∗·s(t) = 0, for any s ∈ {2, 3, ..., n}, then ρ∗i1(t) = 0, for all i ∈ In, and using (A.27)
it follows that l∗·1(t) = 0, which contradicts our supposition. The same line of reasoning can
be applied to any other elements of l∗t , and we must have l

∗
·1(t) > 0, for any i ∈ In.

Second, let Lt(ε) with ε > 0, be a set of population vector:

Lt(ε) ≡
{

(l∗·1(t), ..., l∗·n(t))

∣∣∣∣∣L0 ≥ l∗·i(t) ≥ ε for any i, where ε > 0,

n∑
i=1

l∗·i(t) = L0

}

Consider a mapping F , define

F (l∗t ) = l∗t−1R(l∗t ;h
∗
t−1),

where l∗t−1 and h
∗
t−1 are given, and R(l∗t ,h

∗
t−1) is the migration probability matrix with

typical element ρ∗ij(t), which is given by (A.26). Thus, for (A.9) to hold, the above mapping
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should have a fixed point. Consider a l∗t ∈ Lt(ε). Note that l∗·i(t) is the ith element of l∗t and
satisfies L0 ≥ l∗·i(t) ≥ ε, for i = 1, 2, ..., n. Then, by using (A.26), we have

ρ∗ij(t) =
α
− 1
σε

ij

(
τw,ja

λa
j

) 1−η
σε
(
h∗j,t−1

) η
σε
(
l∗·j(t)

)− η+λl(1−η)
σε∑n

s=1 α
− 1
σε

is (τw,saλas )
1−η
σε

(
h∗s,t−1

) η
σε (l∗·s(t))

− η+λl(1−η)
σε

>
α
− 1
σε

ij

(
τw,ja

λa
j

) 1−η
σε
(
h∗j,t−1

) η
σε (L0)−

η+λl(1−η)
σε∑n

s=1 α
− 1
σε

is (τw,saλas )
1−η
σε

(
h∗s,t−1

) η
σε (ε)−

η+λl(1−η)
σε

=
α
− 1
σε

ij

(
τw,ja

λa
j

) 1−η
σε
(
h∗j,t−1

) η
σε (L0)1− η+λl(1−η)

σε∑n
s=1 α

− 1
σε

is (τw,saλas )1−η (h∗s,t−1

) η
σε (ε)1− η+λl(1−η)

σε

ε

L0

.

Since η and λl ∈ (0, 1), and σε ≥ 1, then 1 − [η + λl (1− η)] /σε> 0. Suppose ε is small
enough such that

ρ∗ij(t) >
ε

L0

, for i and j ∈ In.

Define l∗
′

t = F (l∗t ) = l∗t−1R(l∗t ;h
∗
t−1). Thus we have

l∗
′

·j (t) =
n∑
i=1

ρ∗ij(t)l
∗
·i(t− 1) >

n∑
i=1

(
ε

L0

)
l∗·i(t− 1) =

(
ε

L0

)
L0 = ε for any j ∈In.

In addition,

n∑
j=1

l∗
′

·j (t) =
n∑
j=1

n∑
i=1

ρ∗ij(t)l
∗
·i(t− 1) =

n∑
i=1

l∗·i(t− 1)
n∑
j=1

ρ∗ij(t) =
n∑
i=1

l∗·i(t− 1) = L0.

Therefore, when ε is small enough such that ρ∗ij(t) > ε/L0 for any i, j ∈ In, then l∗t ∈
Lt(ε) ⇒ l∗

′

t = F (l∗t ) ∈ Lt(ε). Thus, F is a continuous mapping from Lt(ε) to itself, where
Lt(ε) is a compact convex set. Thus, Brouwer Fix Point Theorem is applicable to ensure
the existence of fixed point. Then, using the solution of l∗t , the other variables of the model,
namely, w∗t ,p

∗
t , q
∗
t ,x

∗
t ,h

∗
tand R∗t , can be solved for using equations (A.10) to (A.15).

Third, to show the uniqueness, suppose there are l∗(1)
t , l

∗(2)
t ∈ Lt(ε), with l∗(1)

t 6= l
∗(2)
t ,

and l∗(1)
t = F (l

∗(1)
t ), l∗(2)

t = F (l
∗(2)
t ). Define I+

n ≡ {j| l∗
(2)

·j (t) > l∗
(1)

·j (t), j ∈ In} and
I−n ≡ {j| l∗

(2)

·j (t) ≤ l∗
(1)

·j (t), j ∈ In}. Thus, neither I+
n nor I−n is empty, and we have∑

j∈I+n

l∗
(2)

·j (t) >
∑
j∈I+n

l∗
(1)

·j (t). (A.28)
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Note that by using (A.26), we have

∑
j∈I+n ρ

∗(2)
ij (t)∑

j∈I−n ρ
∗(2)
ij (t)

=

∑
j∈I+n α

− 1
σε

ij

(
τw,ja

λa
j

) 1−η
σε
(
h∗j,t−1

) η
σε

(
l
∗(2)
·j (t)

)− η+λl(1−η)
σε

∑
j∈I−n α

− 1
σε

ij

(
τw,ja

λa
j

) 1−η
σε
(
h∗j,t−1

) η
σε

(
l
∗(2)
·j (t)

)− η+λl(1−η)
σε

,

<

∑
j∈I+n α

− 1
σε

ij

(
τw,ja

λa
j

) 1−η
σε
(
h∗j,t−1

) η
σε

(
l
∗(1)
·j (t)

)− η+λl(1−η)
σε

∑
j∈I−n α

− 1
σε

ij

(
τw,ja

λa
j

) 1−η
σε
(
h∗j,t−1

) η
σε

(
l
∗(1)
·j (t)

)− η+λl(1−η)
σε

,

=

∑
j∈I+n ρ

∗(1)
ij (t)∑

j∈I−n ρ
∗(1)
ij (t)

.

Note also that ∑
j∈I+n

ρ
∗(2)
ij (t) +

∑
j∈I−n

ρ
∗(2)
ij (t) =

∑
j∈I+n

ρ
∗(1)
ij (t) +

∑
j∈I−n

ρ
∗(1)
ij (t) = 1.

Thus, ∑
j∈I+n

ρ
∗(2)
ij (t) <

∑
j∈I+n

ρ
∗(1)
ij (t) for any i ∈ In. (A.29)

Since l∗(1)
t = F (l

∗(1)
t ), l∗(2)

t = F (l
∗(2)
t ), thus for any j ∈ I

l
∗(2)
·j (t) =

∑
i∈I

ρ
∗(2)
ij (t)l∗·i(t− 1) and l

∗(1)
·j (t) =

∑
i∈I

ρ
∗(1)
ij (t)l∗·i(t− 1)

Then, we have∑
j∈I+n

(l
∗(2)
·j (t)− l∗(1)

·j (t)) =
∑
j∈I+n

∑
i∈I

ρ
∗(2)
ij (t)l∗·i(t− 1)−

∑
j∈I+n

∑
i∈I

ρ
∗(1)
ij (t)l∗·i(t− 1)

=
∑
i∈I

∑
j∈I+n

(
ρ
∗(2)
ij (t)− ρ∗(1)

ij (t)
)
l∗·i(t− 1)

=
∑
i∈I

∑
j∈I+n

ρ
∗(2)
ij (t)−

∑
j∈I+n

ρ
∗(1)
ij (t)

 l∗·i(t− 1)

< 0

Thus, the above contradicts with (A.28), which implies that l∗(1)
t 6= l

∗(2)
t cannot be true. �

A1.6 Lemmas: statements and proofs

Lemma A1 Consider the following Markovian process in l∗(t)

l∗(t) = l∗(t− 1)R∗(t) (A.30)
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where l∗(t) = [l∗·1(t), l∗·2(t), ..., l∗·n(t)] is the 1 × n row vector of detrended population values,
and R∗(t) = (ρ∗ij(t)) is the n × n transition matrix with the typical element, ρ∗ij(t) defined
by (A.10) that depends non-linearly on l∗(t), and n is a fixed integer. Suppose that the
initial population vector, l∗(0) = l(0), is given and satisfies the conditions l(0) > 0, and∑n

i=1 l·i(0) = L0, where 0 < L0 < K. Then l∗(t) converges to a finite population vector,
l∗ (∞), or simply l∗ = [l∗·1, l

∗
·2, ..., l

∗
·n], as t→∞, with l∗·i ≥ 0, and

∑n
i=1 l

∗
·i = L0

Proof: We first note that by construction 0 ≤ ρ∗ij(t) ≤ 1 for all i and j, and
∑n

j=1 ρ
∗
ij(t) =

1, for all j. Hence, for each t, R∗(t) is a right stochastic matrix with R∗(t)τ n = τ n, where
τ n is an n × 1 vector of ones, for all t. Recursively solving (A.30) forward from l∗(0), we
have

l∗(t) = l∗(0)
[
Πt
s=1R

∗(s)
]
,

But it is easily seen that [Πt
s=1R

∗(s)] τ n = τ n, and hence

n∑
i=1

l∗·i(t) = l∗(t)τ n = l∗(0)τ n = L0. (A.31)

Also, since l∗(0) = l(0) > 0, ρ∗ij(t) ≥ 0, and n is finite, then l∗(t) = [l∗·1(t), l∗·2(t), ..., l∗·n(t)] ≥ 0,
for all t, and in view of (A.31) we have supit(l

∗
·i(t)) ≤ L0 < K. Therefore, l∗(t) must converge

to some vector l∗ which is bounded in t, as t→∞. �

Lemma A2 Consider the system of non-linear equations in l·i, for i ∈ In:

l = lR (l) (A.32)

where l = [l·1, l·2, ..., l·n], l ≥ 0,
∑n

i=1 l·i = L0, 0 < L0 < K, n is fixed, and the typical element
of matrix R is given by

ρij =
ψij (l·j)

−ϕj∑
s∈In ψis (l·s)

−ϕs , (A.33)

where ψij and ϕj > 0, for any i and j ∈ In. Then, the solution to (A.32) must be strictly
positive, l·i > 0 for i ∈ In, and unique.

Proof. We first show that l·i > 0, for all i, and hence 1 > ρij > 0, for all i and j ∈ In.
Consider a population vector l = [l·1, l·2, ..., l·n], that solves (A.32). Note that

∑n
i=1 l·i > 0,

and l·i is non-negative for any i ∈ In. Thus, l·i > 0 has to hold for at least one i. Without
loss of generality, we assume

l·1 > 0. (A.34)

Note also that since l·1 is the first element in l, then from (A.32) we have

l·1 =
n∑
i=1

ρi1l·i, (A.35)
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where, upon using (A.33), ρi1 is given by

ρi1 =
1

1 +
∑

s 6=i

(
ψis
ψi1

)
(l·1)ϕ1

(l·s)
ϕs

, for i = 1, 2, ..., n. (A.36)

Note that by assumption ψij and ϕj > 0, and it is supposed that l·1 > 0. Hence, if l·s = 0,
for any s ∈ {2, 3, ..., n}, then ρi1 = 0, for all i ∈ In, and using (A.35) it follows that l·1 = 0,
which contradicts our supposition. The same line of reasoning can be applied to any other
elements of l, and we must have l·i > 0, for any i ∈ In.

Given that l·i > 0, for all i, we now show that (A.32) cannot have more than one solution.
Suppose there exist two solutions l(1) and l(2), with l(1) and l(2) > 0, l(1) 6= l(2), such that
l(1) = l(1)R

(
l(1)
)
and l(2) = l(2)R

(
l(2)
)
. Denote the jth elements of l(1) and l(2) by l(1)

·j and

l
(2)
·j , respectively. Split the locations into two groups, I+

n and I−n , where I+
n ≡ {j | l

(2)
·j > l

(1)
·j ,

j ∈ In}, and I−n ≡ {j | l
(2)
·j ≤ l

(1)
·j , j ∈ In}, and note that I+

n ∩ I−n = ∅ and I+
n ∪ I−n = In.

That is,

l
(2)
·j

{
> l

(1)
·j if j ∈ I+

n

≤ l
(1)
·j if j ∈ I−n

. (A.37)

Further, since
∑n

j=1 l
(1)
j =

∑n
j=1 l

(2)
j = L0, and l

(1) 6= l(2), it also follows that neither I+
n nor

I−n can be empty. Thus, we have ∑
j∈I+n

l
(2)
·j >

∑
j∈I+n

l
(1)
·j . (A.38)

Recall that ρ(1)
ij and ρ

(2)
ij are the typical elements of R

(
l(1)
)
and R

(
l(2)
)
, respectively. For

any i ∈ In, using (A.33), we have (recall that l(1)
·j > 0 and l(2)

·j > 0)∑
j∈I+n ρ

(2)
ij∑

j∈I−n ρ
(2)
ij

=

∑
j∈I+n ψij

(
l
(2)
·j

)−ϕj
∑

j∈I−n ψij

(
l
(2)
·j

)−ϕj , (A.39)

∑
j∈I+n ρ

(1)
ij∑

j∈I−n ρ
(1)
ij

=

∑
j∈I+n ψij

(
l
(1)
·j

)−ϕj
∑

j∈I−n ψij

(
l
(1)
·j

)−ϕj . (A.40)

Since by (A.37), l(2)
·j > l

(1)
·j , if j ∈ I+

n , and l
(2)
·j ≤ l

(1)
·j , if j ∈ I−n , then (recall that ψij > 0 and

ϕj > 0)

∑
j∈I+n

ψij

(
l
(2)
·j

)−ϕj
<

∑
j∈I+n

ψij

(
l
(1)
·j

)−ϕj
,

∑
j∈I−n

ψij

(
l
(2)
·j

)−ϕj
≥

∑
j∈I−n

ψij

(
l
(1)
·j

)−ϕj
.
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Hence, using the above results in (A.39) and (A.40) we have∑
j∈I+n ρ

(2)
ij∑

j∈I−n ρ
(2)
ij

<

∑
j∈I+n ρ

(1)
ij∑

j∈I−n ρ
(1)
ij

, ∀ i ∈ In,

and it follows that∑
j∈I+n ρ

(2)
ij +

∑
j∈I−n ρ

(2)
ij∑

j∈I+n ρ
(2)
ij

>

∑
j∈I+n ρ

(1)
ij +

∑
j∈I−n ρ

(1)
ij∑

j∈I+n ρ
(1)
ij

, ∀ i ∈ In.

Since ρ(1)
ij and ρ

(2)
ij are migration probabilities,∑

j∈I+n

ρ
(2)
ij +

∑
j∈I−n

ρ
(2)
ij =

∑
j∈I+n

ρ
(1)
ij +

∑
j∈I−n

ρ
(1)
ij = 1.

Thus, we have ∑
j∈I+n

ρ
(2)
ij <

∑
j∈I+n

ρ
(1)
ij , ∀ i ∈ In. (A.41)

Note that l(1)
·j and l(2)

·j are given by

l
(1)
·j =

∑
i∈In

ρ
(1)
ij l

(1)
·i and l

(2)
·j =

∑
i∈In

ρ
(2)
ij l

(2)
·i .

Thus, we have ∑
j∈I+n

l
(2)
·j −

∑
j∈I+n

l
(1)
·j =

∑
j∈I+n

∑
i∈In

ρ
(2)
ij l

(2)
·i −

∑
j∈I+n

∑
i∈In

ρ
(1)
ij l

(1)
·i ,

=
∑
i∈In

l
(2)
·i

∑
j∈I+n

ρ
(2)
ij −

∑
i∈In

l
(1)
·i

∑
j∈I+n

ρ
(1)
ij .

Since
∑

j∈I+n ρ
(2)
ij <

∑
j∈I+n ρ

(1)
ij as previously shown in (A.41), then∑

j∈I+n

l
(2)
·j −

∑
j∈I+n

l
(1)
·j <

∑
i∈In

l
(2)
·i

∑
j∈I+n

ρ
(1)
ij −

∑
i∈In

l
(1)
·i

∑
j∈I+n

ρ
(1)
ij ,

=
∑
i∈In

(l(2)
·i − l

(1)
·i

) ∑
j∈I+n

ρ
(1)
ij

 . (A.42)

Since by (A.37), l(2)
·i > l

(1)
·i , if i ∈ I+

n , and l
(2)
·i ≤ l

(1)
·i , if i ∈ I−n , and

∑
j∈I+n ρ

(1)
ij > 0 by
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construction, then

∑
i∈In

(l(2)
·i − l

(1)
·i

) ∑
j∈I+n

ρ
(1)
ij


=

∑
i∈I+n

(l(2)
·i − l

(1)
·i

) ∑
j∈I+n

ρ
(1)
ij

+
∑
i∈I−n

(l(2)
·i − l

(1)
·i

) ∑
j∈I+n

ρ
(1)
ij

 ,
<

∑
i∈I+n

(l(2)
·i − l

(1)
·i

) ∑
j∈I+n

ρ
(1)
ij

 .
Note that ρ(1)

ij are migration probabilities, and
∑

j∈I+n ρ
(1)
ij < 1 by construction, and that

l
(2)
·i − l

(1)
·i > 0, if i ∈ I+

n . Then, we have

∑
i∈I+n

(l(2)
·i − l

(1)
·i

) ∑
j∈I+n

ρ
(1)
ij

 < ∑
i∈I+n

(
l
(2)
·i − l

(1)
·i

)
,

and thus ∑
i∈In

(l(2)
·i − l

(1)
·i

) ∑
j∈I+n

ρ
(1)
ij

 < ∑
i∈I+n

l
(2)
·i −

∑
i∈I+n

l
(1)
·i ,

which contradicts (A.42). Thus, l 6= l∗ cannot hold.�

A1.7 Derivation of new land supplies, κit
To derive (70), we first note that by using (16) in (22) to eliminate wit, we have

hi,t−1 = ηυl

(
yit
qit

)
. (A.43)

By using the above equation in (33) to eliminate hi,t−1, we have

hit = βegl (1− θi)
[
qit
pit

+ (1− δ)
]
ηυl

(
yit
qit

)
. (A.44)

Then, by using (A.43) and (A.44) in (28), we have

xit = hit − (1− δ)hi,t−1,

=

{
βegl (1− θi)

[
qit
pit

+ (1− δ)
]
− (1− δ)

}
ηυl

(
yit
qit

)
.

By combing the above equation with (25) and (24), we have
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κit =
γit
τκ,i

,

where

γit =

{
βegl (1− θi)

[
qit
pit

+ (1− δ)
]
− (1− δ)

}
ηυl

(
yit
qit

)
p

(1−ϑκ,i)/ϑκ,i
it

.

A2 Data sources and measurements

A2.1 Interstate migration and population growth

Between states migration flows are measured using annual data from the Internal Revenue
Service (IRS).A1 The IRS compiles state-to-state migration data using year-to-year address
changes reported on individual income tax returns filed with the IRS, which are available
from 1990 to 2014.A2 Those who file income tax returns with the IRS in two consecutive
years in the same state are considered as non-migrants, and migrants otherwise. We focus
on the 48 states and the District of Columbia on the U.S. mainland, and treat Alaska and
Hawaii as “foreign countries”in our analysis.

For the years 1990-2014, we compute migration flows and the intrinsic population growth
rates of U.S. states using the IRS state-to-state migration flow data. Migrants are considered
as the residents of the destination states for the year they migrate.A3 Thus, the population
of state j in year t is measured as the number of tax filers (and their dependents) who report
a home address in state j at the start of year t+1 as recorded by the IRS for the period from
t to t+ 1. We decompose the population changes of U.S. states into an intrinsic component
(due to births and deaths) and a net inward migration component. Let

li·(t) ≡
n∑
j=1

lij(t), and l·j(t) ≡
n∑
i=1

lij(t), (A.45)

where for i 6= j, lij(t) denotes the population flow from state i to state j in year t, measured
using the IRS data (see also (1) and (2)). The number that remain in state i is denoted by
lii(t). li·(t)− lii(t) measures the outward migration from state i, and l·i(t)− lii(t), measures
the inward migration to state i. The change in population of state i in period t, defined by
l·i(t)− l·i(t− 1) can now be decomposed as:

l·i(t)− l·i(t− 1) = [l·i(t)− li·(t)] + [li·(t)− l·i(t− 1)] . (A.46)

where the first component l·i(t)−li·(t) is the net inward migration to state i, and the reminder
term, li·(t)− l·i(t− 1), which we refer to as the intrinsic population change of state i. Thus,

A1For further information on the IRS migration flow data, see https://www.irs.gov.
A2The total number of exemptions recorded by the IRS each year is around 80% of the U.S. population.
A3For example, suppose a person files income tax returns with the IRS at the starts of year t and year t+1,

and the two addresses reported are in state i and state j respectively. If i = j, this person is considered as
a resident in State j in year t. However, if i 6= j, the time she migrates to State j can be any point between
the starts of year t and year t+ 1. In our analysis, we consider this person as a resident in State j for year t.
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the actual state level intrinsic population growth rates, ĝl,it, for i = 1, 2, ..., n, are measured
as

ĝl,it =
li·(t)− l·i(t− 1)

l·i(t− 1)
(A.47)

For the period 1976-1990, state level populations are measured using Census population
data, which are scaled such that their 1990 values match those implied by the IRS migration
flow data.

A2.2 State level real per capita incomes

The state level per capita annual disposable incomes are obtained from the Bureau of Eco-
nomic Analysis (BEA).A4 Real incomes are computed by dividing state level nominal incomes
by state level prices of non-housing consumption goods. The relative prices of non-housing
consumption goods across U.S. states for the year 2000 are estimated following the proce-
dure in Holly et al. (2010) (see their Table A.1), where the American Chamber of Commerce
Researchers Association (ACCRA) cost of living indices for non-housing items are used at
the metropolitan statistical areas.A5 Similarly, state level non-shelter Consumer Price Index
(CPI) series are constructed using the U.S. Bureau of Labor Statistics (BLS) non-shelter
CPIs of the cities and areas according to the Holly et al. (2010) procedure.A6 Then, state
level prices of non-housing consumption goods are complied by combining the relative prices
of non-housing goods across U.S. states for 2000 and the state level non-shelter (CPI) series
over 1976-2014.

We infer the state level wage rates, wit, using (16), where the worker population, l·i(t),
is measured using the actual state level population (see Appendix A2.1), and the state level
output, yit, is measured by multiplying realized real per capita disposable income of the state
by its population.

A2.3 State level real house prices and rents

The state level median house prices for 1976-2014 are complied by combining the state level
median house prices in 2000 obtained from the Historical Census of Housing Tables, and the
state level House Price Index obtained from U.S. Federal Housing Finance Agency (FHFA).A7

The FHFA House Price Index are available over the period 1976Q1 to 2015Q4. The annual
house price index is computed using the simple average of the quarter indices over the year.

A4For further information on the BEA state level per capita annual disposable income data (Table SA51),
see https://www.bea.gov/index.htm.
A5The Cost of Living Index (COLI), formerly the ACCRA Cost of Living Index is a measure of living cost

differences among urban areas in the United States compiled by the Council for Community and Economic
Research. For further information, see http://coli.org/.
A6For further information on the BLS city level CPI data, see https://www.bls.gov/data/.
A7For further information on the Historical Census of Housing Tables of Home Values, see https://

www.census.gov. For further information on the FHFA state level house price index, see http://www.
freddiemac.com.
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Real house prices are obtained by dividing nominal house prices by prices of non-housing
consumption goods.

The state level annual housing rents are computed for 1976-2014 by combing the state
level annual housing rents for 2000 obtained from the Historical Census of Housing Tables,
and the state level shelter-CPIs.A8 We construct the state level shelter-CPI series based on
the BLS shelter-CPI data and the procedure followed by Holly et al. (2010) (Table A.1).A9

Real annual rents are obtained by dividing the nominal annual rents by the prices of non-
housing consumption goods.

A2.4 Land-use regulations and supplies

The state level Wharton Residential Land Use Regulatory Index is due to Gyourko et al.
(2008), and the state level land share in house value is compiled by Davis and Heathcote
(2007).A10 The state level data on urban area sizes are from the United States Department
of Agriculture (USDA).A11

A2.5 Amenities

The climate data are obtained from the National Centers for Environmental Information
(NCEI) of the National Oceanic and Atmospheric Administration (NOAA), which include
information on average annual cooling/heating degree days, precipitation, snowfall, wind
speed, sunshine, number of clear days and humidity (morning and afternoon). State level
climate data are derived by averaging data from all weather stations within the state.

The state level data on land, water and total areas are obtained from the U.S. Census
Bureau. The state level land cover data are obtained from the United States Department
of Agriculture (USDA), which include information on the acreages of cropland, grassland
pasture and range, forest, urban area and other lands of U.S. states. The state level data on
wilderness area are obtained from the Wilderness Connect.

The data on the expenditures of state and local governments of U.S. states are obtained
from the Census of Governments, which include information on total expenditures and the
amounts spent on hospitals, health, highways, airports, parks and recreation, and natural
resources. The state level data on the numbers of students and instructors in public elemen-
tary and secondary schools and expenditure per pupil of local school systems are obtained
from the U.S. Census Bureau.A12 Real expenditures are computed by dividing state level
nominal expenditures by state level prices of non-housing consumption goods. The state

A8For further information on the Historical Census of Housing Tables of Housing Rents, see https://www.
census.gov.
A9For further information on the BLS city level CPI data, see https://www.bls.gov/data/.
A10For further information on the data of state level land share in house value, see http://datatoolkits.
lincolninst.edu.
A11For further information on the USDA land use data, see https://www.ers.usda.gov.
A12For further information, see the Annual Survey of Public Employment and Payroll (ASPEP) and the
Annual Survey of School System Finances (ASSSF) of the U.S. Census Bureau.
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Table A1: Sources for amenity data

Data sources

I. Climate and geography

Average annual cooling degree days (1000 Df, 1901-2000) NOAA-NCEI

Average annual heating degree days (1000 Df, 1901-2000) NOAA-NCEI

Average annual precipitation (inches, 1901-2000) NOAA-NCEI

Average annual snowfall (inches) NOAA-NCEI

Average annual wind speed (m.p.h., 1984-2018) NOAA-NCEI

Average annual sunshine (% of possible) NOAA-NCEI

Average annual number of clear days NOAA-NCEI

Average annual humidity: morning (1945-2018) NOAA-NCEI

Average annual humidity: afternoon (1945-2018) NOAA-NCEI

Coastal state (=1 if on coast) Census

Log total used land (1000 acres, 1997) USDA-ERS

Share of forest in total land uses (1997) USDA-ERS

Share of crop&range in total land uses (1997) USDA-ERS

Share of urban area in total land uses (1997) USDA-ERS

Share of wilderness in total land area Wilderness Connect

Share of water in total area Census

II. Local public goods, environment and population density

State&local government total expenditures (2000$ per capita, 1997 and 2007) Census of Governments

State&local gov. exp. on hospitals and health (2000$ per capita, 1997 and 2007) Census of Governments

State&local gov. exp. on highways and airports (2000$ per capita, 1997 and 2007) Census of Governments

State&local gov. exp. on parks, rec. and nat. res. (2000$ per capita, 1997 and 2007) Census of Governments

Average annual crime rate (per 100 persons, 1990-1999 and 2000-2014) FBI

Teacher—to-pupil ratio (1995 and 2007) ASPEP, ASSSF

Expenditure per pupil of local school systems (2000$, 1995 and 2007) ASSSF

Average annual air quality index (AQI, 1990-1999 and 2000-2014) EPA

Population density of urban area (log pop. per 1000 acres, 2000 and 2010) Census, USDA-ERS

Population density of total area (log pop. per 1000 acres, 1990-1999 and 2000-2014) Census

Notes: The amenity data are from the following sources: The National Centers for Environmental Infor-
mation of the National Oceanic and Atmospheric Administration (NOAA-NCEI, https://www.ncdc.noaa.
gov), the Economic Research Service of the United States Department of Agriculture (USDA-ERS, https://
www.ers.usda.gov), the Wilderness Connect (https://wilderness.net), Federal Bureau of Investigation
(FBI, https://www.fbi.gov), U.S. Environmental Protection Agency (EPA, https://www.epa.gov) and
the Census of Government (COG), Annual Survey of Public Employment and Payroll (ASPEP), Annual Sur-
vey of School System Finances (ASSSF) conducted by the U.S. Census Bureau (https://www.census.gov).

level annual violent crime rates from 1990 to 2014 are obtained from the Federal Bureau of
Investigation (FBI).

The county level annual Air Quality Index (AQI) from 1990 to 2014 are obtained from the
U.S. Environmental Protection Agency (EPA). The state level index is derived by averaging
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index values for all counties within the state.
Table A1 summarizes the amenity data used in our empirical analyses and their sources.

A3 Calibration and estimation of parameters

A3.1 Migration costs

Table A2 reports the results from regression (63) in Section (6.1.2). The distance between
two states is measured as the distance between their centers of population defined by Census.
The ethnic dissimilarity between two states is measured as the Euclidean distance between
the ethnic distributions of populations of the two states.A13 The dissimilarity in land cover
between two states is measured as the Euclidean distance between the distributions of dif-
ferent types of land in the two states.A14 The dissimilarity in annual temperature pattern
is measured as the absolute difference in the ratio of cooling degree days to heating degree
days. The dissimilarity in sunshine duration is measured as the absolute difference in the
ratio of clear days to cloudy days. The amenity data used in the regression are summarized
in Table A1 in Appendix A2.5.

A3.2 Productivity process

To estimate the stochastic process of ait, defined by (19), (20) and (21), recall that ait is
given by

ln ait = ln ai + gat+λift + za,it, (A.48)

where t = 1, 2, ..., T 1 (1977-1999). To identify the unobserved common factor, ft, we impose
the following restrictions:

n−1

n∑
i=1

λi = 1. (A.49)

and

T−1
1

T1∑
t=1

ft = 0, (A.50)

Restriction (A.49) is required to distinguish between scales of λi and ft, and (A.50) is required
to separate the linear trend from the common factor. We take the common growth rate of
state level incomes, ga, as a known parameter, and set it to match the average annual growth

A13The state level data on ethnic populations are from the 2000 Decennial Census, which include information
on the state level populations for different ethnic groups, including White Americans, African Americans,
American Indian and Alaska Natives, Asian Americans and others.
A14The state level land cover data are obtained from the United States Department of Agriculture (USDA)
which include information on the acreages of cropland, grassland pasture and range, forest, urban area and
other lands.
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Table A2: Results from the migration cost regression

Notes: This table reports the results from regression (63) in Section 6.1.2. ’?’indicates significance at the
10% level, and ’†’indicates significance at the 5% level.
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rate of the U.S. real per capita income during the period 1977-1999, which is around 0.02.
Then, in view of (A.50), we estimate ai by

âi = exp

[
T−1

1

T1∑
t=1

(ln ait − ĝat)
]
. (A.51)

Let ea,it be the deviation of ln ait from its trend, which is given by

ea,it = λift + za,it, (A.52)

and estimated as êa,it = lnait− ln âi − ĝat, for t = 0, 1, 2, ..., T . To estimate ft, we first note
that n−1

∑n
i=1 λi = 1 (see (A.49)). By summing up both sides of (A.52), we have n−1

∑n
i=1 ea,it =

ft + n−1∑n
i=1 za,it, where by assumption za,it are cross-sectionally independent. As a result,

ft = n−1
n∑
i=1

êa,it +Op

(
T
− 1
2

1

)
+Op

(
n−

1
2

)
,

which gives a consistent estimator of ft:

f̂t = n
−1

n∑
i=1

êa,it. (A.53)

The parameters ρf and σf in (20) are estimated by running the OLS regression of f̂t on f̂t−1,
for t = 1, 2, ..., T 1. To estimate the associated loading coeffi cients, λi, for each i we run the
OLS regressions of êa,it on f̂t, and obtain the residuals, ẑa,it, for t = 0, 1, 2, ..., T 1. Then, we
estimate ρa,i and σa,i in (21) by running OLS regressions of ẑa,it on ẑa,i,t−1, over the period
t = 1, 2, ..., T 1.

A3.3 Land supplies

A3.3.1 Estimation of τκ,i

We assume that used land, denoted by URit, is turned into unused land when houses on
these lands are depreciated. Thus, URit would shrink at rate δ in the absence of any new
constructions. Therefore, URit follows as:

URit = κit + (1− δ)URi,t−1. (A.54)

To estimate τκ,i in (70), we make use of published data on major land uses in the U.S.
compiled by the U.S. Department of Agriculture (USDA). We consider only the observations
before 2000 and estimate τκ,i using the USDA urban area size data for 1978 and 1992 as
follows. Note that (A.54) implies

URi,t1992 =

t1992∑
t=t1979

(1− δ)t1992−t κi,t + (1− δ)14 URi,t1978 , (A.55)
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where t1978, t1979 and t1992 are the time indices for 1978, 1979, and 1992. Using (70) in (A.55)
to eliminate κit, we obtain the following estimate of τκ,i:

τ̂κ,i =

∑t1992
t=t1979

(1− δ)t1992−t γ̂i,t
URi,t1992 −

(
1− δ̂

)14

URi,t1978

. (A.56)

A3.3.2 Land-use regulation and land supply growth rates

Here we investigate the relationship between our imputed land supply growth rate by states,
denoted by ĝκ,i, and the state level Wharton Residential Land Use Regulatory Index (WRIi),
which is based on Wharton surveys of land-use regulations conducted in 2004, intended to
characterize the local residential land-use regulatory environment. WRIi increases with the
tightness of land-use regulation, and is expected to be inversely related to land supply growth
rate. This index is compiled by Gyourko et al. (2008) who use factor analysis to create the
aggregate index, which is then standardized so that its sample mean is zero and its standard
deviation equals one. Since Alaska and Hawaii are excluded from our analysis, we re-scale the
WRIs of the remaining states so that the mean and the standard deviation of the sub-sample
we use are zero and one, respectively.

We then run the OLS regression of ĝκ,i on WRIi for i = 1, 2, ..., 48 and obtained the
following estimatesA15

ĝκ (WRIi) = 0.0468
(0.0115)

− 0.0607
(0.0116)

WRIi, R2 = 0.37 (A.57)

where ĝκ (WRIi) is the fitted value, R2 is the squared correlation coeffi cient, and the figures
in brackets are standard errors of the estimated coeffi cients. It is reassuring to see that our
imputed land supply growth rates have a highly significant negative correlation with WRIi,
particularly noting that the way WRI is measured has little overlap with our imputed
measure, ĝκ,i. Also by implication, our imputed measure of land supply growth indirectly
allows for land use regulations that our model does not address directly.

A15Washington, D.C. is excluded since its WRI data is not available.

A20



A3.4 Parameter values

Table A3: Benchmark calibration and estimation of parameters

Value Description

I. Preference

η Calibrated 0.24 Share of housing in consumption; Davis and Ortalo-Magné (2011).

β Calibrated 0.98 Discount factor of landlords; Match the risk-free interest rate of 2%.

II. Migration and intrinsic population growth rates

σε Estimated 1.23 Standard deviation of idiosyncratic migration cost.

gα Estimated 0.01 Growth rate of migration costs during 1990-2014.

αij Estimated See Section 6.1.2 Route-specific migration costs.

gl Estimated 0.01 Intrinsic population growth rate; Match the U.S. average population growth

rate over the period 1977-1999.

III. Housing supplies and investment

ϑκ,i Estimated See Section 6.2 Location-specific shares of land in house values; Set to the state level average

land values relative to total value of housing stocks over the period 1977-1999.

θi Estimated See Section 6.2 Location-specific housing investment costs; Match the state level average

rent-to-price ratios over the period 1977-1999.

δ Estimated 0.02 Depreciation rate of housing stocks; Set to the national housing stock

depreciation rate over the period 1977-1999.

IV. Labor productivity processes

vl Calibrated 0.67 Share of labor cost in output; Valentinyi and Herrendorf (2008).

vφ Calibrated 0.06 Effects of agglomeration on TFP; Davis et al. (2014).

φ̄i - 1.00 Location-specific intercepts in the functions for agglomeration effects; Set to one.

ai Estimated See Appendix A3.2 Location-specific intercepts in the labor productivity processes.

ga Calibrated 0.02 Growth rate of labor productivities. Match the average annual growth rate of

the U.S. real per capita income during the period 1977-1999.

ρf Estimated 0.92 AR(1) autoregressive coeffi cient for ft.
σf Estimated 0.03 Standard deviation of the innovation to ft.
λi Estimated See Appendix A3.2 Location-specific loading coeffi cients for ft.
ρa,i Estimated See Appendix A3.2 AR(1) autoregressive coeffi cients for za,it.
σa,i Estimated See Appendix A3.2 Standard deviations of the innovations to za,it.
V. Land supply processes

τκ,i Estimated See Appendix A3.3.1 Location-specific scalars in the housing supply functions.

κi Estimated See Section 6.3.2 Location-specific intercepts in the land supply processes.

gκ,i Estimated See Section 6.3.2 Location-specific land supply growth rates.

ρκ,i Estimated See Section 6.3.2 AR(1) autoregressive coeffi cients for zκ,it.
σκ,i Estimated See Section 6.3.2 Standard deviations of the innovations to zκ,it.
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A4 Setting values for the exogenous variables in sim-
ulations

For the simulations conducted in Section 7, the realized state level productivities, ait, for
i = 1, 2, ..., n, and t = T1 + 1, T1 + 2, ..., T , are inferred using the estimated version of (69)
and realized values of l·i(t) and yit. The realized land supplies, κit, for i = 1, 2, ..., n, and
t = T1 + 1, T1 + 2, ..., T , are inferred using the estimated versions of (70) and (71), and
realized values of yit, qit and pit. The realized land-supply shocks, zκ,it, for i = 1, 2, ..., n, and
t = T1 + 1, T1 + 2, ..., T , are inferred using the estimated version of (26) and estimates of
κit. Finally, the actual state level intrinsic population growth rates, ĝl,it, for i = 1, 2, ..., n,
and t = T1 + 1, T1 + 2, ..., T , are measured using the IRS state-to-state migration data (see
Section A2.1).
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S1 Supplementary simulation results

S1.1 Migration flows between U.S. states during 2000-2014

Panel 1.a: Migration flows from NY to other states
(relative to destination­state population)
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Panel 1.b: Migration flows from other states to NY
(relative to origin­state population)

NJ DC CT VT MA RI FL PA NH DE
Top ten origin­states

0

2

4

6

8

P
er

 c
en

t

Panel 2.a: Migration flows from PA to other states
(relative to destination­state population)
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Panel 2.b: Migration flows from other states to PA
(relative to origin­state population)
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Panel 3.a: Migration flows from IL to other states
(relative to destination­state population)
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Panel 3.b: Migration flows from other states to IL
(relative to origin­state population)
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Figure S1: Bilateral migration flows between U.S. states during the evaluation sample (2000-
2014)

Notes: Panel 1.a shows the realized and simulated accumulated migration flows from New York to other
states during the period 2000-2014 relative to destination-state population in 2014. Only the ten destination-
states with the largest migration flows from New York (relative to their own population) are displayed. Panel
1.b shows the realized and simulated accumulated migration flows from other states to New York relative to
origin-state population. Similarly, Panels 2.a and 2.b show the bilateral migration flows between Pennsylvania
and other U.S. states, and Panels 3.a and 3.b show the bilateral migration flows between Illinois and other
U.S. states.
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S1.2 Increasing land supply in California: a counterfactual exer-
cise

Here, we consider the application of the model to study the effects of local land-use regula-
tions on regional house prices and spatial population allocation. Our exercise is complemen-
tary to the California land-use deregulation experiment by Herkenhoff et al. (2018). These
authors emphasize the positive impacts of land-use deregulation in California on the national
output through population reallocation, whilst our analysis focusses on the spatiotemporal
patterns of the population reallocation resulting from the land-use deregulation. It is shown
that the population reallocation towards California are mainly from the nearby states, while
the population reallocation from the distant states to California are both smaller in magni-
tude and slower in speed.

We now conduct a counterfactual experiment to examine the impacts of regional land-
use regulations on spatial population allocation. In particular, we consider the effects of
a land-use deregulation in California that exogenously increases the annual supply of new
land in California by 10% in each year from 2000 to 2014. Increasing the annual new land
supply in California by a different rate will not qualitatively change our main findings. We
simulate the model using the counterfactual land supplies, within the baseline calibrated
model described above.

Table S1 displays the impacts of the counterfactual increases in California land supplies
on house prices, population and output in California in 2014. Due to the increases in
California land supply, the house price and housing rent in California drop respectively by
3.8% and 1.5% in 2014. As a result, the net outward migration from California decreases by
0.8%, which in turn raises California’s population and output in 2014 by 0.08% and 0.06%,
respectively.

Table S1: Effects of increasing land supply in California

Notes: This table shows the impacts of a 10% exogenous increase in the annual flows of new land released
in California in each year from 2000 to 2014. The first row reports the results from the baseline simulation.
The second row reports the results from the counterfactual simulation expressed as percentage changes from
the counterpart values in the baseline simulation.

Figure S2 shows the counterfactual changes in U.S. population by states in 2004, 2009 and
2014, in response to the counterfactual increases in California land supplies. In each panel,
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the first bar corresponds to California, and the rest of the bars correspond to other U.S. states,
arranged in terms of their distances to California. First, as can be seen, the percentage change
of population tends to be larger for the states that are geographically close to California,
and smaller for the distant states.S1 Second, since land-use deregulation increases stock of
housing only very gradually, it takes a long time for the effects of deregulation to show up
in population reallocation, although the effects are seen much more quickly in nearby states.
As shown in Panel 1, in 2004, only the population changes in the nearby states are non-
negligible. Third, as shown in Figure S3, the counterfactual changes of the output of U.S.
states have the same spatiotemporal pattern.

Finally, the population reallocation towards California leads to an increase in California
ouput, and at the same time a decrease in the output of the rest of the U.S. states. Since
California has higher labor productivity than other U.S. states, the reallocation of population
towards California leads to a net increase in the national output. The evidence is shown in
Figure S5.

S1In fact, the absolute population changes of the nearby states are also the largest among all the states.
See Figure S4.
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Figure S2: Effects of increasing land supply in California on population by states

Notes: Each panel shows the percentage changes of population by states for the year noted above in response
to a 10% exogenous increase in the annual flows of new land released in California in each year from 2000
to 2014. States are ordered ascendingly by their distances to California.
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Figure S3: Effects of increasing land supply in California on output by states

Notes: Each panel shows the percentage changes of output by states for the year noted above in response to
a 10% exogenous increase in the annual flows of new land released in California in each year from 2000 to
2014. States are ordered ascendingly by their distances to California.
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Figure S4: Effects of increasing land supply in California on population and output by states

Notes: Panels 1 and 2 show respectively the absolute changes of population and output in 2014 by states in
response to a 10% exogenous increase in the annual flows of new land released in California in each year from
2000 to 2014. In each panel, only California and the ten most affected states (in terms of the magnitudes of
the counterfactual changes) are displayed.
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Figure S5: Effects of increasing land supply in California on the output of the U.S.

Notes: This figure shows the absolute changes of output in 2014 for California, all U.S. states except for
California, and the U.S. in response to a 10% exogenous increase in the annual flows of new land released in
California in each year from 2000 onward.
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S1.3 Spatiotemporal impulse responses

S1.3.1 Responses to regional shocks in California
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Figure S6: Reponses of California to a positive land-supply shock in California

Notes: This figure shows the responses of log wage rate, net inward migration rate (i.e., the ratio of net
inward migration to local population), log population, log house price, log housing rent and log housing stock
in California to a ten per cent positive shock to the annual supply of new land in California.
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Figure S7: Spatiotemporal responses of log population of U.S. states to a positive land-supply
shock in California

Notes: Each panel shows the responses of log population of U.S. states (except for California) to a ten per
cent positive shock to the annul supply of new land in California, for the period noted at the top. Each dot
represents a state. States are ordered ascendingly by their distances to California, and the horizontal axis
corresponds to state’s rank in terms of distance to California.
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Figure S8: Spatiotemporal responses of log house price-to-income ratios of U.S. states to a
positive land-supply shock in California

Notes: Each panel shows the responses of log house price-to-income ratios of U.S. states (except for California)
to a ten per cent positive shock to the annul supply of new land in California, for the period noted at the
top. Each dot represents a state. States are ordered ascendingly by their distances to California, and the
horizontal axis corresponds to state’s rank in terms of distance to California.
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Panel 2.a: Periods in which the responses of log

population reach their bottom values (by states)
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house price-to-income ratios reach their bottom

values (by states)

Figure S9: The sizes and speed of the responses of U.S. states (except for California) to a
positive land-supply shock in California

Notes: In each panel, a dot represents a state. In Panels 1.a and 1.b, the vertical axis corresponds to the
extreme value of state’s response after a ten per cent positive land-supply shock in California, and in Panels
2.a and 2.b, the vertical axis corresponds to period in which state’s response reaches its extreme value. States
are ordered ascendingly by their distances to California, and the horizontal axis corresponds to state’s rank
in terms of distance to California.
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S1.3.2 Responses to regional shocks in Texas
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Figure S12: Reponses of Texas to a positive productivity shock in Texas

Notes: This figure shows the responses of log wage rate, net inward migration rate (i.e., the ratio of net
inward migration to local population), log population, log house price, log housing rent and log housing stock
in Texas to a one per cent positive shock to the labor productivity in Texas.
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Figure S13: Spatiotemporal responses of log population of U.S. states to a positive produc-
tivity shock in Texas

Notes: Each panel shows the responses of log population of U.S. states (except for Texas) to a one per cent
positive shock to the labor productivity in Texas, for the period noted at the top. Each dot represents a
state. States are ordered ascendingly by their distances to Texas, and the horizontal axis corresponds to
state’s rank in terms of distance to Texas.

S15



1 16 32 48
Distance to TX (rank)

­0.03

­0.02

­0.01

0

P
er

 c
en

t

Period 1

1 16 32 48
Distance to TX (rank)

­0.03

­0.02

­0.01

0

P
er

 c
en

t

Period 4

1 16 32 48
Distance to TX (rank)

­0.03

­0.02

­0.01

0

P
er

 c
en

t

Period 7

1 16 32 48
Distance to TX (rank)

­0.03

­0.02

­0.01

0

P
er

 c
en

t

Period 10

1 16 32 48
Distance to TX (rank)

­0.03

­0.02

­0.01

0

P
er

 c
en

t

Period 13

1 16 32 48
Distance to TX (rank)

­0.03

­0.02

­0.01

0

P
er

 c
en

t

Period 16

1 16 32 48
Distance to TX (rank)

­0.03

­0.02

­0.01

0

P
er

 c
en

t

Period 28

1 16 32 48
Distance to TX (rank)

­0.03

­0.02

­0.01

0

P
er

 c
en

t

Period 40

1 16 32 48
Distance to TX (rank)

­0.03

­0.02

­0.01

0

P
er

 c
en

t

Period 52

Figure S14: Spatiotemporal responses of log house price-to-income ratios of U.S. states to a
positive productivity shock in Texas

Notes: Each panel shows the responses of log house price-to-income ratios of U.S. states (except for Texas)
to a one per cent positive shock to the labor productivity in Texas, for the period noted at the top. Each
dot represents a state. States are ordered ascendingly by their distances to Texas, and the horizontal axis
corresponds to state’s rank in terms of distance to Texas.
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Figure S15: Reponses of Texas to a positive land-supply shock in Texas

Notes: This figure shows the responses of log wage rate, net inward migration rate (i.e., the ratio of net
inward migration to local population), log population, log house price, log housing rent and log housing stock
in Texas to a ten per cent positive shock to the annual supply of new land in Texas.
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Figure S16: Spatiotemporal responses of log population of U.S. states to a positive land-
supply shock in Texas

Notes: Each panel shows the responses of log population of U.S. states (except for Texas) to a ten per cent
positive shock to the annul supply of new land in Texas, for the period noted at the top. Each dot represents
a state. States are ordered ascendingly by their distances to Texas, and the horizontal axis corresponds to
state’s rank in terms of distance to Texas.
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Figure S17: Spatiotemporal responses of log house price-to-income ratios of U.S. states to a
positive land-supply shock in Texas

Notes: Each panel shows the responses of log house price-to-income ratios of U.S. states (except for Texas)
to a ten per cent positive shock to the annul supply of new land in Texas, for the period noted at the top.
Each dot represents a state. States are ordered ascendingly by their distances to Texas, and the horizontal
axis corresponds to state’s rank in terms of distance to Texas.
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S1.3.3 Responses to regional shocks in Florida
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Figure S18: Reponses of Florida to a positive productivity shock in Florida

Notes: This figure shows the responses of log wage rate, net inward migration rate (i.e., the ratio of net
inward migration to local population), log population, log house price, log housing rent and log housing stock
in Florida to a one per cent positive shock to the labor productivity in Florida.
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Figure S19: Spatiotemporal responses of log population of U.S. states to a positive produc-
tivity shock in Florida

Notes: Each panel shows the responses of log population of U.S. states (except for Florida) to a one per cent
positive shock to the labor productivity in Florida, for the period noted at the top. Each dot represents a
state. States are ordered ascendingly by their distances to Florida, and the horizontal axis corresponds to
state’s rank in terms of distance to Florida.
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Figure S20: Spatiotemporal responses of log house price-to-income ratios of U.S. states to a
positive productivity shock in Florida

Notes: Each panel shows the responses of log house price-to-income ratios of U.S. states (except for Florida)
to a one per cent positive shock to the labor productivity in Florida, for the period noted at the top. Each
dot represents a state. States are ordered ascendingly by their distances to Florida, and the horizontal axis
corresponds to state’s rank in terms of distance to Florida.
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Figure S21: Reponses of Florida to a positive land-supply shock in Florida

Notes: This figure shows the responses of log wage rate, net inward migration rate (i.e., the ratio of net
inward migration to local population), log population, log house price, log housing rent and log housing stock
in Florida to a ten per cent positive shock to the annual supply of new land in Florida.

S23



1 16 32 48
Distance to FL (rank)

­3

­2

­1

0

P
er

 c
en

t

10 ­3 Period 1

1 16 32 48
Distance to FL (rank)

­3

­2

­1

0

P
er

 c
en

t

10 ­3 Period 4

1 16 32 48
Distance to FL (rank)

­3

­2

­1

0

P
er

 c
en

t

10 ­3 Period 7

1 16 32 48
Distance to FL (rank)

­3

­2

­1

0

P
er

 c
en

t

10 ­3 Period 10

1 16 32 48
Distance to FL (rank)

­3

­2

­1

0

P
er

 c
en

t

10 ­3 Period 13

1 16 32 48
Distance to FL (rank)

­3

­2

­1

0

P
er

 c
en

t

10 ­3 Period 16

1 16 32 48
Distance to FL (rank)

­3

­2

­1

0

P
er

 c
en

t

10 ­3 Period 28

1 16 32 48
Distance to FL (rank)

­3

­2

­1

0

P
er

 c
en

t

10 ­3 Period 40

1 16 32 48
Distance to FL (rank)

­3

­2

­1

0

P
er

 c
en

t

10 ­3 Period 52

Figure S22: Spatiotemporal responses of log population of U.S. states to a positive land-
supply shock in Florida

Notes: Each panel shows the responses of log population of U.S. states (except for Florida) to a ten per
cent positive shock to the annul supply of new land in Florida, for the period noted at the top. Each dot
represents a state. States are ordered ascendingly by their distances to Florida, and the horizontal axis
corresponds to state’s rank in terms of distance to Florida.
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Figure S23: Spatiotemporal responses of log house price-to-income ratios of U.S. states to a
positive land-supply shock in Florida

Notes: Each panel shows the responses of log house price-to-income ratios of U.S. states (except for Florida)
to a ten per cent positive shock to the annul supply of new land in Florida, for the period noted at the top.
Each dot represents a state. States are ordered ascendingly by their distances to Florida, and the horizontal
axis corresponds to state’s rank in terms of distance to Florida.
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S1.3.4 Compare and contrast California with Texas and Florida
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Panel 1: Responses of California, Texas and Florida to positive shocks to their local labor productivities
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Panel 2: Responses of California, Texas and Florida to positive shocks to their local land supplies

Figure S24: Reponses of California, Texas and Florida to local shocks

In Panel 1, the blue lines designated with ’o’show the responses of net inward migration rate (i.e., the ratio
of net inward migration to local population), log house price and log housing stock in California to a one
per cent positive shock to the labor productivity in California. The red lines designated with ’?’show the
responses of Texas to a one per cent positive productivity shock in Texas, and the green lines designated
with ’∆’show the responses of Florida to a one per cent positive productivity shock in Florida. Similarly,
Panel 2 show the responses of California, Texas, and Florida after ten per cent positive shocks to their local
supplies of new land.
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S1.3.5 Calibration sensitivity
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Panel 1: Reponses of California to a positive labor productivity shock in California
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Panel 2: Reponses of California to a positive land-supply shock in California

Figure S25: Reponses of California to local shocks when the migration elasticity, 1/σε, is set
to different values

Notes: Panel 1 shows the responses of net inward migration rate (i.e., the ratio of net inward migration to
local population), log population and log housing stock in California to a one per cent positive shock to
the labor productivity in California. The blue lines designated with ’o’correspond to the benchmark model
calibrated in Section 6. The red lines designated with ’?’correspond to the re-calibrated model when the
migration elasticity, 1/σε, is set to 1.8, which is the benchmark estimate for the migration elasticity of "star
scientists" in Moretti and Wilson (2017). The green lines designated with ’∆’correspond to the re-calibrated
model when 1/σε is set to 2, and the purple lines designated with ’�’correspond to the re-calibrated model
when 1/σε is set to 0.6. Similarly, Panel 2 shows the responses of California to a ten per cent positive shock
to the annual supply of new land in California, when 1/σε is set to different values.
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Panel 1: Spatiotemporal responses of log population of U.S. states to a positive labor productivity shock in

California
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Panel 2: Spatiotemporal responses of log population of U.S. states to a positive land-supply shock in

California

Figure S26: Spatiotemporal responses of log population of U.S. states to shocks in California
when the migration elasticity, 1/σε, is set to different values

Notes: Panel 1 shows the responses of log population of U.S. states (except for California) to a one per cent
positive shock to the labor productivity in California, for the periods noted at the top. Each dot represents a
state. States are ordered ascendingly by their distances to California, and the horizontal axis corresponds to
state’s rank in terms of distance to California. The blue circles correspond to the benchmark model calibrated
in Section 6. The red stars correspond to the re-calibrated model when the migration elasticity, 1/σε, is
set to 1.8, which is the benchmark estimate for the migration elasticity of "star scientists" in Moretti and
Wilson (2017). Similarly, Panel 2 shows the responses of log population of U.S. states (except for California)
to a ten per cent positive shock to the annual supply of new land in California, when 1/σε is set to different
values.
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Panel 1: Reponses of California to a positive labor productivity shock in California
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Panel 2: Reponses of California to a positive land-supply shock in California

Figure S27: Reponses of California to local shocks when the housing depreciation rate, δ, is
set to different values

Notes: Panel 1 shows the responses of log population, log house price and log housing stock in California
to a one per cent positive shock to the labor productivity in California. The blue lines designated with ’o’
correspond to the benchmark model calibrated in Section 6. The red lines designated with ’?’correspond to
the model in which the housing depreciation rate, δ, is set to 0.1. Similarly, Panel 2 shows the responses of
California to a ten per cent positive shock to the annual supply of new land in California, when the housing
depreciation rate, δ, is set to different values.
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Panel 1: Spatiotemporal responses of log housing stocks of U.S. states to a positive labor productivity shock
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Panel 2: Spatiotemporal responses of log housing stocks of U.S. states to a positive land-supply shock in

California

Figure S28: Spatiotemporal responses of log housing stocks of U.S. states to shocks in
California when the housing depreciation rate, δ, is set to different values

Notes: Panel 1 shows the responses of log housing stocks of U.S. states (except for California) to a one
per cent positive shock to the labor productivity in California, for the periods noted at the top. Each dot
represents a state. States are ordered ascendingly by their distances to California, and the horizontal axis
corresponds to state’s rank in terms of distance to California. The blue circles correspond to the benchmark
model calibrated in Section 6. The red stars correspond to the model in which the housing depreciation
rate, δ, is set to 0.1. Similarly, Panel 2 shows the responses of log housing stocks of U.S. states (except for
California) to a ten per cent positive shock to the annual supply of new land in California, when the housing
depreciation rate, δ, is set to different values.
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S2 Computation of the impulse responses

The impulse responses reported in the paper are computed using the Monte Carlo techniques
developed by Koop et al. (1996). As discussed in Section 4, the model economy set out in
Sections 2 and 3 can be written in a compact form as:

ζt = f
(
ζt−1,at,at−1,κt−1, gl,t;Θ

)
, (S.1)

where Θ is a row vector that contains all the parameters, ζt = [l(t), qt] is a 1 × 2n vector,
and

χt = g (ζt,at,κt;Θ) , (S.2)

where χt = [pt,ht] is a 1× 2n vector.
Define ξt = [ζt,χt], which is a 1× 4n vector. Then, the (S.1) and (S.2) can be combined

and written as

ξt = ψ
(
ξt−1,at,at−1,κt,κt−1, gl,t;Θ

)
. (S.3)

The stochastic processes of at and κt, are given by

lnat = lna +gat +λ ft+za,t, (S.4)

ft = ρfft−1 + σfεf,t, (S.5)

za,t = za,t−1diag(ρa,1, ρa,2, ...ρa,n) + εa,tdiag(σa,1, σa,2, ...σa,n), (S.6)

and

lnκt = lnκ+ gκt+zκ,t, (S.7)

zκ,t = zκ,t−1diag(ρκ,1, ρκ,2, ...ρκ,n) + εκ,tdiag(σκ,1, σκ,2, ...σκ,n), (S.8)

and the values of state level intrinsic population growth rates, gl,t, for t = 0, 1, 2, ..., are
exogenously given.

Impulse response function: To illustrate the computation algorithm, we take the
computation of the impulse responses to a standard deviation negative productivity shock
to state i∗ as an example. Note that the model is Markovian. Thus, the relevant history is
only the period before the start of simulation. Let the shock hits the economy in period 1.
Then, the impulse response function is given by

GIξ(t, εa,i∗1, ξ0,a0,κ0) = E(ξt|εa,i∗1, ξ0,a0,κ0)− E(ξt|ξ0,a0,κ0)

for t = 1, 2, ..., T,

where T is the horizon of the impulse response analyses, E(ξt|ξ0,a0,κ0) is the expectation
of ξt conditional only on ξ0,a0 and κ0, and E(ξt|εa,i∗1, ξ0,a0,κ0) is the expectation of ξt
conditional on both ξ0,a0,κ0 and εa,i∗1. Recall that εa,i∗1 is the innovation to the local
productivity shock in state i∗ in period 1.

Initial values: In our impulse response simulations, we assume that the economy is
on the balanced growth path when t = 0. Recall that in Section 5, we established the
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uniqueness of the balanced growth path by showing that for given values of L0,κ and a, the
steady states of the detrended variables are uniquely determined by the equation system (47)-
(54). Note that detrended variables equal non-detrended variables when t = 0. Thus, we use
the steady state values of the detrended variables as the initial values for the corresponding
non-detrended variable in the impulse response simulations, which implies that the economy
is on the balanced growth path when t = 0.

Deterministic variables: The intrinsic population growth rates of all states are set
equal to the balanced growth path level given by (42):

gl,t = [ĝl, ĝl, ..., ĝl] , for t = 1, 2, ..., T ,

where gl is the balanced growth path intrinsic population growth rate, which is assumed to
be common to all states, and estimated as the average growth rate of the national population
over the period 1976-2014.

Stochastic processes: The state level productivities and land supplies, at and κt, are
simulated using the estimated (S.4) - (S.8), where f0, za0 and zκ0 are set to 0.

We set the numbers of replications and horizons to R and T , and independently draw
innovations from the standard normal distribution. Let ε(r)

f,t , ε
(r)
a,t and ε

(r)
κ,t denote the sim-

ulated εf,t, εa,t and εκ,t, for replication r, where ε(r)
a,t =

[
ε

(r)
a,1t, ε

(r)
a,2t, ..., ε

(r)
a,nt

]
and ε(r)

κ,t =[
ε

(r)
κ,1t, ε

(r)
κ,2t, ..., ε

(r)
κ,nt

]
. The innovations, ε(r)

f,t , ε
(r)
a,it and ε

(r)
κ,it, for i = 1, 2, ..., n, t = 1, 2., ..., T and

r = 1, 2., ..., R, are independently drawn from the standard normal distribution.
Productivity processes without shock: When there is no shock, for each replication r,

we plug the simulated innovations, ε(r)
f,t and ε

(r)
a,t , into (S.4) - (S.6), and obtain a series of

simulated productivities, a(r)
t , for t = 1, 2., ..., T .

Productivity processes with shock: When there is shock, for each replication r, we plug the
simulated innovations, ε(r)

f,t and ε
(r)
a,t , with the i

∗th element of ε(r)
a,1, i.e., ε

(r)
a,i∗1, being replaced by

-1 (a negative shock), into (S.4) - (S.6), and obtain another series of simulated productivities,
ǎ

(r)
t , for t = 1, 2., ..., T .
Land supply processes: For both the cases with and without shock, for each replication

r, we plug the simulated innovations, ε(r)
κ,t, into (S.7) - (S.8), and obtain a series of simulated

productivities, κ(r)
t , for t = 1, 2., ..., T .

Computation: To compute E(ξt|ξ0,a0,κ0) and E(ξt|εa,i∗1, ξ0,a0,κ0) numerically, we
conduct the following two simulations.

• Simulation 1 (no shock): For each replication r, given the initial values, ξ0,a0 and κ0,
and the deterministic processes of gl,t, we simulate the model (S.3) using the simulated

productivity processes, a(r)
t and κ(r)

t , for t = 1, 2, ..., T , and obtain a series of realized
ξt, i.e., ξ

(r)
t , for t = 1, 2, ..., T :

ξ
(r)
t = ψ

(
ξ

(r)
t−1,a

(r)
t ,a

(r)
t−1,κ

(r)
t ,κ

(r)
t−1, gl,t; Θ

)
.

• Simulation 2 (with shock): For each replication r, given the initial values, ξ0,a0 and κ0,
and the deterministic processes of gl,t, we simulate the model (S.3) using the simulated
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productivity processes, ǎ(r)
t and κ(r)

t , for t = 1, 2, ..., T , and obtain a series of realized
ξt, i.e., ξ̌

(r)

t , for t = 1, 2, ..., T :

ξ̌
(r)

t = ψ
(
ξ̌

(r)

t−1, ǎ
(r)
t , ǎ

(r)
t−1,κ

(r)
t ,κ

(r)
t−1, gl,t; Θ

)
.

Here, ξ(r)
t and ξ̌

(r)

t are the simulated ζt in replication r in Simulation 1 and Simulation
2, respectively. Then, the two expectations, E(ξt|ξ0,a0,κ0) and E(ξt|εa,i∗1, ξ0,a0,κ0), are
approximated as the averages across replications:

Ê(ξt|ξ0,a0,κ0) =
1

R

R∑
r=1

ξ
(r)
t and Ê(ξt|εa,i∗1, ξ0,a0,κ0) =

1

R

R∑
r=1

ξ̌
(r)

t .

Thus, the approximated impulse response in period t is given as

GIξ(t, εa,i∗1, ξ0,a0,κ0) =
1

R

R∑
r=1

ξ̌
(r)

t −
1

R

R∑
r=1

ξ
(r)
t .
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S3 Parameter values

Table S2: Location-specific parameters related to housing supplies and investment
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Table S3: Location-specific parameters of the labor productivity processes
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Table S4: Location-specific parameters of the land supply processes

Notes: The average WRI is computed across the 48 states on the U.S. mainland, since Alaska and Hawaii
are excluded from our analyses. The WRIs of the states we included are re-scaled such that the mean and
the standard deviation of the sub-sample are zero and one, respectively.
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