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Abstract 

We propose a new systemic risk index based on the interdependence of extreme downside 

movements of stock returns using the cross-quantilogram and network analysis approach. While 

quantile dependence allows for sensitivity in times of market downturn, the topological network 

properties allow for capturing the interconnectedness of the banking system and identification of 

the specific contribution of each individual bank. Using this design, the proposed systemic risk 

index is not only easy to calculate and interpret but identifies the banking system's significant 

transmitters and receivers of extreme downside risk. For the empirical evaluation of the proposed 

risk index, we use a sample of 83 large banks during the 2003-2020 period, spanning multiple 

recent crises affecting the banking market. The proposed index is found to be robust in comparison 

to major alternative systemic risk measures. 
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Highlights 

• A new network-based systemic risk index for the banking sector is introduced. 

• The index captures quantile dependence to offer sensitivity to market downturns. 

• The index is easier to calculate, interpret and identifies major risk transmitters. 

• Empirical evaluation is performed on a sample spanning several crisis periods. 

• Robust performance compares favourably to alternative systemic risk indices. 
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1. Introduction 

Connections among banks are crucial for financial stability and policy decisions. Systemic risk 

intensifies during crisis periods, and such connections become stronger (Cerruti et al., 2012). The 

Global Financial Crisis (GFC), the European Sovereign Debt Crisis (ESDC), and the COVID-19 

pandemic exemplify the importance of risk transmission and contagion from the banking sector to 

other financial markets and the real economy. The purpose of this paper is to analyse bank 

connection dynamics in downturn periods captured in the tails of bank equity return distributions. 

We use the cross-quantilogram approach to propose a systemic risk index that tracks time-varying 

connections in the tails of the return distribution of 83 large banks from 24 countries. Our approach 

complements previous approaches measuring systemic risk for two reasons. First, it allows 

examining the network structure and the network density while considering the size of the banks. 

Second, it allows tracking individual bank risk transmission and reception capacity. Our main 

results show that systemic risk and network density surge during crisis periods and peaked during 

the first wave of the COVID-19 pandemic. More importantly, U.S. banks are the main risk 

transmitters in the network, while Asian banks are the main risk receivers. During the ESDC, 

European banks dominate the risk transmission throughout the system. 

The existing literature allows us to understand that a high degree of dependence and contagion 

exists among banks within and across countries and regions during crisis periods (Paltalidis et al., 

2015; Black et al., 2016; Dungey et al., 2017; Duprey et al., 2017; Mohanty et al., 2018; Huang et 

al., 2019; Verma et al., 2019; Wang et al., 2019; Zedda and Cannas, 2020). Furthermore, various 

determinants, such as fundamental factors, liquidity, market factors, interbank loans, and 

macroprudential policies, can contribute to the degree of systemic risk (Acharya and Steffen, 2013; 

Pais and Stock, 2013; Acemoglu et al., 2015; Battaglia and Gallo, 2017; Soedarmono et al., 2017; 

Varotto and Zhao, 2018; Su and Wong, 2018; Elyasiani and Jia, 2019; Yang et al., 2020; Andries 

et al., 2020; Bats and Houben, 2020; Brunnermeier et al., 2020; Meuleman and Vennet, 2020). 

To construct a new systemic risk, it is necessary to identify possible risk spillover channels 

within the banking sector. The first risk spillover channel is related to instability acting as a 

common risk factor (Hubrich and Tetlov, 2015). Second, Acemoglu et al. (2015) provide evidence 

for the importance of the structure of the banking sector. While denser connections between banks 

enhance the stability of the whole system with infrequent shocks of small magnitude, they can also 

accelerate the propagation of frequent and large shocks within the bank network. Third, Paltalidis 
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et al. (2015) show that the propagation of risk increases with higher exposure of local banks to 

foreign economies. Above all, the degree of interdependence among banks appears to be the most 

important determining factor of systemic risk (Acemoglu et al., 2015; Glasserman and Young, 

2015; Kosmidou et al., 2017; Bardoscia et al., 2017). In this regard, we contribute to the academic 

debate on systematic risk in the global banking sector by proposing a new systemic risk index that 

allows us to measure the spillover of downside risk among banks within a network while 

considering the lowest quantile of the return distribution of 83 large and listed banks. 

Our paper is different from previous studies that use frequency-based and mean-based network 

methods (e.g., Demirer et al., 2018). Indeed, the tail-event-driven measure of systemic risk in this 

study is based on the cross-quantilogram (CQ) approach of Han et al. (2016). This approach relies 

on quantile hits rather than the average states used in previous studies (e.g., Diebold and Yilmaz, 

2012, 2014; Baruník and Křehlík, 2018, Ellington and Baruník, 2020). This quantile-based design 

in the CQ approach enables the measurement of directional predictability among time series and 

thus allows for the identification of banks that are risk transmitters and risk receivers under various 

market states, including the downturn market state (meaning 5% quantile of the return distribution 

in our study). This latter is identified through the lowest quantile in the return distribution of banks’ 

stocks. The distinction between risk-transmitting and risk-receiving banks is important for central 

banks and policymakers, as they need to adapt their operations and policies to the systemic risk 

profile of each bank. In sum, considering the bank network under a downturn market state in the 

measurement of systemic risk is important because systemic risk is a consequence of the 

interdependence among banks in the network. 

Our main contributions are as follows. First, we propose a new systemic risk index by focusing 

on the left tail of the return distribution, which simulates a downturn market state and thus crisis 

periods. Therefore, this new systemic risk index aims to capture the interdependence within the 

banking system in extreme negative events. Second, we consider the new systemic risk index in 

three major crises, the GFC, ESDC, and the recent COVID-19 crisis. This point is important 

because the level of systemic risk is strongly related to crises. It is therefore important to know 

how systemic risk differs according to the nature of crises. Third, we clearly show the systemic 

profile of each bank in the network as a risk transmitter or a risk receiver. This aspect is important 

because individual banks, central banks, and policymakers need to adapt their policies to the 

systemic risk profile of each bank. Fourth, we consider various alternative methods of measuring 



4 
 

systemic risk to check the robustness of our main findings. These additional methods are from 

Chen et al. (2019), Brownlees and Engle (2017), and Holló et al. (2012). To the best of our 

knowledge, this is the first study to add these contributions to the related literature on systemic 

risk in the global banking sector. 

The remainder of this paper is organized as follows. Section 2 describes the data sample and 

the methodology framework used in the construction of a new systemic risk index. Section 3 

presents and discusses the results as well as their economic rationales. Section 4 is dedicated to 

the robustness check. Finally, Section 5 concludes and provides policy implications. 

 

2. Data and Methodology 

2.1. Data 

Daily stock price data for 83 large and listed banks from 24 countries covering three regions 

(America, Europe, and Asia) are obtained with the Bloomberg terminal for the period from 11 

September 2003 to 17 April 2020. The RIC codes of the selected banks are given in the online 

supplementary material (Table A.1). The selection process for the sampled banks is the same as 

that of Demirer et al. (2018). These latter analyse 96 banks from 29 countries over the 2003-2014 

period. These 96 banks are among the 150 largest in the world, according to the value of total 

assets. These banks are also designated globally systemically important banks (GSIBs). From this 

initial sample of 96 banks, we eliminate 13 banks and obtain a final sample of 83 banks. Among 

the 13 eliminated banks, some were delisted, merged, or acquired. Table A.2 in the online 

supplementary material presents descriptive statistics of the sampled banks’ stock returns: the 

skewness values are mostly negative and excess kurtosis is omnipresent. This indicates thick tails 

in the stock return distributions and thereby the suitability of measuring systemic risk using 

quantile-based models. 

To avoid nonsynchronous trading effects, we calculate rolling-average two-day returns, as in 

Forbes and Rigobon (2002). Furthermore, we include bank size in the construction of the proposed 

systemic risk indicator, as the literature has shown that bank size impacts systemic risk (e.g., Pais 

and Stock, 2013; Yang et al., 2020). This point is important because it helps avoid our proposed 

systemic risk index being simply driven by correlations across banks. The consideration of the size 

of banks is thus important to avoid the black-box issue in empirical analysis focused on simple 
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correlations among different variables.1 Specifically, bank size is expressed as an index relative to 

the average value of each bank’s market capitalization in 2004, the first full year of our sample. 

 

2.2. Connectedness measure with the cross-quantilogram method and systemic risk index 

The objective of the cross-quantilogram method (CQ) developed by Han et al. (2016) is to 

investigate the cross-correlation between two stationary time series.2 As indicated above, the first 

advantage of this method is its ability to identify the direction of the dependence, that is, which 

variable predicts the other one’s past information, presented by lagged values. The second 

advantage is that the directional dependence, meaning the predictability, can be calculated under 

various quantile levels of the return distribution. Furthermore, the method of Han et al. (2016) 

differs from other network-based methods, such as Belloni et al. (2016), Zhu et al. (2019), and 

Chen et al. (2019).3 For example, Belloni et al. (2016) construct two forms of quantile graphical 

models: conditional independence quantile graphical models (CIQGMs) and prediction quantile 

graphical models (PQGMs). CIQGMs reflect the conditional independence of distributions by 

estimating the distributional dependence structure at each quantile. On the other hand, PQGMs 

reflect dependencies via the graphs of the superior linear predictors. In addition, Zhu et al. (2019) 

construct a network quantile autoregression (NQAR) by focusing on quantile autoregression 

models. In this process, the adjacency matrix enters the calculation as exogenous, and its 

estimation is not addressed. In other words, the NQAR is estimated conditional on the given 

adjacency matrix. On the other hand, the tail-event driven network quantile regression (TENQR) 

model of Chen et al. (2019) is similar to that of Zhu et al. (2019) but different in the concrete 

construction of the adjacency matrix. The TENQR model accommodates the definition of systemic 

risk, which is a large downside widespread impact with a ripple effect. This aspect goes beyond 

the work of Zhu et al. (2019), who focus on the asymptotic of the involved parameters. Indeed, the 

work of Chen et al. (2019)4 enables the adjacency matrix to be calculated using an empirically 

estimated threshold for the cosine similarity of conditional expected shortfalls (a quantile 

                                                             
1 We would like to thank the Editor, Professor Sushanta Kumar Mallick (School of Business and Management, Queen 

Mary University of London), for his comment on this aspect. 
2 This methodology has been proven to be efficient as evidenced by its numerous applications in academic studies 

(e.g., Bouri et al., 2018; Shahzad et al., 2019). 
3 We would like to thank an anonymous referee for noting these alternative methods. 
4 To check the robustness of the results obtained with the Han et al. (2016) method, we use other methods from Chen 

et al. (2019) (see above), Brownlees and Engle (2017), and Holló et al. (2012) (more details below). 
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measure). Thus, in this case, the adjacency matrix, and consequently the risk scores, are 

empirically estimated. 

Given the abovementioned advantages of the method of Han et al. (2016), we decided to use 

this method to measure the systemic risk in the lowest quantile (5%). This approach allows us to 

calculate the systemic risk in extreme downturn market conditions, as banks are the most 

vulnerable in these conditions. The underlying idea behind the Han et al. (2016) method, which is 

based on the directional predictability principle, is that extreme negative returns of the i-th bank at 

time t can predict extreme negative returns of the j-th bank at time t+1, which represents the next 

trading day in our daily data sample. This predictability indeed corresponds to the notion of 

financial contagion, which is at the centre of all systemic risk measures. The directional 

predictability of all pairs of banks then results in an 𝑁 𝑥 𝑁 adjacency matrix that allows us to 

measure the directional spillover effects across banks and characterize their evolution as a system 

within a network framework. The term ‘network’ refers to a directed graph with a set of vertices 

(representing banks) and a set of edges (representing the links among banks). 

To construct the network, we use the algorithm outlined in Han et al. (2016), following which 

the CQ is calculated directly based on quantile hit functions instead of OLS quantile regressions 

(see Eq. (1) and Eq. (2) in Han et al. (2016)). This algorithm allows for the use of either 

unconditional or conditional quantiles based on some exogenous variables (xt ∈ ℝd). These latter 

may be used to define a conditional probability distribution for the pair of stationary time series to 

be analysed. In our case, we focus on the primary unconditional case. For one time series at time 

t, the quantile hits are evaluated against the lags of the other time series. This procedure allows for 

the identification of directional dependence at various quantile levels in the return distribution. We 

consider 10 lags to evaluate the quantile dependence. 

The CQ method is defined for strictly stationary time series {(𝐲𝑡 , 𝒙𝑡): 𝑡 ∈ ℤ} with real-valued 

components 𝐲𝑡 = (𝑦1𝑡, 𝑦2𝑡)𝑇 ∈ ℝ2 and 𝐱𝑡 = (𝑥1𝑡, 𝑥2𝑡)𝑇 ∈ ℝ𝑑1 × ℝ𝑑2 . Based on the conditional 

distribution function, 𝐹𝑦𝑖|𝑥𝑖
(⋅ |𝑥𝑖𝑡) of 𝑦𝑖𝑡, 𝑖 = 1,2, the conditional quantile function is defined as 

𝑞𝑖,𝑡(𝜏𝑖) = inf{𝑣: 𝐹𝑦𝑖|𝑥𝑖
(𝑣|𝑥𝑖𝑡) ≥ 𝜏𝑖}  for quantile 𝜏𝑖 ∈ (0,1). The measurement of the serial 

dependence in quantiles is based on an examination of quantile hit processes { 𝐼 (𝑦𝑖𝑡 ≤ 𝑞𝑖,𝑡(⋅))} 

that alternate between 0 and 1, depending on the exceedance of the specific quantile. To generalize, 
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we define 𝜓𝑎(𝑢) = 𝐼(𝑢 < 0) − 𝑎. The sample CQ 𝜌̂𝜏(𝑘) at lag 𝑘 ∈ ℤ for quantiles 𝜏1, 𝜏2 ∈ (0,1) 

is then defined as: 

𝜌̂𝜏(𝑘) =
∑ 𝜓𝜏1(𝑦1𝑡−𝑞̂1,𝑡(𝜏1))𝜓𝜏2(𝑦2,𝑡−𝑘−𝑞̂2,𝑡−𝑘(𝜏2)) 𝑇

𝑡=𝑘+1

√∑ 𝜓𝜏1
2 (𝑦1𝑡−𝑞̂1,𝑡(𝜏1)) 𝑇

𝑡=𝑘+1 √∑ 𝜓𝜏2
2 (𝑦2𝑡−𝑘−𝑞̂2,𝑡−𝑘(𝜏2)) 𝑇

𝑡=𝑘+1

  (1) 

 

Following this definition, the values of the sample CQ are constrained to [−1,1], and the CQ is 

invariant to any strictly monotonic transformation applied to both series (Han et al., 2016). 

Apart from obtaining the values of the CQs that specify the strength of the dependence in a 

quantile of the return distribution, one may also be interested in inferences, with, for example, a 

test of the hypothesis of directional predictability in quantiles of events up to 𝑝 ∈ ℕ lags. Han et 

al. (2016) proposed a Ljung-Box type statistic for this purpose to test the hypothesis 𝐻0: 𝜌𝜏(1) =

⋯ 𝜌𝜏(𝑝) = 0 against the alternative hypothesis 𝐻𝐴: 𝜌𝜏(𝑘) ≠ 0 for some 𝑘 and a selected quantile 

𝜏 ∈ (0,1) . As the asymptotic null distribution for the cross-quantilogram is complicated and 

depends on nuisance parameters, the critical values for the statistic are obtained using the 

stationary bootstrap of Politis and Romano (1994), as suggested by Han et al. (2016). The results 

presented in this paper are obtained using 1,000 replication samples for hypothesis testing. 

To construct a network representing the quantile dependence in returns, we estimate the 

bivariate CQ for all pairs of banks in the sample. Although the vertices in the network represent 

individual banks, the edges are created only between banks for which the Ljung-Box type test 

provides statistical significance for a quantile dependence in any of the 10 lags considered. As CQ 

measures the dependence of the lagged values of one bank against a contemporary value of 

another, the adjacency matrix is not symmetric, and the network is represented by a directed graph. 

Finally, we calculate the overall systemic risk score by following the idea of Das (2016) that 

the total systemic risk score of a network of 𝑁 = 83 banks is calculated from the adjacency matrix 

(𝐀) of the network created in the previous step, together with a vector of compromise loadings 

(𝐜 = (𝑐1, … , 𝑐𝑁) ∈ ℝ𝑁), represented as the nodal market capitalization. The elements of A, aij, 

denote the values of the CQ from bank i to bank j. The aggregate risk score 𝑆(𝐀, 𝐜) is then defined 

as: 

𝑆(𝐀, 𝐜) = 𝐜𝑇𝐀𝐜 (2) 
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The aggregate risk score may be decomposed into the contributions of each bank (𝑆𝑖), as 

follows: 

𝑆(𝐀, 𝐜) = ∑ 𝑆𝑖
𝑁
𝑖=1 = ∑ (

𝜕𝑆

𝜕𝐶𝑖
𝐶𝑖)𝑁

𝑖=1   (3) 

where 
𝜕𝑆

𝜕𝐶𝑖
= 2 ∑ 𝑎𝑖𝑗𝑐𝑗

𝑁
𝑗=1 . 

 

The aggregate systemic risk score is thus the sum of all the cross-quantilograms of all the pairs 

of banks in our network, and this is the systemic risk index that we propose in our study. This 

aggregate systemic risk score is then analysed for the whole period from 11 September 2003 to 17 

April 2020 and for three sub-periods to investigate the impact of crises on the systemic risk of the 

banking sector. These sub-periods are the GFC from 3 August 2007 to 2 July 2009, the ESDC 

from 5 January 2010 to 3 August 2012, and the COVID-19 crisis period from 3 January 2020 to 

17 April 2020. The time variation in the systemic risk is captured using the rolling-window 

approach, through which we calculate the systemic risk index for each quarter based on a time 

window over the past 6 quarters. This procedure is repeated for each quarter and forms a time 

series for the proposed systemic risk. The window’s length (6 quarters) is chosen as a compromise 

between larger windows, where the dynamics might be more averaged-out, and smaller windows, 

which might be too short to estimate quantile behaviour with sufficient confidence. 

By using the method of Han et al. (2016), we confirm the definition of systemic risk, which 

stems from contagion and interconnectedness based on high-frequency data, such as market prices 

and rates (Rodríguez-Moreno and Peña, 2013). Therefore, our systemic risk index measures the 

interdependence among the banks in the network, including their capacity to both transmit and 

receive risk, as mentioned above. This view of systemic risk is confirmed by Acemoglu et al. 

(2015), who suggest that a high network density permits a stronger ability to absorb systemic risk, 

and beyond a certain threshold, financial stress begins to emerge as a result. In addition, Bardoscia 

et al. (2017) show that the more the networks are connected, the higher the probability of “creating 

cyclical structures which tend to amplify financial distress, thereby undermining systemic stability 

and making large crises more likely.” 
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3. Results 

3.1. The risk spillover network among banks 

To obtain a better perspective of the tail-based interconnection in the global banking sector, we 

show in Panel A of Figure 1 a network of CQs among sampled banks, estimated over the whole 

period (2003–2020). Notably, this directional network captures only comovements of extreme 

negative returns (5% quantile of the joint return distribution, i.e., 𝜏1 = 𝜏2 = 0.05) that are highly 

statistically significant at the 7.35x10-6 significance level (Bonferroni p-value adjustment). Despite 

this strict threshold, the density of the network is 98%, which means that among the total number 

of all possible pair connections (6,806 pairs in total), 98% are statistically significant. This result 

shows the high degree of interdependence in the international banking system and thus the 

complexity of managing systemic risk among banks. Practically, this high level of significant 

pairwise connection makes it impossible to visually inspect such a network. Therefore, we generate 

a threshold graph to extract only those relationships that satisfy some predetermined conditions. 

Specifically, we only keep values (corresponding linkages) larger than the average value of the 

100 largest individual banks’ cross-quantilograms; see Panel A of Figure 1. After this extraction, 

we can easily identify the most influential nodes within the bank network. This information might 

be particularly useful for supervising authorities. Furthermore, after computing some basic 

topological properties of the network, we can precisely pinpoint the banks that are the largest 

transmitters of negative shocks (lowest quantile of the return distribution) and those that are the 

largest receivers (see Table A.3 in the online supplementary material). 

After visualizing the interconnection network of all sampled banks during the whole period 

(2003–2020) in Panel A of Figure 1, we present in Panels B, C, and D the threshold networks 

constructed for the three sub-periods considered, the GFC, ESDC, and COVID-19 crisis periods. 

During the GFC, the strongest risk spillover was from U.S. banks (most notably Goldman Sachs, 

Morgan Stanley, and Citigroup). During the ESDC, the negative mood stemmed from European 

banks (mostly from Skandinaviska Enskilda Banken, Swedbank, and Deutsche Bank). In contrast, 

Asian banks appear to be less risk-transmitting than U.S. and European banks. 
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Figure 1: Threshold networks in the whole period and three sub-periods 

 

Note: In the four panels, we use the same threshold to preserve comparability. We only keep values (corresponding 

linkages) larger than the average value of the 100 largest individual bank risk scores from the full sample network to 

make the graphs clearer. Because the COVID-19 period is very short (from January to April 2020), we measure the 

systemic risk through the rolling-window method over the period from 1 October 2018 to 17 April 2020. As our 

methodology is based on quantiles of the return distribution, isolating the relatively short pandemic period is not 

reasonable. 

 

This result is further confirmed by Table A.3 in the online supplementary material, which shows 

that the banks with the highest risk spillover degree (at the top of the table) are from the U.S., such 

as JP Morgan, Barclays, Bank of America, and Citigroup. In contrast, Asian banks, such as 

Hokuhoku, Shizuoka, Yamaguchi, and Huaxia, are at the bottom of the table. It is thus appropriate 
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to conclude that U.S. banks are major risk transmitters, while Asian banks are major risk receivers. 

This fundamental difference between U.S. and Asian banks may be due to several reasons.5 

The first reason is that Asian banks are smaller than US banks, on average, except for Chinese 

banks (based on market capitalization). Indeed, the academic literature shows that the size of banks 

plays an important role in systemic risk measurement (e.g., Pais and Stock, 2013; Yang et al., 

2020). In addition, Lu and Hu (2014) confirm that the size of a bank is a determinant factor of its 

systemic importance within a network. Furthermore, U.S. banks are known to have large 

international operations due to the international status of their currency, the USD (e.g., McGuire 

and von Peter, 2016). This is the first reason why U.S. banks are major risk transmitters, while 

Asian banks are major risk receivers. 

The second reason arises from the differences among countries regarding their institutional and 

regulatory frameworks. According to Cerruti et al. (2012), these differences can affect the 

magnitude and direction of shocks, as well as their propagation among banks. Indeed, the 

American economy is essentially based on market-financing methods, while the Asian economy 

is based on bank-based financing methods (e.g., Allen et al., 2014). Regarding this difference, Bats 

and Houben (2020) indicate that the choice between bank-based and market-based financing 

affects systemic risk. They further suggest that market-based financial systems are more resilient 

to systemic risk than are bank-based ones. 

This difference between the U.S. and Asian economies contributes to explaining our findings 

that U.S. banks are major risk transmitters, while Asian banks are major risk receivers. Similarly, 

Acemoglu et al. (2015) argue that the financial system architecture is important for the level of 

systemic risk. Another factor that can explain our finding about the difference between U.S. banks 

and Asian banks is related to monetary policy tools used in the US and Asia. Indeed, Meuleman 

and Vennet (2020) show that the nature of policy tools, such as credit growth tools and liquidity 

tools, affects systemic risk. In this regard, Miyajima et al. (2014) find that unconventional U.S. 

monetary policies spill over to Asia through bond yields and the growth of domestic bank credit. 

In addition, the panels in Figure 1 show that the interconnection among large banks increases 

dramatically during the COVID-19 pandemic. Indeed, Panel D in Figure 1 shows that the network 

interconnection became much more intense during the first wave of the COVID-19 pandemic from 

                                                             
5 We would like to thank the Editor, Professor Sushanta Kumar Mallick (School of Business and Management, Queen 

Mary University of London, UK), for underlying this aspect in our analysis. 
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January to April 2020. Together with Figure 2 in sub-section 3.2, we see that the level of systemic 

risk among banks is much higher during the COVID-19 pandemic than during the GFC, although 

previous studies quantify systemic risk as high during the GFC (e.g., Acharya and Steffen, 2013; 

Glasserman and Young, 2015; Mohanty et al., 2018). Furthermore, the aggregate systemic risk 

score, that is, the systemic risk index that we propose in this study, is the highest during the 

COVID-19 pandemic, with a network density of 70.6%. This finding convincingly demonstrates 

the consequences of the outbreak of COVID-19 on the banking sector (e.g., Goodell, 2020). The 

threshold graph for this pandemic period clearly shows that there are markedly stronger linkages 

during the COVID-19 pandemic than during the two previous crisis periods (GFC and ESDC). 

This result is in line with the findings of a few recent studies that investigate the impact of the 

COVID-19 pandemic on systemic risk, such as Akhtaruzzaman et al. (2021). This suggests that 

future studies should engage in further investigations to understand the risk spillover mechanism 

among banks during the COVID-19 pandemic. 

 

3.2. Analysis of the new systemic risk index 

Thus far, we have considered the estimated directional spillover among banks within the network. 

In this subsection, we present a unique index to measure the systemic risk of the whole network 

of the 83 largest banks around the world. As mentioned in Section 2, this new systemic risk index 

is the sum of all directional predictabilities (or cross-quantilograms) of all pairs of banks in the 

network. This unique systemic risk index allows banks, central banks, and policymakers to easily 

visualize the systemic risk situation. In addition, it allows them to analyse systemic risk in a time-

varying framework. Furthermore, this new systemic risk index considers the size of the banks in 

the network while incorporating their market capitalisation into the calculation. Therefore, the 

proposed systemic risk can be affected by interconnectedness (CQs), the compromise level of 

nodes (which shows the market capitalization of banks), or even both. Thus, the value variation of 

the systemic risk index over time depends not only on the tail interconnectedness among banks but 

also on the size of banks in the network (Pais and Stock, 2013; Varotto and Zhao, 2018; Su and 

Wong, 2018). In addition, other factors can affect the level of systemic risk among banks, such as 

government support and sovereign debt holdings (Acharya and Steffen, 2013), interconnectivity 
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of the financial system (Glasserman and Young, 2015), banks’ governance structure (Battaglia and 

Gallo, 2017, and banks’ organizational complexity (Elysiani and Jia, 2019).6 

 

Figure 2: New systemic risk index and network density 

 

Note: This graph shows the rolling-window measure of the new systemic risk based on the 

cross-quantilogram approach (more details in Section 2) and the network density (more 

details in Section 2). To obtain an interval of 0 to 100, the index is normalized to its maximal 

value during the COVID-19 pandemic. 

 

Figure 2 shows the time-varying dynamics of the new systemic risk index and the network 

density, as measured in the previous sub-section. These two measures are closely related because 

shocks are propagated more strongly when the network becomes denser. However, the network 

density does not reflect the size aspect of the risk spillover. For example, although the systemic 

risk index spiked in 2007, the network density was small. However, both indicators jointly peaked 

in 2008. Subsequently, during the ESDC period, banks became more interconnected. However, 

the overall systemic risk was slightly smaller than the network density. Then, in 2015 and 2016, 

systemic risk increased to be significantly higher than the density because of the so-called “2015–

16 stock market selloff.” This occurred due to Chinese stock market turbulence, accompanied by 

a slower growing GDP in China, the Greek debt default, the end of quantitative easing in the United 

States, and the Brexit vote. However, both the systemic risk index and the network density during 

the COVID-19 pandemic were the highest over the whole period (11 September 2003 to 17 April 

                                                             
6 We would like to thank the Editor, Professor Sushanta Mallick, School of Business and Management, Queen Mary 

University of London, United Kingdom, for his suggestion to underline the determining factors of the level of systemic 

risk. 
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2020). To understand this difference, it is important to mention the different natures of each of the 

three crisis periods. The first sub-period, the GFC, was a global financial crisis. Although it had a 

major impact on the economic system, the main consequences were on the financial and banking 

system. The second sub-period, the ESDC, was a local crisis affecting countries in the Eurozone 

due to the weakness of the sovereign debt structure. Finally, the recent COVID-19 crisis is entirely 

different because it started as a health crisis before becoming a global economic crisis that has 

impacted every country and economic sector. 

The above analysis allows us to make the following observations. First, a low network density 

does not mean a low systemic risk. This is because the risk spillover in downturn market states 

(5% quantile returns in our case) can be high even with a low network density. Second, Figure 2 

confirms the results shown in Figure 1 for the exceptionally high level of interconnection among 

banks during the COVID-19 pandemic in both network density and risk spillover. During the first 

months of 2020, economies faced an unprecedented economic lockdown that led stock markets 

around the world to experience sharp declines, comparable to the drops during the great depression 

in 1929 or the outbreak of the GFC in October 2008 (Oldekop et al., 2020). The much higher 

systemic risk level during the COVID-19 pandemic than during the 2008 GFC is counterintuitive 

at first sight. Indeed, the GFC was a financial crisis caused by the financial sector, which 

underwent the largest loss. The COVID-19 crisis was originally a health crisis before becoming a 

global economic crisis affecting all economic sectors. Thus, the COVID-19 crisis is not directly 

related to the financial sector. However, the systemic risk among banks is much higher during the 

COVID-19 pandemic than during the GFC. To explain this result, we argue that during the 

COVID-19 pandemic, banks were exposed to a large panel of issues related to the financing of the 

real economy, a decrease in assets due to the repayment delay of SMEs, volatility of assets under 

management, a reduced amount of capital exchanged because of the lockdown, and volatility of 

reserves resulting from exchange rate volatility. In this context, future academic studies should 

further investigate this high systemic risk phenomenon to better understand its determinant factors. 

Thus far, we have learned that both the network density and systemic risk of the 83 sampled 

banks reached their highest levels during the COVID-19 pandemic. However, for investors, 

portfolio managers and policymakers, it is also important to understand the source of systemic 

risk. Therefore, in the next sub-section, we decompose the new systemic risk to understand the 

strength of the risk transmission and reception of each individual bank. 
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3.3. The systemic risk profile of individual banks 

From the perspective of investors, policymakers, and regulatory authorities, it is helpful to 

decompose the overall systemic risk to obtain more detailed results for each bank's risk 

transmission and reception capacity. 

Therefore, we focus on three aspects of the risk spillover among banks: the risk transmission 

from each bank to other banks, the risk reception of each bank from other banks, and the net 

position (net effect = risk transmission – risk reception).7 With this objective, Figure 3 presents 

the net effect, Figure 4 presents the risk transmission effect, and Figure 5 presents the risk reception 

effect. 

A close look at Figures 4 and 5 confirms our findings on the network structure presented in 

Section 3.1, following which American banks are primary risk transmitters, while Asian banks are 

primary risk receivers. Indeed, we see from Figure 4 that the banks at the top of the list (top risk 

transmitters), such as JP Morgan Chase & Co, Goldman Sachs, Citigroup, Morgan Stanley, and 

PNC Financial Services, are from the U.S. In contrast, Figure 5 shows that the banks at the top of 

the list (top risk receivers) include Asian banks, such as the Mitsubishi UFG Financial Group, 

Mizuho, Fukuoka, Nomura, and China Bank. Therefore, Figures 4 and 5 confirm one of our main 

findings: U.S. banks act as major risk transmitters, while Asian banks act as major risk receivers. 

Furthermore, regarding the net effect (transmission – reception), Figure 3 shows that the top net 

risk-transmitting banks in the list include major U.S. banks, such as JP Morgan Chase, Morgan 

Stanley, Citigroup, Bank of America, and Goldman Sachs. This result means that even after 

excluding the reception effect, to calculate the net effect, U.S. banks are still the major risk 

transmitters in the network. 

 

 

 

 

 

 

 

 

                                                             
7 We would like to thank an anonymous referee for the suggestion to detail the risk reception measures. 
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Figure 3: Systemic risk decomposition by individual banks – Net effect (transmission – reception) 

 

Note: The numbers in this figure correspond to the risk contribution of a bank when considering the net effect (risk 

transmission – risk reception). Higher numbers are highlighted according to a colour scale: yellow represents the net 

position as a risk transmitter, and blue represents the net position as a risk receiver. 
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Figure 4: Systemic risk decomposition by individual banks – Risk transmission effect 

 

Note: The numbers in this figure correspond to the individual contribution of a given bank to the aggregate systemic 

risk score based on risk transmission. Higher numbers are highlighted according to a colour scale: yellow represents 

a large source of systemic risk, and blue is assigned to a lower systemic risk transmission. 
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Figure 5: Systemic risk decomposition by individual banks – Risk reception effect 

 

Note: The numbers in this figure correspond to the individual risk contribution of a given bank to the aggregate 

systemic risk score based on risk reception. Higher numbers are highlighted according to a colour scale: yellow 

represents a strong risk receiver, and blue is assigned to a weaker risk receiver. 

 

Thus, considering both the network structure and each bank's individual position, the results 

remain robust in all cases. Even though the European banks are not at the top of the list in Figures 

3, 4, and 5, we can see from Figure 4 that the risk contribution rises between 2010 and 2012 for 

European banks, such as Société Générale, Crédit Agricole, Swedbank, and Danske Bank. 

Therefore, we can confirm that European banks became major risk transmitters during the ESDC. 
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The findings from Figures 3, 4, and 5 highlight the importance of considering the systemic risk 

profile of each individual bank. As mentioned above, this difference may be due to the size of the 

bank, monetary policy tools, or the major financing method in the country (market-based or bank-

based) (e.g., Allen et al., 2014; Bats and Houben, 2020; Meuleman and Vennet, 2020; Miyajima 

et al., 2014). 

 

4. Robustness check 

In this section, we check the robustness of the main findings about the high level of systemic risk 

during the COVID-19 pandemic and the difference between U.S. banks and Asian banks. 

 

Figure 6: Systemic risk index – robustness check with alternative methods 

 

Note: This graph shows the rolling-window measure of the systemic risk based on four methods. The method of Han 

et al. (2016) is presented as “QgramScore”. The method of Chen et al. (2019) is presented as “ChenScore”. The CISS 

is presented for banks in the EU and those in the U.S., separately. The SRISK8 method is presented as “srisk.” For 

more details on the rolling-window method, refer to Section 2. All systemic risk indexes are rescaled to reflect the 

percentage change with respect to the origin date (It0) (i.e., It = 100 x (It – It0)/It0). 

 

To achieve this aim, we calculate the systemic risk index based on three alternative methods: 

the method of Chen et al. (2019), the systemic RISK method (SRISK) from Brownlees and Engle 

(2017), and the composite indicator of systemic stress (CISS) from Holló et al. (2012). Figure 6 

presents the time-varying systemic risk index obtained by these three alternative methods 

compared to that obtained with our main method of Han et al. (2016). This allows us to check the 

robustness of our second main finding according to which the systemic risk reaches its peak during 

                                                             
8 We would like to thank Brian Reis from the V-Lab for providing the global SRISK series from the GMES analysis. 
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the COVID-19 pandemic. Figure 6 shows that there can be differences in the level of systemic risk 

as a function of the method used. However, for most of the methods, the level of systemic risk 

reaches its peak during the COVID-19 pandemic, except for the method of Chen et al. (2019) and 

the CISS method for European banks. Figure 6 also confirms that U.S. banks are major risk 

transmitters because the CISS index for U.S. banks is the highest. Therefore, Figure 6 confirms 

the robustness of our main findings that the systemic risk is the highest during the COVID-19 

pandemic and U.S. banks are major risk transmitters. 

Our results allow investors, banks, central banks, and policymakers to better detect the degree 

to which a bank contributes to the systemic risk of the banking system worldwide. These findings 

also help uncover the time-varying character of systemic risk. From a bank’s perspective, this 

information is useful because it can help banks adjust their operations to reduce their risk reception 

from the system. From a central bank’s perspective, this information is valuable because it allows 

them to adjust monetary policies of each systemically important bank, depending on whether it is 

a net risk transmitter or a net risk receiver. This information is also important to investors who 

engage in investment decisions that vary over time and crisis periods. 

 

5. Conclusion 

Using a sample of daily stock prices of the 83 largest banks from 24 countries over the 2003-2020 

period, we propose a new systemic risk index while distinguishing among three major crisis 

periods (GFC, ESDC, and COVID-19). The cross-quantilogram method developed by Han et al. 

(2016) is the foundation of our new systemic risk index with the aim of estimating the directional 

predictability for each pair of banks at low quantiles of the return distribution related to downside 

risk spillover among banks within a network. After presenting the network based on directional 

predictability, the new systemic risk index is calculated as the sum of directional predictions of all 

pairs of banks in the network. The first main finding of our research is that systemic risk has never 

been as high as during the first wave of the COVID-19 pandemic in spring 2020, much higher than 

during the GFC. The second main finding indicates that U.S. banks are major risk transmitters, 

while Asian banks are major risk receivers. These main findings are proven to be robust when 

compared with alternative methods from Chen et al. (2019), Brownlees and Engle (2017) (SRISK), 

and Holló et al. (2012) (CISS). 
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The first main finding, related to the highest level of systemic risk during the COVID-19 

pandemic, may be counterintuitive because the COVID-19 pandemic is not a financial crisis like 

the GFC. However, this finding may be explained by the fact that the economic crisis caused by 

the COVID-19 pandemic is more global than the GFC, as it affects all sectors of the economy and 

all countries. Therefore, the COVID-19 pandemic affects banks in a more global way than the 

GFC through liquidity, loan collections, capital positions, asset quality, earnings, and costs (Boru, 

2020). Our second main finding relates to the difference between U.S. banks and Asian banks 

regarding their systemic risk profiles. Indeed, U.S. banks are the most important risk transmitters, 

while Asian banks are major risk receivers. This result may be due to the structural differences 

between U.S. banks and Asian banks regarding size, international operations, and monetary policy 

tools. Based on this finding, we suggest that regulators should consider monetary policies for 

capital requirements as a function of each bank’s systemic risk profile. In addition, this result partly 

confirms that of Diem et al. (2020), following which the nature of the financial network matters 

and regulators should adopt policies based on this nature. 
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Supplementary material 

 

Table A.1: List of sampled banks with RIC codes 

Bank RIC Bank RIC 

HSBC HOLDINGS HSBA.L STATE BANK OF INDIA SBI.NS 

MITSUBISHI UFJ FINL.GP. 8306.T DNB.OL DNB.OL 

BNP PARIBAS BNPP.PA SVENSKA HANDELSBANKEN A SHBa.ST 

JP MORGAN CHASE & CO. JPM SKANDINAV. ENSKILDA BANKEN A SEBa.ST 

DEUTSCHE BANK DBKGn.DE BANK OF NEW YORK MELLON BK 

BARCLAYS BARC.L KBC.BR GROUPE (LUX) KBC.BR 

CREDIT AGRICOLE CAGR.PA PNC FINL.SVS.GP. PNC 

BANK OF AMERICA BAC DBS GROUP HOLDINGS DBSM.SI 

CITIGROUP C PING AN BANK 'A' 000001.SZ 

MIZUHO FINL.GP. MZHOF.PK CAPITAL ONE FINL. COF_pj 

SOCIETE GENERALE SOGN.PA SHINHAN FINL.GROUP 055550.KS 

ROYAL BANK OF SCTL.GP. RBS_pt.W^E14 SWEDBANK A SWEDa.ST 

SUMITOMO MITSUI FINL.GP. 8316.T ERSTE GROUP BANK ERST.VI 

BANCO SANTANDER SAN.MC BANCA MONTE DEI PASCHI BMPS.MI 

WELLS FARGO & CO WFC BANCO DE SABADELL SABE.MC 

ING GROEP INGA.AS UNITED OVERSEAS BANK UOBH.SI 

LLOYDS BANKING GROUP LLOY.L BANK OF IRELAND GROUP BIRG.I 

UNICREDIT CRDI.MI NATIONAL BANK OF CANADA NA.TO 

UBS GROUP UBSG.S MALAYAN BANKING MBBM.KL 

CREDIT SUISSE GROUP CSGN.S AIB Group AIBG.I 

GOLDMAN SACHS GP. GS AMERICAN EXPRESS AXP 

NORDEA BANK NDASE.ST NATIONAL BK.OF GREECE NBGr.AT 

INTESA SANPAOLO ISP.MI MACQUARIE GROUP MQG.AX 

MORGAN STANLEY MS FUKUOKA FINANCIAL GP. FKKFF.PK 

TORONTO-DOMINION BANK TD.TO FIFTH THIRD BANCORP FITB.O 

ROYAL BANK OF CANADA RY REGIONS FINL.NEW RF_pb 

BBV.ARGENTARIA CBKG.DE CHIBA BANK 8331.T 

COMMERZBANK NABPF.AX UNIPOL GRUPPO FINANZIARI UNPI.MI 

NATIONAL AUS.BANK BNS.TO BANCO COMR.PORTUGUES 'R' BCP.LS 

BK.OF NOVA SCOTIA CBAXX.AX CIMB GROUP HOLDINGS CIMB.KL 

COMMONWEALTH BK.OF AUS. STAN.L BANK OF BARODA BOB.NS 

STANDARD CHARTERED 600036.SS HOKUHOKU FINL. GP. 8377.T 

CHINA MERCHANTS BANK 'A' ANZ.AX SHIZUOKA BANK 8355.T 

AUS.AND NZ.BANKING GP. WBC.AX MEDIOBANCA BC.FIN MDBI.MI 

WESTPAC BANKING 600000.SS YAMAGUCHI FINL.GP. 8418.T 

SHAI.PUDONG DEV.BK. 'A' DANSKE.CO CANADIAN IMP.BK.COM. CM.TO 

DANSKE BANK SBER.MM US BANCORP USB 

CHINA MINSHENG BANKING 'A' 600016.SS HUAXIA BANK 'A' 600015.SS 

BANK OF MONTREAL BMO.TO STATE STREET STT 

RESONA HOLDINGS 8308.T BANCO BPM BAMI.MI 

NOMURA HDG. 8604.T TRUIST FINANCIAL TFC 

SUMITOMO MITSUI TST.HDG. 8316.T     
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Table A.2: Descriptive statistics – returns 

Bank Mean St. dev. Q1 Median Q3 Min Max Skewness Kurtosis 

HSBC HOLDINGS -0.012 1.105 -0.487 0.000 0.504 -13.913 7.508 -0.850 14.946 

MITSUBISHI UFJ FINL.GP. -0.011 1.571 -0.787 0.000 0.737 -12.260 10.306 0.139 5.228 

BNP PARIBAS -0.012 1.651 -0.738 0.019 0.782 -12.822 10.832 -0.267 7.387 

JP MORGAN CHASE & CO. 0.023 1.529 -0.512 0.036 0.628 -15.911 13.705 0.238 17.019 

DEUTSCHE BANK -0.047 1.772 -0.886 0.000 0.818 -12.202 12.328 -0.026 6.821 

BARCLAYS -0.036 2.073 -0.802 0.000 0.768 -19.665 28.201 -0.082 22.554 

CREDIT AGRICOLE -0.020 1.806 -0.803 0.000 0.831 -13.096 11.729 -0.139 5.462 

BANK OF AMERICA -0.012 2.059 -0.622 0.011 0.659 -19.112 21.115 -0.144 22.514 

CITIGROUP -0.054 2.260 -0.651 0.010 0.650 -35.892 23.896 -1.821 44.952 

MIZUHO FINL.GP. -0.010 1.625 -0.710 0.000 0.667 -14.763 12.467 -0.128 8.433 

SOCIETE GENERALE -0.032 1.914 -0.839 0.000 0.839 -15.896 11.373 -0.467 7.635 

ROYAL BANK OF SCTL.GP. -0.086 2.527 -0.831 0.000 0.762 -61.769 19.228 -7.495 173.804 

SUMITOMO MITSUI FINL.GP. -0.012 1.614 -0.800 0.000 0.748 -13.061 9.399 -0.151 5.509 

BANCO SANTANDER -0.019 1.487 -0.703 0.023 0.693 -12.343 8.748 -0.366 6.205 

WELLS FARGO & CO 0.002 1.629 -0.536 0.020 0.567 -14.199 15.801 0.441 20.803 

ING GROEP -0.025 2.001 -0.754 0.016 0.812 -24.320 13.829 -0.980 14.598 

LLOYDS BANKING GROUP -0.045 2.111 -0.716 0.000 0.671 -39.347 21.836 -2.470 49.422 

UNICREDIT -0.064 1.990 -0.916 0.000 0.852 -17.802 11.747 -0.602 7.673 

UBS GROUP -0.031 1.668 -0.679 0.010 0.687 -17.302 14.543 -0.327 12.438 

CREDIT SUISSE GROUP -0.038 1.673 -0.770 0.000 0.745 -12.309 19.399 0.004 11.284 

GOLDMAN SACHS GP. 0.016 1.502 -0.614 0.051 0.716 -12.050 16.249 0.186 14.009 

NORDEA BANK 0.007 1.418 -0.628 0.028 0.681 -8.554 12.748 0.109 8.201 

INTESA SANPAOLO -0.015 1.731 -0.783 0.000 0.827 -18.811 12.566 -0.764 8.975 

MORGAN STANLEY -0.001 2.085 -0.747 0.016 0.793 -27.566 40.912 1.053 55.097 

TORONTO-DOMINION BANK 0.025 0.904 -0.349 0.054 0.418 -9.478 9.507 -0.347 15.839 

ROYAL BANK OF CANADA 0.024 0.929 -0.360 0.049 0.436 -9.997 8.196 -0.142 14.908 

BBV.ARGENTARIA -0.023 1.484 -0.724 0.000 0.718 -9.667 8.608 -0.187 4.849 

COMMERZBANK -0.075 2.025 -1.012 0.000 0.875 -18.327 12.914 -0.475 7.382 

NATIONAL AUS.BANK -0.013 1.129 -0.487 0.017 0.531 -8.694 10.747 -0.273 9.052 

BK. OF NOVA SCOTIA 0.013 0.935 -0.377 0.026 0.428 -9.823 10.163 -0.323 15.462 

COMMONWEALTH BK. OF AUS. 0.018 0.983 -0.453 0.041 0.508 -7.532 6.989 -0.329 6.698 

STANDARD CHARTERED -0.012 1.587 -0.731 0.000 0.709 -14.015 16.078 0.138 12.869 

CHINA MERCHANTS BANK 'A' 0.050 1.474 -0.681 0.000 0.736 -10.506 9.528 0.018 4.167 

AUS.AND NZ. BANKING GP. -0.001 1.127 -0.472 0.042 0.531 -10.360 10.735 -0.300 10.438 

WESTPAC BANKING 0.000 1.073 -0.505 0.038 0.550 -8.580 5.947 -0.302 5.579 

SHAI.PUDONG DEV.BK. 'A' 0.035 1.560 -0.657 0.000 0.691 -8.925 9.521 0.044 3.925 

DANSKE BANK -0.011 1.419 -0.601 0.000 0.593 -13.388 11.638 -0.380 8.666 

SBERBANK OF RUSSIA 0.073 1.862 -0.707 0.063 0.909 -19.020 23.032 -0.097 16.456 

CHINA MINSHENG BANKING 'A' 0.035 1.487 -0.621 0.000 0.645 -16.361 9.595 -0.420 9.978 

BANK OF MONTREAL 0.009 0.966 -0.353 0.047 0.399 -11.385 10.707 -0.707 19.481 

ITAU UNIBANCO HOLDING PN 0.041 1.535 -0.809 0.000 0.881 -10.773 12.325 0.135 5.547 

RESONA HOLDINGS -0.026 1.701 -0.814 -0.041 0.743 -13.413 12.885 0.269 7.641 

NOMURA HDG. -0.034 1.693 -0.905 -0.045 0.814 -13.280 9.144 -0.236 4.729 

SUMITOMO MITSUI TST.HDG. -0.009 1.746 -0.883 0.000 0.813 -11.617 12.701 0.017 4.766 

STATE BANK OF INDIA 0.035 1.676 -0.868 0.043 0.940 -14.797 14.457 0.094 6.736 

DNB.OL 0.027 1.564 -0.612 0.030 0.690 -17.084 13.912 -0.515 14.452 

SVENSKA HANDELSBANKEN A 0.013 1.195 -0.514 0.000 0.568 -8.065 9.054 -0.003 6.861 

SKANDINAVISKA ENSKILDA BAN. A 0.010 1.614 -0.599 0.011 0.714 -13.463 18.205 -0.162 15.627 

BANK OF NEW YORK MELLON 0.003 1.455 -0.563 0.035 0.606 -14.535 14.029 0.030 17.500 

BANCO BRADESCO PN 0.046 1.517 -0.810 0.000 0.914 -11.426 12.495 0.084 4.686 

KBC.BR GROUPE (LUX) 0.005 2.238 -0.730 0.047 0.831 -26.662 24.504 -1.153 23.445 

PNC FINL.SVS.GP. 0.016 1.551 -0.521 0.046 0.589 -26.718 14.870 -0.842 34.336 

DBS GROUP HOLDINGS 0.013 1.041 -0.483 0.000 0.527 -7.223 7.009 -0.061 5.610 

PING AN BANK 'A' 0.035 1.701 -0.805 0.000 0.744 -10.445 9.595 0.165 3.783 

CAPITAL ONE FINL. -0.003 1.888 -0.661 0.044 0.717 -15.038 16.814 0.133 15.460 

SHINHAN FINL.GROUP 0.012 1.454 -0.772 0.000 0.745 -10.811 10.431 0.017 4.440 

SWEDBANK A 0.003 6.219 -0.578 0.034 0.675 -196.732 176.592 -3.404 751.921 

ERSTE GROUP BANK -0.005 1.921 -0.820 0.000 0.903 -16.309 13.899 -0.654 9.012 

BANCA MONTE DEI PASCHI -0.191 2.640 -1.016 -0.027 0.687 -59.912 19.283 -5.075 119.206 

BANCO DE SABADELL -0.042 1.469 -0.771 -0.010 0.660 -12.612 9.820 -0.101 6.600 

UNITED OVERSEAS BANK 0.011 0.988 -0.455 0.000 0.494 -9.199 7.529 -0.050 7.520 

BANK OF IRELAND GROUP -0.114 3.109 -1.121 0.000 0.934 -48.672 30.370 -0.801 28.437 

NATIONAL BANK OF CANADA 0.025 1.011 -0.357 0.054 0.434 -10.571 14.190 -0.159 24.760 

MALAYAN BANKING 0.003 0.834 -0.349 0.000 0.399 -6.448 6.376 -0.249 7.884 

AIB Group -0.188 3.547 -1.235 0.000 0.857 -58.676 25.642 -2.125 42.691 

STANDARD BANK GROUP 0.028 1.308 -0.694 0.017 0.752 -9.404 9.235 -0.086 4.020 

AMERICAN EXPRESS 0.017 1.440 -0.502 0.050 0.604 -10.622 13.409 0.144 12.898 
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NATIONAL BK. OF GREECE -0.202 3.440 -1.477 0.000 1.274 -35.604 22.977 -1.556 15.393 

MACQUARIE GROUP 0.026 1.550 -0.596 0.069 0.732 -17.274 18.615 -0.228 14.248 

FUKUOKA FINANCIAL GP. -0.011 1.556 -0.837 0.000 0.797 -10.382 12.832 -0.032 4.910 

FIFTH THIRD BANCORP -0.031 2.357 -0.650 0.015 0.671 -30.182 28.328 0.130 38.027 

REGIONS FINL.NEW -0.026 2.286 -0.699 0.015 0.729 -25.904 29.984 0.405 29.879 

CHIBA BANK 0.003 1.446 -0.734 0.000 0.729 -9.844 11.182 0.163 5.613 

UNIPOL GRUPPO FINANZIARI -0.061 1.713 -0.826 0.000 0.701 -15.665 21.992 0.183 13.684 

BANCO COMR.PORTUGUES 'R' -0.097 1.985 -0.968 0.000 0.789 -10.848 14.331 -0.013 4.853 

CIMB GROUP HOLDINGS 0.015 1.098 -0.470 0.000 0.510 -8.534 6.405 -0.130 4.697 

BANK OF BARODA 0.013 1.968 -1.047 0.011 1.046 -22.910 17.654 -0.056 9.542 

TURKIYE IS BANKASI 'C' 0.034 1.693 -0.905 0.000 1.035 -11.106 8.188 -0.124 2.324 

HOKUHOKU FINL. GP. -0.016 1.562 -0.813 0.000 0.796 -10.034 10.689 0.221 4.241 

SHIZUOKA BANK -0.006 1.256 -0.628 0.000 0.643 -10.118 10.267 -0.083 6.162 

MEDIOBANCA BC.FIN -0.012 1.502 -0.689 0.000 0.742 -18.754 10.314 -0.716 9.594 

YAMAGUCHI FINL.GP. -0.013 1.321 -0.696 0.000 0.667 -10.245 8.069 -0.232 5.240 

CANADIAN IMP.BK.COM. 0.008 1.002 -0.375 0.038 0.428 -10.829 9.428 -0.484 16.051 

US BANCORP 0.008 1.368 -0.461 0.033 0.519 -16.689 12.830 -0.421 19.276 

HUAXIA BANK 'A' 0.016 1.579 -0.677 0.000 0.671 -14.882 9.575 -0.257 6.535 

STATE STREET 0.006 1.860 -0.614 0.034 0.695 -44.625 17.120 -4.975 123.856 

BANCO BPM -0.088 2.128 -1.056 0.000 0.904 -16.462 12.156 -0.183 4.478 

TRUIST FINANCIAL -0.004 1.453 -0.551 0.031 0.576 -11.798 16.611 0.278 13.979 

Note: Q1 and Q3 designate the first and third quartiles. The returns are calculated as rolling-average two-day 

continuous returns. For readability, the returns are multiplied by 100.  
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Table A.3: Topological properties – centrality measures (whole period, 2003-2020) 

Bank In degree Out degree Degree Betweenness Eigenvector 

HSBC HOLDINGS 82 82 164 2.2246 1.0000 

MITSUBISHI UFJ FINL.GP. 82 79 161 1.6630 0.9834 

BNP PARIBAS 80 82 162 1.3965 0.9901 

JP MORGAN CHASE & CO. 82 82 164 2.2246 1.0000 

DEUTSCHE BANK 80 82 162 1.7569 0.9891 

BARCLAYS 82 82 164 2.2246 1.0000 

CREDIT AGRICOLE 81 82 163 1.7617 0.9952 

BANK OF AMERICA 81 82 163 1.7617 0.9952 

CITIGROUP 82 82 164 2.2246 1.0000 

MIZUHO FINL.GP. 82 79 161 1.6630 0.9834 

SOCIETE GENERALE 80 82 162 1.3965 0.9901 

ROYAL BANK OF SCTL.GP. 82 82 164 2.2246 1.0000 

SUMITOMO MITSUI FINL.GP. 82 81 163 1.9788 0.9948 

BANCO SANTANDER 79 82 161 1.2449 0.9845 

WELLS FARGO & CO 80 82 162 1.6002 0.9900 

ING GROEP 81 81 162 1.6990 0.9901 

LLOYDS BANKING GROUP 81 81 162 1.6990 0.9901 

UNICREDIT 80 79 159 1.3183 0.9738 

UBS GROUP 82 82 164 2.2246 1.0000 

CREDIT SUISSE GROUP 82 82 164 2.2246 1.0000 

GOLDMAN SACHS GP. 82 82 164 2.2246 1.0000 

NORDEA BANK 81 82 163 1.7617 0.9952 

INTESA SANPAOLO 78 81 159 1.0777 0.9734 

MORGAN STANLEY 82 82 164 2.2246 1.0000 

TORONTO-DOMINION BANK 81 82 163 2.0631 0.9948 

ROYAL BANK OF CANADA 82 82 164 2.2246 1.0000 

BBV.ARGENTARIA 81 82 163 1.8593 0.9949 

COMMERZBANK 82 81 163 2.1559 0.9944 

NATIONAL AUS.BANK 82 82 164 2.2246 1.0000 

BK. OF NOVA SCOTIA 82 82 164 2.2246 1.0000 

COMMONWEALTH BK. OF AUS. 82 82 164 2.2246 1.0000 

STANDARD CHARTERED 82 82 164 2.2246 1.0000 

CHINA MERCHANTS BANK 'A' 80 76 156 1.0871 0.9551 

AUS.AND NZ. BANKING GP. 82 82 164 2.2246 1.0000 

WESTPAC BANKING 82 82 164 2.2246 1.0000 

SHAI.PUDONG DEV.BK. 'A' 76 76 152 1.1067 0.9311 

DANSKE BANK 81 82 163 1.8593 0.9949 

CHINA MINSHENG BANKING 'A' 74 61 135 0.3132 0.8293 

BANK OF MONTREAL 82 81 163 1.9788 0.9948 

RESONA HOLDINGS 81 78 159 1.5580 0.9716 

NOMURA HDG. 82 82 164 2.2246 1.0000 

SUMITOMO MITSUI TST.HDG. 82 81 163 2.0498 0.9943 

STATE BANK OF INDIA 81 81 162 1.8442 0.9892 

DNB.OL 81 82 163 1.7617 0.9952 

SVENSKA HANDELSBANKEN A 82 82 164 2.2246 1.0000 

SKANDINAV. ENSKILDA BANKEN A 82 82 164 2.2246 1.0000 
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BANK OF NEW YORK MELLON 82 82 164 2.2246 1.0000 

KBC.BR GROUPE (LUX) 79 81 160 1.1822 0.9793 

PNC FINL.SVS.GP. 80 82 162 1.3965 0.9901 

DBS GROUP HOLDINGS 82 81 163 1.9788 0.9948 

PING AN BANK 'A' 78 75 153 1.0230 0.9373 

CAPITAL ONE FINL. 82 82 164 2.2246 1.0000 

SHINHAN FINL.GROUP 81 80 161 1.6425 0.9839 

SWEDBANK A 82 82 164 2.2246 1.0000 

ERSTE GROUP BANK 82 82 164 2.2246 1.0000 

BANCA MONTE DEI PASCHI 67 71 138 0.1665 0.8492 

BANCO DE SABADELL 71 80 151 0.5810 0.9261 

UNITED OVERSEAS BANK 81 82 163 1.8593 0.9949 

BANK OF IRELAND GROUP 80 81 161 1.2361 0.9852 

NATIONAL BANK OF CANADA 81 82 163 1.7617 0.9952 

MALAYAN BANKING 81 78 159 1.4564 0.9723 

AIB Group 79 77 156 0.8127 0.9573 

AMERICAN EXPRESS 82 82 164 2.2246 1.0000 

NATIONAL BK. OF GREECE 73 78 151 0.4537 0.9275 

MACQUARIE GROUP 82 82 164 2.2246 1.0000 

FUKUOKA FINANCIAL GP. 82 82 164 2.2246 1.0000 

FIFTH THIRD BANCORP 81 82 163 1.7617 0.9952 

REGIONS FINL.NEW 82 82 164 2.2246 1.0000 

CHIBA BANK 82 82 164 2.2246 1.0000 

UNIPOL GRUPPO FINANZIARI 75 80 155 0.7317 0.9505 

BANCO COMR.PORTUGUES 'R' 75 80 155 0.7370 0.9504 

CIMB GROUP HOLDINGS 81 78 159 1.7631 0.9710 

BANK OF BARODA 71 57 128 0.2064 0.7864 

HOKUHOKU FINL. GP. 82 82 164 2.2246 1.0000 

SHIZUOKA BANK 82 82 164 2.2246 1.0000 

MEDIOBANCA BC.FIN 77 81 158 0.9725 0.9677 

YAMAGUCHI FINL.GP. 82 81 163 1.9788 0.9948 

CANADIAN IMP.BK.COM. 81 82 163 1.7617 0.9952 

US BANCORP 81 82 163 1.7617 0.9952 

HUAXIA BANK 'A' 77 72 149 0.7719 0.9132 

STATE STREET 82 82 164 2.2246 1.0000 

BANCO BPM 75 76 151 0.4010 0.9283 

TRUIST FINANCIAL 82 82 164 2.2246 1.0000 

Note: Five centrality measures are presented: ‘out degree’ provides the number of links originating in the 

specific vertex, ‘in degree’ provides the number of edges terminating in the vertex (receiver node), ‘degree’ is 

the sum of the two, ‘betweenness’ measures the number of shortest paths in the network containing the vertex 

(normalised version, 2*number of shortest paths/(n*n-3n+2), where n is the number of vertices), and 

‘eigenvector centrality’ measures the connectedness to high scoring nodes (defined as values of the first 

eigenvector of the network adjacency matrix). In all cases, a high centrality score indicates a more prominent 

position and/or influence of a vertex in the network.  

 

 


