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Purpose: To strengthen efficiency and resilience of supply chains at the same time, 

shippers and logistics companies needs proactive transparency about their orders. 

Machine Learning (ML) offers huge potential for precise predictions of complex logistics 

processes. This paper shows the results of a perennial research for implementing a ML-

based system, which predicts multimodal supply chains, detects upcoming disruptions and 

provides suitable actor-specific measures. 

Methodology: For each process of the considered supply chain an individual prediction 

model is developed, using four years historical data, about 50 identified features and 

various ML methods. The developed cross-actor ETA was linked with preventive measures 

based on expert knowledge. Both was integrated into a web-based prototype of a self-

learning decision support system. 

Findings: Thanks to the development of different ML approaches, most reliable model 

configurations were identified for each process. Moreover, important insights were gained 

regarding the availability of required data as well as the potentials and challenges of using 

ML-based solutions for decision-making processes in logistics. 

Originality: The potentials from the use of ML for predicting supply chains has only been 

carried out for particular processes. An integrated approach including different processes 

like rail transports and transshipment points as well as a linkage with prediction-based 

measures is still missing. 
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1 Introduction 

Increasing demands on the reliability, flexibility and efficiency of logistics services 

require companies to make fast and optimal decisions when planning and controlling 

their supply chains (SC) (Handfield, et al., 2013). In this context, logistics decision-makers 

are faced with complex problems. A large number of influencing factors are present, 

which are continuously changing. In addition, various objectives corresponding to the 

different logistics stakeholders have to be considered, which are partly in conflict with 

each other (Straube, 2004). Many of the decisions are conducted under uncertainty, since 

often not all information is accessible.  

One essential process information for Supply Chain Management (SCM) is the Estimated 

Time of Arrival (ETA) of the respective goods at various points in order to synchronize the 

individual processes and to ensure a demand-oriented capacity planning with regard to 

material stocks, personnel and infrastructure (Walter, 2015). The dynamic and diverse 

influences on process execution do not yet allow reliable predictions of the respective SC 

progressions (Weinke, et al., 2018). The difficulty of estimating process or arrival times 

applies in particular to multi-stage SC, due to the complex interdependencies of their 

individual process stages, as in the case of multimodal transports. This lack of 

transparency means that, currently only reactive action can be taken in response to 

disruptive events that occur. The derived decisions to adapt the processes often do not 

represent an optimum with regard to the overall SC. This results in high economic and 

ecological disadvantages for global SC in the form of unpunctual deliveries, underutilized 

transports, cost-intensive exception processes, and unnecessary risk buffers, which are 

shown in Figure 1 (Poschmann, et al., 2019). 
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Figure 1: Effects of disruptions in multimodal supply chains 

The use of Machine Learning (ML) to address this complexity in SC decision-making 

processes has high potential (BVL, 2018; Jordan and Mitchell, 2015; Straube, et al., 2020). 

With the help of self-learning IT-systems, problems can be solved more flexibly, with less 

effort, and with a higher accuracy of results. Moreover, it is the ability of systems to learn 

that enables autonomous execution of processes (Wahlster, 2017).  

This paper investigates the feasibility of ML for predicting multimodal SC. Therefore, it 

shows the development of a prototypical IT-system, which for the first time uses ML for 

calculating ETA in this context and provides the involved actors with measures based on 

these predictions for a proactive avoidance of identified disruptions. In the following 

sections the procedure and main results of a three-year research process to develop this 

self-learning decision support system are presented. At the beginning, the framework of 

the project is discussed with a brief overview of the application area, the ML technology 

and previous approaches for predicting multimodal SC. Subsequently, the methodology 

of the development process is described. According to the individual steps, several 

results are presented, e.g. on the considered data and features as well as on the 

developed ML models for the ETA prediction and the corresponding expert-system for 

prediction-based measures. Afterwards, the implications for research and practice are 

critically reviewed. The last section provides a summary of the paper and an outlook for 

corresponding activities. 
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The paper addresses practitioners, such as logistics companies and shippers, as well as 

future research projects, which want to implement a ML-based decision support system 

in the context of process predictions. Information that may be used includes potentials 

of ETA for SCM, data availability, relevant features, suitable ML models for several SC 

processes and their reasonable integration, as well as the linkage of symbolic and sub-

symbolic AI approaches. 

2 Framework 

2.1 Application area 

The use-case of this paper is the combined transport (CT) of rail and road in the pre-

carriage of the maritime SC. Therefore, real customer orders of sea freight containers 

from industrial shippers to the seaport were considered. In the corresponding door-to-

port process chain, a container is picked up at the shipper and is first delivered by a truck 

to an inland terminal. Within this logistics node a potential short-term storage as well as 

a transshipment to a train is conducted. The according hinterland train is moving to a 

marshalling yard (MY), possibly with several stops for changing crews, traction units and 

wagons. In the MY, the respective wagon is partially again buffered for a short-time and 

transferred to a feeder train, which goes to the designated container terminal in the 

seaport. This considered process chain in the project is followed by a main leg with an 

ocean vessel and by a landside subsequent leg, which ends with the delivery of the 

container at the customer. This fragmentation of the process chain also leads to the 

involvement of various container-carrying and overarching actors, which are all potential 

owners of required data (Poschmann, et al., 2019). These include trucking companies, 

terminal operators in the inland and seaport, railway undertakings (RU) including 

marshalling companies, as well as infrastructure operators, CT operators, freight 

forwarders and shipping lines. 
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2.2 Machine Learning 

ML is a subfield of Artificial Intelligence (AI) and combines several technical approaches, 

which can be broadly categorized into the three main types of supervised, unsupervised 

and reinforcement learning (Russell and Norvig, 2010). In contrast to a manual coding by 

rules or ontologies, which represent the knowledge of previous IT-systems for solving 

problems, in ML empirical relationships are determined independently by algorithms 

(Murphy, 2012). For this purpose, this sub-symbolic approach uses data on the respective 

domain as a basis for learning (Alpaydın, 2010). By evaluating the obtained results 

against a predefined performance metric, the ML approach allows for continuous 

improvement, i.e. a steadily more effective and efficient accomplishment of the 

considered task (Simon, 1983). This automatic acquisition of knowledge about the 

application area enables the recognition of complex correlations for problem-solving, 

which are not recognizable to humans or only with great effort. These patterns can be 

used for various operational tasks, including segmenting objects, deriving rules, 

determining future values in the form of predictions, and determining optimal solutions, 

including creating new content (Alpaydın, 2010; Döbel, et al., 2018). 

2.3 Prediction of multimodal supply chains 

For the evaluation of the state of research, an analysis of previous literature was 

conducted. Its results on existing prediction solutions of process or arrival times in 

multimodal SC are presented in this section. They were used for the initial evaluation of 

the suitability of prediction methods. Basically, a distinction can be made between 

model-based approaches, which are mostly based on simulation, and data-based 

approaches (Wen, et al., 2017). Approaches based on ML can be seen as a subset of data-

based approaches, which were the focus of the literature review. Solutions for the entire 

SC as well as for the individual subprocesses were included. 

The only representative for ML-based predictions of multimodal SC was identified as the 

paper by Servos, et al. (2020), in which an approach for ETA prediction for container 

transports over the maritime SC is developed. Randomized trees, adaptive boosting, and 
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support vector machines (SVM) are used. The approach only incorporates GPS data, but 

no other data, so operational factors influencing arrival time are not covered.  

The availability of approaches for specific subprocesses depends heavily on the transport 

mode. For the main leg by ocean vessels, initial approaches to ETA prediction already 

exist. For example, in Lechtenberg, et al. (2019) an approach for the prediction of arrival 

times for ocean vessels in specific destination port regions is developed. For this purpose, 

different ML methods such as artificial neural networks (ANN), SVM, and gradient 

boosting are tested. For the road freight, hardly any scientific elaborations could be 

identified so far. Existing work focused on passenger traffic arrival time prediction, such 

as the paper of Fan and Gurmu (2015), which i.a. used ANN to predict travel times of 

buses. These are not directly transferable to freight transports. Only Li and Bai (2016) 

consider the development of an approach for road freight using gradient boosting, which 

includes only temporal characteristics. In case of rail, only data-based approaches exist 

for passenger transport. For example, Yaghini, et al. (2013) developed a prediction for 

passenger trains using ANN and decision trees. Markovic, et al. (2015) predict passenger 

train delay using ANN and SVM. Due to the different operational framework, these 

approaches are not directly transferable to freight transport. No paper on data-based 

approaches has yet been identified for relevant logistical nodes of inland terminals and 

marshalling yards.  

In summary, there are currently hardly any reliable solutions for a data-based cross-

process prediction of multimodal SC. This also applies to the individual subprocesses. 

Due to the high effort of mapping complex problems and the low scalability, model-

based approaches have only established for individual subproblems, e.g. the modeling 

of subsequent delays in rail transport, but not for more complex multimodal systems. 

Instead, manual calculation methods based on subjective experiences of the process 

participants or extrapolations of current delay based on tracking information continue 

to dominate in this application area. 
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3 Methodology 

To cover as wide a range of requirements and data, various companies were involved in 

the project, covering the individual actor roles in the considered SC, including shippers, 

terminal and infrastructure operators, land and sea carriers as well as CT operators and 

freight forwarders. The procedure was based on the industry-wide standard for planning 

of data-based projects in the form of the CRISP-DM. Based on an examination of the 

problem, this model provides an iterative procedure for the analysis and preparation of 

data as well as several steps for model development (Wirth and Hipp, 2000). According 

to the objectives, this procedure was adapted for the project (see Figure 2) and is 

described in this section according to several phases. 

Figure 2: Structure of the research procedure 

Requirements and process analysis: In order to realize a practice-oriented solution, the 

first step was to record and evaluate the requirements of the actors as well as the 

potential of the targeted solution. Together with the process-owners, important 
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different subprocesses based on data-side and operational requirements. Within these 

activities, 16 expert-interviews with a subsequent written survey were conducted.  

Data analysis: The availability of historical data was an essential prerequisite for the 

targeted ML approach. Therefore, different measures were pursued to obtain 

appropriate data sources for each subprocess. The acquired data was processed and 

analyzed. This included both the consideration of process characteristics and the 

identification of possible factors, which are influencing process times. For this purpose, 

data visualization and methods for investigating correlations from the field of 

unsupervised learning were used.  

Feature engineering: Based on the identified influencing factors and their causes, 

suitable input variables (features) were determined for all subproblems of the prediction. 

On the one hand, directly existing variables from the data sets were used as features. On 

the other hand, new variables were constructed by combining and transforming one or 

more existing variables. 

Selection of ML methods: Based on these findings, potentially suitable ML methods from 

the field of supervised learning were selected for the specific problems. Among others., 

the type of target variable (classification or regression) and input variables, the statistical 

correlations between them, and the available training data and its quality were 

considered.  

Model Training: The selected ML methods were finally trained for each subproblem with 

historical training data, whereby different model configurations were tested. Grid Search 

methods were used to determine the hyperparameters using a 10-fold cross validation 

for each subproblem. 

Model evaluation: To determine the achievable prediction quality of the respective 

trained models, these were applied to an independent test data set. The MAE (Mean 

Absolute Error) and RMSE (Root Mean Squared Error) for regression problems and the 

accuracy for classification problems were used as quality measures. In addition, further 

problem-specific metrics were calculated for better external comprehension. 

Prediction-based measures: Together with the actors, ETA-based use-cases and 

corresponding measures were investigated with regards to potential inefficiencies and 
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disruptions for the individual processes along the SC. These optimization opportunities 

were evaluated with regard to various criteria. Further six expert-interviews were 

conducted. Subsequently, selected results were transferred into a rule-based logic in the 

form of an expert-system. By this symbolic AI approach, knowledge and reasoning ability 

of human experts on a specific domain are emulated (Beierle and Kern-Isberner, 2019). 

In this case, the system should automatically detect disruptions and provide 

recommendations for optimizing action to the actors. 

Deployment: The final step was the integration of the developed submodels into an 

overarching IT-solution. This included linking the individual prediction models to a 

prediction of customer orders across the entire SC (door-to-port ETA) as well as 

connecting this model to the expert-system. In addition, measures for the 

implementation of a future productive system were elaborated. In addition to a 

definition of data and interface requirements, a web-based prototype with a graphical 

user interface (GUI) for the visualization and interactive testing of the created solutions 

was developed.  

The data activities as well as the development of the submodels and prototype were 

largely performed with R and SQL.  

4 Results 

4.1 Requirements and process analysis 

During the analysis, several distinctions between the involved processes of the 

considered SC were identified, which have an influence on the development. This 

included the temporal determinacy of the processes by plan data, the causes for delays, 

the data availability, and the required reference points and objects for the ETA. Due to 

these differences, it was recognized that it is not useful to develop an overarching 

prediction model for the entire SC. Instead, the chain from the shipper to the seaport 

was divided into five subprocesses (see Figure 3). For each of them, at least one 

process-specific submodel has to be developed. Therefore, three representative pilot 

relations were defined: starting from the inland terminals Leipzig-Wahren, Munich-

Riem and 
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Regensburg-Ost with their roadside pre-carriage transports via the MY in Maschen to the 

four container terminals in the seaport of Hamburg.  

Figure 3: Considered subprocesses for the model development 

4.2 Data analysis 

4.2.1 Data acquisition 

In total, during the project historical data for four years (2015 to 2018) from 16 different 

IT-systems of the participating companies was acquired. For the pilot relations, this 

included process data of 50,000 rail transports, 96,000 road transports, and 8.6 million 

container-related events. In addition, operational and external information on the 

individual processes was obtained, which depicts relevant influencing factors. This 

comprises personnel planning, vehicle characteristics, route and infrastructure 

information as well as construction sites, geo-data and weather conditions.  

The highest data coverage was provided for rail transports. Firstly, detailed process data 

was available, since actual and planned times for the trains were recorded at discrete 

tracking points. Secondly, standardized disruption information for delays and many 

influencing factors were given. Usable data on marshalling processes in the terminals did 

not exist. For the road transport, actual departure and arrival times as well as start and 

destination points could be provided. In contrast to rail, no data was available on 

detailed routes, e.g. by GPS tracking. Also, disruptions were only recorded manually and 

not in a standardized way, so they were not considered. The data for the inland terminal 

and MY included the actual entry and exit times of the containers, wagons and trains. 

From this, i.a. the cumulative utilization could be determined. For the MY, planned times 

as well as information on the planned connecting trains of each container, respectively 

wagon were also available. 
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4.2.2 Data preparation 

Due to the large number of involved IT-systems, merging them as well as ensuring a 

consistent database represented a major challenge. It was found that complete data 

coverage was not available for all customer orders, as some systems were only 

introduced at a later point in time (on certain routes) or data for older periods was 

deleted as part of the companies' data housekeeping. In addition to the completeness, a 

quality analysis was performed to identify anomalies. In particular, the extremes were 

considered, as these often indicate incorrectly recorded data. In addition, logical 

relations between the data were also reviewed, such as the fact that the departure must 

occur before the arrival. In many cases, implausibilities are due to manual data entry, e.g. 

the arrival time of trucks at inland terminals. Several measures were taken to ensure that 

all data sets could be used, despite the limitations in availability and quality. This 

included a transformation of syntactically incorrect data, a completion of missing values 

by predicting the most likely value based on other cases, and a selection of ML methods, 

which are explicitly suited for learning from incomplete training data sets. 

4.2.3 Data analysis 

After processing the data, various analyses were created to derive more operational 

information. By integrating the actor-specific systems, it was possible for the first time to 

derive statements about the total lead time of the containers along the SC, including 

actual times, planned times and delays, as well as about time-shares of the 

subprocesses. Figure 4 shows the distribution of the container-related total lead time 

for one of the considered relations from shipper to seaport for the years 2015 to 2017. 

For this relation, the median time is approx. 56 h. It shows a high variance with a 

strongly left-skewed distribution, which underlines the susceptibility to disruptions. In 

part, the long process times are also due to longer planned dwell and buffer times in 

the logistics nodes.  
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Figure 4: Distribution of total lead time  

Figure 5 shows the lead time of this relation broken down into the individual 

subprocesses according to their time-share for the years 2015 to 2017 (arithmetic mean). 

A high proportion of around 70% is accounted by the logistics nodes. A major reason for 

this is the prevailing conservative planning of the SC, in which uncertainty about possible 

disruptions is to be compensated by additional planned dwell times in the nodes. The 

deliberate reduction of risk buffers through increased transparency represents a high 

potential for the ETA prediction. Rail transport between the inland terminal and MY takes 

up a share of about 20% of the total time. In contrast, road and rail transport between 

the MY and the seaport show low time-shares. Finally, it should be noted that the use of 

the arithmetic mean as an estimator for the average process duration and the existing 

skewness of the temporal distributions overestimate the dwell time in the nodes.  

Figure 5: Lead time of subprocesses (absolute and ratio) 
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4.3 Model development 

4.3.1 Prediction 

To realize the ETA prediction for the SC, six process-specific prediction problems were 

derived, for which separate submodels were developed. In the first step, the travel time 

for the road delivery of the container between the shipper and the inland terminal is 

predicted. In the next step, a prediction of the achievable connecting train in the inland 

terminal is executed, considering the operating conditions. Afterwards, the arrival time 

of the train between the inland terminal and the MY is estimated, implicitly including the 

marshalling processes in the terminal. For the MY, the achievable connecting train to the 

corresponding destination terminal in the seaport is then determined. Finally, the rail 

transport to the port is predicted. The two sections of the rail transport in turn consist of 

further submodels for predicting the departure delay as well as the travel and stop times 

on the route, whereas each individual section between two tracking points or stations on 

the route is predicted individually. The overall prediction (door-to-port ETA) is composed 

of a logical connection of all individual submodels in the sense of a process chain 

prediction, in which the models successively build on each other: the output of a model 

serves as the basis for the subsequent partial prediction. As part of the 

iterative procedure for developing the submodels, the model configuration shown in 

Figure 6 was identified as the most suitable solution approach. 

Figure 50: Process chain prediction approach for door-to-port ETA 
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During the model development, process-specific features were identified for each 

submodel and evaluated in terms of their importance as part of a feature 

selection process. A total of approx. 50 relevant features were identified for the 

submodels. Table 1 shows a sample of the considered features types, which map 

important operational influencing factors and disruptive events.  

Table 1: Types of considered features (sample) 

Feature type Feature (generalized) 

Infrastructure 
Route information, construction sites, utilization, 

historical process times  

Technical resources 

(especially vehicles) 
Fleet planning, availability, vehicle characteristics, 

loading condition 

Human resources Shift planning 

Freight information Type, size, weight  

Weather Wind, precipitation, temperature  

Time Vacation, hour, weekday 

The importance of two exemplary features for the subprocess of rail transport on one 

relation is shown by their correlation with travel time in Figure 7. A positive correlation 

is observed for the size of the train mass. Higher mass are associated with longer total 

train travel times. One of the causal reasons for this is the slower acceleration and 

braking behavior of trains with a high total mass. Furthermore, correlations were also 

found for the traction unit type. Causal reasons for this are different vehicle 

characteristics of each type, such as traction power and maximum running and braking 

speeds. 
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Figure 7: Correlation of train characteristics and travel time 
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predicted in 95% of the cases. For rail transports, the arrival time of 86% of the trains is 

correctly predicted within a +/-10% deviation interval. A correct prediction of the 

connecting train in the MY is performed in 71% of the cases, with a no-information rate 

of 37%. Overall, the individual processes can be predicted with a high to very high 

accuracy by the selected model approaches. Following the composition of the individual 

submodels, very good results could also be achieved for the overall prediction of the 

considered SC (door-to-port ETA). According to this, the prediction deviations from the 

actual times for the transports from the shipper to the seaports, which often take several 

days, amount to a two-digit minute range for many orders.  

Figure 8: Prediction results and improvement potential 

In the course of development, various levers for improving the prediction models were 

identified, which are also outlined in Figure 8. In general, high amount of training data 

and a coverage of relevant influencing factors by appropriate data are essential success 
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explains, e.g. the better results for rail compared to road transport, where important 

information was missing like planned routes, breakdowns and stopovers. In the case of 

the inland terminal, this comprises data on the planned time of loading in order to 

consider planned storage times of the containers in the terminal. At the same time, data 

differences for the submodels with respect to the individual relations also become 

apparent. In the case of rail transport, the highest prediction quality was achieved on the 
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relation with the best data coverage, which has an average travel time of approx. 15 

h (see Figure 9).  

Figure 9: Prediction results of train transport 

Across all processes, it can be stated that some influencing factors, such as technical 

disruptions to the infrastructure and to the used vehicle, as well as traffic-related 

influences and extraordinary disposition decisions, could not in principle be sufficiently 

considered in the prediction models on the basis of the available data. This also applies 

to large one-off disruptions that occur infrequently but have a high temporal impact, 

such as storms or strikes. Due to the pronounced individual character and the small 

amount of data available on these influences, the used ML algorithms cannot derive 

meaningful approximating relationships for the reliable prediction of new cases. 

4.3.2 Prediction-based measures 

Various use-cases for an ETA prediction were identified in the application area. These 

ranged from actor-specific optimization options, e.g. for shift planning in the logistics 

nodes, to timely synchronization of the entire SC. Latter option was linked with the 

highest potential for the envisaged solution, since reaching planned connection 

processes on time is of great importance in multimodal SC. In case of delays, even at the 
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beginning of the transport, this can lead to high conflicts with downstream processes. 

Especially, missing an ocean vessel at the seaport can induce delays at the destination 

lasting several days or even weeks. Based on missing the corresponding vessel closing, 

various operational situations (conflict cases) in the SC were identified that can lead to 

this scenario and that can simultaneously be detected in advance by the 

realized prediction. For that, suitable actor-specific measures were collected and 

evaluated with regard to their potentials, effects and feasibility. Some of them are 

listed in Table 2. 

Table 2: Measures for preventing closing exceedance at the seaport (sample) 

Actor Measure

Freight forwarder Register late-arrival at the seaport 

CT operator Transfer to earlier train from inland terminal 

CT operator Transfer to entire road transport to seaport 

Inland terminal Prioritized train disposition in inland terminal 

Railway undertaking Prioritized wagon disposition in MY 

Railway undertaking Prioritized train disposition in MY 

Railway undertaking Prioritized wagon disposition in seaport 

The identified conflict cases and measures were transferred to an expert-system, 

whose general operating principle is shown in Figure 10. It starts with the generation of 

an order-specific transport plan for the entire SC, which contains planning 

information on processes, times, locations and resources. In addition, the door-to-port 

ETA prediction is executed. On this basis, a comparison is made between the plan and 

the prediction. In the case of a detected deviation, its impact is evaluated. Once there 

no negative impact 
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on the achievement of the vessel closing of a container, but it exceeds a defined 

threshold, a warning message is generated. Once the closing is exceeded, an automatic 

selection of suitable measures is triggered. The corresponding evaluation is based on 

logical decision rules. Firstly, this prioritizes measures that are most likely to prevent a 

missing closing. Secondly, measures that are associated with a high dispositive or 

financial effort are only proposed if alternative measures cannot be executed. 

Figure 10: Operating principle of the expert-system 

4.4 Deployment 

The developed prediction models and the expert-system were transferred into 

an overarching prototypical IT-system (see Figure 11). This self-learning system consists 

of various subcomponents. It includes a module for training all submodels on the basis 

of the historical data from the 16 IT-systems, which also allows to check the quality and 

to retrain the model with new data. Another module applies the prediction results to 

new customer orders, detects deviations from the planned process sequence and 

performs the generation of measures. A web-based GUI was implemented for the 

prototype, allowing the retrieval of selected and anonymized orders. The system 

is publicly available on the website https://www.smecs-eta.de. 
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Figure 11: Web-based GUI of the prototypical IT-system 

5 Potentials and limitations 

By the developed self-learning decision support system, a contribution is made to the 

increasing need of transparency in logistics by providing reliable information on the 

arrival times of customer orders at important points along the SC, together with actor-

specific recommendations for action. This information is already available at the 

beginning of the processes and considers effects on the entire SC. This enables 

companies to proactively select suitable decisions in the predicted event of a disruption, 

like a conscious prioritization of orders or an adjustment of capacities to achieve a higher 

adherence to schedules. At the same time, the efficiency and sustainability of processes 

can be improved by avoiding lower utilization and idle times of transports as well as cost-

intensive exception processes, such as air or courier transports. This also includes the 

fact that deliberately planned risk buffers can be reduced, e.g. inventories in overseas 

plants or buffer times in logistics nods. Instead, the actual demand for required 

infrastructure, resources and transport capacity can be determined, which positively 
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influencing the utilization and thus the ecological footprint of processes. At the same 

time, the improvement in the decision-making basis reduces manual and time-

consuming planning and coordination efforts for involved actors. With the help of these 

positive effects (see Figure 12), the obstacles of shippers and forwarders to 

use multimodal SC are counteracted by ensuring efficiency, flexibility and 

reliability comparable to other modes of transport.  

Figure 12: Potentials of the self-learning system 

A main limitation of the research is the technical maturity of the developed IT-system. 

The prototype demonstrates the functionality for selected historical orders, but is not a 

productive system. The evaluation of the models was carried out under laboratory 

conditions using only historical data. Thus, no statements regarding the performance of 

the approach under real conditions can be provided. In future research, the system 

should be investigated under these conditions in the context of a field test. In addition to 

the prediction quality, other properties such as usability and acceptance must be 

evaluated in this context. Furthermore, the investigation has only been carried out for a 

specific process chain in terms of the maritime pre-carriage in combined transport on 

selected relations. A validation of the developed models on other transport modes and 

relations, including the transfer to the entire maritime SC, should be a subject of future 

research. Some important influencing factors are not considered in the solution due to 

the lack of data. In particular, the consequences of infrequent disruptions, which 

nevertheless have a high impact on the processes, could therefore not be predicted. 

Future research should examine how such disruptions can also be included.  
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6 Summary and outlook 

The paper demonstrates the feasibility of a ML-based approach for the calculation of 

reliable predictions of multimodal SC. For the first time, a door-to-port ETA is provided, 

which allows a proactive intervention in terms of disruptions. The approach of 

implementing different ML submodels for several processes shows the best prediction 

results due to process-specific data and operational requirements. During the 

development of the models, it became apparent that the quality varies both in the 

individual processes and on the various relations. The achievable quality is strongly 

related to the available data, which show large differences along the SC. There is a lower 

coverage in road transport and inland terminals compared to the rail transport. 

Important factors influencing the process times are identified. Especially infrastructure 

disruptions, propagation of delays in the network and limited staff availability have a 

high significance. Frequent disruptions are well considered by the prediction, whereas 

unusual events require other approaches due to lack of data availability. After testing 

several ML algorithms and model configurations, ensemble learning approaches based 

on decision-trees show the best results for the most of the problems, since they are 

suitable for many variables with a small amount of training cases.  

To support corresponding decision-making based on the prediction, the knowledge of 

involved actors was formalized within an expert-system. The identified measures show 

that there are different actor-specific possibilities for preventing upcoming disruptions. 

The used symbolic AI approach enables an objectively selection of suitable measures for 

an optimized planning and control of the SC. For the interaction of the prediction models 

and the expert-system a prototypical IT-system with a GUI was developed. This solution 

accelerates further research and the deployment of a productive system, since it 

provides insights in the model development and demonstrates the potentials of ML for 

SCM based on real customer orders.  

The results of the research project are continued by DB Cargo AG in an internal project in 

order to provide a dynamic ETA prediction for its own transports at shipment level by a 

live operating system in the future. The authors apply the findings to other SC 

configurations. Together with shipping companies and terminal operators, they are 
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developing ML-based ETA predictions and corresponding optimization measures for 

national and international inland waterway freight transports within a further research 

project (IHATEC, 2020). 
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