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Abstract

We propose new tests for panel cointegration by extending the panel unit root
tests of Choi [2001] and Maddala and Wu [1999] to the panel cointegration case.
The tests are flexible, intuitively appealing and relatively easy to compute. We
investigate the finite sample behavior in a simulation study. Several variants of the
tests compare favorably in terms of both size and power with other widely used
panel cointegration tests.
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1 Introduction

There is wide consensus in economics that cointegration is an important statistical concept

which is implied by many economic models. In practice, however, evidence of cointegration

or non-cointegration is often weak because of the rather small sample sizes typically

available in macroeconometrics. To overcome this problem, the cointegration methodology

has recently been extended to panel data. This allows the researcher to work with larger

samples, thereby improving the performance of tests and estimators.

Pedroni [2004] and Kao [1999] generalize the residual-based tests of Engle and Granger

[1987] and Phillips and Ouliaris [1990], Larsson et al. [2001] extend the Johansen [1988]

tests to panel data while McCoskey and Kao [1998] propose a test for the null of panel

cointegration in the spirit of Shin [1994].

The present paper introduces some new tests for panel cointegration, extending the p-

value combination panel unit root tests of Maddala and Wu [1999] and Choi [2001] to the

cointegration setting. In this framework, it is straightforward to account for unbalanced

panels and arbitrary heterogeneity in the serial correlation structure of the series. More-

over, the tests are simple to implement and intuitively appealing. We explore the finite

sample performance of the new tests in a simulation study. Certain variants of the tests

compare favorably with many of the previously proposed panel cointegration tests.

The next section introduces the new tests. Section 3 presents the finite sample study.

Section 4 concludes.

2 P-Value Combination Tests for Panel Cointegra-

tion

The present section develops the new tests for panel cointegration. The following notation

is used throughout. xik is a (Ti× 1) column vector collecting the observations on the kth

variable of unit i of the panel, where i = 1, . . . , N and k = 1, . . . , K. The K variables may

contain time polynomials of order up to 2, i.e. constants, trend and squared trend terms.

The number of observations Ti per unit may depend on i, i.e. the panel may be unbalanced.

Denote by pi the marginal significance level, or p-value, of a time series cointegration test

applied to the ith unit of the panel. Let θi,Ti
be a time series cointegration test statistic
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on unit i for a sample size of Ti. FTi
denotes the exact, finite Ti null distribution function

of θi,Ti
. Since the tests considered here are one-sided, pi = FTi

(θi,Ti
) if the test rejects for

small values of θi,Ti
and pi = 1 − FTi

(θi,Ti
) if the test rejects for large values of θi,Ti

. We

only consider time series tests with the null of no cointegration.

We are interested in testing the following null hypothesis

H0 : There is no (within-unit) cointegration for any i, i = 1, . . . , N, (1)

against the alternative

H1 : There is (within-unit) cointegration for at least one i, i = 1, . . . , N.

The alternative H1 states that a rejection is evidence of 1 to N cointegrated units in the

panel. That is, a rejection neither allows to conclude that the entire panel is stationary

nor does it provide information about the number of units of the panel that exhibit

cointegrating relationships.

The main idea of the suggested testing principle has been used in meta analytic studies

for a long time [cf. Fisher, 1970; Hedges and Olkin, 1985]. Consider the testing problem

on the panel as consisting of N testing problems for each unit of the panel. That is,

conduct N separate time series cointegration tests and obtain the corresponding p-values

of the test statistics.1 We make the following assumptions [see Pedroni, 2004].

Assumption 1 (Continuity)

Under H0, θi,Ti
has a continuous distribution function for all i = 1, . . . , N .

Assumption 2 (Cross-Sectional Uncorrelatedness)

xik,t = xik,t−1 + ξik,t, t = 1, . . . , Ti, i = 1, . . . , N, k = 1, . . . , K. Let ξi,t ≡
(ξi1,t, . . . , ξiK,t)

′. We require E[ξi,tξ
′
j,s] = 0 ∀ s, t = 1, . . . , Ti and i 6= j. The

error process ξi,t is generated as a linear vector process ξi,t = Ci(L)ηi,t, where

L is the lag operator and Ci are coefficient matrices. ηi,t is vector white noise.

Remarks
1Both Maddala and Wu [1999] and Choi [2001] suggest extending their panel unit root tests to the

cointegration case. However, to the best of our knowledge, they do not provide an actual implementation
nor do they investigate the performance of the tests. Furthermore, our approach is more general and
likely to be more accurate in some respects to be discussed below.
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• Assumption 1 asymptotically ensures a uniform p-value distribution of the time

series test statistics under H0 on the unit interval: pi ∼ U [0, 1] (i ∈ NN) [see, e.g.,

Bickel and Doksum, 2001, Sec. 4.1]. It is satisfied by the tests considered in this

paper.

• The second assumption is strong [see, e.g., Banerjee et al., 2005]. It implies that

the different units of a panel must not be linked to each other beyond relatively

simple forms of correlation such as common time effects which can be eliminated

by demeaning across the cross sectional dimension. This assumption is likely to be

violated in many typical macroeconomic panel data sets. We will return to this

issue below.

We now present the new tests. Combine the N p-values of the individual time series

cointegration tests, pi, i = 1, . . . , N , as follows to obtain three test statistics for panel

cointegration:

Pχ2 = −2
N∑
i=1

ln(pi) (2a)

PΦ−1 = N− 1
2

N∑
i=1

Φ−1(pi) (2b)

Pt =

√
3(5N + 4)

π2N(5N + 2)

N∑
i=1

ln

(
pi

1− pi

)
(2c)

When considered together we refer to Eqs. (2a) to (2c) as P tests from now on. The P

tests, via pooling p-values, provide convenient tests for panel cointegration by imposing

minimal homogeneity restrictions on the panel. For instance, the different units of the

panel can be unbalanced. Furthermore, the evidence for (non-)cointegration is first inves-

tigated for each unit of the panel and then compactly expressed with the p-value of the

time series cointegration test. Hence, the coefficients describing the relationship between

the different variables for each unit of the panel can be heterogeneous across i. Thus, the

availability of large-T time series allows for pooling the data into a panel without having

to impose strong homogeneity restrictions on the slope coefficients as in traditional panel

data analysis.2 Under Assumptions 1 and 2, as Ti → ∞ for all i, the test statistics are

2For an overview of panel data models relying on N →∞ asymptotics see Hsiao [2003].

3



asymptotically distributed as

Pχ2 →d χ
2
2N

PΦ−1 →d N (0, 1)

Pt
approx.→d T5N+4,

where χ2 is a chi-squared distributed random variable and T denotes Student’s t distribu-

tion. The subscripts give the degrees of freedom. Using consistent time series cointegration

tests, pi →p 0 under the alternative of cointegration. Hence, quite intuitively, the smaller

pi, the more it acts towards rejecting the null of no panel cointegration. The decision rule

therefore is to reject the null of no panel cointegration when Pχ2 exceeds the critical value

from a χ2
2N distribution at the desired significance level. For (2b) and (2c) one would

reject for large negative values of the panel test statistics PΦ−1 and Pt, respectively.

We now discuss how to obtain the p-values required for computation of the P test statis-

tics. Hanck [2006] shows that using accurate p-values for meta analytic panel tests is

crucial to achieve a precise control of the type I error rate. The null distributions of

both residual and system-based time series cointegration tests converge to functionals of

Brownian motion. Hence, analytic expressions of the distribution functions are hard to

obtain, and p-values of the tests cannot simply be obtained by evaluating the correspond-

ing cdf. A remedy frequently adopted in the literature is to derive the critical values

(and, consequently, the p-values) by Monte Carlo simulation. However, this approach is

unsatisfactory for (at least) the following reason. These simulations are typically only per-

formed for one sample size which is meant to provide an approximation to the asymptotic

distribution. This sample size need neither be large enough to be useful as an asymptotic

approximation nor does it generally yield accurate critical values for other sample sizes.

MacKinnon et al. [1999] show for cases where analytic expressions of the distribution

functions are available that this approach may deliver fairly inaccurate critical values.

In the time series case, it is now fairly standard practice to report p-values of unit root

and cointegration tests using the results of the response surface regressions introduced by

MacKinnon [1991]. We follow this approach here.

The null hypothesis (1) formulates no precise econometric characterization of (non-) coin-

tegration. This is to allow for generality in testing the long-run equilibrium properties

of the series, enabling the researcher to use whichever time series tests seem suitable to

test for time series (non-)cointegration in the different units of the panel. We use p-values
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of the Augmented Dickey-Fuller (ADF ) cointegration tests [Engle and Granger, 1987] as

provided by MacKinnon [1996].3 That is, the p-values are obtained from the t-statistic of

γi − 1 in the OLS regression

∆ûi,t = (γi − 1)ûi,t−1 +
P∑
p=1

νp∆ûi,t−p + εi,t.

Here, ûi,t is the usual residual from a first stage OLS regression of one of the xik on the

remaining xi,−k. Alternatively, one could capture serial correlation by the semiparametric

approach of Phillips and Ouliaris [1990]. Finally, we obtain the p-values for the Johansen

[1988] λtrace and λmax tests provided in MacKinnon et al. [1999]. That is, we test for

the presence of h cointegrating relationships by estimating the number of significantly

non-zero eigenvalues of the matrix Π̂i estimated from the Vector Error Correction Model

∆xi,t = −Πixi,t−P +
P−1∑
p=1

Γi,p∆xi,t−p + εi,t

by the λtrace-test

λtrace,i (h) = −T
K∑

k=h+1

ln (1− π̂k,i) (3)

and the λmax-test

λmax,i (h|h+ 1) = −T ln (1− π̂h+1,i) . (4)

Here, π̂k,i denotes the kth largest eigenvalue of Π̂i. In (3), the alternative is a general one,

while one tests against h+ 1 cointegration relationships in (4).

Hence, we obtain the p-values required for performing the P tests from the most widely

used time series cointegration tests.

3 Finite Sample Performance

We now present a Monte Carlo study of the finite sample performance of the tests proposed

in the previous section. The Data Generating Process (DGP) is similar to the one used

3MacKinnon improves upon his prior work by using a heteroskedasticity and serial correlation robust
technique to approximate between the estimated quantiles of the response surface regressions. Our
application is based on a translation of James MacKinnon’s Fortran code into a GAUSS procedure which
is available upon request. The procedure implements all panel data tests developed in this section.
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by Engle and Granger [1987]. The extension to the panel data setting is discussed in Kao

[1999]. For simplicity, only consider the bivariate case, i.e. K = 2:

DGP A

xi,1t − αi − βxi,2t = zi,t, a1xi,1t − a2xi,2t = wi,t

where

zi,t = ρzi,t−1 + ezi,t, ∆wi,t = ewi,t

and (
ezi,t

ewi,t

)
iid∼ N

([
0

0

]
,

[
1 ψσ

ψσ σ2

])

Remarks

• When |ρ| < 1 the equilibrium error in the first equation is stationary such that xi1,t

and xi2,t are cointegrated with βi = (1 αi β)′.

• When writing the above DGP as an error correction model [see, e.g., Gonzalo, 1994]

it is immediate that xi2,t is weakly exogenous when a1 = 0.

We investigate all combinations of the following values for the parameters of the model:

β = 2, a1 ∈ {0, 1}, a2 = −1, σ ∈ {0.5, 1}, ρ ∈ {0.9, 0.99, 1} and ψ ∈ {−0.5, 0, 0.5}.
The fraction of cointegrated series in the panel is increased from 0 to 1 in steps of 0.1,

i.e. δ ∈ {0, 0.1, . . . , 1}. The dimensions of the panel are N ∈ {10, 20, 50, 100, 150} and,

after having discarded 150 initial observations, T ∈ {10, 30, 50, 100, 250, 500}, for a total

of 2 × 1 × 2 × 3 × 3 × 11 × 5 × 6 = 11, 880 experiments. For a given cross-sectional

dimension, the unit specific intercepts are drawn as αi ∼ U [0, 10] and kept fixed for all

Ti. Each experiment involves M = 5, 000 replications.4 We choose a common β for all i

in order to be able to compare the performance of our tests with results for other panel

cointegration tests as reported by Gutierrez [2003]. The p-values are from the Engle

and Granger [1987] ADF test, holding the number of lagged differences fixed at 1. We

further test for cointegration using the λtrace-test for r = 0 vs. an unrestricted number of

cointegrating relationships.

4Uniform random numbers are generated using the KM algorithm from which Normal variates are cre-
ated with the fast acceptance-rejection algorithm, both implemented in GAUSS. Part of the calculations
are performed with COINT 2.0 by Peter Phillips and Sam Ouliaris.
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For brevity, we only give the results for ψ = 0, a1 = 0 and σ = 1.5 Table I shows the em-

pirical size of the tests (ρ = 1) at the nominal 5% level using the ADF - and λtrace-tests as

the underlying time series tests. Two conclusions are obvious. First, the Engle/Granger-

Table I—Empirical Size of the P Tests

ADF λtrace

T N 10 20 50 100 150 10 20 50 100 150

(i) Pχ2

10 .038 .040 .024 .018 .011 .956 .999 1.00 1.00 1.00
30 .035 .031 .021 .014 .009 .184 .260 .467 .702 .845
50 .041 .033 .027 .022 .021 .102 .137 .216 .344 .437
100 .047 .042 .036 .034 .029 .074 .077 .109 .143 .171
250 .046 .044 .046 .045 .036 .052 .056 .063 .076 .086
500 .049 .048 .049 .048 .047 .056 .052 .054 .068 .068

(ii) PΦ−1

10 .027 .019 .006 .002 .001 .954 .998 1.00 1.00 1.00
30 .034 .022 .016 .009 .005 .180 .265 .468 .711 .848
50 .038 .030 .026 .018 .016 .102 .136 .218 .355 .447
100 .046 .038 .032 .033 .025 .072 .081 .111 .139 .177
250 .043 .045 .044 .041 .032 .051 .061 .061 .079 .086
500 .049 .047 .045 .044 .041 .056 .053 .055 .070 .065

(iii) Pt

10 .030 .019 .006 .002 .001 .957 .998 1.00 1.00 1.00
30 .035 .023 .016 .010 .005 .183 .264 .473 .716 .852
50 .039 .030 .027 .018 .014 .102 .139 .217 .36 .447
100 .046 .038 .033 .032 .024 .074 .079 .109 .141 .176
250 .046 .045 .044 .041 .031 .053 .061 .063 .082 .086
500 .050 .048 .046 .045 .041 .056 .057 .059 .070 .067

Note: ρ = 1, ψ = 0, σ = 1 and a1 = 0. M = 5, 000 replications.
5% nominal level. ADF and λtrace are the underlying time series tests.

based tests are undersized. This issue is particularly severe in short panels but vanishes

with increasing T . Oddly, all tests become more undersized as N increases. Hanck [2006]

provides an analysis of this behavior. The Pχ2 test seems to have slightly better size

than the other two. We also investigate whether using MacKinnon’s [1996] p-values im-

proves the behavior of the tests relative to obtaining quantiles by generating only one set

of replicates. For smaller panels, the latter approach (with 50,000 replications) exhibits

non-negligible upward size distortions even when using quantiles specifically generated for

5The full set of results of the finite sample study are available upon request. Broadly speaking, a lower
σ seems to have little, if any, systematic effect. Correlation in the error processes (ψ 6= 0) has a slightly
negative effect on power.

7



the sample sizes considered. Interestingly, however, there does not seem to be a trend

towards lower size with increasing N . For medium- and large-dimensional panels neither

approach has a clear advantage over the other.

Second, the Johansen-based tests are grossly oversized in panels of small and medium

dimensions. Two reasons may be put forward for this disappointing performance. First,

the underlying λtrace-test overrejects in short time series when using asymptotic critical

values [see also Cheung and Lai, 1993]. This flaw then inevitably carries over to the panel

tests via erroneously small p-values. Second, MacKinnon et al. [1999] emphasize that the

p-values estimated for the Johansen [1988] tests, unlike those estimated in MacKinnon

[1996] for the Engle and Granger [1987] test, are only valid asymptotically. It may thus

not be appropriate to use these for shorter time series. We therefore waive to report the

essentially meaningless power for shorter panels.

Table II shows the raw power of the tests at ρ = 0.9.6 The major findings are as follows.

First, after having discarded the severely size-distorted panels, both the Engle/Granger-

and Johansen-based tests behave consistently in that power for all variants grows with

both dimensions. The use of panel data is therefore justified. Second, the PΦ−1 and the

Pt tests outperform the Pχ2 test at least for the ADF variant. This finding is in line with

the results reported by Choi [2001] for his panel unit root tests. Whether to choose the

PΦ−1 or the Pt in any application would be a matter of taste. Third, in each of the cases,

power tends to grow faster along the time series dimension. More specifically, the power

of the tests rises quickly between T = 50 and T = 100. The simulation evidence therefore

suggests that the P tests are particularly useful in relatively long panels. Figure I plots

the power of the Engle/Granger-based tests for N = 100 as the fraction of cointegrated

variables in the system, δ, increases. Panels (a) and (b) depict the cases T = 50 and

T = 100, respectively. It can be seen that the power of the P tests rises to one substantially

quicker when the underlying time series are longer.

We now relate our results to those of Gutierrez [2003]. We first give the key statistics

of the various tests that are considered. For more details refer to the original contribu-

tions. Furthermore, Banerjee [1999], Baltagi and Kao [2000] or Breitung and Pesaran

[forthcoming] provide surveys of the literature.

Pedroni [2004]

6Horowitz and Savin [2000] emphasize that size-adjusted critical values are of little use in empirical
work. We therefore do not calculate size-adjusted power.
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Table II—Empirical Power of the P Tests

ADF λtrace

T N 10 20 50 100 150 10 20 50 100 150

(i) Pχ2

10 .061 .052 .040 .037 .033
30 .062 .070 .088 .120 .135
50 .115 .158 .287 .465 .609 .082 .131 .138 .152 .176
100 .403 .659 .955 1.00 1.00 .110 .217 .246 .254 .309
250 .999 1.00 1.00 1.00 1.00 .564 .966 .997 .999 1.00
500 1.00 1.00 1.00 1.00 1.00 .998 1.00 1.00 1.00 1.00

(ii) PΦ−1

10 .039 .031 .015 .006 .005
30 .063 .078 .108 .151 .188
50 .136 .201 .376 .617 .771 .076 .130 .128 .129 .143
100 .426 .700 .968 1.00 1.00 .106 .223 .238 .238 .271
250 .990 1.00 1.00 1.00 1.00 .443 .892 .975 .996 1.00
500 1.00 1.00 1.00 1.00 1.00 .941 1.00 1.00 1.00 1.00

(iii) Pt

10 .041 .030 .015 .005 .004
30 .063 .076 .105 .150 .182
50 .132 .196 .359 .603 .751 .078 .135 .131 .134 .148
100 .423 .685 .961 1.00 1.00 .108 .222 .240 .241 .277
250 .994 1.00 1.00 1.00 1.00 .480 .915 .982 .997 1.00
500 1.00 1.00 1.00 1.00 1.00 .979 1.00 1.00 1.00 1.00

Note: ρ = 0.9, ψ = 0, σ = 1, δ = 0.5 and a1 = 0. M = 5, 000 replications.
5% nominal level. ADF and λtrace are the underlying time series tests.

Pedroni [2004] derives seven different tests for panel cointegration. These may be cate-

gorized according to what information on the different units of the panel is pooled. The

“Group-Mean” Statistics are essentially means of the conventional time series tests [see

Phillips and Ouliaris, 1990]. The “Within” Statistics separately sum the numerator and

denominator terms of the corresponding time series statistics. Let Ai =
∑T

t=1 ẽi,tẽ
′
i,t,

where ẽi,t = (∆êi,t, êi,t−1)
′. The êi,t are obtained from heterogenous Engle/Granger-type

first stage OLS regressions of an xik on the remaining xi,−k, possibly including some

deterministic regressors. We consider the “Group-ρ”, “Panel-ρ” and (nonparametric)

9



(a) T = 50, N = 100. (b) T = N = 100.
ρ = 0.9, ψ = 0, σ = 1 and a1 = 0

Figure I—Power of the P panel cointegration tests

“Panel-t”-test statistics which are given by, respectively,

Z̃ρ̂NT−1 =
N∑
i=1

A−1
22i(A21i − T λ̂i),

Zρ̂NT−1 =

(
N∑
i=1

A22i

)−1 N∑
i=1

(A21i − T λ̂i) and

Zt̂NT
=

(
σ̃2
NT

N∑
i=1

A22i

)−1/2 N∑
i=1

(A21i − T λ̂i).

The expressions λ̂i and σ̃2
NT estimate nuisance parameters from the long-run conditional

variances. After proper standardization, all statistics have a standard normal limiting

distribution. The decision rule is to reject the null hypothesis of no panel cointegration

for large negative values.

Kao [1999]

Kao [1999] proposes five different panel extensions of the time series (A)DF -type tests.
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We focus on those that do not require strict exogeneity of the regressors. More specifically,

DF ∗
ρ =

√
NT (ρ̂− 1) +

3
√
Nσ̂2

ν

σ̂2
0ν√

3 +
36σ̂4

ν

5σ̂4
0ν

and

DF ∗
t =

tρ +

q
6Nσ̂2

ν

2σ̂0ν√
σ̂2

0ν

2σ̂2
ν

+
3σ̂2

ν

10σ̂2
ν

.

Here, ρ̂ is the estimate of the AR(1) coefficient of the residuals from a fixed effects panel

regression and tρ is the associated t-statistic. The remaining terms play a role similar

to the nuisance parameter estimates in the Pedroni [2004] tests. Again, both tests are

standard normal under the null of no panel cointegration and reject for large negative

values.

Larsson et al. [2001]

The panel cointegration test of Larsson et al. [2001] applies a Central Limit Theorem to

(3). Defining λtrace = N−1
∑N

i=1 λtrace,i, their panel cointegration test statistic is given by

ΥLR =
√
N

λtrace − E[λtrace]√
Var[λtrace]

 .

Under some conditions, including
√
NT−1 → 0, Larsson et al. [2001] can show that

ΥLR
T,N−→ N (0, 1). The moments are obtained by stochastic simulation and are tabulated

in the paper. The null hypothesis of no cointegration at a level α is rejected if the test

statistic exceeds the (1 − α)-quantile of the standard normal distribution, i.e. for large

values.

Now, let us compare the results in Figure I with those obtained by Gutierrez [2003].7 The

P tests are somewhat less powerful than the residual-based panel tests Z̃ρ̂NT−1, Zρ̂NT−1,

DF ∗
ρ and DF ∗

t for shorter panels. However, power for longer panels is similar. Further-

more, the P tests always outperform the system-based ΥLR test by Larsson et al. [2001].

Note, though, that these results are not based on size-adjusted critical values as in Gutier-

rez [2003]. Given that the P tests seem to be undersized (see Table I), their power would

be higher if it were reported on the basis of exact rather than nominal critical values.

7Figure I corresponds to the middle and lower right panel in Fig. 1 in Gutierrez [2003].
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We think that DGP A is restrictive. Apart from the unit specific intercepts, no het-

erogeneity is allowed for. But, in many practical applications, the units of a panel, say,

countries, differ in their short-run dynamic adjustment behavior. We therefore elicit how

the performance of the tests changes when we introduce heterogeneity in the serial cor-

relation properties. Since, to the best of our knowledge, no comparison of the different

panel cointegration tests under these circumstances is available in the literature, we also

include some of the tests presented above.

Consider the following modification of DGP A to introduce higher order serial correlation

in the equilibrium error zt. We draw, for each cointegrated series in the panel, the order

of the AR-process according to ζ̃i = [ζi], where ζi ∼ U [1, 6], i = 1, . . . , δN and [y] is

the integer part of y. We then generate the AR-coefficients from ϕi,p ∼ U [0, 0.99], i =

1, . . . , δN ; pi = 1, . . . , ζ̃i, discarding all processes with eigenvalues outside the unit circle.

DGP B

xi1,t − αi − βxi2,t = zi,t, a1xi1,t − a2xi2,t = wi,t,

zi,t =

ζ̃i∑
pi=1

ϕi,pi
zi,t−pi

+ ezi,t, ∆wi,t = ewi,t,(
ezi,t

ewi,t

)
iid∼ N

([
0

0

]
,

[
1 ψσ

ψσ σ2

])

Table III gives results on the power of the tests for σ = 1, ψ = 0, a1 = 0 and δ = 0.5. The

dimensions are T,N ∈ {10, 30, 50}. The second part of the subscript (‘DF ’) indicates that

Engle and Granger’s [1987] ADF test is chosen as the underlying time series test for the

P tests. The number of lagged differences for the ADF regression is chosen according to

the automatic procedure suggested by Ng and Perron [2001]. It is not possible to compare

the power with the results from Table II because the alternative is now different. But,

Table III shows that the first five tests clearly have higher power than the last one. This

is intuitive as the P and Pedroni [2004] tests are designed to accommodate cross-sectional

heterogeneity. The tests put forward in this paper may therefore be useful in a fairly wide

range of practical applications.
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Table III—Power with AR(p) Errors

T N 10 30 50 10 30 50

Pχ2DF PΦ−1DF

20 .899 .999 1.00 .792 .992 .999
30 .990 1.00 1.00 .961 1.00 1.00
50 .999 1.00 1.00 .997 1.00 1.00

PtDF Zρ̂NT−1

20 .832 .995 .999 .806 .996 1.00
30 .973 1.00 1.00 .899 .999 1.00
50 .998 1.00 1.00 .980 1.00 1.00

Zt̂NT
DF ∗ρ

20 .968 1.00 1.00 .030 .019 .015
30 .969 1.00 1.00 .101 .109 .130
50 .988 1.00 1.00 .276 .355 .424
Note: ρ = 0.9, σ = 1, δ = 0.5, ψ = a1 = 0.
M = 5, 000 replications. 5% nominal level.

4 Conclusion

We introduce new tests for panel cointegration. As in Maddala and Wu [1999] and

Choi [2001], we use a meta analytic p-value combination approach to develop tests for

nonstationary panel data. The new tests are flexible, intuitively appealing and easy

to implement. The tests employ highly accurate p-values obtained from response surface

regressions [MacKinnon, 1996; MacKinnon et al., 1999]. A finite sample study reveals that

the Engle and Granger [1987]-based variant of the suggested tests is somewhat undersized

in either very short and wide panels. However, the empirical size of the tests is very close

to the nominal one for panel dimensions often encountered in applied macroeconometric

work. In terms of power, their performance is intermediate between other widely used

panel cointegration tests.

As most tests in this literature, the ones suggested here rely on the assumption of cross-

sectional uncorrelatedness (see Assumption 2). This assumption is likely to be overly

strong for many macroeconomic panels and may lead, if violated, to erroneous conclusions

[cf. O’Connell, 1998]. We therefore suggest to extend the tests developed here to allow for

cross-sectional correlation by, e.g., the bootstrap method. Maddala and Wu [1999] report

encouraging results along these lines for their panel unit root test. There is a growing

literature on bootstrapping cointegrating regressions [see Li and Maddala, 1997] that can

13



be fruitfully applied to the present problem. Recent useful contributions include Chang

and Park [2003] and Chang et al. [2006]. Investigation of this extension is currently under

way by the author.
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