~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Gelper, Sarah; Schettlinger, Karen; Croux, Christophe; Gather, Ursula

Working Paper
Robust online scale estimation in time series : regression-
free approach

Technical Report, No. 2007,17

Provided in Cooperation with:

Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475),
University of Dortmund

Suggested Citation: Gelper, Sarah; Schettlinger, Karen; Croux, Christophe; Gather, Ursula (2007) :
Robust online scale estimation in time series : regression-free approach, Technical Report,

No. 2007,17, Universitat Dortmund, Sonderforschungsbereich 475 - Komplexitatsreduktion in
Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/25002

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/25002
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Robust Online Scale Estimation in Time Series:

A Regression-Free Approach

Sarah Gelper'*, Karen Schettlinger?,
Christophe Croux!, and Ursula Gather?

May 3, 2007

L Faculty of Economics and Management, Katholieke Universiteit Leuven,
Naamsestraat 69, 3000 Leuven, Belgium.
2 Department of Statistics, University of Dortmund, 44221 Dortmund, Germany.

Abstract: This paper presents variance extraction procedures for univariate time
series. The volatility of a times series is monitored allowing for non-linearities,
jumps and outliers in the level. The volatility is measured using the height of
triangles formed by consecutive observations of the time series. This idea was
proposed by Rousseeuw and Hubert (1996, Regression-free and robust estimation
of scale for bivariate data, Computational Statistics and Data Analysis, 21, 67-85)
in the bivariate setting. This paper extends their procedure to apply for online
scale estimation in time series analysis. The statistical properties of the new
methods are derived and finite sample properties are given. A financial and a
medical application illustrate the use of the procedures.

Keywords: Breakdown Point, Influence function, Online monitoring, Outliers,

Robust scale estimation.

*Corresponding author. E-mail: sarah.gelper@econ.kuleuven.be, Tel: 0032/16326928, Fax:
0032/1632.67.32



1 Introduction

In this paper we propose a method to monitor variability in univariate time series.
The procedure allows one to get insight in the evolution of the variability of the
series over time. Moreover, it (i) can cope with highly non-linear signals, (ii)
is suitable for online applications and (iii) is robust with respect to outliers and
level shifts. This is achieved by making use of the vertical height of triangles
formed by consecutive data points. The method is explorative; it does not require
an explicit modeling of the time series. This technique is of interest in various
applied fields. In finance for instance, variability of returns is associated with
risk and thus directly relates to portfolio management and option pricing. In
intensive care, measurement of variables like heart rate and blood pressure need
to be constantly monitored since changes in these variables and their variability
contain crucial information on the well-being of the patient.

For both the financial and the intensive care applications, the data are recorded
with high frequency, e.g. every minute or every second. For these applications, it is
important to monitor the variability instantaneously. For this reason, the proposed
methods are designed to work online: for every new incoming observation, the
variability is easily determined by a fast updating step. The scale estimate at
the present time point is obtained by using a finite number of the most recent
observations, making it a local approach.

High frequency measurements typically lead to ‘unclean’ and noisy series con-
taining irrelevant outliers. Hence, we focus on robust techniques. For every
method, the robustness with respect to outliers is studied in detail by computing
breakdown points and influence functions. Statistical efficiencies are also derived.
These are accompanied by simulation results which provide insight into the finite
sample properties of the different methods (Appendix B).

The scale estimates discussed in this paper are regression free, i.e. directly based
on the observed data points without applying a regression fit first. The advantage

is that we do not have to bother about estimating the main signal in the series



before estimating the variability. Regression free scale estimation methods have
already been studied by Rousseeuw and Hubert (1996) in the general bivariate
setting. Here, we are especially interested in time series scale estimation, and
adapt the estimators proposed by Rousseeuw and Hubert (1996) to be applicable
to time series with non-linear trends, trend changes and jumps. In this more special
setting of univariate times series, we are able to derive theoretical properties of
these estimators as well.

The different candidate methods are described in Section 2. Their robustness
properties are studied in Section 3 and their statistical efficiencies in Section 4.
Data applications can be found in Section 5. Finally, Section 6 briefly summarizes

the results and gives concluding remarks.

2 Description of the methods

We define a simple time series model, where the time series (y;):cz is decomposed

into a level component y; and a random noise component e,

Yy = Mt+€t. (21)

The noise component e; is assumed to have zero mean and time varying scale o;.
The focus in this study lies on estimating and monitoring o;, which reflects the
variability of the process around its underlying level ;. The level or signal p; can
vary smoothly over time but can also contain sudden jumps or trend changes. The
variability of the process y; is then captured by the scale of the e;, where the latter
may contain outliers.

We make use of a moving window approach for the estimation of o;. To obtain
a scale estimate of the time series at time point ¢, denoted by S;, we only use
information contained in the time window formed by the n time points t —n+1 to
t. As the window moves along the series, we obtain a scale estimate S; for every

time point t = n,...,T. As such, a running scale approach is obtained, suitable



for online application. An example would be a running standard deviation, which
would of course not be robust with respect to outliers nor be suitable for time
series containing a trend.

One possibility for online estimation of o, is to apply a scale estimate to the
residuals of a robust regression fit within a time window, as studied in Fried and
Gather (2003). This procedure is based on the fact that the local level u; can be
estimated well by robust regression filters (see e.g. Davies et al. (2004) and Gather
et al. (2006)). In that case it is assumed that, within a time window of length
n, the underlying signal p; of the series y; can be reasonably well approximated
by a linear trend. The approach presented in this paper allows for stronger non-

linearities in the time series.

2.1 Estimation Methods

The methods under consideration are regression free, i.e. a scale estimate for e; in
(2.1) is obtained without fitting a regression line within the time window. Following
the approach of Rousseeuw and Hubert (1996), the scale estimates are constructed
using the vertical heights of triangles formed by triples of successive data points.
These heights correspond to the non-zero residual of an L, fit to these three data
points. Here it is assumed that only within each triple of consecutive observations,
the series can well be approximated by a linear trend.

Consider any three successive observations y;, ;11 and y;12. Assuming the
series to be observed at equidistant time points, the height of the triangle formed

by these observations is given by the simple formula

Yi + Yit2

hi = |Yit1 — 9 : (2.2)

The more variation there is in the time series, the larger the h; will be. Within
a window of length n, the heights of the n — 2 adjacent triangles are used in the
construction of the scale estimators studied here. Note that the heights h; in (2.2)

are invariant with respect to adding a linear trend to the time series, having the



beneficial consequence that linear trend changes do not affect the scale monitoring

procedure.

Suppose we want to estimate the variability at time ¢ using the observations
in the time window t —n + 1, ...t of length n. For ease of notation, we drop the
dependency on ¢t and denote these observations by y; to y,, and the associated
heights as defined in (2.2) by h;, for i = 1,...,n — 2. The first estimator we
consider is proposed in Rousseeuw and Hubert (1996) and is defined via the a-
quantile of the heights obtained from adjacent triangles, with 0 < o < 1. Let hg,
be the i-th value of the ordered sequence of all heights in the current window. The

scale estimate Qg4 is then given by

gdj(yla'”uyn> = ¢q h(lam-2))) (2.3)

which is the |a(n — 2)]-th value in the sequence of ordered heights, with ¢, a
constant to achieve Fisher consistency at a specified error distribution, referred to
as the consistency factor. The value of a regulates the trade off between robustness
and efficiency, as will be discussed in detail in sections 3 and 4.

Considering observations sampled from a continuous distribution F', the corre-
sponding triangle heights will also have a continuous distribution, denoted by Hp.

In that case the functional form of the estimator (2.3) corresponds to

“5(F) = ¢ Hy'(a). (2.4)

adj

Assuming normality of the noise component, it is not difficult to show that one

needs to select

3 1
¢ = (Q%)" with Q4 1= (/S 07! (O‘; > . (2.5)
Here ®(z) is the standard normal cumulative distribution function at z, and the
index N refers to the assumption of normality. For example, for o = 0.5 we have
cg =251,

We present two alternatives to the Qg estimator making use of averages in-

stead of the quantile. The first alternative is constructed as the Trimmed Mean
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(TM) of the adjacent triangle heights and is defined by

la(n-2)]
1
TM(. - Yn) = €= > . 2.6
ad](y17 Y ) c LO‘(H_QH (@) ( )

i=1
The second alternative is the square root of a Trimmed Mean of Squares (TMS)

of the adjacent triangle heights:

1 la(n—2)]

« = S I 2

The trimming proportion equals (1 — ) where a can vary between zero and one.
As for the Qg estimator, it regulates the trade off between efficiency (high «) and

robustness (low «). The functional form of these estimators is given by

TMgdj(F) = Cp - TM{ (Hp) (2.8)
and
TMSgdj(F) = ¢s- TM5'(Hp). (2.9)

Here, we use a trimmed moment functional 7'M} which is defined as the a-trimmed

pth central moment to the power of 1/p,
TM®: G~ TMG) = E(X?| X <Q*G))", (2.10)

with X ~ G. The consistency factors ¢, and ¢, can be derived for Gaussian noise:

Cm = a , (2.11)
VB [0(0) — #(v/2/3Q3)]
¢ = a/3 (2.12)

Var2— V2B Qs o(V2BQ3)
with Q% defined in (2.5), and ¢(z) the associated density of ®(z). Details on how
these expressions are obtained can be found in Appendix A. For example, for a =
0.5, one has ¢,, = 2.51 and ¢, = 2.16. The consistency factors ¢4, ¢,,, and cs have
been derived at the population level. However, extensive simulations (reported

in Appendix B) have shown that they yield very good approximations, already
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for samples of size n = 20. We stress that the finite sample case is not without
importance in this setting since the scale estimates are computed within windows of
limited size. To achieve unbiasedness at finite samples for a Gaussian distribution
of, for example, the Qg estimators, one could replace ¢, by its finite sample
counterpart cj (obtainable by means of Monte-Carlo simulations). In Appendix
B, a simple approximative formula for this finite sample factor ¢y, with o = 0.5,

is derived:
n

na10] b
Kl n+0.44

(2.13)

We only consider scale estimators based on heights of adjacent triangles. Alter-
natively, one could use the heights of triangles formed by all triples of data points
within the window, or any other subset of them. Several such possibilities are de-
scribed in Rousseeuw and Hubert (1996). However, for online monitoring of high
frequency time series, the use of adjacent triangles is natural and appealing. The
adjacent based methods are fast to compute and the update of the estimate for a
new incoming observation is quick. The fastest algorithm to insert a new observa-
tion in an ordered series takes only O(logn) time and hence, so does the update of
the adjacent based estimators. Moreover, using all possible triangles in one win-
dow requires the local linearity assumption to hold in the entire window and not
only for triples of consecutive observations. As such, methods based on adjacent

triangles are more suitable when the underlying signal has strong nonlinearities.

3 Robustness Properties

To evaluate the robustness of the estimators with respect to outlying observations,

we look at their breakdown points and influence functions.

3.1 Breakdown Points

Loosely speaking, the breakdown point of a scale estimator is the minimal amount

of contamination such that the estimated scale becomes either infinite (explosion)
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or zero (implosion).

Let y,, = {v1,--.,yn} be a sample of size n with empirical distribution function
F,,. Let S denote one of the investigated scale functionals (2.4), (2.8) or (2.9) taking
values in the parameter space (0,00) which we consider equipped with a metric
D satisfying supy, o, (0.00) D(51, 52) = 00 . For evaluating the breakdown point of
scale functionals, the metric D(sq, s2) = |log(s1/s2)| seems a suitable choice as it
yields oo in both cases, explosion and implosion.

Further, let y* be a sample obtained from y, but with a proportion of k/n
observations altered to arbitrary values (k € {1,...,n}), and let F* denote the
the empirical distribution of y*. We define the finite sample breakdown point (fsbp)
of S at the sample y,,, or at F,, by

Fk

fsbp(S, F,, D) = min% {k €{1,2,...,n}: supD (S(F,),S(F})) = oo} ,
which is equal to
fsbp(S, F,) = min {fsbp* (S, F,,),fsbp™ (S, F,,) } , (3.1)
where
fsbp™ (S, F;,) = mlnﬁ {k €{l,2,...,n}: 8}1?15) S(F*) = oo} (3.2)
is the explosion breakdown point, and
fsbp™ (S, F,) = mlnﬁ {k: €{1,2,...,n}: i%fS(Fff) = 0} (3.3)

the implosion breakdown point.
It is possible to give an upper bound for the finite sample breakdown point for

affine equivariant scale estimates S (Davies and Gather (2005)):

fshp(S, F,) < V - ”A;F") i 1J /n, (3.4)



where nA(F,) is the maximal number of observations which might be replaced
within the sample, such that the scale estimate remains positive. For scale esti-
mates based on adjacent triangle heights nA(F},) is equal to |a(n —2)] — 1. Note
that the bound (3.4) is not obtained for the scale estimates S considered here.

Rousseeuw and Hubert (1996) calculated the finite sample breakdown point of
the ()5, estimator in a regression setup with random design; but we consider a fixed
design with equidistant time points, yielding higher values for the finite sample
breakdown point: Suppose that y,, is in general position and define B := |a(n—2)].
If the replacement sample y* is chosen with k = B —1 such that B+1 observations
are collinear, then this results in B — 1 zero triangle heights and n — B — 1 heights
larger than zero. Hence, the Bth largest value of the ordered heights will be positive
which implies fsbp™ (S, F,,) > B/n. On the other hand, replacing B observations
such that B + 2 observations are collinear implies that at least B heights will be
zero and therefore fsbp™ (S, F,,) < B/n. We thus obtain

fsbp™ (S, F,,) = |a(n —2)|/n.

For the explosion breakdown point, we follow the proof of Theorem 3 in

Rousseeuw and Hubert (1996) and obtain

fsbp™ (S, F,) = {” —1-laln= z)q /n.

3

Hence, the finite sample breakdown point corresponds to

fsbp(S, F,) = %min { [” - L;‘”” - QW la(n — 2)J} . (3.5)

The maximum value for fsbp(S, F},) depends not only on the choice of a but
also on whether n is divisible by four or not (see Table 1). A proof can be found
in Appendix A.

Table 1 shows that, depending on n, more than one quantile might be chosen to
achieve an estimate with maximum fsbp, with the order of the empirical quantile
being |a(n —2)] € {|®],...,n+1—3[2]}. This is due to the fact that

both implosion and explosion of the estimator are regarded as breakdown.
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max. value of  reached for  corresponding

fsbp(S, F,,) a € la(n—2)] €
n € {4k —1,k € N}: %Lzl [4(7;:12)’ 481t52)) {nTH}
n € {4k, k € N}: le [4(1;12)7 4(7;::82)) T HTH
n € {4k + 1,k € N} % [4(2;_—12)’4?:—%)) {nT_l’nTg’an
n € {4k + 2,k € N}: n=2 [y o) 1 R, e, e

Table 1: Maximum values for the finite sample breakdown point fsbp(.S, F;,) with
corresponding values of «a and the rank |a(n — 2)| of the triangle heights with S

representing one of the scale estimates (g, T Mgy or TMSg,.

If collinear observations rather than outliers are expected in the sample, the

best choice is to set a to the maximal value within the range given in Table 1,
n+1-3| 2 |

e a= =)

. However, if the aim is to prevent explosion, then setting a =

n+1
4(n—2)’

and hence taking the smallest empirical quantile, is recommendable. Since
we only consider data in general position, preventing explosion is more important
here. Thus, in the remainder of this paper, we choose a to be equal to

n+1

= (3.6)

Qopt =

As Rousseeuw and Hubert (1996) point out, the finite sample breakdown point
tends to a meaningful limit which they call asymptotic breakdown point. Here,
all interval limits for the « attaining the maximum fsbp tend to 0.25 as n goes
to infinity. So, the maximal asymptotic breakdown point for the considered scale
estimates is 0.25 for a = 0.25. For other values of «, the asymptotic breakdown

point equals min{(1 — «)/3, a}.

3.2 Influence Functions

The Influence Function (IF) quantifies the difference in estimated scale due to

adding small amounts of outliers to the data. The uncontaminated time series is



denoted by y; and, for deriving the IF, we assume local linearity and a constant

scale within the time window considered. Hence,
yi =a+bi+ €0 (3.7)

fori=1,...,n, where ¢; i< Fy. Typically, Fy will be taken as the standard normal
N(0,1). Since all our estimation methods are regression invariant, we assume that
a = b = 0 in equation (3.7) without loss of generality. As defined by Hampel
(1974), the influence function of a scale functional S at the model distribution F
is given by

IF(w, S, F) — 13%1 S(1—¢e)F +€<€Aw) — S(F) | (3.8)

where A, denotes the point mass distribution at w for every w € R. For each
possible value w, IF(w, S, F') quantifies the change in estimated scale when a very
small proportion of all observations is set equal to the value w. Applying definition
(3.8) to the Qg functional (2.4), and taking the standard normal distribution

N(0,1) for ', we obtain the following expression for the influence function:

IF (w, Qy, N(0,1)) = —G(Q%, w)

2B e (VB ar)

where ¢, and Q% are defined according to (2.5) and

(3.9)

G(Q%,w) = —3(28(v/2/3Q%) — 1) + 2(V2(Q} — w)) — ®(V2(-Q% — w))
+2(2(v/(4/5)((w/2) + Q%)) — 2(v/(4/5)((w/2) — Q%)))- (3.10)

The analytical derivation of this expression can be found in Appendix A. The IF
of the Qg estimator for o = 0.25 is depicted in the upper left panel of Figure 1.
We notice three important properties: the IF is smooth, bounded and symmetric.
Smoothness implies that a small change in one observation results in a small change
of the estimated scale. Because the influence function is bounded, large outliers
only have a limited impact on the estimated scale. As soon as the value of an outlier

exceeds a certain level (approximately 9), the IF is flat and the exact magnitude
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of the outlier is of no importance anymore for the amount by which the estimated
scale increases. Finally, we note that the influence function is symmetric around
zero, i.e. a negative and positive outlier of the same size have an equal effect on

the estimated scale.

Influence functions have also been computed for the estimators based upon
trimmed sums of (squared) heights. We only present the outcomes here; the
mathematical derivations can be found in Appendix A. Let M denote one of the
moment based functionals in equations (2.8) or (2.9), then the influence function
at the standard normal N(0,1) is given by

IF(w, M, N(0,1)) = ]% [ @ 6@3) -35 +Va (I + Lyzya)

+2\/§ (IPJ%\/E + Ipm,m) | (3.11)
with p = 1 and ¢ = ¢, for T Mg, while p = 2 and ¢ = ¢, for the TMSg,; estimator.

In the above expression, we also need the integral
QN
1h, = / hPp(aw + bh)dh ,
0

which can be computed analytically (see Appendix A). The upper right panel of
Figure 1 shows the IF for TM g, where a equals 0.25. It shows the same properties
as the influence function of Qg — it is smooth, bounded and symmetric. In the
middle left panel we see the corresponding IF of the T'M.S estimator, which is
remarkably close to that of TM. When comparing the influence function of the
three robust estimators, sharing the same breakdown point, we can see that they
are very similar.

In the middle right and lower panel of Figure 1, the IF of the non robust

estimators, T'M®

agj and TMSE, with o = 1, are plotted. The influence functions are

smooth and symmetric but unbounded. As expected, the IF of the TMS-method
is clearly quadratic, while the IF of the TM-approach resembles the absolute value
function. For smaller values of «, the difference between the IF's of the two trimmed

mean approaches becomes much less pronounced.
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Figure 1: Influence functions for the (g, agj» and TMSg,. estimator, for

a = 0.25 and for a = 1.
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Finally, we also simulated empirical influence functions at finite samples to
confirm the quite complicated expression for the theoretical IF (see Appendix B).
It can be observed that already for n = 20, the empirical IF is very close to its

theoretical counterpart.

4 Statistical Efficiencies

The efficiency of an estimator measures its relative precision and is related to its
asymptotic variance (ASV). Here, we study the efficiency of an estimator S relative
to the non-robust 7'M S}, estimator:

ASV(TMSL,, F)
ASV(S, F)

Efficiency (S, F') =

We maintain the local linearity assumption (3.7) and let F' indicate the distribu-
tion of the error terms, supposed to be independent. Computing the asymptotic
variance of the scale estimators requires caution because the estimators are based
on heights of triangles, and these heights are autocorrelated. Similar to Portnoy
(1977), we can write the asymptotic variance of an estimator based on the heights

h; as
—+00

ASV(S, F) = Z E(¢(hi, S, Hp) ¢ (hiy1, S, Hp)), (4.1)

l=—0c0

where 1(h;, S, Hr) is the influence function of the estimator S as a function of the
heights h;, which follow distribution Hpr determined by F'. Note that ¢(h;, S, Hr)
is different from the influence function as described in Section 3, where we examine
the effect of an outlying observation, while here we need the influence function of
the heights, as these are the elements in the construction of the estimators. If
the error terms in equation (3.7) are independently distributed, the heights are

auto-correlated up to two lags, and equation (4.1) reduces to

ASV(S.F) = E(W*(hi, S, Hp)) + 2 E((hi, S. Hp) ¥ (his1, S, Hr))
+2E(¢(hi, S, Hp) ¥ (hiya, S, Hp)).

13



As in Jureckova and Sen (1996), when F' is a standard normal distribution, the

1-functions for our estimators are given by

o . a—I(h<Q§’V)
Qi) = o ()
(h, TMS,, Hy) = <= (hI(h < Q%)+ Q%(a—I(h < Q%)) —1

G(h, TMSgy, Hy) = 52 (h1(h < Q%) + (Q3)*(a — I(h < Q%)) — }.
where ()% is the a-quantile of the distribution of the heights under the standard
normal distribution (see equation (2.5)), IV is an index referring to the assumption
of normality and I is the indicator function. The exact value of the ASV for
the non-trimmed mean-squared-heights estimator T'M S Clbdj equals 35/36. For the
other estimators, the ASV is obtained by numerical integration. The left panel of
Figure 2 evaluates the ASV of the estimators relative to the ASV of the TM S,
estimator. Naturally, the efficiencies are higher for higher values of «, except for

the Qg where the efficiency decreases steeply when « is larger than 0.86. The
TMS®

adj estimator for every

estimator is slightly more efficient than the T'Mg,,
value of a. Surprisingly the most efficient scale estimator is the Qgy;, at least for
a smaller than 0.85. Hence, replacing the quantile by a trimmed sum does not
result in an increase of efficiency for a large range of values of a.

At the optimal breakdown point of 25%, where a equals 0.25, we obtain an
efficiency of only 25% for the Q5 estimator and of around 20% for both trimmed
mean estimators. Hence the price paid for the maximal breakdown point is very
high. Taking the median of the heights, a = 0.5, results in an efficiency of 49%
for the Qg,, 0.38% for the T Mg, and 0.43% for the TMSg, estimator. These
efficiencies are more reasonable and hence @ = 0.5 is recommended. Then, the
asymptotic breakdown point is 16.6% and the finite sample breakdown point (see
(3.5)) allows for three outliers in a window of 20 observations.

To compare the asymptotic and finite sample behavior of the estimators, the

right panel of Figure 2 presents a simulated approximation of the ASV for window
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Gaussian Asymptotic Efficiencies Gaussian Finite Sample Efficiencies

0.8 —
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04 —
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0.0 —

Figure 2: Asymptotic (left panel) and finite sample (window width 20, right panel)
efficiencies for Qg (solid), T Mgy, (short dash) and T'M Sg,; (long dash), for varying

adj

Q.

width n = 20 in the moving window approach:
ASV (S, F) = nVar(S,, F),

where Var(S,, F) is obtained by computing the scale estimate S,, 10000 times for
a simulated time series of length n with i.i.d. standard normal noise. Comparing
the right and left panel of Figure 2 indicates that a window width of 20 already
provides a good approximation of the asymptotic variance and that the ordering
of the scale estimates remains unchanged in the finite sample setting. Moreover,
a much more elaborated simulation study, summarized in Appendix B, has been
undertaken, where times series where generated from different sampling schemes,
including outlier generating ones. A conclusion is that for values of a not too
close to one, the three different robust procedures remain quite close to each other
under a large variety of sampling scheme. The simulation results confirm that

taking a too small results in too large a loss of efficiency. We thus suggest using

0.5

o 10 practice: This estimator yields a good compromise between robustness and

efficiency.
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5 Applications

In this section we present an artificial data example to illustrate the online scale
estimation methods and two real data applications, one application in finance and

one in medicine.

5.1 Artificial data

The running scale approach is illustrated using a simulated time series of length
500, starting with a quadratic trend. After a trend change (at observation 250)
and a level shift (at observation 250), the trend becomes linear. The true scale oy
is constant at one for the first 300 observations, then jumps to three and grows
linearly thereafter. Contamination is only included in the subseries with linear
trend, i.e. starting from observation 251 on. We include 5% replacement outliers
from a N(0,10%) around the linear trend. The upper graph in Figure 3 plots the

time series, while the bottom graph shows the estimated scales using either the

2;15]-, or the non-robust standard deviation computed from an OLS-fit within each
window considered. The latter estimation approach is called here a running sd.

The true scale function o;, which is known here, is also presented.

0.5

aq; €stimator performs quite well. The

As can be seen from Figure 3, the
shift in the magnitude of the scale (after observation 300) is detected with some
delay since for the first observation after this shift, most observations included in

the window for scale estimation are still from the period before the scale shift.

0.5

aq; estimator can easily cope with the non-linearities in the

Furthermore, the
signal of the times series and with the presence of the outliers in this time series.

Comparing this with the scale estimates which use the running sd approach,
one can first notice that during the period of the quadratic trend, when no outliers
are present, the true scale is systematically overestimated. The reason for this

is that the running sd method relies on the local linearity assumption to be true

within each window. The latter assumption is clearly violated in the first part of

16



the series. As expected, the running sd approach is not robust w.r.t. the trend
and level shift in the signal at ¢ = 250, resulting in a high spike. Finally, in the
last part of the series, the running sd is again substantially overestimating the true

scale, now caused by the presence of outliers in the second part of this time series.

5.2 Real data applications

To illustrate the use of the online scale estimation methods for financial data,
we look at Apple Computer, Inc. stock returns (AAPL). The more volatile the
returns of a stock are, the more risky it seems to invest in it. The upper panel of
Figure 4 plots the returns of the AAPL stock from July 5th 2000 until September
27th 2006. These returns are based on daily closing prices. There are a few large
negative outliers, which indicate that the stock price during that particular day
decreased steeply. The lower panel of Figure 4 presents the scale, estimated using
both the ng} and the running sd-estimator, here for n = 20. Note that the
negative outliers strongly influence the running sd-estimates during certain time
periods. This is undesirable since we do not want a single isolated observation to
potentially result in extremely high scale estimates for several periods. If we are
not in the neighborhood of outliers, then the robust and non-robust approaches
give similar results. During the period we consider, the volatility of the stock
return has decreased. From the beginning of the period until the beginning of

2003, the AAPL stock has become less risky. From then on, the volatility has
stabilized.

The second application concerns heart rate measurements recorded at an in-
tensive care unit once per second. The top panel in Figure 5 shows a time series
of such heart rate measurements plus N (0, 0.01%)-noise, added to prevent the scale
estimates from imploding due to measurement accuracy. The first part of the
time series seems rather stable with a few positive outlying values while at around
22:27h not only does the heart rate of the patient suddenly increase but also its

variability.
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Artificial Times Series
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Figure 3: Artificial time series (top panel). The bottom panel presents the scale
as estimated by the Q7 estimator and the residual standard deviation after an

OLS-fit with n = 50. The true scale is represented by the thin solid line.
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Financial Time Series
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Figure 4: AAPL stock returns (top panel). The bottom panel presents the scale

0.5

as estimated by the @, estimator and the residual standard deviation after an

OLS-fit with n = 20.
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0.5

The bottom panel presents again the Q7

and the running sd estimator using
a window width of n = 240 seconds. Both methods detect the sudden increase in
variability. However, the effect of the outliers on the running sd clearly motivates
the need for robust methods in this application. Similar to the artificial example,
the running sd estimates outstanding large variability around the level shift which
does not reflect the data. This results from the preceding regression step where the
level around the jump is not estimated correctly and thus, the residuals indicate
a large variability. This problem occurs for all regression-based scale estimates,
including robust approaches such as a running @,, scale estimate (Rousseeuw and
Croux (1993)) based on the residuals from a repeated median regression (Siegel
(1982)), as described in Fried and Gather (2003).

Additionally, regression-based methods estimate the variability around a line
within the whole window while the proposed adjacent-type methods are only based
on a linear approximation for three consecutive data points and hence rather esti-
mate short-term variability. Figure 5 demonstrates this: the estimations from the

running standard deviation are larger than the Qg ; estimations, especially during

the period of increased variability.

6 Conclusion

This paper studies regression-free scale estimation procedures for online application
in time series. The estimators are based on the heights of adjacent triangles which
makes them suitable for time series with non-linearities. Moreover, it is shown
that the presented methods perform well for time series with trend changes, level
changes, time varying scale and outliers. This is confirmed by theoretical and
simulation based evidence, as well as by real data examples including a financial
and a physiological application. The estimators achieve a maximal asymptotic
breakdown point of 25% while the ()5g estimator, based on the a-quantile of

heights, turns out to have the best performance in terms of efficiency. Choosing «
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Time Series of Heart Rate Measurements
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Figure 5: Physiological data (top panel). The bottom panel presents the scale
as estimated by the Q%2 estimator and the residual standard deviation after an

adj
OLS-fit with n = 240.
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to be equal to 0.5 provides both, reasonable robustness and efficiency.

The proposed online scale monitoring procedure is easy to implement since all
scale estimates are defined explicitly. For every new observation, the associated
estimate S; requires only O(logn) computing time, allowing for fast online com-
putation. The selection of the window length n is not treated in this paper. We
assume here that the practitioner provides some subject matter information for a
reasonable choice for n. Alternatively, an automatic adaptive selection procedure
for n could be developed, similar as in Gather and Fried (2004).

Besides allowing for fast and easy online computation, the estimates based
on adjacent triangles are more robust in the face of non-linearities than other
existing robust scale estimation procedures in the time series context. For deriving
the theoretical influence function and asymptotic efficiencies, we have required
local linearity and that the error terms within a single window be independent.
However, these assumptions are required only to maintain analytical tractability
of the theoretical results. When used as an explorative tool in an applied time

series context, the latter assumptions are by no means required.
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Appendix A: Proofs

Consistency Factors

To obtain the asymptotic consistency factor for the QQ¢,. estimator, we rely on the

adj

local linearity assumption with normally distributed i.i.d. error terms as in equation

(3.7). If ¢ “ N(0,0%) = F, then we need to select ¢, such that Q4 (F) = 0. The

heights for triangles formed by equidistant and consecutive time points are defined

by (2.2). Now under the local linearity assumption, substitute (3.7) in (2.2) to

h; = ‘(eiﬂ—w%)g‘ = “i\/g"" (A1)

is defined by the correction constant ¢, times the o quantile of all

obtain

with v; ~ N(0,1).
Since Q¢

adj
heights, it follows that

B | a )\
P( mng|<@ad]( )>_2P(Uz§6qma> 1=

o ( o) ) _ Ol e (F) = 0 (0 4 1)/2) ¢y V3T

cg/3/20 2

Hence, in order to get Fisher consistency, we need to select

_\/_

+1)/2)°
Note that ¢, = (Q%)~*

Using definition (2.8) and equation (A.1), we get
TM2(F) = cnE (U\/3/2|v\ o\/3/2]v] < Q% a>
V32 [, [V
cmu (2 / ’ Nmp(v)dv).
@ 0
o6
Cm

«

(F) = o, we take

[0(0) — o(+v/2/3Q%)] -

Hence, to get T' Mgy,
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Figure 6: Finite sample breakdown points, explosion and implosion breakdown

points for varying values of o for exemplary n.

defined by (2.9), we get

; 5 1/2
= cSE<02§v2 lv| < \/%Q%)
\/§\/§ vies | ] V2
= &\l5\ 50 /0 vip(v)dv

a+1 1

cs@a (—MQWMQ%H 5 —5)1/2-

Fisher consistency is ensured by taking

For the T'M 55,

TMS,(F)

o
adj

a/3

%/2—%%@%0(@@%)'

Cg —

The Finite Sample Breakdown Point

In the following, the maximum value possible for the finite sample breakdown
point fsbp(S, F},), given by (3.5), of any of the considered scale estimates S ((2.3),
(2.6) or (2.7)) at a sample y,, of size n with empirical distribution function F),
is determined. Further, the corresponding values of o for which the maximum
breakdown is achieved are derived. Therefore, consider the quantities

T

B :=|a(n—-2)].

and




By (3.5), the finite sample breakdown point fsbp(.S, F},) equals min{A, B} /n.

For increasing values of a € [0,1], the quantity A is decreasing while B is
increasing (see Figure 6). Hence, the maximum breakdown point will be equal to
B/n for certain a € [qpin, 1), and it will equal A/n for certain o € [y, Mmaz)-
The maximum value for fsbp(S, F},) is reached for any value of « for which A = B
whenever this is possible. To determine the bounds a,,,;, and a,,.., we distinguish
between the four cases where either n+1, n, n —1 or n+ 2 respectively is divisible

by four.
Case I: n € {4k — 1,k € N}.

(a) Let a = ;2L — ¢ with arbitrary small € > 0. Then

4(n—2)
(g o) -] = | —stn-] <™
Hence B/n < 71—21 for o < iy, = 4(’;:112).

(b) Consider z € [n+1,n+5) and a = ;5. Then B = [z/4] = (n +1)/4,

A:[n—l—Bw:[n—l—g%+DMw:[n+1_gw:n+1:3

3 4 3 4

and hence A/n = B/n = % for a € [4(7::112)7 4(7;:52))

(c) For a = % itis B=|(n+5)/4] =(n+1)/4+1 and

A:[n—l—Og+UM—lw:[nil_lwznil_l‘

Thus, A/n < Tl—t} for all o > gz = 48;152)'

From (a), (b), (¢) and as A and B are decreasing and increasing in «, respectively,

the maximum value for fsbp(S, F,) = %L is reached for o € [%, 4(7;—+_52)>

Case II: n € {4k, k € N}. Analogously to Case I, one can show:

—¢e,e>0,itis B= |2 —¢(n—2)|] <% and hence 1B <

(a) For a = ; 1 1 71;

(n—2)

for a < Qmin = sy



(b) (i) Consider z € [n,n 4+ 4) and o = m. Then B = |z/4| = n/4
and A = [%_”/4-‘ = [2—-1] =2, and thus A/n = B/n = 1/4 for

n n+4
@c [mm)

(ii) Forz € [n+4,n+8) and o = 175, it is B = [2/4] =n/4+1and A =

4~ 2] = 2. Following it is A/n = 1/4 < B/n for a € [54;, 72557).

c) Fora= " itisB=|(n+8)/4 =n/4+2and A= [2—1] =2 1.
1(n—2) 1 1

Hence, it is A/n < 3V & > ey = 4(’;—+_82).

Thus, the maximum value 1/4 for the finite sample breakdown point fsbp(S, F},)

is reached for o € [ﬁ, 4(’;—?2)).
Case III: ne{4k+1,ke N}

Analogously one can show that

1 -1 . -1
(a) EB < n4_n for a < Apin +— 4(7:1—_2)

1 n—1 n—1_ —_n43
— EB == for a € [mu 4(;:2))'

(b) () 5
(if)

(c) %A < % Va> amer i = 4?::;).

_ n—1 1 n+7 n+11
=, <pBforac [4(7172)’ 4(n72))

Thus, the maximum value =+ for fsbp(S, F},) is reached for « € [ 4(’;’_12), 47@_15))

Case IV: n € {4k +2,k € N}

Again, analogously one can show that
(a) 2B < (n—2)/4n for o < 1/4.

(b) LB =12 forae [1,22).

(C) %A = 71—712 for o € [48;122)7 4?;_1;1)>

n—2 1 n+14
A< 2= — o for any o > )

3=

(d)



From (a), (b), (c¢) and (d) we can conclude that the maximum breakdown point

fsbp(S, F,,) = 4—n2 is reached for a € [}1, 47(‘:E‘21)>. Note that in this case, the

equation A = B does not hold for any value of a € [0, 1] because:

A = B

n—1—|an-—2)]
el a(n —2)

s lan—2)) —1< RO <o - 2)]
”;1g la(n —2)] <”T+2.

=

By definition |a(n — 2)| € N. However, for n € {4k + 2,k € N} there is no

integer in the interval ["7=, %

Influence Functions

For the derivation of equation (3.9), recall that the functional of the Q5 estimator
is defined by (2.4)

gdj<F> = chgl(a),
for any distribution F' of the error terms ¢;. Here,

€ + EH—Z

HF(U) = P(|€i+1 - | <

for all w > 0. The IF as defined in (3.8) then equals

o —= (Hi'(e)
“ 5z Hp, (a)‘ =G

c=0 Hj (H;l(oz))€ = (4.2)

(U} Qadj7 )

Here, assuming F' = N(0,1), we have

Hp'(a) = Hy'(a) = Qf = @ ¢ (O‘gl) ,

referring to the assumption of normality by the index N.

We now compute numerator and denominator of (A.2) separately. For the

numerator, we need the distribution function of the heights from the contaminated



series y;, which can be written as

Hew) = (- P He(w) + ot - PP - Y200 <

WA Y

+2¢(1 —5)2P(‘yt 5

| <u)+0(),

for any u > 0. Computing the derivative of this expression with respect to ¢ and

evaluating in € = 0 yields

9Hp, (u t—1 1 Yt+1 W+ Yii1
Has( )}60 — —3 Hp(u) + P(|w— %| <u) + Py — %} < ).
Since F' = N(0,1), standard calculations give
agf W) _, = —3(20(v/2/31) — 1) + B(V2(h — w)) — D(V2(~h — w))
+2(D(/(4/5)((w/2) + k) = B(1/(4/5)((w/2) — h)))
= G(h,w), (A3)

and we note that G(Q%/) equals expression (3.10).

For the denominator of expression (A.2), we note that

Hi(u) = P(h < w) = P(lyes — 2292 < w) = B(4/2/3u) — B(—v/2/30)

from which it follows that

DR ATl ATB G (A1)

=g

The expression of the I1F(Qg,, N(0,1),w) for normal distributed error terms fol-

lows from equations (A.2), (A.3) and (A.4).

The functionals TM*

adj

and T M 5%

aq; DOth take the same form

c Q% 1/p
M:FHM(F):cE(hp]hSQ%)l/”:—(/ hdeF(h)) ) (A.5)
@ \Jo

where p = 1 for the TM¢

g and p = 2 for the TMSg

aaqj» C 1 either ¢, (equation

(2.11)) or ¢, (equation (2.12)) and Q% = Hp'(a). The influence function, as

defined in equation (3.8), is given by

0 c QF, e
IF(w,AM,F):%a </0 thHFE(h)) |€:0,

6



and the chain rule delivers

cl q ay(1/p)—1 9 [9 p
IF(w’M’F):EiE(h |h < Q%) % i h dHFE(h)‘

e=0

We know that E(h?|h < Q%) =1/c?, so

0
hde
ap/ r( |p7Q‘* 0€QFE

= ﬁ(Tl + Tg) .

CP

IF(w, M,F) =

o 9
— hPdHpg (h
0+85/0 r )‘5:0

We will now separately examine the first and second term T} and T5.

Applying the Leibnitz rule to the first term yields

/ 0
= QP HA(QF) 5= Q%

-0

can be rewritten as

IF(w,Qadj,N(O,l))—cqa @ |, :0:%%’

Recall now that the influence function of Qg

hence for F' = N(0,1)
= —(Qy)" G(Qy, w).

To obtain the second term T5, we use the expression for G in (A.3) and obtain
T, = / * wacn)

= -3 /% hPdHp(h) + /Q% WPdd(V2(h — w)) — /Q% hPdd(V2(—h — w))

0 o 0 OQ?V
+2/0 hPd®(+/(4/5)((w/2) + h) — 2¢/a) — 2 /0 hPd®(+/(4/5)((w/2) — h))
= % [T [VaeBw )+ o )

cP

+2/A/5(p(V/A/5(w/2 + h)) + (/45w /2 — 1) ] dh.

Defining
Qa
P, = / " WP o(aw + bh)dh, (A.6)
0

results in expression (3.11) for IF(w, M, N(0,1))

7



In expression (3.11) of the influence function, there still appear integrals which
have to be computed. In practice, we can do this by numerical integration tech-
niques; or we can derive an analytic expression for [ 5’b. Using the substitution

method for solving integrals, define u = aw + bh and rewrite equation (A.6) as

aw+bQ u—aw\? 1
me= [ (55 ewga

We now distinguish between p =1 and p = 2. For p = 1 one can verify that

plaw) = plaw +1Q)  aw

I, = & o (@(aw) — Blaw +bQ))

and for p = 2, after some calculations, we get
1
]ib =5 [(aw—bQ)gp(aw—l—bQ)—awtp(aw)—l—(1+a2w2)(I>(aw—|—bQ)—(1—|—a2w2)©(aw)}
In the special case where o = 1, we obtain simplified expressions for the mean

over all heights and the mean over all squared heights:

IF(w, MLy, N(0,1)) = | = 3V60(0) + 20 @(v2w) + V2p(v2w) — w

+2 (VEp(V1/5w) + w(y/1/5w) —w/2)] |

and

1
IF(w, TMS,4, N(0,1)) = 3 (w® —1).

Appendix B: Simulations

Correction Factors

In definitions (2.3), (2.6) and (2.7), consistency factors are used to achieve Fisher
consistency. However, these estimators may still be biased for finite samples;

replacing the consistency factors by correction factors then ensures unbiasedness

n

» and ¢ depend on the

of the scale estimators. Those correction factors cj, ¢



o= 4(7::12) a=05 a=1

(6% 8%
no | Qy TM

adj ™ Sc?dj adj T'Mg,

o, TMSe, | TM

adj ™ S (?dj

10 | 2.18  4.40 4.07 1.27  2.61 2.32 1.02 0.85
15 | 243 4.90 4.42 1.34  2.76 2.42 1.02 0.84
20 | 2.61 5.27 4.70 1.24  2.57 2.24 1.02 0.84
o0 | 246  4.98 4.34 1.22 2.53 2.18 1.02 0.82
100 | 2.57  5.17 4.49 1.22 252 2.18 1.02 0.82
200 | 2.57  5.18 4.49 1.21 252 2.17 1.02 0.82

oo | 256 5.17 4.47 1.21 251 2.16 1.02 0.82

Table 2: Correction factors obtained by 10000 simulation runs for several values
of n and «, together with the consistency factors (n — oo), under the assumption

of Gaussian noise.

window width n and differ slightly from the consistency factors. To obtain the
correction factors, we assume linearity and a constant scale ¢ within the time
window considered, as in (3.7). Here, Fy will be taken to be the standard normal
N(0,1). Table 2 gives values of the correction factors under the assumption of
i.i.d. Gaussian error terms and based on 10000 simulation runs for different window
widths and different values of .. In the first column, we choose « such that the
optimal finite sample breakdown point is achieved, as is explained in Section 3.1.
From Table 2 it is clear that as the window width increases, the correction factors
converge to their asymptotic values. These asymptotic values are the consistency

factors in the definition of the functionals in equations (2.3), (2.6) and (2.7).

In practice, we suggest using ()5, with o = 0.5 because this yields a good
compromise between robustness and efficiency. For application to real data, we
advise using the finite sample correction factor for this estimator. Though this can
be obtained for any sample size by simulation, it might be rather time consuming.

Therefore, we propose a simple approximative formula for the finite sample cor-



Approximation of the finite sample correction factors

1.05 —

1.04 —

1.03 —

1.02 —

1.01 —

1.00

window width (n)

Figure 7: Approximation of the finite sample correction factors for the ()3, for «
equal to 0.5. The dots represent the simulated value of d,, for 10000 simulations

and the solid line is the approximation using formula (B.7).

rection factor of the Qg'j’j under the assumption of i.i.d. normal error terms. The

correction factor ¢; can be written as a multiple of its asymptotic value:
CZ =dycq.

As ¢} approaches ¢, for n tending to infinity, we know that d,, attains one. We run
10000 simulations for varying window widths, up to n = 200 observations. A plot
of the simulated values for d,, can be found in Figure 7. The shape of the plot is
well approximated by a function of the form

n

dy, =

)
n—a

where the constant a can be estimated by an OLS regression of the following model:
n(d, — 1) =ad, + u

which yields a = 0.44. Since ¢, equals 1.21 for o = 0.5, we get

n n
Ao~ — w12l —
n—044 n+ 044

10



This approximation gives values close to the large scale simulated values of d,,, as

can be seen by the solid line in Figure 7, and is easy to use in practice.

For the pure descriptive purpose of monitoring scale, one will often not be
willing to make distributional assumptions on the noise component. If this is the
case, then the estimators may be computed omitting the correction factors. The

estimated sequence S; will of course be the same, up to scalar multiplication.

Empirical Influence Functions

The theoretical influence function in equation (3.8) is an asymptotic concept. In
practice however, we work with finite sample sizes or, for the considered applica-
tion, window widths. A finite sample equivalent of the influence function defined
in (3.8) is given by the Empirical Influence Function (EIF). It is a simulation based
curve and defined by

N

EIF(w; S, Fyn, No) = — > (S(5°) = S(v*)) (B.8)

s=1
where n = 20 the window width, and Ny = 10000 is the number of simulations. For
every simulated sample y* of size n from a N (0, 1) distribution the scale estimate is
computed. This sample is then contaminated by replacing one randomly selected
observation by the value w, resulting in a contaminated series y* from which again
the scale estimator S is computed. Figure 8 shows the EIF of the different adjacent
type estimators, similar to Figure 1, for « = 1 and a = a, ~ 0.29 as defined
in equation (3.6). It is striking how close the theoretical and empirical influence

functions are already for n = 20.

Simulated bias and efficiency under contamination

In this section, a simulation study is carried out to compare the finite sample
performance of the estimators in the moving window approach. The estimation

methods are compared with respect to two criteria: their mean bias and root
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Figure 8: Empirical Influence functions (EIF) for the Qg,, TMgy, and TMSg,

estimators, for a corresponding to the optimal finite sample breakdown point and

fOI' a=1. 12



mean squared error. The Mean Bias (MB) of an estimator S is defined as the
mean relative difference between the estimated and the true scale over all scale

estimates resulting from the moving window:

1 T S; — o
_ t — Oy
MB (S) = —— E pag (B.9)

t=n
where n denotes the window width, 7" the length of the time series, o; the true scale
at time t and S; the estimated scale. Using the simulated finite sample correction
factors, we expect the bias to be zero on average for all proposed estimators. It
gives insight in the deviation of the estimated scale from the true scale. Another

summary measure is the Mean Root Squared Error (MRSE):

T'—n+1 o}

T 1/2

MRSE($) = -+ (Z Lﬁ) . (B.10)
t=n

It measures the finite sample precision of the estimators.

We consider four simulation settings for which we simulate Ny = 1000 time
series of length 7" = 1000. We choose the window width n equal to 20 and make
use of the correction factors as presented above. For every simulated time series,
we compute the mean bias and mean root squared error. The estimators are
evaluated for a equal to oy = (n+1)/(4(n —2)), where the optimal finite sample
breakdown point is achieved, and a equal to 0.5. We also consider the non-robust
versions of the TMg, and TMSg, estimators, where o equals 1. An overview of

the simulation schemes can be found in Table 6.

Setting Description

1 Clean data: g N(0,1)

2 Fat tailed data: 1y, w t3

3 5% outliers: v % 0.95N(0, 1) + 0.05N(0, 5)
4 10% outliers: v, 2 0.90N(0, 1) + 0.10N(0, 5)

Table 3: Simulation Settings

13
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Figure 9: Mean bias for clean data (top left), fat tailed data (top right), data with
5% outliers (bottom left) and 10 % outliers (bottom right). In every graph, the

first three boxplots present the MB for the Qg,, T Mg

aq; a0nd TMSZ,. estimators

so that the optimal fsbp is achieved. The middle three boxplots correspond to the
three estimators for a=0.5 and the last two boxplots represent the MB for the

non-robust TM!

oy and TMS] . estimators.
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a:aopt:% a=0.5 a=1

n—2
aj TMgy TMSG, | Qoy TMgy; TMSG, | TMg, TMSg,
Clean data 0.44 0.54 0.51 0.29 0.34 0.32 0.22 0.21

Fat tailed data | 0.43  0.48 0.47 0.36  0.39 0.37 0.33 0.41
5% outliers 0.52  0.62 0.59 0.38 0.41 0.40 0.51 0.70
10% outliers 0.60  0.70 0.67 0.50  0.52 0.51 0.75 1.00

Table 4: Average MRSE for the four simulation schemes, using window width n

n+1

pTC) for obtaining the optimal fsbp, a = 0.5

20, and 3 different values of a: o =

and « = 1 for the non-robust estimators.

In the first simulation setting, we consider a time series of clean i.i.d. standard
normal data. The mean bias is presented in the top left panel of Figure 9. As
expected, all scale estimators are unbiased, i.e. the mean bias is on average zero.
The largest biases occur for a,,. The average of the MRSE over the 1000 time
series is presented in the first row of Table 4. The non-robust procedures, where «
equals 1, have the smallest variation of the estimated scale around the true scale.
This is in line with the findings presented in Figure 2, where it is shown that the
efficiency of both moment based estimators is higher for larger values of «.

In the second setting, we look at a heavy tailed distribution, namely a Student-
t with three degrees of freedom. Again, we use finite sample correction factors to
obtain unbiasedness. The mean bias is on average equal to zero, as illustrated
in the top right panel of Figure 9. Table 4 indicates that the smallest MRSE is

obtained by the non-robust 7'M}

qq; €stimator, the difference in MRSE with the

robust estimators where o equals 0.5 is small.

The third and fourth simulation settings assess the behavior of the scale esti-
mation procedures for contaminated data. We induce respectively 5% and 10%
outliers. The outliers come from a replacement outlier generating process with a
proportion € of the observations coming from a normal distribution with standard

deviation 5. We consider 5% outliers in the bottom left panel of Figure 9 and 10%

15



in the bottom right panel. We use the finite sample correction factors obtained
from simulations based on non-contaminated i.i.d. standard normal data. Under
contamination, all procedures overestimate the scale, but the non-robust estima-
tors TM,,; and TMS,,; perform particularly bad. The difference in bias between
the estimators based on a = 0.25 or 0.5 is small in both settings. Among the

robust estimators, the Q7 has the smallest MRSE.
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