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Abstract

In this paper we discuss a class of multiplicative algorithms for computing
D-optimal designs for regression models on a finite design space. We prove a
monotonicity result for a sequence of determinants obtained by the iterations,
and as a consequence the procedure yields a sequence of designs converging to
the D-optimal design. The class of algorithms is indexed by a real parameter
and contains two algorithms considered by Titterington (1976, 1978) as special
cases. We provide numerical results demonstrating the efficiency of the proposed
methods and discuss several extensions to other optimality criteria.
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1 Introduction

Consider the common linear regression model

y = θT u + ε, (1)

where θ = (θ0, . . . , θm−1)
T ∈ Rm is a vector of unknown parameters, u denotes the vec-

tor of explanatory variables and ε is a random error. We assume that U = {u1, . . . , un}
⊂ Rm is a finite design space (a generalization to arbitrary design spaces is straightfor-

ward, see Remark 4 in Section 2) and that different observations are uncorrelated; the

mean and variance of the errors are 0 and σ2 > 0, respectively. Following Kiefer (1974)

we call any probability measure ξ on U a design. If N observations can be taken and

the design ξ puts masses w1, . . . , wn at the points u1, . . . , un, then a rounding procedure

is applied to obtain integers ni ≈ wiN with
∑n

j=1 ni = N , and the experimenter takes

approximately ni observations at each ui (i = 1, . . . , n) [see Pukelsheim and Rieder

(1992) for more details and some references]. For a design ξ, the information matrix

in the model (1) is defined by

M(ξ) =
n∑

i=1

wiuiu
T
i ,

and approximately proportional to the covariance matrix of the least squares estimate

for the parameter θ. An optimal design maximizes an appropriate function of the

information matrix [see e.g. Silvey (1980) or Pukelsheim (1993)]. Numerous optimality

criteria have been proposed in the literature to discriminate between competing designs.

In the present paper we mainly consider the D-optimality criterion, which determines

the design ξ∗ such that the determinant |M(ξ)| is maximal. Such a design minimizes

the volume of the ellipsoid of concentration for the vector θ of unknown parameters. In

most cases of practical interest, D-optimal designs have to be determined numerically

and several algorithms have been proposed in the literature for computing D-optimal

designs [see e.g. Fedorov (1972), Wynn (1972), Silvey (1980), Pazman (1986) or the

recent papers of Harman and Pronzato (2007), Mandal and Torsney (2006)].

In the present paper we concentrate on a class of multiplicative algorithms for com-

puting D-optimal designs, which is indexed by real parameters, say βr. For two special

choices of the indexes βr the algorithms are related to two algorithms proposed by Tit-

terington (1976, 1978) and Silvey, Titterington and Torsney (1978). In Section 2 we

prove that the sequence of determinants of the corresponding designs is nondecreasing,

and as a consequence the sequence of calculated designs converges to the D-optimal

design. The monotonicity result uses particular thresholds in each step of the itera-

tions, and some bounds for these thresholds are derived in Section 3. Some results

of numerical comparisons are given in Section 4. In Section 5, some applications of

multiplicative algorithms to the construction of optimal designs with respect to other

optimality criteria are considered.
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2 A class of multiplicative algorithms for calculat-

ing D-optimal designs

Let w
(0)
1 , . . . , w

(0)
n denote a set of given initial weights for the design points u1, . . . , un,

which defines the initial design ξ(0). For a design ξ with weights wi at the points ui,

we define

d(ui, ξ) =
∂

∂wi

log det M(ξ) = uT
i M−1(ξ)ui (i = 1, . . . , n).

We study the class of multiplicative algorithms for calculating D-optimal designs which

is defined recursively by updating the weights in each step as follows:

w
(r+1)
i = w

(r)
i

d(ui, ξ
(r))− βr

m− βr

, βr ∈ R. (2)

Here r = 0, 1, . . . is the iteration number and βr (r = 0, 1, . . .) are real-valued parame-

ters that can vary in each iteration. For an initial design ξ(0), the iterations (2) produce

a sequence of designs {ξ(r)}r=0,1,....

The choices of constants βr = 0 and βr = 1 in the algorithm (2) give two procedures

considered by Titterington (1976, 1978), who discussed a special case of model (1),

where the first component of the vector u in the regression model (1) is constant, i.e.

u = (1, vT )T , v ∈ Rm−1. This author established that in the case βr = 0 the algorithm

(2) yields a sequence of determinants {det M(ξ(r))}, which is nondecreasing and con-

verges to the D-optimal design. A more detailed proof of the same result is given by

Pazman (1986). Note that there is an alternative proof of J.F.C. Kingman (unpub-

lished). Based on numerical experiments Silvey, Titterington and Torsney (1978) and

Titterington (1976, 1978) noticed that for βr = 1 the algorithm converges substantially

faster than for βr = 0 and conjectured that the sequence of determinants for algorithm

(2) with βr = 1 is also nondecreasing. There is a vast literature where the rates of con-

vergence of the algorithm (2) with βr ∈ {0, 1} and related algorithms are numerically

studied and the monotonicity conjecture for the case of βr = 1 is numerically verified,

see e.g. Pázman (1986); Pukelsheim and Torsney (1991); Torsney and Mandal (2001);

Pronzato (2003); Harman and Pronzato (2007); Torsney (2007) and Pronzato et al.

(2000), p.155.

Theorem 1 below does not give a proof of the monotonicity conjecture in the case

βr = 1, but establishes the monotonicity of the determinants {det M(ξ(r))} for certain

positive values of βr. For a precise formulation of the statement, we define for the

design ξ(r) in the r-th step the quantity

β(r) = min
ui∈U

d(ui, ξ
(r)),

which turns out to be essential in the following discussion. Note that we must always

have βr ≤ β(r) as otherwise at least one weight in the updated design ξ(r+1) becomes

negative.
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Theorem 1. Let {ξ(r)}r=0,1,... be a sequence of designs obtained by the recurrent formula

(2), where in the r-th step the parameter βr is chosen as any number such that

−∞ < βr ≤ β(r)/2, (3)

then the sequence of determinants {det M(ξ(r))}r=0,1,... is nondecreasing.

The proof (generalizing the proof of Pázman (1986) valid for βr = 0) is based on several

auxiliary lemmas.

Lemma 1. Let ζ1, . . . , ζm be i.i.d. random variables with values in U = {u1, . . . , un}
and distribution ξ, and let α be some positive constant. Let also g : Um → [0,∞)

denote a function such that E(g|ζi) ≥ 2α a.s. (almost surely), where g = g(ζ1, . . . , ζm).

Then

E(g)[E(g)− α]m ≤ E

[
g

m∏
i=1

(E(g|ζi)− α)

]

and the equality is strict unless E(g|ζ1) = . . . = E(g|ζm) = E(g) a.s.

Lemma 2. Let h : Um → R be the function defined by

h(z1, . . . , zm) =
1

m!
det2F (z1, . . . , zm), (4)

where zi ∈ U (i = 1, . . . , m) and i-th column of the matrix F (z1, . . . , zm) equals zi.

Then, for a design with weights w1, . . . , wn at the points u1, . . . , un, the determinant of

the information matrix M(ξ) =
∑n

i=1 wiuiu
T
i can be represented as

det M(ξ) = E h(ζ1, . . . , ζm) =
n∑

i1=1

. . .

n∑
im=1

wi1 · · ·wimh(ui1 , . . . , uim) , (5)

where ζ1, . . . , ζm are i.i.d. random variables with distribution ξ.

Lemma 3. For any β ∈ R (β 6= m), any u ∈ U and any j (1 ≤ j ≤ m) we have

d(u, ξ)− β

m− β
=

E h(ζu
j )− α

E h(ζ)− α

where ζ = (ζ1, . . . , ζm), ζu
j = (ζ1, . . . , ζj−1, u, ζj+1, . . . , ζm), α = βE h(ζ)/m, h(·) is

defined in (4) and ζ1, . . . , ζm are (as in Lemmas 1 and 2) i.i.d. random variables with

distribution ξ.

Proof of Lemma 1. From the inequality t− 1 ≥ log(t) we obtain

m∏
i=1

E(g|ζi)− α

E(g)− α
− 1 ≥

m∑
i=1

[
log(E(g|ζi)− α)− log(E(g)− α)

]
a. s.
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Multiplying both sides by g and taking the expectation we obtain

E

{
g

m∏
i=1

E(g|ζi)− α

E(g)− α

}
− E(g)

≥
m∑

i=1

[
E(g log(E(g|ζi)− α))− E(g) log(E(g)− α)

]

=
m∑

i=1

[
E[E(g|ζi) log(E(g|ζi)− α)]− E(g) log(E(g)− α)

]
≥ 0.

The last inequality follows from Jensen’s inequality Eφ(t) ≥ φ(E(t)) with the strictly

convex function φ(t) = t log(t− α), t ∈ [2α,∞).

Proof of Lemma 2. This is a consequence of the Binet-Cauchy formula [see Gant-

macher (1959)].

Proof of Lemma 3. By the definition, for any j (1 ≤ j ≤ m) and u = ui ∈ U we

have

d(u, ξ) =
∂ log det M(ξ)

∂wi

=
1

det M(ξ)

∂ det M(ξ)

∂wi

=
mE h(ζu

j )

E h(ζ)
,

where we have used (5). Therefore

d(u, ξ)

m
=

E h(ζu
j )

E h(ζ)
,

which yields

d(u, ξ)− β

m− β
=

d(u, ξ)/m− β/m

1− β/m
=

E h(ζu
j )− α

E h(ζ)− α

where α = βE h(ζ)/m.

Proof of Theorem 1. Let ζ1, . . . , ζm be i.i.d. random variables with distribution

ξ(r), h = h(ζ1, . . . , ζm) and α = βrE h/m. Note that (3) implies E(h|ζi) ≥ 2α a.s.

This allows us to apply Lemma 1. Applying it along with Lemma 2 with g = h and

Lemma 3 (taking into account that E h(ζu
j ) = E (h(ζ)|ζj = u) ) we have

det M(ξ(r+1)) = E

{
h

m∏
i=1

E(h|ζi)− α

E h− α

}
≥ E h = det M(ξ(r)) .

This proves the monotonicity result.

Remark 1 (sharpness of the main result).

Theorem 1 is sharp in the following sense. If we consider the algorithm (2) with

βr = γβ(r) and fixed γ, then γ∗ = 1
2

is the largest possible value of γ such that
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the algorithm (2) yields a monotonic sequence of determinants {det M(ξ(r))} for any

regression model, any U and any initial design (note that for some models and some

initial designs the value of γ can be increased, see below).

Indeed, consider the regression model y = θT u+ε, where U={u0, u1} = {(1, 0)T , (1, 1)T},
and let the weights of a two-point design ξ(0) be w0 = 1

2
+ ε and w1 = 1

2
− ε for some

small ε > 0. Assume that βr = (1
2

+ δ)β(r) for some small δ > 0. It is easy to compute

det M(ξ(1))− det M(ξ(0)) =
8ε2(1 + 2ε)

(1 + 4ε− 2δ)2
(ε− δ)

which is negative if δ > ε.

Remark 2 (regression model with intercept). Consider the regression model with

intercept, where

u = (1, vT )T , v ∈ Rm−1 .

It is easy to show [see Titterington (1978)] that in this case the function d(ui, ξ) can

be written as d(ui, ξ) = dc(vi, ξ) + 1, where

dc(vi, ξ) = (vi − v̄)T M−1
c (vi − v̄), (6)

Mc =
n∑

i=1

wi(vi − v̄)(vi − v̄)T , v̄ =
n∑

i=1

wivi.

Therefore, d(ui, ξ) ≥ 1 for any ui ∈ U . As a consequence of Theorem 1, the algorithm

in the model with intercept is monotonic for any βr ≤ 1
2
. Note that for some models

and designs ξ(r), the values of βr = β(r)/2 may be much larger than 1.

Remark 3 (minimal volume ellipsoids). As demonstrated by many authors [see e.g.

Titterington (1975, 1978); Pronzato (2003)] the multiplicative algorithms for finding

D-optimal designs play an important role in construction of a minimal volume ellipsoid

containing a set of points

V = {v1, . . . , vn} ∈ Rm−1 . (7)

Indeed, let the data set consists of the points (7). Then the minimal covering ellipsoid

for the set V is of the form

E(V) = {v : dc(v, ξ) ≤ m− 1}

where dc(v, ξ) is defined in (6). In other terms this ellipsoid has the form

{u : d(u, ξ) ≤ m}.

By the equivalence theory of Kiefer and Wolfowitz (1960) we have that the point vi has

a positive weight wi only if it lies on the surface of the ellipsoid E(V). Thus, the points
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that lie on the surface of the minimal volume ellipsoid can be found from the solution

of the D-optimal design problem on a finite set. Therefore, the algorithms considered

in Theorem 1 can be considered as algorithms of construction of the minimal volume

ellipsoids containing given sets of points. As illustrated below on some numerical

examples, these algorithms may have much faster convergence than the algorithms

considered in Titterington (1976, 1978).

Remark 4 (general design spaces). In the case of general design spaces U and general

measures, the algorithm (2) becomes

dξ(r+1)(u) =
d(u, ξ(r))− βr

m− βr

dξ(r)(u) , βr ∈ R, u ∈ U . (8)

In particular, if the initial design ξ(0) has a density, then all designs ξ(r) have densities

pr(u), that is dξ(r)(u) = pr(u)du, and the updating formula (8) has the form

pr+1(u) =
d(u, ξ(r))− βr

m− βr

pr(u) , βr ∈ R, u ∈ U .

Theorem 1 can be generalized to establish monotonicity of determinants for itera-

tions (8).

3 A lower bound for the function d

In this section we derive a lower bound for the function d. Recall the definition of the

Elfving set corresponding to the linear regression model (1), i.e.

G = conv{u1, . . . , un,−u1, . . . ,−un}

[see Elfving (1952) or Pukelsheim (1993)], where conv(A) denotes the convex hull of

a set A. Note that G is a nonempty convex set containing the origin if there are m

linearly independent vectors among u1, . . . , un. For a vector u ∈ Rm \ {0}, define γu as

the positive number such that the scaled vector γuu is a boundary point of G. Note

that γu is uniquely defined and γu ≥ 1 for any u ∈ G. Define also

β∗ = min
u∈U

1

γ2
u

.

Theorem 2. For any model (1), we have

(i) β∗ ≤ d(u, ξ) for any u ∈ U and any ξ;

(ii) 0 ≤ β∗ ≤ 1;

(iii) β∗ = 1 if and only if all ui ∈ U belong to the boundary of the Elfving set for U .

7



Proof of Theorem 2. For any u ∈ Rm \ {0}, let ξ∗u be a c-optimal design (for the

vector c = u). Then it follows from the optimality of the design ξ∗u that for any u ∈ U
and any design ξ

d(u, ξ) = uT M−(ξ)u ≥ uT M−(ξ∗u)u,

where A− denotes a generalized inverse of the matrix A. Moreover, the right hand side

of this inequality is known (Pukelsheim (1993)) to be

uT M−(ξ∗u)u =
1

γ2
u

.

This proves the assertion (i). Assertion (ii) follows from the definition of β∗ and the

fact that γu ≥ 1 for any u ∈ U . For a given u ∈ U , γu = 1 if u is a boundary point of

the Elfving set G. Therefore, β∗ = 1 if and only if all ui ∈ U are boundary points of G,

which proves (iii).

Remark 5 (model with intercept). For models with a constant term we always have

β∗ = 1 as all points ui = (1, vT
i )T are located at the boundary of the corresponding

Elfving set.

4 Numerical comparisons

In this section, we present a few numerical comparisons of the algorithms. We discuss

the performance of the algorithms for several polynomial, exponential and rational

regression models. To be precise, we consider the regression model

Y = θT f(x) + ε,

where f(x) = (f0(x), . . . fm−1(x))T is the vector of regression functions and the ex-

planatory variable x varies in a finite set, say X = {x1, . . . , xn}. In this case, we have

U = {f(x1), . . . , f(xn)} and the regression model can be written in the form (1) with

u = f(x). For the polynomial regression model we choose

f(x) = (1, x, . . . , xm−1)T , m = 3, 4, 5, 6,

while the exponential and rational models are given by

f(x) = (1, e−x, xe−x)T ,

f(x) = (e−x, xe−x, e−2x, xe−2x)T ,

f(x) = (1, e−x, xe−x, e−2x, xe−2x)T ,

f(x) = (1, 1/(1 + x), 1/(1 + x)2)T .

We consider two design spaces that correspond to Table 1 and Table 2, respectively.

Specifically, we consider

X1 = {4i/19 | i = 0, . . . , 19} and X2 = {4i/39 | i = 0, . . . , 39}.
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Table 1: The number of iterations required to achieve precision (9) by algorithm (2)

with parameters βr = γβ(r) and by Titterington’s algorithm with βr = 1. The initial

design ξ(0) is a uniform distribution on the set X1 = {4i/19 | i = 0, . . . , 19}.

Algorithm (2) with βr = γβ(r) βr = 1

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(1, x, x2) 104 97 91 84 78 71 65 58 69

(1, x, x2, x3) 130 121 113 104 96 88 79 71 98

(1, x, . . . , x4) 82 77 72 67 61 56 51 45 66

(1, x, . . . , x5) 96 89 82 75 68 61 53 80

(1, e−x, xe−x) 131 123 115 108 100 92 84 76 90

(1, 1/(1 + x), 1/(1 + x)2) 105 98 92 85 79 73 66 60 71

(e−x, xe−x, e−2x, xe−2x) 221 208 196 183 170 158 145 133 167

(1, e−x, xe−x, e−2x, xe−2x) 136 127 118 109 100 91 83 74 109

In all cases a uniform distribution on the design space X was used as starting design

ξ(0), and the iterations of the algorithm (2) were performed until the precision

max
i=1,...,n

d(ui, ξ
(r)) ≤ 1.001m (9)

was reached. In Table 1 and 2 we present the number of iterations required to reach

this precision by algorithm (2) with βr = γβ(r), for various values of γ. The tables also

contain the results for Titterington’s algorithm, which uses constant parameter βr = 1

(see the right columns in the tables). The empty space in the table indicates that the

corresponding algorithm did not converge to the optimal design.

Both tables show very similar results. The performance of the algorithm (2) is improved

if larger values are used for the parameter γ. The worst case corresponds to the choice

βr = 0, and this is improved by all other methods. If γ is small, the algorithm with

βr = 1 is still better than the method proposed in this paper. However this picture

is changing if values γ ≥ 0.5 are used in the procedure. Note that it follows from the

proof of Theorem 1 that the sequence of determinants generated by the algorithm (2)

may still be nondecreasing for values of βr, which are slightly larger than β(r)/2 and

for this reason our numerical comparison also includes the cases γ = 0.6, 0.7 and 0.8

(see Tables 1 and 2). If γ ≥ 0.5, the algorithm (2) is at least comparable to the case

βr = 1, and in many cases it yields a substantially smaller number of iterations for

achieving the desired precision.
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Table 2: The number of iterations required to achieve precision (9) by algorithm (2)

with parameters βr = γβ(r) and by Titterington’s algorithm with βr = 1. The initial

design ξ(0) is a uniform distribution on the set X2 = {4i/39 | i = 0, . . . , 39}.

Algorithm (2) with βr = γβ(r) βr = 1

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(1, x, x2) 250 235 219 204 188 172 157 141 167

(1, x, x2, x3) 329 308 287 266 244 223 202 181 247

(1, x, . . . , x4) 235 219 204 188 173 157 142 127 188

(1, x, . . . , x5) 281 262 244 226 207 189 170 152 234

(1, e−x, xe−x) 294 276 258 239 221 202 184 166 197

(1, 1/(1 + x), 1/(1 + x)2) 136 128 120 111 103 94 86 77 91

(e−x, xe−x, e−2x, xe−2x) 404 382 359 337 314 291 269 246 224 304

(1, e−x, xe−x, e−2x, xe−2x) 213 199 185 171 157 143 130 116 171

5 Other optimality criteria

5.1 Bayesian D-optimal designs

In this section we briefly discuss an extension of the multiplicative algorithm to the

Bayesian D-optimal design problem. To be precise, consider the non-linear regression

model

Y = η(x, θ) + ε,

where η is a known function, θ ∈ Θ ⊂ Rm denotes the unknown parameter and the

explanatory variable x varies in the finite design space X = {x1, . . . , xn}. Under the

assumption of a normally distributed homoscedastic error it was shown by Jennrich

(1969) that asymptotically the covariance matrix of the least squares estimate for the

parameter θ is proportional to the matrix M−1(ξ, θ), where ξ is the given design,

M(ξ, θ) =

∫

X
f(x, θ)fT (x, θ)dξ(x) ,

and f(x, θ) = ∂
∂θ

η(x, θ) is the gradient of η with respect to θ. A Bayesian D-optimal

design maximizes

Φπ(ξ) =

∫

Θ

log det M(ξ, θ)π(dθ)

where π denotes a given prior distribution on the parameter space Θ [see e.g. Chaloner

and Larntz (1989) or Chaloner and Verdinelli (1996)]. Define

dπ(x, ξ) =

∫

Θ

fT (x, θ)M−1(ξ, θ)f(x, θ)π(dθ)
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and note that a design ξ∗ is Bayesian D-optimal if and only if the inequality

dπ(x, ξ∗) ≤ m

holds for all x ∈ X . We consider the multiplicative algorithm

w
(r+1)
i = w

(r)
i

dπ(xi, ξ
(r))− βr

m− βr

, i = 1, . . . , n, (10)

where the procedure is terminated if

max
i=1,...,n

dπ(xi, ξ
(r)) ≤ 1.001m. (11)

Some numerical results for the algorithm (10) are given in Table 3. We can see that

the performance of algorithm (10) is similar to the performance of algorithm (2).

Table 3: The number of iterations required to achieve precision (11)

by algorithm (10) with parameters βr = γβ(r) and distribution π =

{0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3; 1/7, . . . , 1/7}. The initial design ξ(0) is a uniform

distribution on the set X3 = {3i/19 | i = 0, . . . , 19}.

Algorithm (10) with βr = γβ(r) βr = 1

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(1, e−θx, xe−θx) 178 167 156 145 133 122 111 100 120

(1, 1/(θ + x), 1/(θ + x)2) 147 138 129 120 110 101 92 83 98

(e−θx, xe−θx, e−2x, xe−2x) 322 296 270 244 218 192 165 242

(1, e−θx, xe−θx, e−2x, xe−2x) 101 95 88 81 75 68 61 55 81

Based on extensive numerical calculations we conjecture that Theorem 1 can be ex-

tended from the D-optimality criterion to the Bayesian D-optimality criterion; that

is, the sequence of designs defined by (10) with βr ≤ 1
2
mini=1,...,n dπ(xi, ξ

(r)) or βr = 1

yields a nondecreasing sequence {Φπ(ξ(r))}.

5.2 A-, E- and c-optimal designs

Let us finally discuss an extension of the multiplicative algorithm to the A-, E- and

c-optimal design problems. Consider a general (differentiable) optimality criterion Φ

such that Φ-optimal design either maximizes Φ(M(ξ)) or minimizes Ψ(M−1(ξ)). The

nonnegative function d(ui, ξ) is then generalised either to

φ(ui, ξ) =
∂Φ(M(ξ))

∂wi

= uT
i

◦
Φ(ξ)ui

or

φ(ui, ξ) = −∂Ψ(M−1(ξ))

∂wi

= uT
i M−1(ξ)

◦
Ψ(ξ)M−1(ξ)ui

11



where
◦
Φ(ξ) =

∂Φ(M)

∂M

∣∣∣∣
M=M(ξ)

,
◦
Ψ(ξ) =

∂Ψ(M−1)

∂M−1

∣∣∣∣
M=M(ξ)

.

For the A-optimality criterion Ψ(M−1(ξ)) = tr(M−1(ξ)), it follows
◦
Ψ(ξ) = Im and the

function φ has the form

φA(ui, ξ) = uT
i M−2(ξ)ui.

If the multiplicity of the minimal eigenvalue of the matrix M(ξ) equals 1, then for the

E-optimality criterion Φ(M(ξ)) = λmin(M(ξ)) (which is in general not differentiable)

the function φ has the form

φE(ui, ξ) = (pT ui)
2,

where p is a normalized eigenvector corresponding to the minimal eigenvalue of M(ξ). If

the matrix M(ξ) has rank m, the function φ for the c-optimality criterion Ψ(M−1(ξ)) =

cT M−1(ξ)c is given by

φc(ui, ξ) = (cT M−1(ξ)ui)
2.

For D-, A-, E- and c-optimality we consider an algorithm in the following form

w
(r+1)
i = w

(r)
i

φ(ui, ξ
(r)) + βr

b(ξ(r)) + βr

, βr ∈ R (12)

where b(ξ) = tr M(ξ)
◦
Φ(ξ) or b(ξ) = tr M−1(ξ)

◦
Ψ(ξ). Note that sum of weights at the

next iteration equals 1 as

b(ξ(r)) =
∑

j

w
(r)
j φ(uj, ξ

(r))

and that for the D-criterion (12) reduces to the recursive relation defined in (2).

Numerical calculations show that the algorithm (12) with βr = 0 is generally not

monotonic (that is, the sequence {Φ(M(ξ(r))} is not a monotone sequence) for the

A-, E- and c-criteria, in contrast to the case of D-optimality. We therefore need to

use positive values of βr in the algorithm (12). We conjecture that for A-, E- and c-

optimality, the sequence of designs {ξ(r)} obtained by the recurrent formula (12) with

βr ≥ 1
2
b(ξ(r)) yields a monotonic sequence {Φ(ξ(r))}.

In numerical studies, we use βr = (1 − γ)b(ξ(r)) for different values of γ, 0 ≤ γ < 1.

We run the iterations of the algorithm (12) until the precision

max
i=1,...,n

φ(ui, ξ
(r)) ≤ 1.001 b(ξ(r)) (13)

is achieved. Some results are given in Tables 4 and 5 and demonstrates that multi-

plicative algorithms can also be applied in to other optimality criteria.
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Table 4: The number of iterations required to achieve precision (13) by algorithm (12)

for E-optimality with parameters βr = (1−γ)b(ξ(r)). The initial design ξ(0) is a uniform

distribution on the set X3 = {3i/19 | i = 0, . . . , 19}.

Algorithm (12) with βr = (1− γ)b(ξ(r))

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(1, x, x2) 100 95 90 85 80 75 70 65

(1, x, x2, x3) 129 122 116 110 103 97 90 84 78

(1, x, . . . , x4) 51 48 46 43 41 38 35 33 31

(1, x, . . . , x5) 215 204 194 183 172 162 151 141 130 120

(1, e−x, xe−x) 265 252 239 226 213 200 187 174

(1, 1/(1 + x), 1/(1 + x)2) 115 109 103 98 92 86 80 75 69 62

(e−x, xe−x, e−2x, xe−2x) 493 469 444 419 395 370 346 321 297 272

(1, e−x, xe−x, e−2x, xe−2x) 90 86 81 77 72 68 63 59 54 50

Table 5: The number of iterations required to achieve precision (13) by algorithm (12)

for A-optimality with parameters βr = (1−γ)b(ξ(r)). The initial design ξ(0) is a uniform

distribution on the set X3 = {3i/19 | i = 0, . . . , 19}.

Algorithm (12) with βr = (1− γ)b(ξ(r))

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(1, x, x2) 270 257 244 230 217 204 190 177 164 151

(1, x, x2, x3) 126 120 114 107 101 94 88 82 75 69

(1, x, . . . , x4) 330 314 298 282 266 249 233 217 202 187

(1, x, . . . , x5) 270 256 243 229 215 201 187 173 159 143

(1, e−x, xe−x) 229 218 207 195 184 173 161 150 139 128

(1, 1/(1 + x), 1/(1 + x)2) 116 110 104 99 93 87 81 75 70 63

(e−x, xe−x, e−2x, xe−2x) 520 494 468 442 416 391 365 339 313 287

(1, e−x, xe−x, e−2x, xe−2x) 90 85 81 76 72 68 63 59 54 49

IR01GM072876:01A1. The authors are very grateful to Radoslav Harman who care-
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