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1.1 Introduction

Trading, hedging and risk analysis of complex option portfolios depend on
accurate pricing models. The modelling of implied volatilities (IV) plays an
important role, since volatility is the crucial parameter in the Black-Scholes
(BS) pricing formula. It is well known from empirical studies that the volatil-
ities implied by observed market prices exhibit patterns known as volatility
smiles or smirks that contradict the assumption of constant volatility in the BS
pricing model. On the other hand, the IV is a function of two parameters: the
strike price and the time to maturity and it is desirable in practice to reduce
the dimension of this object and characterize the IV surface through a small
number of factors. Clearly, a dimension reduced pricing-model that should re-
flect the dynamics of the IV surface needs to contain factors and factor loadings
that characterize the IV surface itself and their movements across time.

A popular dimension reduction technique is the principal components analysis
(PCA), employed for example by Fengler, Härdle, and Schmidt (2002) in the
IV surface analysis. The discretization of the strike dimension and application
of PCA yield suitable factors (weight vectors) in the multivariate framework.
Noting that the IVs of fixed maturity could also be viewed as random functions,



1 Common functional IV analysis

we propose to use the functional analogue of PCA. We utilize the truncated
functional basis expansion described in Ramsay and Silverman (1997) to the
IVs of the European options on the German stock index (DAX). The standard
functional PCA, however, yields weight functions that are too rough, hence a
smoothed version of functional PCA is proposed here.

Like Fengler, Härdle, and Villa (2003) we discover similarities of the result-
ing weight functions across maturity groups. Thus we propose an estimation
procedure based on the Flury-Gautschi algorithm, Flury (1988), for the simul-
taneous estimation of the weight functions for two different maturities. This
procedure yields common weight functions with the level, slope, and curvature
interpretation known from the financial literature. The resulting common fac-
tors of the IV surface are the basic elements to be used in applications, such
as simulation based pricing, and deliver a substantial dimension reduction.

The chapter is organized as follows. In Section 1.2 the basic financial framework
is presented, while in Section 1.3 we introduce the notation of the functional
data analysis. In the following three sections we analyze the IV functions using
functional principal components, smoothed functional principal components
and common estimation of principal components, respectively.

1.2 Implied volatility surface

Implied volatilities are derived from the BS pricing formula for European op-
tions. Recall that European call and put options are derivatives written on
an underlying asset S driven by the price process St, which yield the pay-off
max(ST −K, 0) and max(K −ST , 0) respectively, at a given expiry time T and
for a prespecified strike price K. The difference τ = T − t between the day of
trade and day of expiration (maturity) is called time to maturity. The pricing
formula for call options, Black and Scholes (1973), is:

Ct(St, K, τ, r, σ) = StΦ(d1) − Ke−rτΦ(d2)
(1.1)

d1 =
ln(St/K) + (r + 1/2σ2)τ

σ
√

τ
, d2 = d1 − σ

√
τ ,

where Φ(·) is the cumulative distribution function of the standard normal dis-
tribution, r is the riskless interest rate, and σ is the (unknown and constant)
volatility parameter. The put option price Pt can be obtained from the put-call
parity Pt = Ct − St + e−τrK.
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1.2 Implied volatility surface

For a European option the implied volatility σ̂ is defined as the volatility – σ,
which yields the BS price Ct equal to the price C̃t observed on the market. For
a single asset, we obtain at each time point t a two-dimensional function – the
IV surface σ̂t(K, τ). In order to standardize the volatility functions in time, one
may rescale the strike dimension by dividing K by the future price Ft(τ) of the
underlying asset with the same maturity. This yields the so-called moneyness
κ = K/Ft(τ). Note that some authors define moneyness simply as κ = K/St.
In contrast to the BS assumptions, empirical studies show that IV surfaces are
significantly curved, especially across the strikes. This phenomenon is called
a volatility smirk or smile. Smiles stand for U-shaped volatility functions and
smirks for decreasing volatility functions.

We focus on the European options on the German stock index (ODAX). Figure
1.1 displays the ODAX implied volatilities computed from the BS formula (red
points) and the IV surface on May 24, 2001 estimated using a local polynomial
estimator for τ ∈ [0, 0.6] and κ ∈ [0.8, 1.2]. We can clearly observe the “strings”
of the original data on maturity grid τ ∈ {0.06111, 0.23611, 0.33333, 0.58611},
which corresponds to 22, 85, 120, and 211 days to maturity. This maturity
grid is structured by market conventions and changes over time. The fact that
the number of transactions with short maturity is much higher than those with
longer maturity is also typical for the IVs observed on the market.

The IV surface is a high-dimensional object – for every time point t we have
to analyze a two-dimensional function. Our goal is to reduce the dimension
of this problem and to characterize the IV surface through a small number of
factors. These factors can be used in practice for risk management, e.g. with
vega-strategies.

The analyzed data, taken from MD*Base, contains EUREX intra-day transac-
tion data for DAX options and DAX futures (FDAX) from January 2 to June
29, 2001. The IVs are calculated by the Newton-Raphson iterative method.
The correction of Hafner and Wallmeier (2001) is applied to avoid influence
of the tax-scheme in the DAX. For robustness, we exclude the contracts with
time to maturity of less than 7 days and maturity strings with less than 100
observations. The approximation of the “riskless” interest rate with a given
maturity is obtained on a daily basis from the linear interpolation of the 1, 3,
6, and 12 month EURIBOR interest rates (obtained from Datastream).

The resulting data set is analyzed using the functional data analysis framework.
One advantage of this approach, as we will see later in this chapter, is the
possibility of introducing smoothness in the functional sense and using it for
regularization. The notation of the functional data analysis is rather complex,

3



1 Common functional IV analysis
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Figure 1.1: Implied volatility surface of ODAX on May 24, 2001.
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therefore the theoretical motivation and the basic notation will be introduced
in the next section.

1.3 Functional data analysis

In the functional data framework, the objects are usually modelled as realiza-
tions of a stochastic process X(t), t ∈ J , where J is a bounded interval in R.
Thus, the set of functions

xi(t), i = 1, 2, . . . n, t ∈ J,

4



1.3 Functional data analysis

represents the data set. We assume the existence of the mean, variance, and
covariance functions of the process X(t) and denote these by EX(t), Var(t)
and Cov(s, t) respectively.

For the functional sample we can define the sample-counterparts of EX(t),
Var(t) and Cov(s, t) in a straightforward way:

X̄(t) = 1
n

n∑
i=1

xi(t),

V̂ar(t) = 1
n−1

n∑
i=1

{
xi(t) − X̄(t)

}2
,

Ĉov(s, t) = 1
n−1

n∑
i=1

{
xi(s) − X̄(s)

} {
xi(t) − X̄(t)

}
.

In practice, we observe the function values X def= {xi(ti1), xi(ti2), . . . , xi(tipi);
i = 1, . . . , n} only on a discrete grid {ti1, ti2, . . . , tipi} ∈ J , where pi is the
number of grid points for the ith observation. One may estimate the functions
x1, . . . , xn via standard nonparametric regression methods, Härdle (1990). An-
other popular way is to use a truncated functional basis expansion. More pre-
cisely, let us denote a functional basis on the interval J by {Θ1, Θ2, . . . , } and
assume that the functions xi are approximated by the first L basis functions
Θl, l = 1, 2, . . . , L :

xi(t) =
L∑

l=1

cilΘl(t) = c�i Θ(t), (1.2)

where Θ = (Θ1, . . . , ΘL)� and ci = (ci1, . . . , ciL)�. The number of basis
functions L determines the tradeoff between data fidelity and smoothness. The
analysis of the functional objects will be implemented through the coefficient
matrix

C = {cil, i = 1, . . . , n, l = 1, . . . , L}.
The mean, variance, and covariance functions are calculated by:

X̄(t) = c̄�Θ(t),

V̂ar(t) = Θ(t)�Cov(C)Θ(t),

Ĉov(s, t) = Θ(s)�Cov(C)Θ(t),

where c̄l
def= 1

n

n∑
i=1

cil, l = 1, . . . , L and Cov(C) def= 1
n−1

n∑
i=1

(ci − c̄)(ci − c̄)�.

5



1 Common functional IV analysis

The scalar product in the functional space is defined by:

〈xi, xj〉 def=
∫
J

xi(t)xj(t)dt = c�i Wcj ,

where
W def=

∫
J

Θ(t)Θ(t)�dt. (1.3)

In practice, the coefficient matrix C needs to be estimated from the data set X .

An example for a functional basis is the Fourier basis defined on J by:

Θl(t) =

⎧⎨
⎩

1, l = 0,
sin(rωt), l = 2r − 1,
cos(rωt), l = 2r,

where the frequency ω determines the period and the length of the interval
|J | = 2π/ω. The Fourier basis defined above can be easily transformed to
the orthonormal basis, hence the scalar-product matrix in (1.3) is simply the
identity matrix.

Our aim is to estimate the IV-functions for fixed τ = 1 month (1M) and
2 months (2M) from the daily-specific grid of the maturities. We estimate
the Fourier coefficients on the moneyness-range κ ∈ [0.9, 1.1] for maturities
observed on particular day i. For τ∗ = 1M, 2M we calculate σ̂i(κ, τ∗) by linear
interpolation of the closest observable IV string with τ ≤ τ∗, σ̂i(κ, τ∗

i−) and
τ ≥ τ∗, σ̂i(κ, τ∗

i+):

σ̂i(κ, τ∗) = σ̂i(κ, τ∗
i−)

(
1 − τ∗ − τ∗

i−
τ∗
i+ − τ∗

i−

)
+ σ̂i(κ, τ∗

i+)
(

τ∗ − τ∗
i−

τ∗
i+ − τ∗

i−

)
,

for i where τ∗
i− and τ∗

i− exist. In Figure 1.2 we show the situation for τ∗ =1M on
May 30, 2001. The blue points and the blue finely dashed curve correspond to
the transactions with τ∗

− =16 days and the green points and the green dashed
curve to the transactions with τ∗

+ = 51 days. The solid black line is the linear
interpolation at τ∗ = 30 days.

The choice of L = 9 delivers a good tradeoff between flexibility and smooth-
ness of the strings. At this moment we exclude from our analysis those days,
where this procedure cannot be performed due to the complete absence of
the needed maturities, and strings with poor performance of estimated coeffi-
cients, due to the small number of contracts in a particular string or presence

6



1.4 Functional principal components

IVs and IV strings
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Figure 1.2: Linear interpolation of IV strings on May 30, 2001 with L = 9.
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of strong outliers. Using this procedure we obtain 77 “functional” observations
x1M

i1
(κ) def= σ̂i1 (κ, 1M), i1 = 1, . . . , 77, for the 1M-maturity and 66 observa-

tions x2M
i2

(κ) def= σ̂i2(κ, 2M), i2 = 1, . . . , 66, for the 2M-maturity, as displayed
in Figure 1.3.

1.4 Functional principal components

Principal Components Analysis yields dimension reduction in the multivariate
framework. The idea is to find normalized weight vectors γm ∈ R

p, for which
the linear transformations of a p-dimensional random vector x, with E[x] = 0:

fm = γ�
mx = 〈γm,x〉, m = 1, . . . , p, (1.4)

7



1 Common functional IV analysis

IV-strings, 1M-Group
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Figure 1.3: Functional observations estimated using Fourier basis with L =
9, σ̂i1(κ, 1M), i1 = 1, . . . , 77, in the left panel, σ̂i2(κ, 2M) i2 =
1, . . . , 66 in the right panel.

STFfda03.xpl

have maximal variance subject to:

γ�
l γm = 〈γl, γm〉 = I(l = m) for l ≤ m.

Where I denotes the identificator function. The solution is the Jordan spectral
decomposition of the covariance matrix, Härdle and Simar (2003).

In the Functional Principal Components Analysis (FPCA) the dimension re-
duction can be achieved via the same route, i.e. by finding orthonormal weight
functions γ1, γ2, . . ., such that the variance of the linear transformation is max-
imal. In order to keep notation simple we assume EX(t) = 0. The weight
functions satisfy:

||γm||2 =
∫

γm(t)2dt = 1,

〈γl, γm〉 =
∫

γl(t)γm(t)dt = 0, l �= m.

8



1.4 Functional principal components

The linear transformation is:

fm = 〈γm, X〉 =
∫

γm(t)X(t)dt,

and the desired weight functions solve:

argmax
〈γl,γm〉=I(l=m),l≤m

Var〈γm, X〉, (1.5)

or equivalently:

argmax
〈γl,γm〉=I(l=m),l≤m

∫ ∫
γm(s)Cov(s, t)γm(t)dsdt.

The solution is obtained by solving the Fredholm functional eigenequation∫
Cov(s, t)γ(t)dt = λγ(s). (1.6)

The eigenfunctions γ1, γ2, . . . sorted with respect to the corresponding eigenval-
ues λ1 ≥ λ2 ≥ . . . solve the FPCA problem (1.5). The following link between
eigenvalues and eigenfunctions holds:

λm = Var(fm) = Var
[∫

γm(t)X(t)dt

]
=

∫ ∫
γm(s)Cov(s, t)γm(t)dsdt.

In the sampling problem, the unknown covariance function Cov(s, t) needs to
be replaced by the sample covariance function Ĉov(s, t). Dauxois, Pousse, and
Romain (1982) show that the eigenfunctions and eigenvalues are consistent esti-
mators for λm and γm and derive some asymptotic results for these estimators.

1.4.1 Basis expansion

Suppose that the weight function γ has expansion

γ =
L∑

l=1

blΘl(t) = Θ�b.

Using this notation we can rewrite the left hand side of eigenequation (1.6):∫
Cov(s, t)γ(t)dt =

∫
Θ(s)�Cov(C)Θ(t)Θ(t)�bdt

= Θ�Cov(C)Wb,

9



1 Common functional IV analysis

so that:
Cov(C)Wb = λb.

The functional scalar product 〈γl, γk〉 corresponds to b�
l Wbk in the truncated

basis framework, in the sense that if two functions γl and γk are orthogonal,
the corresponding coefficient vectors bl,bk satisfy b�

l Wbk = 0. Matrix W is
symmetric by definition. Thus, defining u = W1/2b, one needs to solve finally
a symmetric eigenvalue problem:

W1/2Cov(C)W1/2u = λu,

and to compute the inverse transformation b = W−1/2u. For the orthonormal
functional basis (i.e. also for the Fourier basis) W = I, i.e. the problem of
FPCA is reduced to the multivariate PCA performed on the matrix C.

Using the FPCA method on the IV-strings for 1M and 2M maturities we obtain
the eigenfunctions plotted in Figure 1.4. It can be seen, that the eigenfunctions
are too rough. Intuitively, this roughness is caused by the flexibility of the
functional basis. In the next section we present a way of incorporating the
smoothing directly into the PCA problem.

1.5 Smoothed principal components analysis

As we can see in Figure 1.4, the resulting eigenfunctions are often very rough.
Smoothing them could result in a more natural interpretation of the obtained
weight functions. Here we apply a popular approach known as roughness
penalty. The downside of this technique is that we loose orthogonality in the
L2 sense.

Assume that the underlying eigenfunctions of the covariance operator have a
continuous and square-integrable second derivative. Let Dγ = γ′(t) be the first
derivative operator and define the roughness penalty by Ψ(γ) = ||D2γ||2. More-
over, suppose that γm has square-integrable derivatives up to degree four and
that the second and the third derivatives satisfy one of the following conditions:

1. D2γ, D3γ are zero at the ends of the interval J ,

2. the periodicity boundary conditions of γ,Dγ, D2γ, and D3γ on J .

10



1.5 Smoothed principal components analysis

Weight functions, 1M-Group
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Figure 1.4: Weight functions for 1M and 2M maturity groups. Blue solid lines,
γ̂1M
1 and γ̂2M

1 , are the first eigenfunctions, green finely dashed lines,
γ̂1M
2 and γ̂2M

2 , are the second eigenfunctions, and cyan dashed lines,
γ̂1M
3 and γ̂2M

3 , are the third eigenfunctions.
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Then we can rewrite the roughness penalty in the following way:

||D2γ||2 =
∫

D2γ(s)D2γ(s)ds

= Dγ(u)D2γ(u) −Dγ(d)D2γ(d) −
∫

Dγ(s)D3γ(s)ds (1.7)

= γ(u)D3γ(u) − γ(d)D3γ(d) −
∫

γ(s)D4γ(s)ds (1.8)

= 〈γ,D4γ〉, (1.9)

where d and u are the boundaries of the interval J and the first two elements
in (1.7) and (1.8) are both zero under any of the conditions mentioned above.

Given a eigenfunction γ with norm ||γ||2 = 1, we can penalize the sample
variance of the principal component by dividing it by 1 + α〈γ,D4γ〉:

PCAPV
def=

∫ ∫
γ(s)Ĉov(s, t)γ(t)dsdt∫
γ(t)(I + αD4)γ(t)dt

, (1.10)

11



1 Common functional IV analysis

where I denotes the identity operator. The maximum of the penalized sample
variance (PCAPV) is an eigenfunction γ corresponding to the largest eigenvalue
of the generalized eigenequation:∫

Ĉov(s, t)γ(t)dt = λ(I + αD4)γ(s). (1.11)

As already mentioned above, the resulting weight functions (eigenfunctions)
are no longer orthonormal in the L2 sense. Since the weight functions are used
as smoothed estimators of principal components functions, we need to rescale
them to satisfy ||γl||2 = 1. The weight functions γl can be also interpreted as
orthogonal in the modified scalar product of the Sobolev type

(f, g) def= 〈f, g〉 + α〈D2f,D2g〉.
A more extended theoretical discussion can be found in Silverman (1991).

1.5.1 Basis expansion

Define K to be a matrix whose elements are 〈D2Θj,D2Θk〉. Then the general-
ized eigenequation (1.11) can be transformed to:

W Cov(C)Wu = λ(W + αK)u. (1.12)

Using Cholesky factorization LL� = W + αK and defining S = L−1 we can
rewrite (1.12) as:

{SWCov(C)WS�}(L�u) = λL�u.

Applying Smoothed Functional PCA (SPCA) to the IV-strings, we get the
smooth-eigenfunctions plotted in Figure 1.5. We use α = 10−7, the aim is
to use a rather small degree of smoothing, in order to replace the high fre-
quency fluctuations only. Some popular methods, like cross-validation, could
be employed as well, Ramsay and Silverman (1997).

The interpretation of the weight functions displayed in Figure 1.5 is as follows:
The first weight function (solid blue) represents clearly the level of the volatil-
ity – weights are almost constant and positive. The second weight function
(finely dashed green) changes sign near the at-the-money point, i.e. can be in-
terpreted as the in-the-money/out-of-the-money identification factor or slope.

12



1.6 Common principal components model

Weight functions, 1M-Group
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Figure 1.5: Smoothed weight functions with α = 10−7. Blue solid lines, γ̂1M
1

and γ̂2M
1 , are the first eigenfunctions, green finely dashed lines, γ̂1M

2

and γ̂2M
2 , are the second eigenfunctions, and cyan dashed lines, γ̂1M

3

and γ̂2M
3 , are the third eigenfunctions.

STFfda05.xpl

The third (dashed cyan) weight function may play the part of the measure
for a deep in-the-money or out-of-the-money factor or curvature. It can be
seen that the weight functions for the 1M (γ̃1M

1 , γ̃1M
2 , γ̃1M

3 ) and 2M maturities
(γ̃2M

1 , γ̃2M
2 , γ̃2M

3 ) have a similar structure. From a practical point of view it
can be interesting to try to get common estimated eigenfunctions (factors in
the further analysis) for both groups. In the next section, we introduce the
estimation motivated by the Common Principal Component Model.

1.6 Common principal components model

The Common Principal Components model (CPC) in the multivariate setting
can be motivated as the model for similarity of the covariance matrices in the k-
sample problem, Flury (1988). Having k random vectors, x(1),x(2), . . . ,x(k) ∈

13



1 Common functional IV analysis

R
p the CPC-Model can be written as:

Ψj
def= Cov(x(j)) = ΓΛjΓ�,

where Γ is an orthogonal matrix and Λj = diag(λi1, . . . , λip). This means that
eigenvectors are the same across samples and just the eigenvalues – variances
of the principal component scores (1.4) differ.

Using the normality assumption, the sample covariance matrices Sj , j = 1, . . . , k,
are Wishart-distributed:

Sj ∼ Wp(nj ,Ψj/nj),

and the CPC model can be estimated using maximum likelihood estimation
with likelihood-function:

L(Ψ1,Ψ2, . . . ,Ψk) = C

k∏
j=1

exp
{
tr

(
−nj

2
Ψ−1

j Sj

)}
(detΨj)−nj/2.

Here C is a factor that does not depend on the parameters and nj is the number
of observations in group j. The maximization of this likelihood function is
equivalent to:

k∏
j=1

{
det diag(Γ�SjΓ)

det(Γ�SjΓ)

}nj

, (1.13)

and the maximization of this criterion is performed by the so-called Flury-
Gautschi(FG)-algorithm, Flury (1988).

As shown in Section 1.4, using the functional basis expansion, the FPCA
and SPCA are basically implemented via the spectral decomposition of the
“weighted” covariance matrix of the coefficients. In view of the minimization
property of the FG algorithm, the diagonalization procedure optimizing the
criterion (1.13) can be employed. However, the obtained estimates may not be
maximum likelihood estimates.

Using this procedure for the IV-strings of 1M and 2M maturity we get “com-
mon” smoothed eigenfunctions. The first three common eigenfunctions (γ̃c

1, γ̃
c
2,

γ̃c
3) are displayed in Figures 1.6–1.8. The solid blue curve represents the es-

timated eigenfunction for the 1M maturity, the finely dashed green curve for
the 2M maturity and the dashed black curve is the common eigenfunction
estimated by the FG-algorithm.

Assuming that σ̂i(κ, τ) are centered for τ = 1M and 2M (we subtract the
sample mean of corresponding group from the estimated functions), we may
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1.6 Common principal components model

1. weight functions-1M,2M,Common
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Figure 1.6: First weight functions, α = 10−7, solid blue line is the weight func-
tion of the 1M maturity group (γ̂1M

1 ), finely dashed green line of
the 2M maturity group (γ̂2M

1 ), and dashed black line is the common
eigenfunction (γ̃c

1), estimated from both groups.

use the obtained weight functions in the factor model of the IV dynamics of
the form:

σ̃i(κ, τ) =
R∑

j=1

γ̃c
j (κ)〈γ̃c

j (κ), σ̂i(κ, τ)〉, (1.14)

where τ ∈ {1M, 2M} and R is the number of factors. Thus σ̃i is an alternative
estimation of σi. This factor model can be used for simulation applications
like Monte Carlo VaR. Especially the usage of Common Principal Components
γ̃c

j (κ) reduces the high-dimensional IV-surface problem to a small number of
functional factors.

In addition, an econometric approach, successfully employed by Fengler, Härdle,
and Mammen (2004) can be employed. It consists of fitting an appropri-
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1 Common functional IV analysis

2. weight functions-1M,2M,Common
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Figure 1.7: Second eigenfunctions, α = 10−7 , solid blue line is the weight
function of the 1M maturity group (γ̂1M

2 ), finely dashed green line of
the 2M maturity group (γ̂2M

2 ), and dashed black line is the common
eigenfunction (γ̃c

2), estimated from both groups.

ate model to the time series of the estimated principal component scores,
f̃ c

ij(τ) = 〈γ̃c
j (κ), σ̂i(κ, τ)〉, as displayed in Figure 1.9. Note that σ̂i(κ, τ) are

centered again (sample means are zero). The fitted time series model can be
used for forecasting future IV functions.

There are still some open questions related to this topic. First of all, the prac-
titioner would be interested in a good automated choice of the parameters of
our method (dimension of the truncated functional basis L and smoothing pa-
rameter α). The application of the Fourier coefficients in this framework seems
to be reasonable for the volatility smiles (U-shaped strings), however for the
volatility smirks (typically monotonically decreasing strings) the performance
is rather bad. In particular, the variance of our functional objects and the
shape of our weight functions at the boundaries is affected. The application
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1.6 Common principal components model

3. weight functions-1M,2M,Common
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Figure 1.8: Third eigenfunctions, α = 10−7, solid blue line is the weight func-
tion of the 1M maturity group (γ̂1M

3 ), finely dashed green line of
the 2M maturity group (γ̂2M

3 ), and dashed black line is the common
eigenfunction (γ̃c

3), estimated from both groups.

of regression splines in this setting seems to be promising, but it increases the
number of smoothing parameters by the number and the choice of the knots –
problems which are not generally easy to deal with. The next natural question,
which is still open concerns the statistical properties of the technique and the
testing procedure for the Functional Common PCA model. Finally, using the
data for a longer time period one may also analyze the longer maturities like 3
months or 6 months.
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1 Common functional IV analysis
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Figure 1.9: Estimated principal component scores, f̃ c
i1(1M), f̃ c

i2(1M), and
f̃ c

i3(1M) for 1M maturity – first row, and f̃ c
i1(2M), f̃ c

i2(2M), and
f̃ c

i3(2M) for 2M maturity – second row; α = 10−7.
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