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1.1 Introduction

Functional data analysis (FDA) has become a popular technique in applied statistics.
In particular, this methodology has received considerable attention in recent studies
in empirical finance. In this talk we discuss selected topics of functional principal
components analysis that are motivated by financial data.

By definition, FDA deals with the analysis of samples of functions. However, in practice
the functions of interest are often not directly observed but are regression curves which
have to be reconstructed from discrete, noisy data. In Section 2 we present a new
method for efficient estimation of functional principal components in such situations.
It consists in an adaptation of a technique introduced by Kneip and Utikal (2001) for
the case of density functions.

Inference for two independent functional samples is considered. Bootstrap tests are
developed to test whether principal components coincide and the two samples thus
possess ”common” functional principal components. The procedure possesses an im-
portant application in modelling implied volatilites as described in Benko and Härdle
(2004).

In this section we will focus on one sample of i.i.d. smooth random functions
x1(t), . . . , xN (t) ∈ L2[0, 1], t ∈ [0, 1]. For v, w ∈ L2[0, 1] let 〈v, w〉 =

∫ b

a
v(t)w(t)dt, and
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1 Common functional component modelling

let ‖ · ‖= 〈·, ·〉1/2 denote the usual L2-norm. The Karhunen-Loève decomposition then
provides a basic tool to describe the distribution of the random functions xi. With
λ1 ≥ λ2 ≥ . . . and γ1, γ2, . . . denoting eigenvalues and corresponding orthonormal
eigenfunctions of the covariance operator C of xi we obtain

xi = µ +
∑
j=1

βijγj , i = 1, . . . , N, (1.1)

where µ = E(xi) is the mean function and βij = 〈xi−µ, γj〉 are (scalar) factor loadings
with E(β2

ij) = λj . Structure and dynamics of the random functions can be assessed
by analyzing the ”functional principal components” γj as well as the distribution of
the factor loadings.

An important property of (1.1) consists in the known fact that the first L principal
components provide a “best basis” for approximating the sample functions in terms of
the integrated square error.

For any choice of L orthonormal basis functions v1, . . . , vL

ρ(v1, . . . , vL) = E(‖ xi − µ −
L∑

j=1

〈xi − µ, vj〉vj ‖2)

is minimized by vj = γj . In many important applications a small number of functional
principal components will suffice to approximate the functions xi with a high degree
of accuracy.

For a given sample an empirical analog of (1.1) can be constructed by using eigenvalues
λ1,n ≥ λ2,N ≥ . . . and orthonormal eigenfunctions γ1,N , γ2,N , . . . of the empirical

covariance operator CN , where CN = 1
N

N∑
i=1

〈xi− x̄, ξ〉(xi− x̄). If K denotes the number

of nonzero eigenvalues of CN then

xi = x̄ +
K∑

j=1

βij,Nγj,N , i = 1, . . . , N, (1.2)

where x̄ is the sample mean, and 1
N

∑
i β2

ij,N = λj,N . Obviously, λj,N and γj,N estimate
λj and γj for j = 1, 2, . . . .

However, in practice, the sample functions xi are often not directly observed, but have
to be reconstructed from noisy observations Yij at discrete design points tik:

yik = xi(tik) + εik, k = 1, . . . , Ti, (1.3)

where εik are independent noise terms with E(εik) = 0, Var(εik) = σ2
i .
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1.1 Introduction

In this context the standard approach to estimate functional principal components is to
first estimate individual functions nonparametrically and then to determine eigenfunc-
tions of the resulting estimated empirical covariance operator (compare, e.g., Ramsay
and Silverman (1997)).

We propose an alternative approach which in a first step relies on estimating the
elements of the matrix

Mlk = 〈xl − x̄, xk − x̄〉, l, k = 1, . . . , N. (1.4)

Some simple linear algebra shows that all nonzero eigenvalues λ1,N ≥ λ2,N . . . of
CN and l1 ≥ l2 . . . of M are related by λj,N = lj/N . When using additionally the
corresponding orthonormal eigenvectors p1, p2, . . . of M , the empirical scores βjr,N =
〈xj − x̄, γr,N 〉 as well as the empirical eigenfunctions γr,N are obtained by βjr,N =√

lrpjr and

γr,N =
(√

lr

)−1 N∑
i=1

pir (xi − x̄) =
(√

lr

)−1 N∑
i=1

pirxi. (1.5)

The elements of M are functionals which can be estimated with asympotically negligi-
ble bias and a parametric rate of convergence T

−1/2
i . If the data in (1.3) is generated

from a balanced, equidistant design, then it is easily seen that for i 6= j this rate of

convergence is achieved by the estimator M̂ij = 1
T

T∑
k=1

yikyjk.

In the case of a random design some adjustment is necessary: Set T
def= min{T1, T2, . . . , TN}

and define an equidistant grid {tk
def= k/(T − 1), k = 0, 1, . . . , T − 1} on [0, 1]. Then,

for each i = 1, . . . , N and k = 1, . . . , T find the index of the first and second nearest
neighbor of tk:

k(i) = arg min
j=1,...,Ti

|tij − tk| and k′(i) = arg min
j 6=k′(i)

|tij − tk|.

Finally, construct the estimators

M̂ij =
1
T

T∑
k=1

yik(i)yjk(j) for i 6= j and M̂ii =
1
T

T∑
k=1

yik(i)yik′(i). (1.6)

The aim of using special estimator (1.6) for the diagonal terms is to avoid the ad-
ditional bias. Alternatively we can construct a bias corrected estimator using some
nonparametric estimation of variance σ2

i .

The eigenvalues l̂1 ≥ l̂2 . . . and eigenvectors p1, p2, . . . of the resulting matrix M̂ then
provide estimates λ̂r,N = l̂r/N and β̂jr =

√
l̂rp̂jr. Estimates γ̂r,N of the empirical

3



1 Common functional component modelling

functional principal component γr,N can be determined from (1.5) when replacing
the unknown true functions xi by nonparametric estimates x̂i (as, for example, local
polynomial estimates with bandwidths hi):

γ̂r,N =
(√

l̂r

)−1 N∑
i=1

p̂irx̂i. (1.7)

When considering (1.7), it is important to note that γ̂r,N is defined as a weighted
average of all estimated sample functions. Averaging reduces variance, and efficient
estimation of γr,N therefore requires undersmoothing of individual function estimates
x̂i. Indeed, under suitable additional regularity conditions it can be shown that for an
optimal choice of smoothing parameters and twice continuously differentiable xi, we
obtain the rate of convergence ‖ γr,N − γ̂r,N ‖= OP ((NT )−2/5). Here, T = mini Ti.

A natural question is how many functions K should be used when approximating
the sample functions by a factor model of the form (1.2), when relying on estimated
principal components and scores. This question is crucial from statistical and practical
point of view, although it is not discussed often in the literature. We propose a
bootstrap test which successively tests the hypothesis H0 : λK0+1,N = · · · = λN,N = 0
for K0 = 1, 2, 3, . . . based on the respective residual average integrated square error:
ρ̂N (γ1, . . . , γK0) = 1

N

∑N
r=K0+1 l̂r.

The idea of this procedure is based on the fact that the estimated eigenfunctions that
correspond to small estimated eigenvalues (with relative small importance) are rather
driven by the sampling noise than can be interpreted as a component of the variation of
the underlying population. In other words we do not want to use eigenfunctions whose
relative importance cannot be significantly distinguished from random components
generated by noise.

1.2 Two sample inference

Clearly, in the framework described by (1.1) - (1.3) we are faced with two sources of
variability of estimated functional principal components. Due to sampling variation
γr,N will differ from the true component γr, and due to (1.3) there will exist an
additional estimation error when approximating γr,N by γ̂r,N . The results of Dauxois,
Pousse and Romain (1982) imply that ‖ γr − γr,N ‖= OP (N−1/2), and the results of
the proceeding section therefore imply that the difference between γ̂r,N and γr,N is of
smaller order of magnitude if T is sufficiently large compared to N . Inference about
functional principal components under (1) - (3) will then be first order equivalent to
an inference based on known functions xi.

We are mainly interest in two sample problems. Thus let

x1
1(t), x

1
2(t), . . . , x

1
N1

(t) and x2
1(t), x

2
2(t), . . . , x

2
N2

(t) (1.8)
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1.2 Two sample inference

denote two independent samples of smooth functions. The problem of interest is to
test whether the functional principal components γr in the respective decompositions
(1.1) are common (identical) for both groups. In this case only the factor loadings βir

may vary across samples. Then γr = γ1
r = γ2

r and

xp
i = µp +

∑
r=1

βp
irγr, p = 1, 2. (1.9)

This hypothesis has been used in the work of Fengler, Härdle and Villa (2003) and
Benko and Härdle (2004) in modelling implied volatilites. It can be seen as a functional
generalization of the concept of ”common principal components” as introduced by
Flury (1988) in multivariate analysis.

If the functions xp
i were directly observed, then in order to test the hypothesis

H0 : γ1
r = γ2

r

for r = 1, 2, . . . one could rely on the test statistics

Dr =‖ γ1
r,N − γ2

r,N ‖2 .

It can be shown that critical values of Dr can be determined by a bootstrap procedure:
Under H0 we have Dr =‖ γ1

r,N − γ1
r − (γ2

r,N − γ2
r ) ‖2. The distribution of ‖ γ1

r,N −
γ1

r − (γ2
r,N − γ2

r ) ‖2 can then be approximated by the bootstrap distribution of ‖
γ1∗

r,N − γ1
r,N − (γ2∗

r,N − γ2
r,N ) ‖, where γ1∗

r,N and γ̂2∗
r,N are estimates to be obtained from

independent bootstrap samples

x1∗
1 (t), x1∗

2 (t), . . . , x1∗
N1

(t) and x2∗
1 (t), x2∗

2 (t), . . . , x2∗
N2

(t). (1.10)

In the practically more relevant situation that all curves in both samples have to be
reconstructed from noisy observations according to (1.3), Dr must be replaced by
D̂r =‖ γ̂1

r,N − γ̂2
r,N ‖2, where estimates are determined by the procedure described

above. Bootstrap estimates are then obtained by resampling the observations corre-
sponding to the unknown curves xi. The procedure is asymptotically valid if T is
sufficiently large such that the additional estimation error is asymptotically negligi-
ble. Of course, the test should only be performed for components which can be savely
distinguished from noise, and 1 ≤ r ≤ minK1

0 ,K2
0 .
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